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Abstract: Animal—vehicle collision is a common danger on highways, especially during nighttime
driving. Its likelihood is affected not only by the low visibility during nighttime hours, but also by
the unpredictability of animals’ actions when a vehicle is nearby. Extensive research has shown that
the lack of visibility during nighttime hours can be addressed using thermal imaging. However, to
our knowledge, little research has been undertaken on predicting animal action through an animal’s
specific poses while a vehicle is moving. This paper proposes a new system that couples the use of a
two-dimensional convolutional neural network (2D-CNN) and thermal image input, to determine
the risk imposed by an animal in a specific pose to a passing automobile during nighttime hours. The
proposed system was tested using a set of thermal images presenting real-life scenarios of animals
in specific poses on the roadside and was found to classify animal poses accurately in 82% of cases.
Overall, it provides a valuable basis for implementing an automotive tool to minimize animal-vehicle
collisions during nighttime hours.

Keywords: 2D convolutional neural network; animal-vehicle collision; thermal imaging; animal
action prediction; pose detection; nocturnal

1. Introduction

Wildlife-vehicle collision represents a costly and lethal consequence of human tech-
nology interfacing with animal environments. Wildlife to vehicle collisions are estimated to
be responsible for over 35,000 yearly automobile incidents in the United States, resulting in
approximately 200 human fatalities per year [1]. This in turn leads to about 4000 insurance
case filings per year, with an average cost of USD 1000 per individual case. Furthermore,
roadside collisions are the most prominent threat to many endangered species within the
United States [1]. There have been numerous attempts to mitigate these losses through
various methods, such as using electrical mats and wildlife fencing to keep animals from
entering the roadway [2,3]. However, these methods have proven inefficient and ineffec-
tive; none of these proposed solutions have fully solved the issue of vehicle collisions with
wildlife on the roadway.

In this study, a new artificial intelligence system was designed to mitigate the issue
of wildlife-vehicle collisions during nighttime hours, aiming at minimizing financial and
human loss. Research has shown that the risk of wildlife-vehicle collisions can be reduced
by dynamic and transferable state prediction using machine learning [4]. The proposed
system targets classification of animals” positions using roadside thermal images of the
environment, to determine the risk that an animal in a specific pose presents to a passing
automobile. The system implements a two-dimensional convolutional neural network,
with the data input being thermal images of roadside scenes including wildlife images of
antlered animals on the roadside near to a passing automobile. It should be noted that
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antlered animals were chosen for use within these images as they make up most of the fatal
wildlife-vehicle collisions in the United States [1].

For our purposes, thermal images were collected, processed, and then run through the
system to identify the poses. Thermal imagery is far from a recent technology, having been
developed in the 1950s for application within the medical field [5], and having since found
various applications in medicine, biology, ecology, police use, and military applications [6].
Images are generated by capturing light naturally emitted from heated objects [7] by
using infrared technology, with the thermal images indicating heat emission differences in
captured scenes. Thermal imaging has successfully addressed the issue of observing and
locating animals during the night [8]. Additionally, simulation studies have shown that
vehicle-mounted thermal imaging methods can significantly improve anticipatory driver
control, reducing the likelihood of an automobile accident [9].

The proposed intelligent system uses a two-dimensional convolutional neural network
(2D-CNN) to classify incoming thermal images in real time. Convolutional neural networks
are composed of four layers, i.e., a convolutional layer, a non-linearity layer, a pooling
layer, and a fully connected layer [10]. A 2-D convolutional neural network receives an
image as input and then breaks down the image into features that are sent through the
network layers, resulting in a specific output associated with the task at hand. The primary
motivator for the use of 2D-CNNss in this work was their reported success and efficiency
for image detection and classification [10]. More specifically, 2D-CNNs have demonstrated
a distinct advantage in image classification tasks [11] and have been successfully applied
to create novel animal detection and collision avoidance systems for enhancing driver
safety [12].

2. Literature Review

A variety of systems implementing artificial intelligence methods have been developed
to assist drivers with on-road safety. The coupling of thermal imagery and convolutional
neural networks has successfully been used to identify potholes in the road [13]. That
system’s self-built model used a two-dimensional convolutional neural network to attain
detection of potholes from thermal images, with approximately 63% accuracy. However,
one disadvantage of the system was that it was only trained on images of potholes and
not on images of roadside scenes. Wildlife detection using convolutional neural network
methods has also been successfully applied with roadside thermal images [14]. The pre-
viously described system successfully identified wildlife within roadside scenes, using a
one-dimensional convolutional neural network, with an approximate accuracy of 89%. The
system showcased the advantage of detecting wildlife from roadside scenes that may or
may not contain animals.

Additionally, collision-avoidance systems using convolutional neural networks have
been successfully implemented [12]. The implementation of the collision-avoidance system
achieved an accuracy of 82.5% for detecting cows from the roadway. The disadvantage to
that particular work was the tradeoff between the cost of deployment and cow collision
risk; cows account for barely 6% of fatal human collisions with animals. On the contrary,
antlered animals comprise 94% of deadly crashes, limiting the usefulness of the work in [12].
In direct relation to this current article, other research [15] assessed animals’ orientation
from thermal images taken during nighttime hours to predict the trajectory of an animal’s
movement. Furthermore, animals have been shown to elicit anti-predatory responses
when caught in vehicle headlights [16]. The model described in [15] was shown to be
more efficient for classifying the animal pose than state-of-the-art methods including
histogram of oriented gradients with support vector machine, or the boosted Har-stumps
methodology. Given the success of the idea of using animal pose identification to predicting
animal movement [15], the intelligent system described in the current paper builds upon
this methodology utilizing animal pose classification from thermal images. The image
classification was performed with a 2D-CNN by processing images of complex roadside
scenes as seen by a passing automobile, as opposed to [15] where only pure animal images
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a wide variety of pictures including occluded images, low=Visibility images, long-distance
images, blurred images, and multi-object images.
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convolutional neural network is more susceptible to recognizing variance within an in-
put [22,23]. Furthermore, without the use of pooling, the accuracy of deep learning models
suffers severely. Batch normalization is a method of applying normalization to smaller
batches of the layer output. This was carried out as previous research has shown that
batch normalization tends to improve accuracy and speed during the training process
of a convolutional neural network, by enhancing the neural network’s stability [24,25].
Meanwhile, dropout is a method of breaking down a more extensive model by continu-
ously sampling and training smaller sub-models, and has been shown to reduce model
overfitting [26]. Given this reasoning, the addition of dropout was tested and implemented
as its application was found to enhance model performance.

Multiple different activations were applied at different layers within the 2D-CNN. A
Rectified Linear Unit (ReLU) activation was involved for each convolutional layer. ReLU
is a fast-learning activation function and is one of the most successful and broadly used
activation functions [27,28]. The ReLU function has also been shown to eliminate the issue
of vanishing gradients [29]. The process works by returning the input element if it is greater
than zero, or returning zero if the input variable is less than zero, as shown below:

ReLU function:
N Xi, lf X Z 0
f(xl)_{o, ifxi<0 (1)

Furthermore, the SoftMax activation function was applied to the output layer of the
neural network. This is a function used in multi-classification models; its output is the
probability of each class that is being categorized, and it returns the class with the highest
likelihood. The SoftMax function is modeled [29] as follows:

SoftMax function:

el

f) = = &)
Many different functions were applied to the model for quantifying the loss (i.e., error
in classification) and to further ensure that the data could be processed throughout the
model. To address the loss function, categorical cross entropy was used. Cross-entropy
loss is a measure of the difference between the actual labels of an input and the predicted
labels [30]. Due to the multi-classification nature of the 2D-CNN the categorical cross-
entropy measure was adopted in the current research. The analytical form of the cross
entropy is given below [30]:
Cross entropy

L(g,y) = — Y _yilog(%i) ®3)

Finally, flattening was applied to the dense, fully connected layers of the CNN. Flat-
tening is the method of converting the layers” output data to a one-dimensional output.
This was adopted in our system, where we designed the layers of our network to process
one-dimensional inputs.

4.2. Accuracy Calculation

An explanation of the methodology behind the calculation of the network’s accuracy is
provided in this subsection. A confusion matrix was constructed to determine the accuracy
of the model’s tests. A confusion matrix is a table in which rows represent the actual classes
and columns denote the predicted classes [31]. The true positive (T.P.), true negative (T.N.),
false positive (EP.), and false negative (F.N.) values from the confusion matrix were taken
into account to determine the precision and accuracy of the corresponding models. With
the multi-classification nature of the model, only true positives were considered in the
accuracy calculation.

Given that the classification had three varying classes, each class had its corresponding
actual positive value. The resulting equation for calculating the accuracy of the model is
expressed as Equation (4) [32,33]:



Given that the classification had three varying classes, each class had its correspond-
ing actual positive value. The resulting equation for calculating the accuracy of the model

is expressed as Equation (4) [32,33]:
Sustainability 2%%8&11&%31; Equation: 7 of 15

TP1+TP2+TP3
Accuracy = T rotal (4)

Accuracy Equation:

Overall, the confusion matrix allows thecdﬁtgcﬁ&ﬁﬁ%%ﬁg&the model to be calcus)
P . . . . Tota
lated, and the model’s 18\17%9&1 fge’cﬁglggrll utscl)olr)lemeazc( x1 I;ﬁ}gws%?g agt%ction accuracy of the model to be calcu-
_ lated, and the model’s misdetections to be explicitly detailed.
4.3. General Overview

. . 4.3. General Overgiew . . .
This section provides a concise explanation of the met tﬂgl&lgﬁ}é&g?}%gggtfllel?ucl’%&r)lﬁal_

1§ section provides a concise explanatlon ()

ality of the proposedjntelligeaysystamidhe Sstammnas secaded Mong RYHR O Kank 4 9344,
and for illustration purfeosissamtexapuplesed thexnitphd oh pretitaithnpysterthésgiteenidrgiFeg-in
ure 5. Figure 5.

Figure 5. Example ofgtherngal,image iyt ToRLefhr 0y rids ihe-soad - Lapraightetowardsnthtue,
side, bottom middle ssidfinglddle—sitting).
‘s Initially, the.thermal input images.were acquired and,wereithenslabeled by being
Initially, the thernf¥ THEEITRE Wil BSHL SR THOR I IOBBICTAY Bt
placed in labeled diggrtesigs, The iaages+hen-undeIWeRt IRV &3S R SRAYSEEHRn SEQ Rito
ping, and resizing. EhierfedtuseEhwiante exte dobedy gmabtad hecomgiopentsrweveagpendiedet.
into vector values. Ma?aemwlaﬁgﬁﬁwféawbm&ﬂﬂglé%{ffﬁ&%&g@e sethne
dataset. The mirrorgg ahel OreInal VECars Wete Compinedinto asinale darssBl Witk thae
a ’ S ng dall3ts) regp ctive %C%rggrlsmg YIRS RASIDG e S Siten, 1’}) of the
resulting size of thediataget:beingkea tnplakimaiarsafen ibe sy stevar fledataset was split
into training and testing m,fmﬁtmwmﬁzgﬂS@ng@@@&h@ﬁmiﬁihe@mhéfm;ly
&

20% of the training WALE WS TTUAEBY RTINS VA RINHBA UL Fo S dF BpUparyinctions, fters,
ropout, batch normalization, aHd max-poqling. Finally. the model’s accyracy was deter-
The created feqfyfe VRS WETE AREN IR Lhe 21 Nolon 1n 3 BRETHRNLY of
applied for trainingtaerosisgrtaryingeejpachs; pre tessedd usingeldpalactistati ot funations, Hilow:
ters, dropout, batch. normalizatien, and max-pooling. Finally, the model’s accuracy was
determined through ca@f&ﬁ&?éﬁi%fﬁ]gl@tffﬁér?ﬁ@é@&re fo_rmul.a(lf1 shown in Equatioln (4). The
list of steps using thie imase data that were FoTSwed #E HaverSh Bty St S summa-
rized below:
1. Acquire data.

2. Categorize into folder directories.

Py -



Sustainability 2022, 14, 12133

8 of 15

Acquire vector values of images.

Mirror vectors and combine mirror dataset with the original dataset.

Divide the data into training and test datasets with an 80/20 split.

Use 20% of the training data for validation data.

Train the model with feature vector input to enhance performance through hyperpa-
rameters.

9. Run the model with test data and determine the accuracy of the model through the
accuracy formula.

® NG

5. Results and Discussion

This section includes the results analysis, an outline of the solution to the problem,
and a consideration of the impact of this study. The results section provides examples of
inputs within each described system category. It includes a tabulation of the results, an
accuracy graph, and a confusion matrix for training and testing the 2D-CNN.

5.1. Overall System Description

This section describes the combination of data methods and the artificial intelligence
model, along with the system specifications. As mentioned in the introduction, the wildlife—
vehicle collision cost consistently increases each year. To address this issue, a system
to avoid automobile collisions with wildlife during the night hours is proposed in this
study. Implementation of the design began with acquiring the thermal image data during
nighttime hours. These collected thermal images were then processed and filtered into a
dataset, with the wildlife in the thermal image labeled in their respective categories, such
as facing away from the automobile, facing towards the automobile, and lying down. The
images from this dataset were then turned into feature vectors that were forwarded through
the 2-D CNN for training and testing the model.

The device used for the training, validation, and testing of the 2D-CNN was a Windows
desktop computer with the following hardware specifications:

Processor AMD Ryzen 9 3900x 12-Core Processor 3.79 GHz

Memory 16.0 GB 2666 MHz

Graphics NVIDIA GeForce RTX 3080 10GB

5.2. CNN Model Parameters

This section is an overview of the parameters within the artificial 2D-CNN. The re-
sulting parameters provided by the output of a line of source code execution are outlined
in Figure 6. Figure 6 shows the neural network specifics acquired through usage of the
model. Each row represents the corresponding layer type, including the number of convo-
lutional layers, activation, batch normalization, flattening, max-pooling layers, dropout,
and dense layers.

Every individual layer is presented together with the parameters detected in that layer.
The same parameters were used in the training, validation, and testing of the 2D-CNN.
It should be noted that the SoftMax function was adopted as the activation function in
the output layer, as indicated at the foot of Figure 6 (i.e., above the parameter “count”).
Furthermore, the figure also showcases the output shape of each layer of the neural network.
The resulting trainable and non-trainable parameters are shown at the bottom of Figure 6.
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Layer {type) Cutput shape Param #

conv2d_475 {ConvaD) (Norne, 118, 158, 255) 2558

activation 578 {Activation) (None, 118, 158, 255) 2

max_pooling2d_475 (MaxPocli (None, 53, 79, 255) 2
ng2o)

conv2d_47& {ConvzD} (None, 57, 77, &4) 145542
activation 571 {Activation) (None, 57, 77, &4) 2
batch_normalization_3se (Ba (None, 57, 77, 64) 256

tchNormalization)

max_pooling2d 476 (MaxPocli (mNone, 28, 38, &4) 2
ngzoy

conv2d_477 {ConvaD}) (Nore, 26, 26, 128) 73856
activation_572 {Activation) (None, 26, 35, 128) ]
batch_normalization 381 (Ba (Mone, 25, 35, 128) 512
tchnormalization)

max_pooling2d 477 (MaxPocli (None, 13, 18, 128) 2
ngao)

conv2d_47& (ConvaD) (Mone, 11, 1&, &4) 73792
activation_573 (Activation) (nNone, 11, 15, &4) 2
batch_normalization_382 (Ba (None, 11, 15, &4) 255
tchnormalization)

max_pooling2d_478 (MaxPooli (nNone, 5, 8, 64) 2
ngzo)

conv2d_479 {ConvzD} (None, 2, &, 128) 73856
activation 574 {Activation) (None, 2, &, 128) 2
batch_normalization 382 (Ba (None, 2, 6, 128) 512
tchnormalization)

max_pooling2d_479 (MaxPooli (none, 1, 3, 128) 2
ng2o)

flatten_os (Flatten) (None, 284) 2
dropout_95 {Dropout) (None, 284) 2
dense_285 (Dense) (None, &4) 24549
dense_286 (Dense) (None, 22) 2228
dense_287 (Dense) (None, 2) 93
activation_575 {Activation) (None, 3) ]

Total params: 399,353
Trainable params: 398,585
Non-trainable params: 768

Higured).Qeevidonodflibainddepperatrters.

53 E%Sebfl};siégfeyaﬁal layer is presented together with the parameters detected in that

layer. HiSreanlts sactinpRIQvdse AR AW PIE fRANID!C dnAHES, e yatemanel ihd etorip-
diemof therutrsitsetdheratifiiainialisgnramedels ioprlesotraArimaldn frradide
iBrane Stapueashef {herdgrnreti v mEsRist PidhirdApectis R parFigHe Zount”).
FurthfhRgRsUHingsima geso Risswesk da thisytep Mesip BsheseR ey b terfeidtrargetors
wedkferhthraushriherartifigiahipfsligansmarteparahiadnodel et hiomshhdtérials of

Iif‘é’ailré(%.validating, and training, with 100 epochs per trial and a batch size of 32. The
resulting accuracies from the training and testing dataset run through the 2D-CNN model
are indicated in Figure 8.
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5,
7.roadside scene from each of the respective categories of the dataset are shown’in Figu

Figure 7. Examples of inpt
categorized in the facing 3
wildlife categorized in the

the 2D-CNN (left) Wildlife
cing towards pose (center)

fed through the artificial 1nte111ger1ce system The model went through 30 trlals of testmg,

ﬁgﬁﬂ&mm@m

Model Accuracy rrted to feature vectors an
10 through 30 trials of testin,
. h size of 32. The resultin
) e 2D-CNN model are ind
08 Train
Accuracy
%“ 07
= Test
§ 061 = Accuracy
< o5
04 1
034
0 P a0 & &0 100 Train
Accuracy
Epochs
Test
=] . . 3
Hiws ‘ PRy iRdfTom Tl lurv—\/ Accuracy
€|:In H racies are shown as percentage per epoch, where
1.0 stands for e model’s training began from around 40% accuracy, then varied
and droppe o approximately 89% accuracy. The same pattern

was followed throughout the 30 tridls, with variations in accuracy. The representation in
Table 2 presenfs the modgl’s overalf,performance acrosgghe 30 diffgrent trials.

Table 2 presents the confusion matrix (i.e., the true positive values for each category)
and the accuracy for each of the 3EI ifferent trials of the model, after 100 epochs per trial.
True positive for category 1 is lab 1% , true positive for category 2 is marked as TP2,
and true positive for category 3 is labeled TP3. The total number of test inputs was 45. The
t@ipageganyodeb g@gu&@ied@qiﬁg@ﬁ«fmuﬁuﬂ@l a8d rounded to the nearest whole number,
shown in the final column. A breakdown of an individual confusion matrix from trial 30 is
provided in Figure 9.
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Table 2. Confusion matrix and accuracy per trial run of the model.

Trial No. Confusion Matrix TP 1 TP 2 TP3

Accuracy

[[15 3 1]
1 [0 15 O] 15 15 10
[1 0 10]]

89%

(15 4 o]
2 [0 15 0] 15 15 9
[1 1 9]

87%

[([19 0 o]
3 [6 9 0] 19 9 5
[5 1 5]]

73%

(18 1 0]
4 [0 15 0] 18 15 1
[0 4 7

89%

([16 3 0]
5 [0 15 0] 16 15 8
[2 1 8]

87%

(13 6 0]
6 [0 15 0] 13 15 6
[0 4 7

78%

([14 5 0]
7 [0 15 0] 14 15 8
[1 2 8]

82%

([13 6 0]
8 [0 15 0] 13 15 8
[1 2 38]]

80%

14 5 0]
9 [0 15 0] 14 15 7
[0 4 7]]

80%

([14 5 0]
10 [0 15 0] 14 15 3
[1 3 7

80%

([14 5 0]
11 [0 15 0] 14 15 9
[0 2 9]

84%

(15 4 0]
12 [0 15 0] 15 15 9
[1 1 9]

87%

15 4 0]
13 [0 15 0] 15 4 15
[0 2 9]]

87%

13 6 0]
14 [1 14 0] 13 14 7
[1 3 7]]

76%

15 4 0]
15 [0 15 0] 15 15 7
[1 3 7]

82%

15 0 4]
16 [0 4 11] 15 4 10
[1 0 10]]

64%

15 4 0]
17 [0 15 0] 15 15 8
[1 2 8]]

84%
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Table 2. Cont.

Trial No.

Confusion Matrix

TP 1

TP 2

TP3

Accuracy

18

[[14 5 0]
[0 15 O]
[0 110]]

15

15

10

87%

19

[[15
[0
[0

4
15

0]
0]
911

15

15

87%

20

[[15
[0
[2

1]
0]
6]]

15

15

80%

21

[[11
[0
[1

0]
0]
4]]

11

15

67%

22

[[14
[0
[0

1]
1]
8]]

14

14

80%

23

[[15
[0
[2

1]
0]
8]]

15

15

84%

24

[[14
[4
[2

0]
0]
8]]

14

11

73%

25

[[14
[0
[0

0]
0]
711

14

15

80%

26

[[11
[0
[1

0]
0]
711

11

15

73%

27

[[15
[0
[1

0]
0]
711

15

15

82%

28

[[15
[0
[0

0]
0]
911

15

15

87%

29

[[15
[0
[0

4
15

0]
0]

110]]

15

15

10

89%

30

[[15
[1

3
14

1]
0]

[0 011]]

15

14

11

89%

Figure 9 presents the overall picture of an individual trial’s confusion matrix. The
highlighted boxes in gray represent the actual positive values for each category. For
example, the exact positive count for animals classified as lying down was 15, the actual
positive count for animals classified in the facing away category was 15 also, and the exact
positive count for animals in the facing toward classification was 11. To determine the
accuracy, the sum of these values was then calculated and divided by 45, which is the total
count of the values within the confusion matrix. Overall, the accuracy of this trial was
estimated to be 89%. The number of total missed classifications is represented by the sum
of the values that are not considered valid positive values for the respective categories. In
this case, the resulting number of misdetected values was calculated to be five.
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Table 2 presents the confusion matrix (i.e., the true positive values for each category)
and the accuracy for each of the 30 different trials of the model, after 100 epochs per trial.
True positive for category 1 is labeled TP1, true positive for category 2 is marked as TP2,
and true positive for category 3 is labeled TP3. The total number of test inputs was 45. The

test accuracy was calculated using the formula and rounded to the nearest whole number, ;5 .=

is provided in Flgure 9
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Figure 9.Beekldownf JiiElid0'3¢encusifusivatninatrix.

5.4. Pigeitestpresents the overall picture of an individual trial’s confusion matrix. The

highlgghisd honss Hes Ye%ﬁ?g%ﬁ&é‘&@ﬁié&%&iﬁ%&ﬂﬂ%ﬁ%&%ﬁ%%wf ¥offirmed by
ARORISy U QREL EQ%Y‘T&BT@ quﬂﬁﬁﬁﬁﬁlasaﬁaw%ﬂ%ma%ﬂMlg%as}%enerauy,

ositive. CO{_.H‘It for animals dlagsif 1e in the fla w(z)i}é categggﬁl‘%zosf %also dthe e)1<ta - election

o%lt{é%liou att[}ger orm Oor ac(1)1¥ e{gwa c as was etermm the

aEQCESS “t%e H’lesev 1””3&2 f‘fs "}a%‘égand aﬁm E% iS e teﬁplamed
lﬂr} of% ]Eé’s ﬁ%tﬁ %B%%ﬁ%ﬁ ‘io’&}éé%ﬁ Hba é% ct}? SH4AR g’%f%l%épages in

inglivisbeald ew fondhgmpatasntbeal G;ﬁm figiehin cdiffepgnhimage classes.

Brpassihlfes tadaiensc nfidurciteseatshuit colrgs mpzﬁelf@saﬁ%&xt@&@msthe dataset.
Fustheembeecthimodehichieredanavretagtues 823 ateuracy kasedwn the provided test

data, while the maximum accuracy attained within the set of 30 trials was 89%. Overall,
thé fisaitsishowcase the model’s ability to successfully classify animal poses from thermal
imagesehtpddsidestenesng model achieved maximum accuracy of 89%, confirmed by
testing the data as per Table 3. The minimum accuracy for the model was 64%. Generally,

Thbl%rms&haﬁ@eyf@fmshﬁomiyombw te@tﬁsgaawbtcyf the random data selectlon

the randomly selectédlelaigset Wthh contamed madequate numbers offZ%\ages in mdl-
vidual classes for tNaxjgtam to learn efficiently and identify differentSitage classes. F
possible, we intendMHFiMB@research to collect more images to expandﬁ‘lfé dataset. Fur-

thermore, the model achieved an average of 82% accuracy based on the provided test data,
&V idls BRIt um accuracy attained within the set of 30 trials was 89%. Overall, the

results showcase the model’s ability t%successfully classify animal pOSTs from thermal
ima gFeF AL &yateeggegggsented in this article can be utilized to classify an animal pose

from a thermal image to determine the risk an animal presents to a passing automobile
during nighttime hours. The implementation of the system involves acquiring thermal
images of roadside scenes containing wildlife, and processing them through an artificial
intelligence model to classify the pose of the animal in the roadside image. The study used
a two-dimensional convolutional neural network to organize accurately and efficiently the
animals’ poses from the acquired thermal images. The use of thermography within the
system allowed the detection of animal poses during nighttime hours, even with limited
visibility during these times. The overall methodology involved the collection of thermal
images along with their processing and filtering into a novel dataset. These images were fed
through the two-dimensional convolutional neural network to garner the results. Overall,
the results from the developed system suggest that artificial intelligence methods can
successfully determine animal poses from thermal images of wildlife in roadside scenes.
The artificial intelligence method enables systems to consider whether animals threaten
to enter the roadway in front of a passing automobile, based on their pose. Their pose
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determines whether they have the potential to run into the vehicle, or be spurred into
motion from a standing position and come into contact with the vehicle, or present no
threat at all if they are lying down. Overall, the potential of a crash is greatly reduced as
the determination of the possibilities of an animal’s actions allows preemptive warnings
about oncoming wildlife to be sent to the driver, who will be alert to mitigate the possibility
of a crash. In a potential application of the system, alerts can be sent to the driver as a
warning display or issued as an audio cue that the vehicle plays to make the driver aware
of the potential threat posed by an animal on the side of the road [34]. Furthermore, the
application of this methodology is potentially immense as the system provides a precursor
to creating further automated safe nocturnal driving methods to avoid wildlife-to-vehicle
collisions. This article also suggests how thermal imaging and artificial intelligence methods
can be used successfully to identify nighttime driving risks.

Furthermore, the model’s results showcase the accuracy of animal pose classification
from roadside scenes, allowing an assessment of the amount of risk an animal presents to a
passing automobile. In a specific context, engineers at the forefront of creating advanced
artificial intelligence methods for automated driving could find these results helpful in
their efforts to address prominent safety concerns. More generally, a warning system built
into automobiles could be applied alongside this proposed system to alert the driver if an
animal threatens to collide with the vehicle. In summary, the proposed approach reveals
the potential of the coupling of thermal imagery and artificial intelligence methods for
classifying animal poses and mitigating risks associated with nighttime driving.

A few limitations of the study allow the possibility of future improvements to the
system. The first and most prominent limitation was the size of this novel dataset. The data
acquisition process can be repeated to provide more data for training the deep learning model.
Furthermore, multiple animals in different poses were not considered in this dataset and
within the classification. This allows the research to be extended and improved upon by adding
the capability to classify every individual animal within a roadside scene. Moreover, the
research only considered data collected within the San Antonio, Texas area in the United States,
and future work should incorporate roadside scenes from rural non-city regions. In summary,
future work should be undertaken to increase the size of the dataset, to consider multiple
animals in different poses, and to incorporate rural data to address the study’s limitations.
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