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ABSTRACT: Chirality-induced spin selectivity (CISS) is a recently discovered effect in which structural chirality
can result in different conductivities for electrons with opposite spins. In the CISS community, the degree of spin
polarization is commonly used to describe the efficiency of the spin filtering/polarizing process, as it represents the
fraction of spins aligned along the chiral axis of chiral materials originating from non-spin-polarized currents.
However, the methods of defining, calculating, and analyzing spin polarization have been inconsistent across various
studies, hindering advances in this field. In this Perspective, we connect the relevant background and the definition
of spin polarization, discuss its calculation in different contexts in the CISS, and propose a practical and meaningful
figure of merit by quantitative analysis of magnetoresistance in CISS transport studies.
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be manipulated without the need for external magnetic
fields. In CISS, the conductivity of a charge current passing
through chiral media depends on the orientation of electron
spins.”” Such an effect has introduced new perspectives to the
fields of spintronics and quantum information science.” > One
way to quantify the degree of spin alignment in a given direction
is through spin polarization (SP). In the context of the CISS, SP
describes the spin imbalance from the charge current flowing
through a chiral medium. Experimental measurements,
theoretical predictions, and calculations have been employed
to analyze and to evaluate SP in CISS.°
Experimentally, the CISS effect has been predominantly
investigated in chiral bioorganic molecules, such as double-
stranded DNA and peptides.”” Additionally, other organic and
inorganic chiral systems, including chiral hybrid lead iodide
perovskites,” chiral hybrid copper halides,® chiral inorganic
oxides,” chiral nanofibers,'”'" chiral metal organic frame-
works,'” and chiral molecular intercalation superlattices,"’
have demonstrated the CISS effect. Three main experimental

I n chirality-induced spin selectivity (CISS), electron spin can
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approaches—photoemission, transport, and chemical reac-
tions—have been employed to study the CISS effect.®

In this Perspective, we focus on the definition, calculation, and
physical significance of SP in experimental studies of CISS
transport, which have not been consistent with its original
definition. We identify other relevant physical quantities, such as
magnetoresistance, that warrant attention in CISS transport
studies beyond the value of SP and propose specific measure-
ment techniques to quantify SP in CISS accurately.

DEFINITIONS OF SPIN POLARIZATION

The most popular and straightforward definition of spin
polarization is to use the number of states n or density of states
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Figure 1. Comparison between a magnetic tunnel junction (MTJ) and a chirality-induced spin selectivity (CISS) spin-valve. Schematics of (top)
the structures of (left) a conventional spin-valve and (right) a CISS spin-valve and (below) their corresponding magnetoresistances (MR). The
blue, pink, and purple arrows indicate the magnetization directions in the magnetic layers. The green arrow represents the direction of the spin
polarization of electrons passing through the chiral media. The MR shows high-resistance states with antiparallel alignment and low-resistance
states with parallel alignment. The resistance switches between high and low states in the coercive fields of magnetic layers.

D of spin up (1) and down (|) at the Fermi level. Inside a
material, the intrinsic SP (SP,) is:

Dy + D, (1)

ny —n
SP, = ! lor
”T+"l

This relation describes an intrinsic property of a material that
does not depend on any measurement.

In various measurements, electrons inside a material can be
excited from their ground state by electrons and photons,
leading to their subsequent ejection from the material. The SP of
electrons is usually considered based on the relative con-
ductance or intensity of the two spin channels. In general, the
measured SP (SP,,,) is:

a a
_ DTL/T - Dl”i

SEn = D% + Dy ®
Wy W (2)

m

where v is the spin-dependent Fermi velocity and a is the weight
of the Fermi velocity depending on the experimental
setups.'*'® Specifically, @ = 0 is for photoemission and
tunneling, @ = 1 is for ballistic transport, and @ = 2 is for
diffusive transport. Therefore, the measured SP reflects the
intrinsic SP; of the material only when a = 0.

In transport studies, based on Bloch—Boltzmann theory,
current density j o« Dv®'* Equation 2 can be written with Jruy
the current density of spin up or down, to quantify the difference
in spin-dependent charge currents: "

jT _jl

i+ 3)

Here, j; () are spin-up and down components in the same charge
current, which are not typically direct observables in experi-
ments. They are usually derived from indirect measurements or
from calculations.

CURRENT DEFINITIONS AND ANALYSES OF SPIN
POLARIZATION IN CISS TRANSPORT EXPERIMENTS

In CISS transport experiments, one prominent measurement
resembles a spin-valve, consisting of a normal metal and a
magnetic material, with chiral media between the two.” This
structure can be arranged with a number of approaches,
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including scanning probe techniques and devices. On one
hand, scanning probe methods, such as atomic force microscopy
and scanning tunneling microscopy, enable measurements at
small scales, ranging from tens of nanometers down to individual
molecules.'”” On the other hand, test devices measure the
average behavior of chiral media over large scales, typically in the
micrometer range, corresponding to the dimensions of the
electrodes. Despite different experimental approaches, they all
have a spin-valve structure and share the same transport
mechanism. When charge current flows through the chiral
media, it initiates a spin imbalance that can be detected by the
magnetic layer. The magnetization of this layer can often be
switched by using an external magnetic field. The device exhibits
two resistance states depending on the relative alignment
between the magnetization direction in the magnetic layer and
the spin polarization from the chiral media.

In recent reports of CISS transport, presumably because j;
in eq 3 cannot be directly probed in transport measurements,
ji(y) has been widely replaced by j(,), the current density with
different magnetization directions M,y in the magnetic
layer.””%" ' =151872% The currents with M; and M, are two
different currents and can be measured directly. Equation 3 has
been reported as (with XSP being the incorrectly determined
SP):

X I, "M
SPeiss =
Im, +J M (4)

(to the best of our knowledge, the initial definition of XSP can be
traced back to the “spin-dependent electrochemistry” section in
a review article on CISS?).

We note that XSP and SP are two different physical quantities.
It will be worth exploring the actual physical significance of XSP.
First, we take a closer look at the “spin-valve” structure and how
it applies to transport measurements in CISS.

TRADITIONAL SPIN-VALVES: GIANT
MAGNETORESISTANCE AND TUNNELING
MAGNETORESISTANCE

Traditionally, a spin-valve has a prototypical structure of two
magnetic layers separated by and sandwiching a nonmagnetic
layer. As the current flows through a spin-valve, its electrical
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resistance can change between two values that depend on the
relative alignment of the magnetization direction in the two
magnetic layers. This effect is called giant magnetoresistance
(GMR).*** The main mechanism is spin-dependent scattering
based on the relative spin orientations between the electrons and
the magnetic layers. As a result, the spin-dependent charge
currents with parallel alignment (P) are larger than those with
antiparallel alignment (AP). In GMR, the nonmagnetic layer is
usually a normal metal with a thickness below the mean free path
of the electrons, i.e., typically a few nanometers. Moreover, GMR
has been observed not only in magnetic multilayers”* but also in
magnetically inhomogeneous media.*®

Compared to spin-valves with GMR, the tunneling magneto-
resistance (TMR) effect occurs in magnetic tunnel junctions
(MTJs) with similar structures and magnetic field depend-
ences.”’~*’ MTJs are usually composed of two magnetic layers
with an insulating layer in between, as shown in the left panel in
Figure 1. In practical traditional spin-valves, the magnetization
of one magnetic layer is usually pinned, while the other can be
freely rotated; thus, the MR can be continuously changed
between two values.

Julliere calculated the relation between the magnetoresistance
(MR) and SP in magnetic electrodes as the tunneling
conductance being proportional to the product of the spin-
related density of states in each electrode, ie, Dy4)Dyp) +
Dy (1)Dy(), where D; and D, refer to the densities of states in the
two electrodes, respectively.”” The MR in a MTJ can be
expressed as:

Gp— Gy _ 2(SB)(SB)
Gy  1-(SR)(SP) ()

where Gp(sp is the conductance of the TMR structure with
parallel (antiparallel) alignment and SP, and SP, are the intrinsic
SPs of the two magnetic layers.

MRy =

CISS SPIN-VALVES: SIMILARITIES AND DIFFERENCES
FROM TRADITIONAL SPIN-VALVES

In a CISS spin-valve, the typical structure is normal metal layer/
chiral material/magnetic layer (right panel in Figure 1).” For
simplicity, we present here a device structure with a vertical
junction for a CISS spin-valve. Although its fundamental
mechanism remains under active investigation,6 we consider
analogies to a MT] based on their similarities. One can naturally
define the MR of a CISS spin-valve as:

GP B GAP
Gyp (6)

where P (AP) refers to the parallel (antiparallel) alignment
between the majority spin orientation of the currents through
the chiral media and the magnetization direction of the magnetic
layer, assuming positive spin polarization in the magnetic layer.

Other than the similarities, it is important to emphasize the
distinctions between a CISS spin-valve and a MT]J.

(1) The SP induced by a charge current through the chiral
media primarily relies on the intrinsic properties of the
chiral media, such as its handedness and length. It is
unaffected by the strength and direction of external
magnetic fields. The SP of the chiral layer is usually
considered as a constant for a given current along the
chiral axis. This situation is different from the
manipulation of the magnitude and orientation of the
magnetization in a magnetic material.

MR 55 =

(2) In a CISS spin-valve, the magnetic layer serves as a spin
analyzer to probe the SP from the chiral media, while the
normal metal layer primarily functions as an electrode.
The chiral media is usually in direct contact with the
magnetic layer, via monolayer assembly, spin coating, etc.
In this case, the chiral media serves both as a spacer and as
a “spin filter”. Although the chiral material itself is not
magnetic, the resulting spin-polarized current resembles
the itinerant electrons/holes observed in a magnetic
material. Poorly conducting organic chiral molecules have
often been used as the chiral media. Based on eq S, one
can picture that SP, is inherent to the magnetic layer,
while the chiral layer produces SP,’, which is used to
distinguish it from SP, of the second magnetic layer in a
MTJ.

PHYSICAL MEANINGS OF XSP IN CISS SPIN-VALVES

From this basic understanding of a CISS spin-valve and its
similarities with and differences from traditional spin-valves (i.e.,
MT]J), we analyze eq 4 and extract possible physical meanings of
XSP. According to the literature on CISS spin-valves, the
current—voltage (I—V) curves of such structures are not linear
over large current ranges, although various organic and inorganic
chiral systems have been studied.””*"'~'#1¥7233073% Becayse

. s dj . .
of nonlinearities, the conductance G = d—‘J/ is bias dependent.
However, in the low-bias regime, comparing the conductance at
a fixed current density is common practice in the field of
spintronics.”* Equation 4 can be simplified as:
I, T,

Gp — Gyp
XSPciss = - ny =

" Gp+ Gy

My M, (7)
Within this approximation, eqs 6 and 7 both depict the
conductance asymmetry between different spin states in a spin-
valve.'® From our perspective, XSP solely represents the MR of a
CISS spin-valve, offering no additional insight beyond that.
However, as elucidated above, it is important to recognize that
the physical definitions of MR and SP are distinct.

Moreover, while XSP has been widely interpreted as SP in
chiral media, inconsistencies arise when eqs 5 and 7 are
combined. For instance, XSP can now be expressed as:

XSPeiss = (SP,)(SB,) (8)

In most cases, the magnetic layer is chosen as a conventional
ferromagnet, typically with SP, ~ 30%. When an unusually large
value of XSP is reported, which is significantly larger than the
value of SP,,”®'"'7'3?»>% it would be required that

sp, = s 5 1 Such values are unphysical, as the value of
2 SP,

SP cannot be greater than unity, based on the definitions in eqs
1—3. For example, a spin polarization value (XSP) close to 100%
has been reported in a 3D metal—organic framework based on
Dy(III) and the vL-tartrate chiral ligand by atomic force
microscopy with a Co/Cr tip,12 and two-electrode devices
with p/1-alaninol and Al,O; hybrid as the chiral media and Ni as
the magnetic layer.”

Last but not least, we note that XSP values are shown to
depend on the bias in various reports.”'"'***** Coverage,
packing density, angle relative to the substrate surface, efc. can all
change the measured values of XSP."” The definition of XSP is
thus not an intrinsic property, in contrast to the SP in
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photoemission and tunneling measurements, which we discuss
below.

ANALYZING CISS QUANTITATIVELY AND USING A
CONSISTENT FIGURE OF MERIT

Quantitative analyses of (X)SP in CISS transport do not align
with the typical definition of SP. Although theoretical
calculations can provide estimates,® it remains challenging to
determine the value of SP in CISS spin-valves experimentally.
Instead of focusing on analyzing SP in CISS transport,
experimentalists can redirect their attention to measuring MR.
The values of MR can be extracted directly as either V/I from the
curves of voltage vs magnetic field with constant current (or
current vs magnetic field with constant voltage) or differential
conductance, dI/dV, from I-V curves at different fields. Because
MR can be obtained directly, it can serve as an important figure
of merit from the perspective of applications and is thus an
important point of comparison between different molecular
systems and test devices.”” Likewise, theory can be used to
understand MR based on the experimental results and can
thereby help elucidate the CISS transport process, which
remains under debate in various aspects.”*>>" Practically, we
note a subtle but important point: molecular junctions usually
contain parallel conduction, both through molecules and with
direct contacts between the top and bottom electrodes, due to
pinholes in self-assembled monolayers of molecules.”” As the
conductance in eq 6 often contains the conduction from direct
contacts, MR is not an accurate measure to analyze the CISS
effect quantitatively. Instead, it would be more rigorous to study
AG, the conductance difference between the two states of a
CISS spin-valve, which depends solely on the CISS effect.”’
Given the significance of SP in chiral media within the context
of CISS, one of the most direct measurements is with
photoemission.”” A Mott polarimeter can be used to measure
the imbalance of the light intensities of detectors at opposite
channels, to which electrons with spin orientations parallel and
antiparallel to their propagation direction are scattered. For
example, the SP of ejected photoelectrons from a self-assembled
monolayer of double-stranded DNA on a gold substrate was
measured and its value exceeded 60% at room temperature.”’
However, photoemission provides the SP of the photocurrent in
free space. Furthermore, the measured polarization in photo-
emission experiments may include the global orbital angular
momentum in addition to the SP of photoelectrons.*' In order
to study the SP in a device via electrical measurements, one can
utilize tunneling junctions consisting of ferromagnet/insulator/
superconductor.” ***> The technique of spin-polarized tunneling
(SPT) has been applied to probe the spin-dependent density of
states of magnetic materials by utilizing the special properties of
the superconducting states. In practice, one can either fabricate
and measure a tunneling junction of superconductor/chiral
material/normal metal or use spin-polarized scanning tunneling
microscopy. In SPT devices, the key is to form a good tunneling
barrier so that spin-flip processes such as hopping can be
suppressed. For example, a compact and thin insulating layer of
Al,O; can be formed from oxidation of the surface layer of the
superconducting aluminum electrode of such junctions.”* In
CISS SPT junctions, organic chiral molecules may not be
considered as ideal as an insulator because there tends to be
pinholes in self-assembled monolayers. One can either assemble
chiral materials on an oxide layer to form a superconductor/
oxide/chiral material/normal metal junction® or find insulating
chiral solid-state materials to form a junction of superconductor/

insulating chiral solid-state material/normal metal (see Figure 1 of
ref 43 for a schematic of anticipated experimental results).

CONCLUSIONS AND PROSPECTS

The quantitative analysis of (X)SP in CISS transport provides an
approximation of the MR in CISS spin-valves, rather than
directly indicating the SP of the current passing through chiral
media. Therefore, we propose prioritizing the study of the MR in
CISS transport. Accurate determination of the SP value can
nonetheless be achieved through photoemission measurements
or SPT techniques. As the field of CISS remains in the early
stages of exploration, it is important to establish consistent and
standardized figures of merit for quantification, description, and
direct comparisons between systems. Using these figures of
merit will facilitate comparisons between experimental findings
and theoretical predictions and accelerate our understanding,
assessment, and possible application of the CISS effect. In
addition, we propose new experimental assemblies to measure
SP in transport directly.
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