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Abstract 20 

Eco-driving has garnered considerable research attention owing to its potential socio-21 

economic impact, including enhanced public health and mitigated climate change effects 22 

through the reduction of greenhouse gas emissions. With an expectation of more 23 

autonomous vehicles (AV) on the road, an eco-driving strategy in hybrid traffic networks 24 

encompassing AV and human-driven vehicles (HDV) with the coordination of traffic 25 

lights is a challenging task. The challenge is partially due to the insufficient infrastructure 26 

for collecting, transmitting, and sharing real-time traffic data among vehicles, facilities, 27 

and traffic control centers, and the following decision-making of agents involved in traffic 28 

control. Additionally, the intricate nature of the existing traffic network, with its diverse 29 

array of vehicles and facilities, contributes to the challenge by hindering the development 30 

of a mathematical model for accurately characterizing the traffic network. In this study, 31 

we utilized the Simulation of Urban Mobility (SUMO) simulator to tackle the first 32 

challenge through computational analysis. To address the second challenge, we employed 33 

a model-free reinforcement learning (RL) algorithm, Proximal policy optimization 34 

(PPO), to decide the actions of AV and traffic light signals in a traffic network. A novel 35 

eco-driving strategy was proposed by introducing different percentages of AV into the 36 

traffic flow and collaborating with traffic light signals using RL to control the overall 37 

speed of the vehicles, resulting in improved fuel consumption efficiency. Average 38 
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rewards with different penetration rates of AV (5%, 10%, and 20% of total vehicles) were 39 

compared to the situation without any AV in the traffic flow (0% penetration rate). The 40 

10% penetration rate of AV showed a minimum time of convergence to achieve average 41 

reward, leading to a significant reduction in fuel consumption and total delay of all 42 

vehicles.  43 

Keywords: Eco-driving; Hybrid Traffic Network; Reinforcement Learning; Traffic Flow 44 

Control; Fuel Consumption; Microscopic Traffic Simulator 45 

1. Introduction 46 

Findings from a 2022 study indicate that the transportation sector accounted for 27% of 47 

the energy consumption in the United States.1 Specifically, petroleum (gasoline) 48 

consumption comprised about 52% of the total energy consumption, resulting in 49 

significant air pollutant emissions. This underscores the necessity for a well-designed 50 

traffic control system to mitigate fuel energy consumption (FEC) and air pollution for 51 

sustainability.2-4 The concept of sustainability has driven research into eco-driving 52 

strategies designed to reduce FEC rates (FEC within time). FEC rates can be calculated 53 

based on factors such as acceleration, mass, drag coefficient, rolling coefficient, driveline 54 

efficiency, idling speed, and idling fuel mean pressure.5,6 Reducing FEC involves two 55 

interconnected goals: shorter travel time and lower FEC rates. Vehicles incur the highest 56 
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FEC rates during idling and frequent stops and starts, especially at traffic lights or in 57 

congestion. Therefore, prioritizing the establishment of a continuous traffic flow, 58 

characterized by minimal fluctuations in vehicle speeds, is essential for achieving lower 59 

FEC rates and shorter traffic delays. This approach is instrumental in promoting effective 60 

eco-driving strategies.7    61 

Traditional traffic control relies on fixed modes for traffic light changes and manual 62 

rerouting, resulting in limited efficiency and a lack of feedback mechanisms. The current 63 

setup of traffic control systems poses challenges in developing eco-driving strategies for 64 

hybrid traffic networks encompassing AV and HDV. These challenges stem partially 65 

from the insufficient infrastructure for collecting, transmitting, and sharing real-time 66 

traffic data among vehicles, facilities, and traffic control centers, as well as the subsequent 67 

decision-making by involved agents. Furthermore, the intricate nature of the existing 68 

traffic networks, with their diverse array of vehicles and facilities, complicates the 69 

development of a mathematical model for accurately characterizing the traffic networks. 70 

Current eco-driving strategies have addressed the challenges from various perspectives, 71 

including real-time artificial intelligence for traffic monitoring, and 5th generation (5G) 72 

communication networks to facilitate rapid information sharing.8-10 Due to the 73 

multifaceted nature of the eco-driving problem, a model-based deterministic strategy is 74 
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challenging to approach. Meanwhile, data-driven approaches show promise, given the 75 

large amount of data accumulated during the past decades.  76 

Related Work on Reinforcement Learning in Traffic Control 77 

Model-free RL has demonstrated its advantage in decision-making for traffic flow control 78 

by examining interactions among multiple agents and the environment.10-12 RL has been 79 

applied to optimize vehicle routes for reduced delay and vehicle accelerations for less 80 

FEC.13,14 RL algorithms have also been developed to reduce air pollutant emissions by 81 

reducing vehicles’ waiting time at road intersections.15,16 In a study on infrastructure-to-82 

vehicle communications networks,17 a single vehicle was considered as an agent, and the 83 

Q-learning (QL) algorithm was developed to minimize carbon dioxide emissions. 84 

Additionally, a recent eco-driving framework based on the deep Q-network (DQN) 85 

approach was presented to enhance the fuel efficiency of multiple vehicles in a  traffic 86 

network with one horizontal road and one vertical road.18 87 

In addition to applications of RL in controlling vehicle routes or acceleration, traffic lights 88 

are also considered as agents to control traffic flow with RL algorithms.  An RL-based 89 

control has been developed for smart traffic signals, to reduce traffic jams and improve 90 

traffic smoothness in a traffic grid consisting of 3 horizontal and 3 vertical roads.19  91 

With more AV running on the road, they are also considered agents in RL algorithms for 92 

traffic control. In a recent study, a circular network with fixed traffic signal patterns at 93 
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one spot was deployed to develop a deep deterministic policy gradient (DDPG) algorithm. 94 

The study aims to minimize the FEC of Connected AV by controlling their acceleration.20 95 

Additionally, RL algorithms with a hybrid deep Q-learning and policy gradient (HDQPG) 96 

were developed to minimize the FEC of Connected AV by controlling their acceleration 97 

in a traffic grid with one horizontal and five vertical roads.21 Previous studies also 98 

explored a traffic flow containing both HDV and Connected AV using a trust region 99 

policy optimization (TRPO) to reduce the FEC and emissions of both HDV and CAV.22  100 

While the above-mentioned RL-based controls have improved traffic smoothness by 101 

focusing on the actions of vehicles or traffic lights, the effect of combining AVs and 102 

traffic signals on FEC has not been fully investigated.20-22  103 

In this study, a novel eco-driving strategy was proposed by introducing a specific 104 

percentage of AV into the traffic flow of HDV, in collaboration with smart traffic light 105 

signals to reduce the idling time of vehicles and improve the traffic smoothness in a 106 

scalable traffic network with user-defined horizontal and vertical roads for intersections. 107 

A model-free RL algorithm was developed to control the overall speed of all vehicles, 108 

resulting in a continuous traffic flow and reduction of the FEC of the vehicles in the 109 

network.  110 

2. Method 111 
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The proposed RL algorithm determines the optimal actions of multiple agents including 112 

AV and traffic lights in a dynamic traffic network with HDV to minimize the FEC rates 113 

of all vehicles. The traffic network and motion of all vehicles are simulated using the 114 

SUMO package.23 The RL algorithm is implemented using Python and integrated into 115 

SUMO for simulation. 116 

The selected traffic grid environment is inspired by the grid-like layout of Manhattan 117 

City.24 Figures 1 and 2 display an open street map of the Manhattan traffic grid structure 118 

and its visualization in the SUMO environment, respectively.  119 

 120 

Figure 1.  Open street map of traffic grid structure in Manhattan City. 121 
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 122 

Figure 2. The grid structure of Manhattan City, simulated in the SUMO environment, is represented in the 123 

highlighted red color region. The selected traffic network serves as the basis for our research, examining 124 

the role of AV combined with HDV in minimizing the FEC rates of all vehicles in the traffic network. 125 

Environment Setup in SUMO 126 

The traffic network is configured within an environment featuring N horizontal and N 127 

vertical straight roads, each equipped with two lanes and extending for a length of 1 128 

kilometer (km). There are 4N edge points, each assigned a unique number. At each edge 129 

point, a traffic flow of 300 vehicles per hour has been selected to enter the traffic system, 130 

aligning with the range of traffic flow defined by the Federal Highway Administration 131 

for signalized intersections in the United States.25 Each vehicle has a departure speed of 132 

30 m/s (67.1 miles/hour) and SUMO vehicle parameters dictate a minimum gap of 2.5 133 

meters between two vehicles. All vehicles will continue straight in their original direction 134 
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of travel and exit the simulation environment. To ensure safety during peak traffic time, 135 

turn prohibitions are considered in this study according to the Federal Highway 136 

Administration in the United States.25    137 

According to a recent study, AV account for 10% of all vehicles on the roads.26 138 

Accordingly, this study considers different penetration rates for AV ( 0%, 5%, 10%, and 139 

20% ) to assess their impact on traffic control. An RL controller is used to control RL 140 

agents, such as AV and traffic lights, with commands issued by policy at each time step. 141 

The speed and acceleration of AV are determined with an RL controller, while the motion 142 

of HDV is controlled by an embedded “sim car-following” controller in SUMO 143 

simulation. All vehicles are homogeneous with respect to their mass, size, and economic 144 

models.  145 

At each intersection of two roads, 4-way traffic lights are defined as actuated agents with 146 

a controllable period for red, green, and yellow lights. With the setup of N vertical and N 147 

horizontal roads in a network, there are a total of 4𝑁!	traffic lights.  148 

In this study, we focus on a 3x3 traffic network, assuming uniform road lengths in all 149 

directions to facilitate simulation. Figure 3 illustrates a network with N=3 and the 150 

arrangement of 4 traffic lights at an intersection. It's important to highlight that the 151 

framework is adaptable to larger-sized traffic networks, provided there are sufficient 152 

computational resources. 153 
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 154 

    Figure 3.  (a) 3x3 Traffic light grid environment (b). 4-way single signalized intersection. 155 

Reinforcement Learning 156 

A decentralized partially observable Markov Decision Process (De-POMDP) is adopted 157 

to coordinate the actions of agents, including traffic lights and AV in the traffic network.  158 

When vehicles move in the same direction, HDV are observable to an autonomous vehicle 159 

if the distance between a human-driven vehicle and an autonomous vehicle is less than or 160 

equal to 25 meters in the same lane. Each traffic light agent also observes the two nearest 161 

vehicles and has their information related to speed, distance to the intersection, and edge 162 

number. The position, speed, and acceleration of AV, as well as cycles and status of traffic 163 

lights, are shared among all AV and traffic lights.  164 

The state, action space, policy, and reward function of the RL are defined as follows. 165 

State Space (s): For each vehicle agent, its state, 𝑠 ≔ (𝑣"	, 𝑑" , 𝑒")"$%:' ∈ 	 𝑅3𝑋𝑀, where 166 

M=3,600 denotes the maximum number of vehicles in the selected traffic system. This 167 

number is calculated by considering 300 vehicles entering the system at 4N edge points 168 
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within one hour, with N=3, assuming the worst case: no vehicles leave the simulated 169 

traffic network within an hour. Here, 𝑣" represents the speed of the ith vehicle, 𝑑" denotes 170 

the distance of the ith vehicle to the nearest intersection in its driving direction, 𝑒" indicates 171 

the edge number which the ith vehicle enters the traffic network. The edge number 172 

signifies the traffic flow direction of each vehicle, assuming no turns are allowed.  173 

The state of each traffic light agent includes the time of the light's last change, the traffic 174 

flow direction controlled by the light (0 indicates passing with a green light, and 1 175 

indicates stopping with a red light status), and the states of other traffic lights in the same 176 

traffic flow direction. At an intersection, if the top-bottom traffic lights have a status of 177 

“0”, the left-right traffic lights must have a status of “1”, and vice versa. When the status 178 

of a traffic light is green, it will change to yellow for 3s before switching to red status due 179 

to safety purposes. 180 

Action Space (𝒂): There are 4𝑁! traffic lights in the network and each traffic light have 181 

two discrete actions:  1 (indicating the traffic light switches) and -1 (indicating no action 182 

taken), as defined in equation (1): 183 

-𝑎 = 0 1
			

𝑡raffic	light	switches	
−1 no	action	taken	

. D	 (1)	

The action space for an autonomous vehicle is its acceleration, which ranges between  184 

[-1, 1] and is determined by an RL controller in FLOW 185 
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 package. For HDV, the action space for acceleration values is chosen within the range [-186 

4.5, 2.6], as defined by SUMO.  187 

Policy:  An RL algorithm called PPO is used to train policies for tasks involving decision-188 

making in environments with either continuous or discrete action spaces. Policies are 189 

optimized using the policy gradient method to maximize the expected cumulative reward. 190 

The choice of a PPO-based RL algorithm for deployment in this study stems from its 191 

superior computational efficiency and stability compared to other algorithms. 192 

Specifically, RLlib within the Flow package is integrated into SUMO for simulation.27-29  193 

A stochastic policy 𝜋(:	𝑠	 × 𝑎 → ℝ)	 is a maping from state,	𝑠, and action 𝑎 of all agents 194 

parameterized by 𝜑 to a non-negative real number. It can be defined by (2) as a probability 195 

distribution over actions of each state: 196 

-𝜋( = 𝑃(𝑎|𝑠; 	𝜑) =
𝑒*$(,,.)

∑ 𝑒*$(,,.%)0
.%1	𝒜

D	 (2)	

where, 𝑓((𝑠, 𝑎3) = 𝜑⊺ ℬ(𝑠, 𝑎); 𝜑 = (𝜑.%, …𝜑.0) ∈ 𝑅0; 𝜑⊺ is transpose of parameter 197 

vector 𝜑; and ℬ(𝑠, 𝑎) represents transitions among states given an action; and 𝑈 198 

represents the complete action space.  199 

The average reward received by an agent when it follows a PPO policy at each time step 200 

is referred to as the average policy reward.  The average policy reward, also defined as 201 
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expected return of policy, 𝜂W𝜋(X for the entire trajectory	𝜏 at time step t, can be expressed 202 

as equation (3), 203 

Z𝜂W𝜋(X = 	𝔼5 Z\𝛾6 . 𝑟(𝑠6 , 𝑎6)
7	

6$8

_ , _ (3)	

where, 𝜏 represents the entire trajectory of states and actions. The parameter 0< 𝛾 ≤204 

1, represents a discount factor, and 𝛾6gets smaller as time 𝑡 → ∞ with 𝛾 < 1. The rewards 205 

function, 𝑟(𝑠6 , 𝑎6), determines rewards given the state and action of an agent at time 𝑡. 206 

The optimal policy parameter 𝜑∗ is reached by maximizing the expected cumulative 207 

return obtained by an agent, as described in equation (4), 208 

d𝜑∗: = 	 𝑎𝑟𝑔𝑚𝑎𝑥	(	𝜂W𝜋(X. h (4)	

The policy loss is defined based on the 𝑞:(φ),	 a ratio of new policy 𝜋((𝑎6|𝑠6) and the 209 

previous policy 𝜋(&(𝑎6|𝑠6)  as equation (5): 210 

k𝑃𝑜𝑙𝑖𝑐𝑦	𝐿𝑜𝑠𝑠 = 	𝔼5 r𝑞6(𝜑)𝐴t6 − 𝛽𝐾𝐿 k𝜋(&(. |𝑠6), 𝜋((. |𝑠6)wx , w (5)	

where, 𝛽 is hyperparameter to control the strength of regularization of  211 

𝐾𝐿[𝜋(&(. |𝑠6), 𝜋((. |𝑠6)], which represents the Kullback-Leibler (KL) divergence 212 

between two conditional probability distributions over actions given a state 𝑠6. If 213 
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𝔼5 r𝐾𝐿 k𝜋(&(. |𝑠6), 𝜋((. |𝑠6)wx <
;<	6.=>?6	@.AB?

%.D
,  it indicates new policy doesnot diverged 214 

significantly from the old policy, so 𝛽  needs to be reduced by  1/2. If 215 

	𝔼5 r𝐾𝐿 k𝜋(&(. |𝑠6), 𝜋((. |𝑠6)wx > (𝐾𝐿	𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒) × 1.5, it means there is too much 216 

change in policy through update, so 𝛽 needs to be increased by multiplying with 2. The 217 

𝐾𝐿	𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒 is defined by users and a reference value is given in the Results section.  218 

The advantage estimate function 𝐴t6, representing accumulated future rewards, can be 219 

defined as equation (6), 220 

r𝐴t6 = 𝛿6 +\ (𝛾𝜆)E𝛿6)E
FG6)%

E$%
, x (6)	

d𝛿6 = 𝑟6 + 𝛾	𝑉(,'()) − 𝑉(,'), h (7)	

where 𝑡 represents time steps from [0, 𝑇], and T represents the range of prediction. 221 

The parameter λ impacts weights of potential rewards in the advantage estimation 222 

function 𝐴t6. When λ=1, 𝐴t6 increases by adding more future rewards, resulting in high 223 

variance and less bias. When λ=0, no future rewards are considered.  Policy  𝜋(&()  is 224 

updated with 𝜑>)% according to (8):  225 

!𝜑!"# = 𝑎𝑟𝑔𝑚𝑎𝑥$
1

*ℋ!*𝑇
- -𝑚𝑖𝑛 0𝑞%(𝜑)𝐴

&!"(𝑠%, 𝑎%) − 𝛽!𝐾𝐿[𝜋$"(. |𝑠%), 𝜋$(. |𝑠%)]@ ,
'

%()𝒯(ℋ"
A	 (8)	

where ℋ> = [𝒯"] is a set of trajectories for iteration 𝑔. 226 
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In the RL algorithm, the value function 𝑉(,') estimates the expected cumulative reward 227 

starting from a specific state 𝑠6 , that the agent can attain from that state onwards. A value 228 

function loss (𝑉𝐹 Loss) is defined as a squared-error loss between predicted and target 229 

value function (9): 230 

k𝑉𝐹	𝐿𝑜𝑠𝑠 = (𝑉∅𝑔(𝑠𝑡) − 𝑉6
6.=>)!, w (9)	

where, 𝑉((𝑠6),	is an output from a neural network parameterized by ∅ with the state 𝑠6	as 231 

input; and 𝑉6
6.=> is the target value function at time step t can be defined as  𝑉6

6.=> = 𝑟6 +232 

𝛾𝑉(,'()), the range of 𝑉6
6.=> 	 ∈ [−1, 1]. Parameters of the network ∅>)%  can be updated 233 

according to (10): 234 

'∅,-. = 𝑎𝑟𝑔𝑚𝑖𝑛∅
1

0ℋ,0𝑇
3 3(𝑉∅"(𝑠/) − 𝑉/

/01,)2
3

/45𝒯4ℋ"
7. 

(10)	

 235 

In RL, the entropy function refers to the level of uncertainty in the policy distribution. It 236 

is used to encourage exploration by selecting different possible actions in a specific state 237 

and to prevent premature convergence to suboptimal policies. The entropy function of the 238 

PPO algorithm is defined based on the probability of taking actions, 𝜋(𝑎|𝑠), given a state 239 

𝑠 under the policy in equation (11): 240 
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r𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −\ 𝜋(𝑎|𝑠) log 𝜋	(𝑎|𝑠).
.

x (11)	

A smaller entropy indicates a better performance of the PPO algorithm. The pseudo code 241 

for the PPO algorithm is shown as follows. 242 

 243 

Algorithm 1.  PPO 

Input: Initial policy and value function parameters (𝜑5, ∅5) 

for iteration g=0,1, 2....do 

         Run policy  𝜋, = 𝜋(𝜑,) in environment for time steps T to collect a set of trajectories ℋ, = [𝒯8]. 

          Compute rewards-to-go  𝑟̂/. 

          Compute advantage estimates 𝐴A/ based on the current value function 𝑉∅". 

          Find optimal policy 𝜑,∗ to find average policy reward. 

          Update policy  𝜋:"#$ with 𝜑,-. using equation (8). 

          Fit value function 𝑉∅" with ∅,-. using equation (10). 

end for 
 244 
Reward (r): Two reward functions have been designated: one to minimize total traffic 245 

delay, 𝑇E, and another to minimize FEC rates at time step 𝑡. These reward functions were 246 

used to train each traffic light and autonomous vehicle. The reward functions are given in 247 

equations (12) and (13):  248 

r𝑟%(𝑡) = −
1
4𝑁! 	𝑇E , x	 (12)	

 249 



 
 
 
 
 
 
 

 

17 

 

r𝑟!(𝑡) = −
1
M𝐹𝑐

(𝑡). x	 (13)	

Since rewards are negative, the closer a reward to zero means smaller total delay and FEC 250 

rates of all vehicles in the traffic flow. The 𝑇E is defined by (14): 251 

⎣
⎢
⎢
⎡
𝑇E = max 	

⎝

⎛
ò∑ W𝑣E,;X

!'
" − ò∑ W𝑣E,; − 𝑣"X

!'
"

ò∑ W𝑣E,;X
!'

"

, 0

⎠

⎞ ,

⎦
⎥
⎥
⎤
 (14)	

where 𝑣E, is the speed limit on the road and 𝑣" is the velocity of each vehicle.  252 

Fuel Energy Consumption Rate Model 253 

The function. 𝐹𝑐	(𝑡), denotes the FEC rate with a unit in Litter/second (L/s) , which is 254 

described as follows according to a previous study,5 255 

r𝐹𝑐	(𝑡) = û𝛼8 + 𝛼%	𝑃6	 + 𝛼!	𝑃6	
!, ∀𝑃6	 ≥ 0
𝛼8, ∀𝑃6	 < 0 , x (15)	

 256 

r𝑃6	 = ¢
𝑅6	 + 1.04𝑚𝑎6
3600	𝜂E

£ ∙ 𝑣6 , x	 (16)	

	257 

r𝑅6	 =
𝜌

25.92𝐶E𝐶H𝐴*𝑣6
! + 9.8066𝑚

𝐶=
1000

(𝑐%𝑣6 + 𝑐!) + 9.8066𝑚𝐺6 , x (17)	
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Here, 258 

● 𝑃!	: Power exerted at time t (Kilowatt, KW), 259 

● 𝑎!: Acceleration of vehicle (m/s2), 260 

● 𝑣!: Velocity of vehicle (m/s), 261 

● 𝑅!	: Resistance force (N). 262 

Other constant parameters in the model have been defined in Table 1.  263 

Table 1.  FEC rate model parameters  264 

Symbol          FEC rate Parameters Value 

𝛼5 Vehicle model constant 0.00000002 
𝛼. Vehicle model constant 0.0000001 
𝛼2 Vehicle model constant 0.000001 
𝑚 Vehicle mass 1200 Kg 
𝜂< Derive line efficiency 0.92 
𝜌 Density of air at sea level at a temperature of 59°F 1.2256 Kg/m3 
𝐶< Drag coefficient 0.28 
𝐶= Correction factor for altitude 0.97 
𝐴> Frontal area 2.6 m2 
𝐶1 Rolling coefficient 1.75 
c1 Rolling resistance parameter 0.0328 
c2 Rolling resistance parameter 4.575 
𝐺/ Roadway grade 0.04 
 265 

Computational Framework 266 

Two publicly available software packages, Flow and SUMO, are adopted in this study. 267 

Flow is a traffic control benchmarking framework developed in Python and integrates RL 268 

algorithms into different traffic control scenarios.19 The SUMO simulator handles large-269 
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scale traffic networks based on physical-world data. Integration of SUMO and Flow 270 

package and implementation of the RL algorithm are shown in Figure 4. 271 

 272 

Figure 4: Process diagram to describe RL training process and interactions between SUMO, Flow, and 273 

RLlib library. RL and Sim car following controllers used to control the AV and HDV, respectively. Sim 274 
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car-following controller actions are entirely defined by the simulator, whereas RL-Controller performs 275 

actions by following commands from the policy in RLlib.  276 

 277 

Results  278 

The RL algorithm was applied to regulate the traffic flow in the selected traffic network 279 

with 4 different penetration rates of AV, 0%, 5%, 10%, and 20%.    280 

 281 

Figure 5. Illustration of the traffic network with 3 vertical and 3 horizontal roads in SUMO simulator. An 282 

overview of all AV (red vehicles), observable HDV (green vehicles), and unobservable HDV (white 283 

AV
Lorem ipsum

Observed HDV
Unobserved HDV
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vehicles) in the traffic network. (Bottom Left) A close view of traffic flow between intersections within the 284 

yellow box at the lower left part of the traffic network.  285 

Training was conducted on a machine with 4 Intel® Core™ i5-6600 CPU @ 3.30GHz. 286 

The Hyperparameters used in the RL algorithms are listed in Table 2.  287 

Table 2. RL algorithm hyperparameters  288 

Hyperparameters Value 

Learning rate 5e-5 

Training batch size 1500 
SGD minimum batch size 128  
Number of SGD iterations 5 
Training Iterations 500 
Parallel workers 10 
Horizon steps  150 
Discount factor (g) 0.999 
GAE value (l) 0.5 
KL Target value 0.02 
Target value function  0.01 
Fixed KL  b 3 

             SGD: Stochastic Gradient Descent; GAE: Generalized Advantage Estimation; KL: Kullback-Leibler. 289 

The results of this study have been divided into four categories: 290 

(a) Rewards on total delay at different penetration levels; 291 

(b) Rewards on FEC rates at different penetration levels; 292 

(c) Performance of PPO policy at different penetration levels; 293 

(d) Comparison of the selected 3x3 traffic network with other networks. 294 

Rewards on Total Delay at Different Penetration Levels 295 
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Various penetration rates of AV in the traffic flow are examined to optimize traffic flow 296 

considering information sharing on traffic lights and AV.  297 

Figure 6 shows that traffic flow containing 100% HDV (i.e., 0% AV) has the worst total 298 

delay rewards in the long term compared to 5%, 10%, and 20% penetration rates of AV. 299 

Penetration of AVs at 5%, 10%, and 20% results in convergence of rewards on total delay. 300 

The 20% AV penetration rates show a more complicated learning process due to the 301 

priority of safety over the optimization of traffic flow speed and FEC rate at an early stage 302 

of the learning process. Once AV become familiar with the traffic flow patterns during 303 

the training period, the PPO algorithm improves the rewards on total delays due to good 304 

prediction of other vehicles’ behavior. The 10% penetration rate of AV indicates 305 

fluctuations as well during the training period and it could be due to fewer interactions 306 

between AV and HDV on the road.  307 

Table 3 shows the average delay for different penetration rates of AV in the selected 308 

traffic grid network. At a 10% pentation rate, the average reward was achieved at the least 309 

time step of 110K as compared to other penetration rates. 310 
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 311 

Figure 6. Behavior of average rewards of total delay with respect to time steps for different AV penetration 312 

rates.  313 

Table 3. Convergence time and steady state average rewards on total delay obtained with different 314 

pentation rates. 315 

Penetration  
rate 

Approximate starting time steps  
of convergence 

Average rewards on total delay 
at the last time step  

0% No exact convergence observed -73.94 
5% 302K -59.79 
10% 110K -53.34 

20% 2.24M -53.51 

 316 

FEC Rates at Different Penetration Levels 317 

The FEC rate of a small-engine vehicle usually falls within the range of 0.05-0.10 L/s 318 

with an average driving velocity. The reward on FEC rate can reach zero when the vehicle 319 

achieves low levels of FEC at a minimum varying speed and other performance 320 

parameters. Results of the average rewards on FEC rate obtained from different 321 
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penetration levels are presented in Figure 7 and Table 4. The penetration of AV shows 322 

better performance in reaching larger rewards on FEC rates, while the pure HDV case 323 

illustrates the worst scenario with a reward on FEC rate of about -1,000. Interestingly, the 324 

10% pentation rate regulates the FEC rate faster in the simulation compared to the results 325 

obtained from 5% and 20% penetration of AV. The time step for the convergence of the 326 

FEC rate and the steady state average rewards on the FEC rate with 4 different penetration 327 

rates are presented in Table 4. 328 

 329 

Figure 7. Behavior of average rewards on FEC rates with respect to time steps, considering 4 different 330 

penetration rates of AV in the traffic flow. 331 

Table 4. FEC rate results at different pentation rates. 332 

Penetration rate Starting time step of 
convergence 

Average rewards on FEC rate  

at the last time step 

0% 302K -964.3 

5% 316k 0.071 



 
 
 
 
 
 
 

 

25 

 

10% 216k 0.010 

20% 862K 0.081 

 333 

Performance of PPO policy 334 

To assess the effectiveness of the PPO policy in optimizing the FEC rate, the average 335 

policy reward and average environment time, policy loss, entropy, and value function loss 336 

have been evaluated with different pentation rates of AV. Figure 8 shows that average 337 

policy rewards with penetration rates 5%, 10%, and 20% of AV converge to zero while 338 

HDV only case has the worst reward with a value of -107.2. With the 10 % penetration 339 

rate, the average policy rewards start to converge about 300K steps, faster than 0%, 5%, 340 

and 20% penetration rates.  341 

 342 

Figure 8. Behavior of average policy rewards with respect to time steps for 4 different penetration rates of 343 

AV. 344 

 345 
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The time for an agent to stay in a specific state before applying an action is considered an 346 

environment waiting time. The highest average environment time is observed for the 20% 347 

penetration rates at a time step of about 850K as compared to others, as shown in Figure 348 

9. The average environment waiting time of 5% case is slightly higher than that of the 349 

10% AV penetration rate by the end of training, but its highest peak is observed to be 350 

higher than the 10% penetration rates during training at 800K steps. 351 

The entropy behavior for PPO is shown in Figure 10, with high values observed at a 0% 352 

penetration rate.  A minimum value of entropy was observed at a 10% penetration rate by 353 

the end of training, indicating fewer uncertainties in policy distribution as compared to 354 

the 5% and 20% penetration rates. 355 

The total loss, which is a combination of policy loss and value function loss, is depicted 356 

in Figure 11. At a 10% penetration rate, the minimum total loss is observed compared to 357 

other cases. All these performance indices show that penetration of AV can improve the 358 

rewards on FEC rates compared with 100% HDV traffic flow.  359 
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 360 

Figure 9. Average environment waiting time with respect to time steps for 4 different penetration rates of 361 

AV. 362 

 363 

Figure 10. Entropy of the policy to optimize FEC rates for 4 different penetration rates of AV.  364 
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 365 

Figure 11. Total loss including policy value function loss with respect to time steps for 4 penetration rates 366 

of AV. 367 

Table 5 shows the values of five measurements of policy to optimize FEC rate for 4 368 

different penetration rates of AV. 369 

Table 5. FEC rate results at different pentation rates 370 

Measurements 
Penetration Rate 

0% 5% 10% 20% 
Average policy reward -107.2 0.059 0.057 0.069 
Average environment Wait time (ms) 18.7 25.81 28.69 32.87 
Policy loss 6.724e-3 6.07e-3 9.225e-3 6.801e-3 
Entropy -1.158 -1.829 -1.924 -1.65 
Value function loss 52.66 7.05e-7 6.268e-7 1.622e-6 
 371 

Comparison with Other Traffic Grid Environments 372 

With a 10% penetration rate of AV, four traffic environments including 1x1, 1x2, 2x2, 373 

and 3x3 traffic grids were simulated with the proposed PPO algorithm. Figures 12 to 15 374 
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show the behavior of the average rewards on FEC rates with respect to time steps for each 375 

simulated environment, respectively. Table 6 presents the convergence of average 376 

rewards on FEC rates and the convergence time for each simulated environment. 377 

Specifically, the average FEC reward in the 3X3 traffic grid converged at about 216K 378 

steps, which was less than results obtained from other environments.   379 

 380 

Figure 12. Behavior of average rewards on FEC rate with respect to time steps for a 1x1 traffic grid. 381 

 382 

Figure 13. Behavior of average rewards on FEC rate with respect to time steps for a 1x2 traffic grid. 383 
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 384 

Figure 14. Behavior of average rewards on FEC rate with respect to time steps for a 2x2 traffic grid. 385 

 386 

Figure 15. Behavior of average rewards on FEC rate with respect to time steps for a 3x3 traffic grid. 387 

Table 6. Performance of the PPO algorithm for rewards on FEC rates for different traffic grid networks. 388 

Traffic Grid 
                  
Converging Time 
steps Average rewards on FEC rates at convergence 

1x1 550K -0.1 
1x2 944K -0.7231 
2x2 854K -69.4 
3x3 216K -20.1 
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3. Discussion 389 

As more cars run on fuel like gasoline, resulting in air pollutants, the demand for eco-390 

driving strategies is highly.30 31 In this study, we employed an RL algorithm, PPO, to 391 

investigate the impact of introducing AV to the traffic flow of HDV on reducing traffic 392 

delay and minimizing fuel energy consumption rates. This involved introducing a specific 393 

penetration rate of AV into a continuous traffic flow, coordinated with traffic light signals, 394 

within a large 3x3 traffic grid system. The Flow computational package, developed in 395 

Python, was utilized to integrate the publicly available microscopic traffic simulator, 396 

SUMO, and the RL library 'RLlib'. In a previous study,32 a comparison between different 397 

types of action spaces for different algorithms has been presented. Algorithms such as Q-398 

Learning, DQN, DDPG, etc. are considered reliable for specific types of action spaces—399 

either continuous or discrete. For environments that feature both continuous and discrete 400 

action spaces, PPO-based RL algorithms are feasible due to their computational and 401 

sample efficiency. So, the PPO-based RL approach is used in this research work to train 402 

agents in the selected traffic environment. 403 

The environmental setup consists of a traffic network with 3 horizontal and 3 vertical 404 

roads in the SUMO simulator. Different percentages of AV (0%, 5%, 10%, and 20%) 405 

were introduced in this study to control the speed of HDV in the network. The average 406 

rewards on total delay and FEC rates were computed in this research work with different 407 
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penetration rates. The penetration of AV illustrated better average rewards on both total 408 

delay and FEC rates. The 20% AV penetration initially results in more delays due to their 409 

prioritization of safety over speed and efficiency. Specifically, a 10% penetration rate in 410 

AV combined with HDV showed significant results for minimization of FEC rate and 411 

total delay. The rewards on total delay for the 10% penetration rate case converged at a 412 

minimum value of -53.34 at the least time steps of 110K in comparison with other cases. 413 

At a 0% penetration rate, an average reward on FEC rates of -964.3 was obtained by the 414 

end of training.  For all other cases, the rewards on FEC rates approached zero by the end 415 

of training. To assess the performance of the PPO policy in training agents to minimize 416 

the FEC rates, results for average policy reward, entropy, value function loss, and mean 417 

environment time were obtained at various penetration rates. A 10% penetration rate 418 

demonstrated better performance compared to 0%, 5%, and 20% rates.  A comparison of 419 

four traffic light grids (1x1, 1x2, 2x2, and 3x3) was performed at a penetration level of 420 

10% in terms of the FEC rate. The results indicated that the average rewards on FEC rates 421 

converged in a shorter time for a 3x3 traffic network as compared to other configurations. 422 

We are well aware that there are limitations in this study. PPO-based RL algorithms need 423 

to be precisely tuned to achieve the most effective learning results because they are 424 

hyperparameter-sensitive. The consideration of lane change was not incorporated into this 425 

research; lane-changing behavior can be discussed by introducing a lane change 426 
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controller in the future. All HDV are assumed to have the same economic model, while 427 

there are heavy-duty vehicles, buses, cycles, and passenger vehicles have different 428 

economic models. To address this limitation, we can find an economical model for each 429 

type of vehicle, determine the percentage of each vehicle type based on the public traffic 430 

flow dataset, and integrate this information into the energy calculation in our future 431 

research. We assume ideal communication without any delay or failure in controlling AV 432 

in this study. In the future, we can apply RL algorithms to scaled-down AV to examine 433 

the impact of communication delays. 434 

A comparison of the proposed eco-driving strategy is performed with prior related 435 

research as shown in Table 7, suggesting the effectiveness of the proposed PPO algorithm 436 

for an eco-driving strategy. 437 

Table 7. Comparison with prior research work. 438 

Reference Year Vehicle 
Type  Algorithm 

Action 
Space 
Type 

Traffic Grid 
Network Objective 

Fuel 
Consumption 
(L)  
per Vehicle 

17 2018 CV Q-
Learning Discrete 

Cases-1 single 
intersection 
(1x1)  
Case-2: a 2-way 
road network 

To minimize CO2 
emissions and optimize 
traffic performance 

N/A 

18 2020 CAV DQN Discrete 1x1 

Optimizing 
acceleration/deceleration 
of CAV to minimize fuel 
consumption  

0.0691 

20 2020 CAV DDPG Continuous 

Circular 
Network with 
signalized 
interactions  

To enhance travel 
efficiency, reduce fuel 
consumption, and ensure 
safety 

0.015 (at 
100% CAV) 

21 2021 CAV 
DDPG 
+DQN  

Discrete & 
Continuous 1x5 

To minimize fuel 
consumption, ensure 
reasonable travel times, 

0.12005 (for 
HDQPG) 
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and execute lane 
changes strategically to 
avoid congested lanes 

22 2019 
CAV 
and 
HDV 

TRPO Continuous 1x1  

Percentage of AV in the 
traffic flow to minimize 
fuel consumption, 
emissions, and 
improvement in travel 
speed 

0.0954 (at 
100% CAV) 

This work 2024 AV and 
HDV PPO Continuous 

& Discrete 3x3 

Collaboration of traffic 
lights signals and 
percentage of AV in the 
traffic flow to minimize 
fuel consumption and 
total delay 

0.010 (at 10% 
AV) 
 

 439 

4. Conclusions 440 

Eco-driving positively impacts human health by reducing pollution resulting from vehicle 441 

fuel consumption and emissions. This study explores a hybrid traffic network that 442 

combines autonomous vehicles and human-driven vehicles through the coordination of 443 

traffic light signals to manage a large traffic flow. The approach addresses eco-driving 444 

challenges, including real-time traffic data collection and the intricate nature of the traffic 445 

network, which currently lacks a comprehensive mathematical model. The research 446 

employs model-free PPO-based reinforcement learning algorithms to analyze the fuel 447 

energy consumption rates of vehicles. It focuses on minimizing fuel energy consumption 448 

by introducing specific penetration rates of AV (0%, 5%, 10%, and 20%) in a 3x3 traffic 449 

grid system, utilizing the Flow compactional package to integrate the SUMO simulator 450 

and RLlib. The study results indicate that a 10% penetration rate of AV alongside HDV 451 

yielded significant reductions in both fuel consumption and total delay of traffic. 452 
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