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Abstract

Eco-driving has garnered considerable research attention owing to its potential socio-
economic impact, including enhanced public health and mitigated climate change effects
through the reduction of greenhouse gas emissions. With an expectation of more
autonomous vehicles (AV) on the road, an eco-driving strategy in hybrid traffic networks
encompassing AV and human-driven vehicles (HDV) with the coordination of traffic
lights is a challenging task. The challenge is partially due to the insufficient infrastructure
for collecting, transmitting, and sharing real-time traffic data among vehicles, facilities,
and traffic control centers, and the following decision-making of agents involved in traffic
control. Additionally, the intricate nature of the existing traffic network, with its diverse
array of vehicles and facilities, contributes to the challenge by hindering the development
of a mathematical model for accurately characterizing the traffic network. In this study,
we utilized the Simulation of Urban Mobility (SUMO) simulator to tackle the first
challenge through computational analysis. To address the second challenge, we employed
a model-free reinforcement learning (RL) algorithm, Proximal policy optimization
(PPO), to decide the actions of AV and traffic light signals in a traffic network. A novel
eco-driving strategy was proposed by introducing different percentages of AV into the
traffic flow and collaborating with traffic light signals using RL to control the overall

speed of the vehicles, resulting in improved fuel consumption efficiency. Average
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rewards with different penetration rates of AV (5%, 10%, and 20% of total vehicles) were
compared to the situation without any AV in the traffic flow (0% penetration rate). The
10% penetration rate of AV showed a minimum time of convergence to achieve average
reward, leading to a significant reduction in fuel consumption and total delay of all

vehicles.

Keywords: Eco-driving; Hybrid Traffic Network; Reinforcement Learning; Traffic Flow

Control; Fuel Consumption; Microscopic Traffic Simulator

1. Introduction

Findings from a 2022 study indicate that the transportation sector accounted for 27% of
the energy consumption in the United States.! Specifically, petroleum (gasoline)
consumption comprised about 52% of the total energy consumption, resulting in
significant air pollutant emissions. This underscores the necessity for a well-designed
traffic control system to mitigate fuel energy consumption (FEC) and air pollution for
sustainability.>* The concept of sustainability has driven research into eco-driving
strategies designed to reduce FEC rates (FEC within time). FEC rates can be calculated
based on factors such as acceleration, mass, drag coefficient, rolling coefficient, driveline
efficiency, idling speed, and idling fuel mean pressure.>® Reducing FEC involves two

interconnected goals: shorter travel time and lower FEC rates. Vehicles incur the highest
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FEC rates during idling and frequent stops and starts, especially at traffic lights or in
congestion. Therefore, prioritizing the establishment of a continuous traffic flow,
characterized by minimal fluctuations in vehicle speeds, is essential for achieving lower
FEC rates and shorter traffic delays. This approach is instrumental in promoting effective

eco-driving strategies.’

Traditional traffic control relies on fixed modes for traffic light changes and manual
rerouting, resulting in limited efficiency and a lack of feedback mechanisms. The current
setup of traffic control systems poses challenges in developing eco-driving strategies for
hybrid traffic networks encompassing AV and HDV. These challenges stem partially
from the insufficient infrastructure for collecting, transmitting, and sharing real-time
traffic data among vehicles, facilities, and traffic control centers, as well as the subsequent
decision-making by involved agents. Furthermore, the intricate nature of the existing
traffic networks, with their diverse array of vehicles and facilities, complicates the

development of a mathematical model for accurately characterizing the traffic networks.

Current eco-driving strategies have addressed the challenges from various perspectives,
including real-time artificial intelligence for traffic monitoring, and 5th generation (5G)
communication networks to facilitate rapid information sharing.®!® Due to the

multifaceted nature of the eco-driving problem, a model-based deterministic strategy is
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challenging to approach. Meanwhile, data-driven approaches show promise, given the

large amount of data accumulated during the past decades.

Related Work on Reinforcement Learning in Traffic Control

Model-free RL has demonstrated its advantage in decision-making for traffic flow control
by examining interactions among multiple agents and the environment.!%!2 RL has been
applied to optimize vehicle routes for reduced delay and vehicle accelerations for less
FEC.!>!% RL algorithms have also been developed to reduce air pollutant emissions by
reducing vehicles’ waiting time at road intersections.'>!¢ In a study on infrastructure-to-
vehicle communications networks,!” a single vehicle was considered as an agent, and the
Q-learning (QL) algorithm was developed to minimize carbon dioxide emissions.
Additionally, a recent eco-driving framework based on the deep Q-network (DQN)
approach was presented to enhance the fuel efficiency of multiple vehicles in a traffic
network with one horizontal road and one vertical road.!®

In addition to applications of RL in controlling vehicle routes or acceleration, traffic lights
are also considered as agents to control traffic flow with RL algorithms. An RL-based
control has been developed for smart traffic signals, to reduce traffic jams and improve
traffic smoothness in a traffic grid consisting of 3 horizontal and 3 vertical roads.!”

With more AV running on the road, they are also considered agents in RL algorithms for

traffic control. In a recent study, a circular network with fixed traffic signal patterns at
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one spot was deployed to develop a deep deterministic policy gradient (DDPG) algorithm.
The study aims to minimize the FEC of Connected AV by controlling their acceleration.?’
Additionally, RL algorithms with a hybrid deep Q-learning and policy gradient (HDQPG)
were developed to minimize the FEC of Connected AV by controlling their acceleration
in a traffic grid with one horizontal and five vertical roads.?! Previous studies also
explored a traffic flow containing both HDV and Connected AV using a trust region
policy optimization (TRPO) to reduce the FEC and emissions of both HDV and CAV .22
While the above-mentioned RL-based controls have improved traffic smoothness by
focusing on the actions of vehicles or traffic lights, the effect of combining AVs and
traffic signals on FEC has not been fully investigated.?-22

In this study, a novel eco-driving strategy was proposed by introducing a specific
percentage of AV into the traffic flow of HDV, in collaboration with smart traffic light
signals to reduce the idling time of vehicles and improve the traffic smoothness in a
scalable traffic network with user-defined horizontal and vertical roads for intersections.
A model-free RL algorithm was developed to control the overall speed of all vehicles,
resulting in a continuous traffic flow and reduction of the FEC of the vehicles in the

network.

2. Method
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The proposed RL algorithm determines the optimal actions of multiple agents including
AV and traffic lights in a dynamic traffic network with HDV to minimize the FEC rates
of all vehicles. The traffic network and motion of all vehicles are simulated using the
SUMO package.?? The RL algorithm is implemented using Python and integrated into

SUMO for simulation.

The selected traffic grid environment is inspired by the grid-like layout of Manhattan
City.?* Figures 1 and 2 display an open street map of the Manhattan traffic grid structure

and its visualization in the SUMO environment, respectively.
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Figure 1. Open street map of traffic grid structure in Manhattan City.
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Figure 2. The grid structure of Manhattan City, simulated in the SUMO environment, is represented in the
highlighted red color region. The selected traffic network serves as the basis for our research, examining

the role of AV combined with HDV in minimizing the FEC rates of all vehicles in the traffic network.

Environment Setup in SUMO

The traffic network is configured within an environment featuring N horizontal and N
vertical straight roads, each equipped with two lanes and extending for a length of 1
kilometer (km). There are 4N edge points, each assigned a unique number. At each edge
point, a traffic flow of 300 vehicles per hour has been selected to enter the traffic system,
aligning with the range of traffic flow defined by the Federal Highway Administration
for signalized intersections in the United States.?® Each vehicle has a departure speed of
30 m/s (67.1 miles/hour) and SUMO vehicle parameters dictate a minimum gap of 2.5

meters between two vehicles. All vehicles will continue straight in their original direction
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of travel and exit the simulation environment. To ensure safety during peak traffic time,
turn prohibitions are considered in this study according to the Federal Highway
Administration in the United States.?®

According to a recent study, AV account for 10% of all vehicles on the roads.?
Accordingly, this study considers different penetration rates for AV ( 0%, 5%, 10%, and
20% ) to assess their impact on traffic control. An RL controller is used to control RL
agents, such as AV and traffic lights, with commands issued by policy at each time step.
The speed and acceleration of AV are determined with an RL controller, while the motion
of HDV is controlled by an embedded “sim car-following” controller in SUMO
simulation. All vehicles are homogeneous with respect to their mass, size, and economic
models.

At each intersection of two roads, 4-way traffic lights are defined as actuated agents with
a controllable period for red, green, and yellow lights. With the setup of N vertical and N
horizontal roads in a network, there are a total of 4N? traffic lights.

In this study, we focus on a 3x3 traffic network, assuming uniform road lengths in all
directions to facilitate simulation. Figure 3 illustrates a network with N=3 and the
arrangement of 4 traffic lights at an intersection. It's important to highlight that the
framework is adaptable to larger-sized traffic networks, provided there are sufficient

computational resources.
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Figure 3. (a) 3x3 Traffic light grid environment (b). 4-way single signalized intersection.

Reinforcement Learning

A decentralized partially observable Markov Decision Process (De-POMDP) is adopted
to coordinate the actions of agents, including traffic lights and AV in the traffic network.
When vehicles move in the same direction, HDV are observable to an autonomous vehicle
if the distance between a human-driven vehicle and an autonomous vehicle is less than or
equal to 25 meters in the same lane. Each traffic light agent also observes the two nearest
vehicles and has their information related to speed, distance to the intersection, and edge
number. The position, speed, and acceleration of AV, as well as cycles and status of traffic
lights, are shared among all AV and traffic lights.

The state, action space, policy, and reward function of the RL are defined as follows.
State Space (s): For each vehicle agent, its state, s := (v;,d;, €;)i=1.y € R*™, where
M=3,600 denotes the maximum number of vehicles in the selected traffic system. This

number is calculated by considering 300 vehicles entering the system at 4N edge points
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within one hour, with N=3, assuming the worst case: no vehicles leave the simulated
traffic network within an hour. Here, v; represents the speed of the i vehicle, d; denotes
the distance of the i" vehicle to the nearest intersection in its driving direction, e; indicates

the edge number which the i

vehicle enters the traffic network. The edge number
signifies the traffic flow direction of each vehicle, assuming no turns are allowed.

The state of each traffic light agent includes the time of the light's last change, the traffic
flow direction controlled by the light (0 indicates passing with a green light, and 1
indicates stopping with a red light status), and the states of other traffic lights in the same
traffic flow direction. At an intersection, if the top-bottom traffic lights have a status of
“0”, the left-right traffic lights must have a status of “1”, and vice versa. When the status
of a traffic light is green, it will change to yellow for 3s before switching to red status due
to safety purposes.

Action Space (a): There are 4N? traffic lights in the network and each traffic light have
two discrete actions: 1 (indicating the traffic light switches) and -1 (indicating no action
taken), as defined in equation (1):

la _ { 1 trafficlight switches _ (1)
-1 no action taken

The action space for an autonomous vehicle is its acceleration, which ranges between

[-1, 1] and is determined by an RL controller in FLOW
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package. For HDV, the action space for acceleration values is chosen within the range [-
4.5, 2.6], as defined by SUMO.

Policy: An RL algorithm called PPO is used to train policies for tasks involving decision-
making in environments with either continuous or discrete action spaces. Policies are
optimized using the policy gradient method to maximize the expected cumulative reward.
The choice of a PPO-based RL algorithm for deployment in this study stems from its
superior computational efficiency and stability compared to other algorithms.
27-29

Specifically, RLIib within the Flow package is integrated into SUMO for simulation.
A stochastic policy 7,: s X a —» R, is a maping from state, s, and action a of all agents
parameterized by ¢ to a non-negative real number. It can be defined by (2) as a probability

distribution over actions of each state:

ef(p(s'a)

T

n, = P(als; @) = 2)

T is transpose of parameter

where, f,(s,a’) = @' B(s,a); ¢ = (Pa1, .- Pav) € RY; ¢
vector ¢; and B(s,a) represents transitions among states given an action; and U
represents the complete action space.

The average reward received by an agent when it follows a PPO policy at each time step

is referred to as the average policy reward. The average policy reward, also defined as
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expected return of policy, n(n(p) for the entire trajectory T at time step ¢, can be expressed

as equation (3),

[n(ﬂ(p) = ]E‘L' [Z yt- T’(St, at)] '] (3)

where, T represents the entire trajectory of states and actions. The parameter 0< y <
1, represents a discount factor, and y*gets smaller as time t — oo withy < 1. The rewards
function, r(s;, a;), determines rewards given the state and action of an agent at time t.
The optimal policy parameter ¢* is reached by maximizing the expected cumulative

return obtained by an agent, as described in equation (4),

*

[(p 1= argmax r)(n(p).] 4)
The policy loss is defined based on the q.(¢), a ratio of new policy 7, (a.|s,) and the

previous policy Ty, (a¢|st) as equation (5):

[Policy Loss = E,|q.(¢)A, — BKL [n(pg Clse),my (. Ist)” ,] (5

where, [ is hyperparameter to control the strength of regularization of

KL[nwg(.Ist),n(p(.Ist)], which represents the Kullback-Leibler (KL) divergence

between two conditional probability distributions over actions given a state s;. If
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KL target value

T , it indicates new policy doesnot diverged

E, [KL [nq,g Clse),my (. Ist)” <
significantly from the old policy, so f needs to be reduced by 1/2. If
E; [KL [n(pg Clse),my (. Ist)” > (KL target value) x 1.5, it means there is too much

change in policy through update, so 8 needs to be increased by multiplying with 2. The
KL target value is defined by users and a reference value is given in the Results section.
The advantage estimate function A,, representing accumulated future rewards, can be

defined as equation (6),
R T—-t+1
ac=ec+) b (©)

[5t =1ty V(5t+1) - V(St)'] (7

where t represents time steps from [0, T'], and T represents the range of prediction.
The parameter A impacts weights of potential rewards in the advantage estimation
function A,. When A=1, A, increases by adding more future rewards, resulting in high
is

variance and less bias. When A=0, no future rewards are considered. Policy m,, .,

updated with ¢4, according to (8):
T

Dy 2, (40205000 = By, (s CIs0])| ()

t=0

1

g1 = argmax, W
g

where H, = [J;] is a set of trajectories for iteration g.
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In the RL algorithm, the value function V(s estimates the expected cumulative reward
starting from a specific state s;, that the agent can attain from that state onwards. A value
function loss (VF Loss) is defined as a squared-error loss between predicted and target

value function (9):
|VF Loss = (vg, (s) = V)2 | ©)

where, V,(s;), is an output from a neural network parameterized by @ with the state s; as

input; and V,"*™ is the target value function at time step ¢ can be defined as V,"*™9

= ’I’t +
¥V(spsp)» the range of V"9 € [—1,1]. Parameters of the network @4, can be updated

according to (10):

1 - rar (10)
Byir = argminszT_}[ Z(V% (sp) =V 92|
g 9 t=0

In RL, the entropy function refers to the level of uncertainty in the policy distribution. It
is used to encourage exploration by selecting different possible actions in a specific state
and to prevent premature convergence to suboptimal policies. The entropy function of the
PPO algorithm is defined based on the probability of taking actions, (a|s), given a state

s under the policy in equation (11):
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[Entropy = —Z n(als) logm (als). (11)

A smaller entropy indicates a better performance of the PPO algorithm. The pseudo code

for the PPO algorithm is shown as follows.

Algorithm 1. PPO

Input: Initial policy and value function parameters (¢, @)

for iteration g=0,1, 2....do
Run policy m; = m(¢,4) in environment for time steps 7 to collect a set of trajectories H; = [T;].
Compute rewards-to-go .

Compute advantage estimates A, based on the current value function Vo,
Find optimal policy ¢," to find average policy reward.

Update policy 7 with ¢4, using equation (8).

Pg+1

Fit value function V% with @, using equation (10).

end for

Reward (r): Two reward functions have been designated: one to minimize total traffic
delay, T, and another to minimize FEC rates at time step t. These reward functions were
used to train each traffic light and autonomous vehicle. The reward functions are given in

equations (12) and (13):

r(t) = —anz [ (12)
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ry(t) = —%Fc(t). (13)

Since rewards are negative, the closer a reward to zero means smaller total delay and FEC

rates of all vehicles in the traffic flow. The T, is defined by (14):

VB~ B =)
,/Z?/I(”dsi)z )

where v, is the speed limit on the road and v; is the velocity of each vehicle.

T; = max (14)

Fuel Energy Consumption Rate Model
The function. Fc (t), denotes the FEC rate with a unit in Litter/second (L/s) , which is

described as follows according to a previous study,’

ay+a P, +a,P,? VP, >0
F t) = 0 14t 24t t = ,:I

[P _ (Rt + 1.04mat) ] 16
t =\ 36001, Ve (16)

P

Re = 25.92

CdChAfvt + 9.8066m —— (¢, v, + ¢3) + 9.8066mG,, 17)

1000
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Ry

: Power exerted at time t (Kilowatt, KW),

: Acceleration of vehicle (m/s?),
: Velocity of vehicle (m/s),

: Resistance force (N).
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Other constant parameters in the model have been defined in Table 1.

Table 1. FEC rate model parameters

Symbol FEC rate Parameters Value

a, Vehicle model constant 0.00000002
a, Vehicle model constant 0.0000001
a, Vehicle model constant 0.000001

m Vehicle mass 1200 Kg

Na Derive line efficiency 0.92

p Density of air at sea level at a temperature of 59°F  1.2256 Kg/m*
C,4 Drag coefficient 0.28

Cp, Correction factor for altitude 0.97

Ag Frontal area 2.6 m?

C, Rolling coefficient 1.75

ci Rolling resistance parameter 0.0328

() Rolling resistance parameter 4.575

G, Roadway grade 0.04

Computational Framework

Two publicly available software packages, Flow and SUMO, are adopted in this study.

Flow is a traffic control benchmarking framework developed in Python and integrates RL

algorithms into different traffic control scenarios.!” The SUMO simulator handles large-
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270  scale traffic networks based on physical-world data. Integration of SUMO and Flow

271  package and implementation of the RL algorithm are shown in Figure 4.
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273 Figure 4: Process diagram to describe RL training process and interactions between SUMO, Flow, and

274  RLIib library. RL and Sim car following controllers used to control the AV and HDV, respectively. Sim
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car-following controller actions are entirely defined by the simulator, whereas RL-Controller performs

actions by following commands from the policy in RLIib.

Results

The RL algorithm was applied to regulate the traffic flow in the selected traffic network

with 4 different penetration rates of AV, 0%, 5%, 10%, and 20%.

AV
suars Observed HDV

e Unobserved HDV

Figure 5. Illustration of the traffic network with 3 vertical and 3 horizontal roads in SUMO simulator. An

overview of all AV (red vehicles), observable HDV (green vehicles), and unobservable HDV (white
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vehicles) in the traffic network. (Bottom Left) A close view of traffic flow between intersections within the

yellow box at the lower left part of the traffic network.

Training was conducted on a machine with 4 Intel® Core™ 15-6600 CPU @ 3.30GHz.

The Hyperparameters used in the RL algorithms are listed in Table 2.

Table 2. RL algorithm hyperparameters

Hyperparameters Value
Learning rate Se-5
Training batch size 1500
SGD minimum batch size 128
Number of SGD iterations 5
Training Iterations 500
Parallel workers 10
Horizon steps 150
Discount factor (y) 0.999
GAE value (L) 0.5
KL Target value 0.02
Target value function 0.01
Fixed KL B 3

SGD: Stochastic Gradient Descent; GAE: Generalized Advantage Estimation; KL: Kullback-Leibler.

The results of this study have been divided into four categories:

(a) Rewards on total delay at different penetration levels;

(b) Rewards on FEC rates at different penetration levels;

(c) Performance of PPO policy at different penetration levels;

(d) Comparison of the selected 3x3 traffic network with other networks.

Rewards on Total Delay at Different Penetration Levels
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Various penetration rates of AV in the traffic flow are examined to optimize traffic flow
considering information sharing on traffic lights and AV.

Figure 6 shows that traffic flow containing 100% HDV (i.e., 0% AV) has the worst total
delay rewards in the long term compared to 5%, 10%, and 20% penetration rates of AV.
Penetration of AVs at 5%, 10%, and 20% results in convergence of rewards on total delay.
The 20% AV penetration rates show a more complicated learning process due to the
priority of safety over the optimization of traffic flow speed and FEC rate at an early stage
of the learning process. Once AV become familiar with the traffic flow patterns during
the training period, the PPO algorithm improves the rewards on total delays due to good
prediction of other vehicles’ behavior. The 10% penetration rate of AV indicates
fluctuations as well during the training period and it could be due to fewer interactions
between AV and HDV on the road.

Table 3 shows the average delay for different penetration rates of AV in the selected
traffic grid network. At a 10% pentation rate, the average reward was achieved at the least

time step of 110K as compared to other penetration rates.
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Figure 6. Behavior of average rewards of total delay with respect to time steps for different AV penetration

rates.

Table 3. Convergence time and steady state average rewards on total delay obtained with different

pentation rates.

Penetration Approximate starting time steps Average rewards on total delay
rate of convergence at the last time step

0% No exact convergence observed -73.94

5% 302K -59.79

10% 110K -53.34

20% 2.24M -53.51

FEC Rates at Different Penetration Levels

The FEC rate of a small-engine vehicle usually falls within the range of 0.05-0.10 L/s

with an average driving velocity. The reward on FEC rate can reach zero when the vehicle

achieves low levels of FEC at a minimum varying speed and other performance

parameters. Results of the average rewards on FEC rate obtained from different
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penetration levels are presented in Figure 7 and Table 4. The penetration of AV shows

better performance in reaching larger rewards on FEC rates, while the pure HDV case
illustrates the worst scenario with a reward on FEC rate of about -1,000. Interestingly, the
10% pentation rate regulates the FEC rate faster in the simulation compared to the results
obtained from 5% and 20% penetration of AV. The time step for the convergence of the
FEC rate and the steady state average rewards on the FEC rate with 4 different penetration

rates are presented in Table 4.

Average reward of fuel energy consumption (FEC) rate for different cases

-200 0% Penetration rate

5% Penetration rate
-400
10% Penetration rate

-600 .
20% Penetration rate

-800

letd ——

erage FEC rate reward

L-1.2e+3

Av

=l.4e+3

-1.6e+3

0 500k M 1.5M M 2.5M M 3.5M aM

Time step (s)

Figure 7. Behavior of average rewards on FEC rates with respect to time steps, considering 4 different
penetration rates of AV in the traffic flow.

Table 4. FEC rate results at different pentation rates.

Starting time step of Average rewards on FEC rate
Penetration rate

convergence at the last time step
0% 302K -964.3

5% 316k 0.071
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10% 216k 0.010

20% 862K 0.081

Performance of PPO policy

To assess the effectiveness of the PPO policy in optimizing the FEC rate, the average
policy reward and average environment time, policy loss, entropy, and value function loss
have been evaluated with different pentation rates of AV. Figure 8 shows that average
policy rewards with penetration rates 5%, 10%, and 20% of AV converge to zero while
HDV only case has the worst reward with a value of -107.2. With the 10 % penetration
rate, the average policy rewards start to converge about 300K steps, faster than 0%, 5%,

and 20% penetration rates.

Average policy reward (FECrate) for different cases

-20 = 0% Penetration rate
-40 e 5% Penetration rate
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-100
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Figure 8. Behavior of average policy rewards with respect to time steps for 4 different penetration rates of

AV.
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The time for an agent to stay in a specific state before applying an action is considered an
environment waiting time. The highest average environment time is observed for the 20%
penetration rates at a time step of about 850K as compared to others, as shown in Figure
9. The average environment waiting time of 5% case is slightly higher than that of the
10% AV penetration rate by the end of training, but its highest peak is observed to be
higher than the 10% penetration rates during training at 800K steps.

The entropy behavior for PPO is shown in Figure 10, with high values observed at a 0%
penetration rate. A minimum value of entropy was observed at a 10% penetration rate by
the end of training, indicating fewer uncertainties in policy distribution as compared to
the 5% and 20% penetration rates.

The total loss, which is a combination of policy loss and value function loss, is depicted
in Figure 11. At a 10% penetration rate, the minimum total loss is observed compared to
other cases. All these performance indices show that penetration of AV can improve the

rewards on FEC rates compared with 100% HDV traffic flow.
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Figure 9. Average environment waiting time with respect to time steps for 4 different penetration rates of

AV.

Entropy
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Figure 10.

Entropy of the policy to optimize FEC rates for 4 different penetration rates of AV.
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Figure 11. Total loss including policy value function loss with respect to time steps for 4 penetration rates

of AV.

Table 5 shows the values of five measurements of policy to optimize FEC rate for 4

different penetration rates of AV.

Table 5. FEC rate results at different pentation rates

Measurements

Penetration Rate

0% 5% 10% 20%
Average policy reward -107.2 0.059 0.057 0.069
Average environment Wait time (ms) 18.7 25.81 28.69 32.87
Policy loss 6.724e-3 6.07e-3 9.225e-3 6.801e-3
Entropy -1.158 -1.829 -1.924 -1.65
Value function loss 52.66 7.05e-7 6.268e-7 1.622e-6

Comparison with Other Traffic Grid Environments

With a 10% penetration rate of AV, four traffic environments including 1x1, 1x2, 2x2,

and 3x3 traffic grids were simulated with the proposed PPO algorithm. Figures 12 to 15
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375  show the behavior of the average rewards on FEC rates with respect to time steps for each
376  simulated environment, respectively. Table 6 presents the convergence of average
377 rewards on FEC rates and the convergence time for each simulated environment.
378  Specifically, the average FEC reward in the 3X3 traffic grid converged at about 216K

379  steps, which was less than results obtained from other environments.

Average reward of fuel energy consumption (FEC) rate for 1x1 Traffic Grid Environment

Average FEC rate reward

0 500k ™M 1.5M 2M 25M M 3sM 4aMm

380 Time step (s)

381 Figure 12. Behavior of average rewards on FEC rate with respect to time steps for a 1x1 traffic grid.

Average reward of fuel energy consumption (FEC) rate for 1x2 Traffic Grid Environment

Average FEC rate reward
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383 Figure 13. Behavior of average rewards on FEC rate with respect to time steps for a 1x2 traffic grid.
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Figure 14. Behavior of average rewards on FEC rate with respect to time steps for a 2x2 traffic grid.

Figure 15. Behavior of average rewards on FEC rate with respect to time steps for a 3x3 traffic grid.
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Table 6. Performance of the PPO algorithm for rewards on FEC rates for different traffic grid networks.

Traffic Grid i i
sCt:Il:svergmg Time Average rewards on FEC rates at convergence
1x1 550K -0.1
1x2 944K -0.7231
2x2 854K -69.4
3x3 216K -20.1
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3. Discussion

As more cars run on fuel like gasoline, resulting in air pollutants, the demand for eco-
driving strategies is highly.’® 3! In this study, we employed an RL algorithm, PPO, to
investigate the impact of introducing AV to the traffic flow of HDV on reducing traffic
delay and minimizing fuel energy consumption rates. This involved introducing a specific
penetration rate of AV into a continuous traffic flow, coordinated with traffic light signals,
within a large 3x3 traffic grid system. The Flow computational package, developed in
Python, was utilized to integrate the publicly available microscopic traffic simulator,
SUMO, and the RL library 'RLIib'. In a previous study,*? a comparison between different
types of action spaces for different algorithms has been presented. Algorithms such as Q-
Learning, DQN, DDPG, etc. are considered reliable for specific types of action spaces—
either continuous or discrete. For environments that feature both continuous and discrete
action spaces, PPO-based RL algorithms are feasible due to their computational and
sample efficiency. So, the PPO-based RL approach is used in this research work to train
agents in the selected traffic environment.

The environmental setup consists of a traffic network with 3 horizontal and 3 vertical
roads in the SUMO simulator. Different percentages of AV (0%, 5%, 10%, and 20%)
were introduced in this study to control the speed of HDV in the network. The average

rewards on total delay and FEC rates were computed in this research work with different
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penetration rates. The penetration of AV illustrated better average rewards on both total
delay and FEC rates. The 20% AV penetration initially results in more delays due to their
prioritization of safety over speed and efficiency. Specifically, a 10% penetration rate in
AV combined with HDV showed significant results for minimization of FEC rate and
total delay. The rewards on total delay for the 10% penetration rate case converged at a
minimum value of -53.34 at the least time steps of 110K in comparison with other cases.
At a 0% penetration rate, an average reward on FEC rates of -964.3 was obtained by the
end of training. For all other cases, the rewards on FEC rates approached zero by the end
of training. To assess the performance of the PPO policy in training agents to minimize
the FEC rates, results for average policy reward, entropy, value function loss, and mean
environment time were obtained at various penetration rates. A 10% penetration rate
demonstrated better performance compared to 0%, 5%, and 20% rates. A comparison of
four traffic light grids (1x1, 1x2, 2x2, and 3x3) was performed at a penetration level of
10% in terms of the FEC rate. The results indicated that the average rewards on FEC rates
converged in a shorter time for a 3x3 traffic network as compared to other configurations.
We are well aware that there are limitations in this study. PPO-based RL algorithms need
to be precisely tuned to achieve the most effective learning results because they are
hyperparameter-sensitive. The consideration of lane change was not incorporated into this

research; lane-changing behavior can be discussed by introducing a lane change
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controller in the future. All HDV are assumed to have the same economic model, while

there are heavy-duty vehicles, buses, cycles, and passenger vehicles have different

economic models. To address this limitation, we can find an economical model for each

type of vehicle, determine the percentage of each vehicle type based on the public traffic

flow dataset, and integrate this information into the energy calculation in our future

research. We assume ideal communication without any delay or failure in controlling AV

in this study. In the future, we can apply RL algorithms to scaled-down AV to examine

the impact of communication delays.

A comparison of the proposed eco-driving strategy is performed with prior related

research as shown in Table 7, suggesting the effectiveness of the proposed PPO algorithm

for an eco-driving strategy.

Table 7. Comparison with prior research work.

Fuel
Action .
i i Consumption
Reference  Year Vehicle Algorithm  Space Traffic Grid Objective L P
Type Type Network @)
per Vehicle
Cases-1 single
o intersection To minimize CO2
17 2018 CV Learnin Discrete (Ix1) emissions and optimize N/A
& Case-2:a2-way traffic performance
road network
Optimizing
18 . acceleration/deceleration
2020 CAV DQN Discrete 1x1 of CAV to minimize fucl 0.0691
consumption
Circular To enhance travel
. Network with efficiency, reduce fuel 0.015 (at
20 B
2020 CAV DDPG Continuous signalized consumption, and ensure ~ 100% CAV)
interactions safety
. 2o cay  DPPG Discrete & | To minimize fuel 0.12005 (for
DQN Continuous X consumption, ensure HDQPG)

reasonable travel times,
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and execute lane
changes strategically to
avoid congested lanes

Percentage of AV in the

traffic flow to minimize

fuel consumption, 0.0954 (at
emissions, and 100% CAV)
improvement in travel

speed

Collaboration of traffic

lights signals and 0.010 (at 10%

. AV and Continuous percentage of AV in the

AV

This work 2024 HDV PPO & Discrete 3 traffic flow to minimize )
fuel consumption and

total delay

CAV
= 2019 and TRPO Continuous  1x1
HDV

4. Conclusions

Eco-driving positively impacts human health by reducing pollution resulting from vehicle
fuel consumption and emissions. This study explores a hybrid traffic network that
combines autonomous vehicles and human-driven vehicles through the coordination of
traffic light signals to manage a large traffic flow. The approach addresses eco-driving
challenges, including real-time traffic data collection and the intricate nature of the traffic
network, which currently lacks a comprehensive mathematical model. The research
employs model-free PPO-based reinforcement learning algorithms to analyze the fuel
energy consumption rates of vehicles. It focuses on minimizing fuel energy consumption
by introducing specific penetration rates of AV (0%, 5%, 10%, and 20%) in a 3x3 traffic
grid system, utilizing the Flow compactional package to integrate the SUMO simulator
and RLIib. The study results indicate that a 10% penetration rate of AV alongside HDV

yielded significant reductions in both fuel consumption and total delay of traffic.
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