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ARTICLE INFO ABSTRACT

Throughout the 20th century, Florida was one of the fastest growing states in the US, putting unique environ-
mental stress on the region. Accurately dated lake sediments can provide invaluable records of environmental
change that extend beyond monitoring records. Here, we analyze profiles of americium-241 (>*!Am), cesium-137
(137Cs), lead (Pb), zinc (Zn), and uranium-series radionuclides in Lake Bonny in Lakeland, Florida. The 241Am

Dataset link: Revised Lake Bonny Dataset -
Volante et al.

Ig:m;ﬁ: dating peak is sharp in the sediment profile, while the 137¢cg peak is broader and spread evenly across two layers. The
Radionuclides measured 1%’ Cs inventory of ~413 Bq/m? is less than half of the expected inventory from atmospheric deposition
Pollution (accounting for decay since deposition), indicating significant losses. The reliability of *3’Cs as a chronological
Heavy metals tool can be complicated in environments with low quantities of 2:1 clays and low available potassium (K),
Florida characteristic of Florida and the U.S. southeast. Using a piecewise constant rate of supply 2!°Pb model verified by
Urbanization 241 Am, we reconstruct sedimentation and chemical change in this lake. Highest sedimentation rates in the lake

occur during decades of peak population growth in the mid-20th century. Uranium (U) and radium-226 (226Ra)
inputs to the lake reach a maximum in the 1960s, consistent with expansion of local phosphate mines and
elevated groundwater pumping during that time in response to drought conditions. Total Pb in the sedimentary
record captures the rise and fall of the use of leaded gasoline, but Zn inputs to the lake remain nearly two orders
of magnitude above background levels in the last decade. Our high-resolution chronology of the lake reveals
regional impacts on water and lake quality in central Florida during a period of rapid population growth.

1. Introduction

Humans have measurably impacted earth systems for thousands of
years, but these changes intensified dramatically since the industrial
revolution beginning around 250 years ago (Dong et al., 2021). Lake
sediments record changes to the ecology, climate, air and water chem-
istry, hydrologic flows, and predominant geomorphic processes in a
region over time (Pirrone et al., 1998; Zhang and Walling, 2005; Routh
et al., 2007; Balascio et al., 2019). The analysis of gamma-ray emitting
radionuclides via gamma spectrometry in sediment cores is a robust
technique that can be used to contextualize chronologies of environ-
mental change (Appleby et al., 1986 and Bruel and Sabatier, 2020).
Dating models produced via gamma spectrometry can be precise enough
to resolve chemical changes on annual to decadal time scales (Appleby
and Oldfield, 1978). Three of the most widely used radionuclides in
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gamma spectrometry for creating age models of recent sediments
include naturally occurring 2!°Pb and anthropogenic 1*’Cs and 2*'Am
released from atmospheric atomic weapon detonations primarily during
1952-1963. Dating models using 2!°Pb (t;» = 22.2 years), which is
produced naturally in the atmosphere and in the earth’s crust from
continuous decay of radon, rely on the determination of ‘excess’ 2'°Pb in
sediments. The main source of excess 2!°Pb in lake sediments is fallout
from the atmosphere. This fallout enters the lake system directly via
wet/dry deposition on to the lake surface, or indirectly through runoff
from the surrounding lake catchment. Excess 21°Pb is measured by the
extent to which total 2!°Pb exceeds the “supported” 2'°Pb that is pro-
duced by in situ decay of 2?Ra found within the sediments. The constant
rate of supply (CRS) model assumes that the flux of excess 21°Pb to the
catchment is constant over time and that the sedimentation rate can
freely change (Goldberg, 1963; Appleby and Oldfield, 1978; Swarzenski,
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2014). 21%pb dating models need to be corroborated with an indepen-
dent tracer such as '*”Cs or 2*'Am to confirm that the above assumptions
have been met (Appleby, 2001).

The layer of a sediment core with the highest activity of '*’Cs and
21 Am is widely used as a reference point to the year with maximum
fallout (1963 CE) to validate 210p, dating models (Beck and Bennett,
2002). ¥7Cs (4 ,2 = 30.1 y) is a direct fission product of uranium-235,
whereas 2"'Am (t;» = 432 y) is a decay product of plutonium-241
(*'Py; t1, = 14 y). ¥Cs has been more widely used as a dating
proxy than 2*'Am because its atomic abundance is orders of magnitude
higher, which combined with a shorter half-life, produces a strong and
easily observed gamma emission at 662 keV compared to the gamma
emission of 2*'Am at 59.5 keV. While '*’Cs is more abundant than
241Arn, two half-lives have elapsed since maximum deposition in 1963,
so 137Cs activities in sediments and soils are approaching less than a
quarter of the initial amount deposited during the atomic weapon test
period (Drexler et al., 2018). As a decay product of 2*'Pu, ?"'Am is
actively in-growing in sediments and soils and will reach a maximum
activity in 2037 (Appleby et al., 1991).

Both '¥7Cs and 2*!Am bind to organic matter and secondary minerals
with contrasting affinities. >’Cs has been observed to become perma-
nently trapped in the interlayer of 2:1 clays like illite (Fuller et al.,
2015). However, in environments with highly weathered clays such as
bauxite or gibbsite, 1¥Cs is found to be geochemically mobile (Drexler
etal., 2018), whereas 2*' Am appears to fix more permanently to soil and
sediment particles in a wide range of environments (Brezonik and
Engstrom, 1998; Olid et al., 2008; Hansson et al., 2014). Additionally, it
is well established that vegetation has the tendency to uptake '%7Cs
because plant root receptors can mistake the 1¥’Cs™ cation for K*, given
that these cations have a +1 oxidation state and similar atomic radii
(Dahlman et al., 1975; Zhu and Smolders, 2000). This is especially
common in environments with low soil K (Kaste et al., 2021). Vegetation
uptake of 2! Am is near zero and Am only exists as a 43 cation in the
near-surface environment (Popplewell, 1984; Turian et al., 2015). In
regions with low 2:1 clay compositions and high uptake, 13’Cs is likely to
be geochemically mobile, while 24'Am tends to be more immobile and
thus more reliable as a dating tool.

During the early and mid-20th century, Florida experienced rapid
population growth from 753,000 in 1910 to nearly 5 million in 1960 (US
Census Data). Substantial increases in population, related construction,
and stresses on water supplies result in environmental degradation and
pollution. In Florida, common examples include eutrophication of lakes,
measured in Lake Okeechobee (Brezonik and Engstrom, 1998) and Lake
Apopka (Schelske et al., 2005) and deposition of Pb and other heavy
metals (Kamenov et al., 2009; Escobar et al., 2013) among other types of
pollution. Reliable sediment dating techniques are vital to understand
the timing of historical pollution to measure changes in response to
regulations and conservation efforts. However, the south-eastern region
of the United States is an area that contains highly weathered clays, low
available soil K, and abundant vegetation in its wetlands, lakes, and
marshes. In these environments, 2*'Am or other dating techniques may
be necessary to verify 13Cs or 21°Pb based dating models. We analyzed
the gamma emitting radionuclides in a sediment core from a Lake
Bonny, a eutrophic lake in Lakeland, FL, USA, to understand the
chemical history of the lake and evaluate the reliability of 21OPb, 137Cs,
and 2 Am dating models in a region with highly weathered clays, dense
vegetation, and abundant cations that could desorb *3Cs from sediment.

2. Methods
2.1. Study site and sample collection

Lake Bonny is a small (0.822 km?), eutrophic, shallow (max depth
3.7 m) lake surrounded by the city of Lakeland, Polk County, Florida

(28°2'5.31"N; 81°55°52.24"W) within the Peace River-Saddle Creek
Watershed. The lake lies within the Lakeland/Bone Valley Upland,
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which consists of sandhills and many solution depression lakes. This
region is covered in phosphatic and clayey sands from the Miocene-
Pliocene Bone Valley Member of the Peace River Formation in the
Hawthorn Group (Griffith et al., 1997). Lake Bonny is connected to the
much larger Lake Parker to the north. Lake Bonny and Lake Parker drain
into the Saddle Creek, Lake Hancock, the Peace River and finally the
Gulf of Mexico.

A core was extracted from the deepest portion of the lake on July
15th, 2020 (Fig. 1) using a piston corer (Fisher et al., 1992). The core
was sectioned in the field at 4-cm intervals and stored on ice in
Whirl-Pak bags. Sections were frozen, freeze-dried, and ground with a
mortar and pestle. Dry bulk density was measured, and then organic
matter concentration was determined by weight loss on ignition (LOI)
after combustion at 550°C for 3 hours. Total Pb, phosphorous (P), Zn,
and other metals in each dried section were measured using an ARL
3560AES ICP analyzer following acid digestion using standard EPA
methods (Griffith et al., 1997).

2.2. Gamma spectrometry

The activities of 241Am, 137Cs, 210Pb, and other U-series radionu-
clides were measured via a lead and copper shielded Canberra (Mirion
Industries) ‘broad energy’ intrinsic germanium detector. The efficiency
calibration of the system for measuring U-series radionuclides was ob-
tained by measuring the Canadian Certified Reference Materials Project
BL- 4a ore, which has 0.1248 % U certified in equilibrium with all 238y
and 23U daughters (Steger and Smith, 1985). The 23°U/238U activity
ratio can be assumed to be 0.04605 (Murray et al., 1987). The efficiency
for ¥7Cs and 2*'Am measurements was determined via a certified so-
lution containing those radionuclides from Eckert & Ziegler. Calibration
standards of BL-4a or the E&Z solution were measured in the exact same
geometry as the unknown sediment samples. For lower energy gamma
emissions (<100 keV), including 24Am and 210Pb, a point-source
transmission correction was applied using the self-attenuation equa-
tion reported by Cutshall et al. (1983). This compares the transmission
rate of gamma rays from an enriched point source through the samples
and standards to an empty container to correct for self-attenuation for
the calibration process and sample activity determination.

Sediment from each core slice was packed into 50 mm diameter
Falcon® ‘Tight-Fit Lid’ 12 mL polystyrene containers and weighed and
sealed with paraffin wax to trap 222Rn for the determination of 225Ra via
the gamma emissions of its short-lived granddaughters 2!*Pb (352 keV)
and 2'*Bi (609 keV). The samples remained sealed for >3 weeks to allow
saturation of the radon daughters (214Pb, 214Bi) in the container with
respect to 22°Ra before gamma analysis. Total 2°Pb is determined via its
attenuation-corrected 46 keV gamma emission (Cutshall et al., 1983)
and 2*'Am via its attenuation-corrected 59.5 keV emission. To deter-
mine 2%6Ra activity in each layer, we use a combination of radon
daughter emissions (214Pb, 214y and the direct gamma emission of
225Ra at 186 keV corrected for the calculated 23°U interference using the
63.3 keV photon (?3®U) and the 2*°U/%*8U activity ratio of 0.04605
(Dowdall et al., 2004; Murray et al., 1987). In most layers, the 226Ra
values determined indirectly using 2*Pb and 2'*Bi were identical to the
direct interference-corrected determination by the 186 keV 22°Ra
emission. In a few cases, the 21*Pb and 2!“Bi values were slightly lower,
which we attribute to radon leakage from cracks in the wax, in which
case we use the value from the direct 186 keV line. We define excess
210pp in the sediment by subtracting the 22°Ra activity from the total
210ph measured in each layer. In layers below 110 centimeters of depth
in the core, 21°Pb and 2?°Ra were statistically indistinguishable, which
confirms our calibration approach. Samples were counted for 3-5 days
to reduce the counting uncertainty below 8 %. The detection limit for
210pp, for a 5 g sediment sample counted for 240k seconds is approxi-
mately 5.5 Bq/kg.
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Fig. 1. Bathymetric and satellite image maps of Lake Bonny, Lakeland Florida (28°02°31.9"N 81°55°45.5"W). Contours are in feet. Bathymetric map is modified from

(Florida LAKEWATCH, 2003). Satellite imagery from Google Maps, 2024.
2.3. 219pp piecewise CRS model

The constant rate of supply (CRS) 2!°Pb dating model is a technique
commonly used to determine the age of sediments in a core. The CRS
model assumes that 2'°Pb deposition to sediment is constant over time
while sedimentation rates can vary (Goldberg, 1963; Appleby and
Oldfield, 1978; Swarzenski, 2014). In this study, we used the
open-source package serac (ShortlivEd RAdionuclide Chronology) to
create a piecewise CRS 210pp model (Bruel and Sabatier, 2020) in R (v.
4.2.1, R Core Team, 2022). A piecewise CRS model differs from a CRS
model in that it allows the user to enter a known age with a

corresponding depth to get a more accurate age model. We assigned the
layer with the greatest 2*!Am activity (52-56 cm) to the year 1963.
Information such as dry bulk density, core slice thickness, and activity of
excess 21%Pb are entered into a.txt file that is then accessed by the serac
package to create the model.

3. Results
3.1. Total Pb, excess 2wa, and Zn

At the base of the core, extractable Pb concentrations range between
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Fig. 2. Total Pb, Zn, 2?°Ra, excess !°Pb and total 2!°Pb in the Lake Bonny core. A white dot indicates data is unavailable for that core slice and represents an average
value of the layer above and below the missing layer data. The error bars for 2?°Ra and total 21°Pb represent 26 uncertainties.
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5 and 12 ppm, which is near crustal average and reasonably represents
the natural background (Lima et al., 2005). Pb concentrations gradually
rise to around 25 ppm near 110 cm depth, then rise sharply between the
76-36 cm layers to a maximum of 173 ppm in the 44-48 cm and
36-40 cm layers (Fig. 2). Above this, Pb concentrations decline to near
50 ppm at the surface. The total excess 2!°Pb inventory in the core is
8059 Bq/m>. At depths below 110 cm in the core, 2'°Pb is indistin-
guishable from 22°Ra. Above 110 cm, excess 2!°Pb activity climbs nearly
logarithmically, reaching a maximum of 588 Bq/kg at the surface. Zn is
very low in the bottom half of the core (<10 ppm) but jumps to 35 ppm
at 70 cm depth, rising to a peak of 217 ppm at 46 cm depth where Pb is
also high. Unlike Pb, Zn remains elevated over 120 ppm in the upper
layers.

3.2, Activities of ¥Cs and ?*'Am

From the top of the core, 1¥’Cs activities are ~9 Bq/kg until the
44-48 cm layer (Fig. 3). After this layer, 1*’Cs activities increase to the
maximum of 18.2 Bq/kg in both the 48-52 cm and 52-56 cm layers.
137Cs activities decline sharply down to 1.9 Bq/kg in the 68-72 cm
layer. After this layer, 13’Cs activities are only intermittently detectable.
The total inventory of *’Cs we measured in the core is 413 Bq/m?
21Am activities are mostly undetectable until the 32-36 cm layer,
which contains an activity of 1.0 Bg/kg. 2*' Am activities do not begin to
increase significantly until the 48-52 cm layer with an activity of
2.6 Bq/kg. The 52-56 cm layer contains the highest 2*'Am activity of
3.42 Bq/kg, which drops to 0.2 Bq/kg in the 64-68 cm layer before
becoming undetectable in the following layers. The total inventory of
21 Am we measured in the core is 44.4 Bq/m?

3.3. ?%Ra activity and phosphorous

226Ra activities are lowest in the period from 1867 to 1916, ranging
from 28.0 to 43.8 Bq/kg (Fig. 4). 2?°Ra activities increase steeply to a
maximum of 122.1 Bq/kg in 1958. The ?2°Ra activities then decrease to
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57.8 Bq/kg in 1991. The 2?°Ra activities remain around 60 Bg/kg up
through 2020. P concentrations mirror 2?°Ra activities. P concentrations
are close 2000 ppm prior to 1930 but rise considerably up to just above
5000 ppm in 1958. P concentrations then gradually fall to between 2000
and 3500 ppm in the period after the peak.

3.4. Mass accumulation rates in Lake Bonny

The serac model estimates that the average sedimentation rate for
0-100 cm of depth is ~1.0 cm/yr. The total mass accumulation rate
(MAR, units g/cm?/yr) of each layer can be obtained by multiplying the
sedimentation rate (cm/yr) by the dry bulk density (g/cm®) for each
layer. Furthermore, the MAR can be split into the organic and mineral
MAR rates using the LOI results (Fig. 5).

Total MAR gradually rose from 0.056 g/cm?/yr in 1903-0.082 g/
cm?/yr in 1941. The MAR was turbulent in the following 50-year period.
The total MAR dropped to 0.039 g/cm?/yr in 1953, rose to 0.083 g/
em?/yr in 1963, fell once more to 0.028 g/cm?/yr around 1980. From
1995 onwards, the total MAR stabilized around 0.04 g/cm?/yr.

The organic MAR contribution is generally greater than the mineral
MAR. However, from 1916 to 1928 and again from 1963 to 1991, the
mineral MAR was greater than the organic MAR. In the period since
1991, the organic MAR has outpaced the mineral MAR.

4. Discussion
4.1. Comparison of 21°Pb, 2*1Am, and '®’Cs profiles

The peak ' Am activity of 3.2 Bq/kg occurs in the 52-56 cm layer,
while the peak %7Cs activity of 18.2 Bq/kg is spread equally across both
the 48-52 and 52-56 cm layers (Fig. 3). The 2*!Am peak has a full width
at half maximum (FWHM) approximately half that of 137¢s, which in-
dicates a reduced geochemical mobility (Fig. 3). After the *’Cs peak at
52-56 cm, 1*7Cs activities plateau around 10 Bq/kg from this depth up
to around 10 cm, whereas 2*'Am activities decline quickly to <5 Bq/kg
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Fig. 3. Total Pb, 21°Pb,,, 2! Am, and '*’Cs activity profiles in Lake Bonny. The highlighted region represents the 4 cm layer that contains peak 2*'Am fallout. The
dashed line symbolizes the year of peak fallout deposition, 1963 CE. Vertical error bars represent the 4 cm height of a sample. Horizontal error bars for 21°Pb,,
241Am, and '¥"Cs activities are 20 uncertainties. The orange band surrounding the piecewise CRS model is the 1o uncertainty in the age estimate. This figure was

generated through the serac modelling package (Bruel and Sabatier, 2020).
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(from the CRS model). The organic contribution was calculated via LOL

from the peak at 44-48 cm layer up to the surface. It is interesting to
note that '¥7Cs activities remain around 10 Bg/kg for a long period after
the peak and do not decrease significantly until 4-8 cm in depth. This
could indicate that 1%’Cs in Lake Bonny has remobilized and diffused
into layers above the layer of maximum *¥Cs deposition. Some '%’Cs in
layers above the peak could also be explained by the release of '*’Cs
from the surrounding watershed (Davis et al., 1984). Due to the eutro-
phic state of Lake Bonny, it is probable that K™ facilitates the desorption
of Cs from exchange surfaces on organic and mineral sediment (Turian
et al., 2015; Drexler et al., 2018)

4.2. Pb and Zn pollution

Chemical changes in the Lake Bonny core give insights into anthro-
pogenic activities in the 20th century in the Lakeland area. In the deeper
sections of the sediment core, there are small total Pb peaks of 27 and
39 ppm that are dated to 1845 and 1868 respectively. The city of
Lakeland was formally created in 1884, although indigenous people had
already been living in the area that would become Polk County since at

least the 1700 s (Covington, 1968; Mulligan, 2008). These early peaks in
lead are consistent with Civil-War era smelting that have been identified
in cores from Virginia (Balascio et al., 2019), New Jersey (Kemp et al.,
2012), and Rhode Island (Lima et al., 2005).

After 1900, total Pb increased steadily to a maximum of 173 ppm
that lasted from approximately 1974 to 1990 in the Lake Bonny core.
Relevant potential sources of Pb in the early half of the 20th century in
this setting include lead paint, lead arsenate pesticides, phosphate mine
waste, and leaded gasoline. Since the early 1900s, residential and in-
dustrial structures have existed around Lake Bonny, so lead paints could
have contributed to the total Pb observed. Citrus has commonly been
grown in Lakeland since the early 1900s. Lead arsenate, a pesticide first
applied to citrus in 1893 in Florida, could have contributed to total Pb as
well (Miller et al., 1933). The application of lead arsenate on citrus was
halted in 1927 but allowed once again between 1929 and 1933 in
Florida (Harding, 1945; Escobar et al., 2013). Debris from phosphate
mining is known to contain significant concentrations of Pb, so it is
possible that dust or runoff from the mines that border Lake Bonny or the
connected Lake Parker increased total Pb in Lake Bonny beginning in the
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early 1900s (Krekeler et al., 2008). The burning of fossil fuels, included
leaded gasoline, is likely a significant source of Pb to Lake Bonny over
the 20th century.

Leaded gasoline usage peaked in the US between the 1970s and mid
1980s (Nriagu, 1990). In the Lake Bonny core, there is a peak in total
lead (Fig. 2) that occurs in the 36-40 cm and 44-48 cm layers, which
corresponds to an age range between 1974 and 1990. This is consistent
with 1974 leaded gasoline peak observed in the east coast US (Nriagu,
1990; Graney et al., 1995) as well as with other studies that measured
total Pb in Florida lakes. Escobar et al. (2013) determined that the total
Pb maximum occurred around 1990 in a core from Little Lake Bonnet
and in 1982 in Little Lake Jackson. Schottler and Engstrom (2006)
determined that the total Pb peak was located at a depth range corre-
sponding to 1970-1990 in Lake Okeechobee. In these cases, atmospheric
deposition of leaded gasoline was concluded to be the most significant
source of Pb.

While regulations targeting leaded gasoline clearly reduced Pb in-
puts into Lake Bonny in the late 20th century, Zn concentrations remain
very high in the sediments throughout the 20th and 21st centuries. Zn
concentrations from the 44-48 cm layer (~1960) to the surface range
from 120 to 217, which is over an order of magnitude higher than
background levels at the base of the core. The Zn concentration in all
sediments deposited in Lake Bonny since ~1950 are consistently above
the consensus ‘threshold effects level’ for aquatic ecosystems of
121 ppm (Fig. 2) (MacDonald et al., 2000). The initial rise in Zn pollu-
tion observed in the sediments in early 1900s is consistent with regional
pollution from coal combustion that also contributed Pb to the Lake
(Sarkar et al., 2015). However, accelerated Zn deposition indicated by
concentrations peaking near 200 ppm in the 1950s is almost certainly a
consequence of population growth and urbanization. Zinc is widely
known to be a pollution problem in urbanizing areas from tire and brake
wear (Councell et al., 2004, Lopez et al., 2023), roofing materials (Chang
et al.,, 2004), and commercial sunscreen (Chatzigianni et al., 2022).
Nearly all automobile tires contain 1-2 % zinc oxide, which are intro-
duced to soils and waters as the tires break down. Roofing shingle
manufacturers have recently been adding zinc and copper to asphalt
shingles because these metals kill moss and lichens, increasing shingle
lifetime. The effects of the built environment surrounding Lake Bonny
are recorded by sedimentary Zn.

4.3. Mass accumulation rates and population

Increases in MAR can be correlated to increases in population and the
construction and development projects to accommodate population in-
creases. The loosening of soil during construction and creation of more
impervious surfaces can both increase the amount of sediment that
washes into lakes and catchments. From 1900-2020, the population of
Lakeland increased from 600 to 114,000 people (Fig. 5; US Census
Data). MAR, while somewhat variable, appears to have three phases.
There is an early stage of stability, followed by volatility, and a return to
stability in recent years.

From 1903-1941, the MAR is relatively stable. However, from 1941
to 1991, the MAR is volatile and varies by almost 0.05 g/cm?/yr. From
1991 to present, the MAR is mostly stable once again. While population
did increase from 1903 to 1941, the population growth is more gradual
than the other periods, resulting in gradual MAR increases. From
1941-1991, the population of Lakeland triples. Maps from Brenner
et al., (1993) show that urban developments more than doubled from
1944 to 1975. Additionally, phosphate mining in the Lakeland area
reached its climax around the early 1970s (Stewart, 1966; Robertson,
1973; Brenner et al., 1993). This rapid urbanization paired with greater
phosphate mining likely explain the volatile MAR from 1941 to 1991.
Although the population of Lakeland has continued increasing at a
healthy rate since 1991, it is likely that the state of developments has
reached a more mature state as undeveloped land becomes scarcer,
resulting in a more stable MAR.
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4.4. Elevated *°Ra around 1960

226Ra activities in the Lake Bonny Core in the 1960s are close to
double the 2?°Ra activities prior to 1940 and after 2000. Significantly
elevated 22°Ra activities mid-core have been observed in a variety of
lakes in the Lakeland area including nearby Lake Parker (Brenner et al.,
1997). Increases in 2?°Ra activities around the depth corresponding to
the early 1960s could result from the deposition of sediment associated
with phosphate mining. Separately or in combination with this expla-
nation, the mixing of Lake Bonny with Floridan aquifer rich in
uranium-238 (*38U) around the 1960s could have increased >?°Ra ac-
tivities in the Lake Bonny as well.

In the mid-20th century, phosphate mining was prevalent around
Lakeland, FL and in surrounding areas. By 1975, phosphate mines were
widespread in Lakeland, FL and located adjacent to Lake Parker which is
connected to Lake Bonny. It has long been recognized that uranium, the
main source of radium, forms strong complexes with phosphate (e.g.,
Hobday and Galloway, 1999). Phosphate mining debris is known to
contain 238U, which generate ?Ra and other radionuclides via decay
(Roessler et al., 1979; BariSi¢ et al., 1992). Brenner et al. (1997)
analyzed 226Ra and total phosphorous (P) in Lake Parker and found a
strong correlation in 22°Ra activities and total P concentration and noted
that the peak 2?°Ra activity occurred between 1963 and 1979 in Lake
Hollingsworth (another lake close to Lake Bonny). They argue that
increased delivery of sediment containing radium and P resulted from
heightened construction and phosphate mining in the Lakeland area. P
concentrations in Lake Bonny correlate strongly with 22°Ra activities,
which suggests a common source (Fig. 4). Debris from the nearby
phosphate mines that entered either Lake Parker or Lake Bonny in the
form of runoff or dust would have increased amounts of both 22°Ra and
P. Due to the highly connected nature of lakes in Florida, nutrients like P
and other aqueous species that entered Lake Parker would have mixed
with Lake Bonny and vice versa (Schelske et al., 2005; Clift and Waters,
2024). Both the timing and increase in 22°Ra and P quantities agree with
previous work that studied 2?°Ra activities in Lake Parker and Lake
Hollingsworth and changes in land use in Lakeland by Brenner et al.
(1993) and Brenner et al. (1997).

An additional explanation for the increased ??°Ra activity in Lake
Bonny could be due to groundwater management practices that took
place during the mid-20th century in southwest Florida near Tampa.
From 1961-1971 rainfall was below the average of the prior 30 years for
all but 2 years in this 10-year period in southwest Florida (Stewart and
Hughes, 1974). This fact, combined with construction that disrupted
water recharge, meant that several lakes fell below their typical water
levels. To remedy this, water from the Floridan aquifer was pumped into
these lakes to maintain the lake surface water level. One of these lakes is
Round Lake, 50 km west of Lake Bonny near Tampa. Brenner et al.,
(2000) reported that the water pumped from the Floridan aquifer con-
tained elevated levels of 22°Ra compared to the surface water in Round
Lake. The Floridan aquifer is in contact with the Hawthorn group, which
contains carbonate-fluorapatite that contains small amounts of 238U that
is released upon weathering (Upchurch and Randazzo, 1997). 238U that
subsequently decays into 2?Ra resulted in elevated ?°Ra concentra-
tions in Round Lake throughout the duration of groundwater augmen-
tations, which has continued at least up until 2011 (Dimova and Burnett,
2011).

While it is unclear if similar groundwater augmentation practices
occurred in Lake Bonny or the area closer to Lakeland, groundwater
pumpage from the Floridan aquifer in the Lakeland region increased
substantially from 1950 to 1970. This coincides with when 2?%Ra ac-
tivities rose to their highest levels. A Florida Geological Survey report
(Robertson, 1973) contains annual water pumpage volumes from 4
aquifers including the Floridan aquifer (the Floridan aquifer is stated to
be the major source of water in the study area) in the Lakeland ridge area
of Polk County from 1950 to 1970. The water pumpage is broken down
into categories such as municipal pumpage in Lakeland, total municipal
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pumpage (which includes the smaller cities of Bartow and Mulberry)
industrial pumpage, and total pumpage across all categories. Additional
Lakeland municipal water pumpage data from 1928 to 1950 was ob-
tained from Stewart, (1966). Fig. 6 shows a comparison of the 226Ra
activities observed in Lake Bonny with the serac age model as well as
Lakeland municipal pumpage and total pumpage. 22°Ra activities and
aquifer pumpage rise contemporaneously. A greater reliance on water
from the Floridan aquifer could have increased 22°Ra levels in Lake
Bonny and surrounding lakes even if groundwater augmentation did not
occur because water pumped from the aquifer would have inevitably
made its way into surface waters (e.g. lakes) after it was used for in-
dustrial processes, irrigation, municipal use, etc. While the rises in 226Ra
activities and aquifer pumpage rates are offset, it is likely that inputs of
sediment from phosphate mining began elevating 2*’Ra activities prior
to increases in aquifer pumpage rates.

There is a strong correlation between the increase in 22°Ra activity, P
concentration, phosphate mining activity, and total pumpage in the
Lakeland area. The expansion of phosphate mining around Lake Bonny
between 1944 and 1975 likely resulted in greater inputs of phosphate
mining debris that increased activities of 22°Ra and P concentrations.
Population growth, drought conditions, and increasing water demand
from industries resulted in heightened water pumpage in the 1950s-
1970s in the Lakeland region. Water pumped from the Floridan
aquifer that entered groundwater or drained directly into lakes could
have raised 22°Ra activities in Lake Bonny during this time. After peak
phosphate mining levels in the 1970s in the Lakeland area, the focus of
phosphate mining began moving south of Lakeland (Robertson, 1973).
Also, by the end of the 1970s, drought conditions had relented. The
reduction in phosphate mining activity in Lakeland and cooling de-
mands on aquifer pumping likely resulted in the decrease in 22°Ra ac-
tivities after 1960 that continued into the 2000s.

4.5. ?"1Am and '¥Cs expected and measured inventories

One way of assessing the geochemical mobility of 2*!Am and %’Cs in
Lake Bonny is to compare the total measured inventory of each radio-
nuclide (Bg/m?) to expected inventories from deposition during the
atomic weapon test period. Expected '3’Cs inventories in Polk County
were calculated using county-scale 3’Cs deposition activities (Bq/m?)
from Simon et al., (2004). The 137 deposition for each year of the
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atomic weapon test year is provided, so these values can be decay cor-
rected to the year of coring (2020) and then summed to get the total
expected 1¥7Cs inventory for Polk County of 900 Bq/m?.

The total 1%7Cs activity we measured (413 Bq/mz) in Lake Bonny is
only half of the expected 900 Bq/m? accounting for decay since depo-
sition in the 1951-1972 period. This would suggest that '3’Cs is being
exported from the Lake Bonny system. The Hawthorn group underlying
Lake Bonny contains only minor amounts of smectite or other 2:1 clays
capable of binding '%7Cs, so it is logical that 1*’Cs would be mobile in
this environment. Additionally, due to the eutrophic state of Lake
Bonny, K" cations likely compete for adsorption onto organic or mineral
matter in the lake (lurian et al., 2015; Yin et al., 2017). Lake Bonny is
connected to Lake Parker, Saddle Creek, Lake Hancock, the Peace River,
and finally the Gulf of Mexico (City of Lakeland Lakes & Stormwater,
2010). It is possible that over time Cs™ ions have been exported from this
system to downstream lakes or the Gulf of Mexico. In the nearby Lake
Hollingsworth, Whitmore et al. (1996) found no discernable 137¢g peak
and argued that the lack of clays and continued release of '*’Cs from
watershed vegetation resulted in a smeared '*’Cs profile. In Lake
Okeechobee a 2*! Am peak is clearly observable, whereas the '*”Cs peak
has diffused substantially (Brezonik and Engstrom, 1998). Other Florida
lakes often contain smeared '3’Cs peaks that demonstrate high
geochemical mobility.

Robbins et al., (2000) quantified the activities of 12'7Cs, 241Am and
several other radionuclides in the Florida Bay. They found **’Cs activ-
ities of 750 Bq/m? (Table 1) in a core taken from an unvegetated
mudbank. This value, while closer to the expected inventory of
900 Bq/m?, is higher than the activity of *”Cs found in Lake Bonny. The
authors note the Florida Bay does contain small amounts of smectite that
could immobilize '3”Cs (Manker and Griffin, 1971). It is possible that the
Florida Bay has a greater '*”Cs activity than Lake Bonny because a much
larger watershed drains into the Florida Bay compared to Lake Bonny.
Dissolved Cs™ carried away from inland Florida could accumulate in the
Florida Bay over time.

In the northeastern US, chemical weathering of soils is less extensive
than the south, resulting in higher amounts of clay in the A horizon of
soils (Smith et al., 2014). The preservation of more 2:1 clays results in
the measured '*”Cs inventory more closely matching the predicted 137Cs
inventory in sites New Hampshire and Vermont (Table 1). New Jersey
has total clay weight percentages that are lower than the northeast, but
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Table 1

Anthropocene 48 (2024) 100452

Compilation of measured '*’Cs and 2! Am inventories and their predicted values from sites spanning the northern to southern regions of the US east coast. Site co-
ordinates for soil/sediment cores are provided where available. Predicted inventories were not provided in all studies. Two entries in one row indicate two cores that
were taken in close proximity to one another. Note that a 2*' Am inventory was not explicitly provided in Robbins et al. (2000) and had to be calculated. The **”Cs
inventory measured in Russell Bank was converted into Bq/m?, divided by sum of the Cs/Pu ratios provided in Table 4 of Robbins et al. (2000) and then multiplied by
the sum of the Am/Pu ratios also provided in Table 4 to yield a >*'Am inventory in Bq/m?.

Location 137Cs Measured 241Am Measured Site Description Reference
(Predicted'®’Cs in Bq/ (Predicted®*’Am in Bq/
m2) m2)
Camels Hump, VT (44°19’N; 72°53°'W) - 55.7 Undisturbed, acidic spodosol soils developed Kaste et al., (2011)
primarily on glacial till
Ducktrap, ME - 35 Undisturbed, acidic spodosol soils developed Kaste et al., (2011)
(44°16°N; 69°1'W) primarily on glacial till
Moosilauke, NH - 41 Undisturbed, acidic spodosol soils developed Kaste et al., (2011)

(44°0'N; 71°50'W)

Androscoggin River, NH 1437 (1550) 28.1 (30)
1301 (1550) 27.5 (30)

Woodstock, VT 1678 (1550) 30.9 (30)
1338 (1550) 29.9 (30)

Barnegat Bay, NJ (39°47°57.49"N; 594 (1800) 25.7 (29)

74°06°05.92"W) and (40°01°51.80"N; 647 (1800) 8.6 (29)

74°05°09.39"W)

Delaware Bay, DE (39°14°25.89"N; 643 (1800) 15.5 (29)

75°06°12.80"W)

Lake Bonny, Lakeland, FL (28°2'5.31"N; 413 (900) 44.4

81°55’52.24"W)

Russell Bank (Core19C) (25°02°N; 750 (900) 55.6

80°45°'W)

primarily on glacial till

Spodosol soil derived from granite outwash till,
beech and oak hardwood forest

Inceptisol soils from both a white pine
dominated forest and perennial grass pasture

Landis et al., (2016)

Landis et al., (2016)

Back-barrier lagoon-type estuary (Boyd and
Sommerfield,
2017)

Marsh separated from tidal wetlands by anarrow  (Boyd and

barrier beach in the DE Bay Estuary Sommerfield,
2017)

Shallow, eutrophic lake in an urbanized setting. ~ This paper

Located in a karst terrain and underlain by
phosphatic clayey sands
An unvegetated mudbank in the Florida Bay Robbins et al.,

(2000)

greater than Florida and the south. Despite this, measured '*’Cs values
are about one third of the predicted inventory of 1800 Bq/m?. The cores
taken from New Jersey were taken from an estuary environment, so it is
likely that lower clay compositions and competition from other dis-
solved cations contributed to the mobility and desorption of **’Cs cat-
ions (Boyd and Sommerfield, 2017; Zucker et al., 1984; Martin et al.,
1994).

While there is not a predicted 2*'Am inventory for Lakeland or the
work from Robbins et al., (2000), the measured 2*'Am activity in the
Lake Bonny core (44.4 Bq/mz) is reasonably close to the measured ac-
tivity of 2*'Am in the Florida Bay core (55.6 Bq/m? Table 1). In the
cores from Boyd and Sommerfield, (2017), measured 241Am is close to
the predicted value in one Barnegat Bay core, while only one third of the
137Cs is accounted for. However, in the second Barnegat Bay core, both
radionuclides are only about one third of their predicted amount. The
authors did not speculate about why this is the case. Overall, >*'Am
measured inventories more closely approximate their predicted in-
ventory, while measured '3Cs inventories more often fall short of their
predicted inventories. Low clay compositions, uptake by vegetation, and
competition from other cations are common causes for 137Cs inventories
that fall short of their predicted values.

5. Conclusions

This study demonstrates that 2*'Am is preferable for verifying a
210pp piecewise CRS model in a eutrophic lake with low amounts of 2:1
clays. The 2*' Am peak has a FWHM about half that of the 13’Cs peak. The
137Cs peak is spread across two layers, while the 2! Am is focused in one
layer. Additionally, the layers above the '¥’Cs contain significant ac-
tivities of 1*”Cs up until the surface layers suggesting continued diffusion
of ¥7Cs over time. The total measured '3’Cs inventory (448 Bq/mz) in
Lake Bonny is about half of the expected inventory of 900 Bq/m? from
historical deposition (Simon et al., 2004). Since Lake Bonny is eutrophic,
it is probable that competition from K* cations caused '*’Cs cations to
desorb from negatively charged sites on mineral and organic matter.
These *7C cations could be exported out of the Lake Bonny system to
downstream water bodies including the Gulf of Mexico.

This study illustrates how radionuclides can record chemical changes

in lacustrine systems due to anthropogenic activities. The atmospheric
lead peak from leaded gasoline is present, although other sources of Pb
such as lead paint, lead arsenate fertilizers, and phosphate mining debris
likely contributed to total Pb as well. Elevated Zn levels that continue
into the present are likely related to the breakdown of products con-
taining Zn, such as tires and roofing shingles. Trends in total MAR
appear to correlate with population growth and sediment inputs from
phosphate mining. Elevated ?2°Ra activities (~120 Bq/kg) in Lake
Bonny around 1960 likely result from a combination of phosphate
mining and water pumpage from the Floridan Aquifer, which both
increased in intensity between the 1950s and 1970s evidenced by his-
torical records of land use and aquifer pumpage in the Lakeland area
(Stewart, 1966; Robertson, 1973; Brenner et al., 1993). 226Ra activities
have declined in Lake Bonny sediments since the 1960s and stabilized
around 60 Bq/kg in the years since the peak. This is likely tied to
phosphate production moving away from the study region and reduced
Floridan aquifer pumping demands after drought conditions relented.

This analysis of sediments from Lake Bonny demonstrates that 2! Am
peak is a reliable dating tool that can serve as a reference point for recent
sediments and to verify 21°Pb dating models. In regions that possess low
amounts of 2:1 clays, high rates of vegetative uptake, and competition
from other cations, 2! Am profiles will likely yield more accurate dating
models than those using '*’Cs profiles.
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