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Abstract—Enhancing public safety by reducing traffic crashes
due to human error is critical. A key strategy involves ensuring
that drivers remain alert through the implementation of early
safety notifications. Nonetheless, forecasting the risk of traffic
crashes poses a complex challenge due to numerous factors
including road conditions, traffic dynamics and weather patterns.
In response to this problem, this study endeavors to develop an
end-to-end traffic risk notification system, integrating IoT system
with Deep Learning solution. This multi-node collaborative IoT
system offers more pragmatic risk analysis by incorporating
both static and dynamic factors which can contributes to a
traffic crash. At the device level, strategically placed sensors
capture dynamic data which is then transmitted to the decision
node. Leveraging a deep learning-based model, the decision node
processes both static and dynamic information to predict a crash
severity risks, and the outcomes are seamlessly communicated
to the display node for timely notification to drivers, fostering
a safer and more responsive driving environment. The CNN
model is developed via extensive training with accident history
data in the state of Texas. The evaluation of our deep learning
model was performed using key metrics, including accuracy,
recall, precision, and F1 score. Finally, multi-node collaborative
IoT system is evaluated based on prediction and communication
latency.

Index Terms—Deep Neural Network, Traffic Risk Notification

I. INTRODUCTION

In the United States, a staggering 90% of the annual
36,000 traffic-related fatalities are attributed to human error
[1], exemplified by the tragic toll of 4,480 lives lost in car
crashes in Texas alone [2]. On a global scale, the World
Health Organization (WHO) notes that traffic accidents cost
about 3% of the world’s GDP, with approximately 1.35 million
people losing their lives each year in road traffic crashes [1].
Human error stands out as a significant contributing factor,
encompassing behaviors like distracted driving and impaired
driving, speeding due to alcohol or drugs, and failure to obey
traffic signals.

Predicting traffic crashes is inherently complex, involving
a multitude of factors beyond human error [3]-[5]. Road
dynamics, infrastructure, passenger behavior, driver actions,
pedestrian interactions, and varied weather and traffic condi-
tions all contribute to the intricacies of potential crashes. While
efforts such as public awareness campaigns, driver education,
and law enforcement have been implemented globally, the
advancement of technology, particularly artificial intelligence
(AI), necessitates more potent solutions to effectively reduce
human error. Alerting individuals to critical situations emerges
as a promising approach, yet developing a notification-based
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Fig. 1: IoT-based crash notification system is strategically imple-
mented in hot-spot region, identified by thorough analysis of his-
torical data. This system dynamically assesses and presents real-time
crash risk, incorporating both static and dynamic information. High-
alert notifications are triggered in instances where (a) unexpected
obstacles significantly elevate the risk of traffic crashes and (b)
adverse weather conditions or poor road conditions pose an increased
threat to traffic safety.

alert system presents challenges. Determining the optimal
timing for alerts, interpreting risky situations, and creating a
sustainable, low-maintenance, and feasible system pose signif-
icant difficulties. The pursuit of proactive road safety solutions
demands innovative methodologies to integrate advanced Al
technologies effectively. The development of deep learning
methods has shown promising results in addressing various
traffic-related problems. Deep learning techniques, particularly
convolutional neural networks (CNNs) [6]-[9] and recurrent
neural networks (RNNs), have been applied to various aspects
of traffic management and analysis.

In this project, we have developed an innovative deep learn-
ing based multi-node collaborative crash notification system,
offering a comprehensive end-to-end solution to address the
complex challenges associated with predicting and mitigating
traffic accidents. The system seamlessly integrates offline
cloud training, edge based real-time inference, and device level
sensing/receiving/display of data to facilitate real-time crash
risk predictions and alerts.

The first step, we collect and analyze the traffic accident data
to train a Conolutional Neural Network (CNN) model. This
data is classified into two main groups: static and dynamic.
Static data includes road dynamics and the history of traffic
accidents, while dynamic data comprises variables such as
weather conditions, human behavior, traffic congestion, and
average traffic speed. Our training dataset spans accident
history in the state of Texas. The historical data is stored in the
cloud, serving as the foundation for training the CNN model
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to predict crash risks. Once trained, the model is deployed on
the edge device, enabling real-time predictions.

Recognizing the inherent uncertainty in determining if an
accident will occur, our focus shifts to predicting the risk
of a crash. This involves identifying hot-spots by analyzing
crash severity history and assessing dynamic information.
Leveraging historical accident data and rigorous statistical
analysis, we pinpointed areas with the highest frequency of
traffic crashes, known as hot-spots.

To enhance real-time data collection in these identified hot-
spots, a collaborative multi-node IoT system is developed.
This nodes consist of strategically placed sensors that capture
dynamic information crucial for understanding changing con-
ditions over time and varying situations. The collected data is
transmitted to the nearest edge device, where the trained CNN
model is deployed. This model performs crash severity-based
risk predictions. The predicted results are promptly sent back
to another display device, triggering notifications that display
the current crash risk.

Here, all computations are performed in real-time as they
involve in-situ processing of data and decision-making on edge
servers, thereby avoiding communication with distant clouds.
Moreover, crash risk notifications are transmitted to LED
displays in hot-spot regions before drivers enter the area in
real time. Lastly, the designed data sensing/pre-processing and
CNN-based prediction models achieve real-time performance.
These notifications serve as crucial alerts for drivers approach-
ing these high-risk areas, enhancing situational awareness and
fostering a proactive approach to accident prevention. This
multi-node collaborative system represents an innovative and
effective solution at the intersection of advanced computing
technologies and real-world road safety challenges.

The rest of this paper is organized as follows. Section 2
describes the research related to deep learning techniques used
for traffic crash prediction. Section 3 describes the proposed
end-to-end framework. Section 4 describes the experimental
evaluation and results. Lastly, Section 5 provides a conclusion.

II. RELATED WORK
A. Deep Learning for traffic data analysis

Deep learning stands out as one of the most popular subsets
of machine learning, enabling researchers to delve into more
complex, higher-dimensional data through automatic feature
extraction. Within deep learning, different models and archi-
tectures are designed for different domains such as computer
vision, language processing, or audio analysis. Despite the
absence of specific models designed for traffic data analy-
sis, researchers often leverage or adapt existing models for
training and predicting traffic-related information. Numerous
studies have explored the application of Deep Neural Networks
(DNN) for tasks like traffic flow and pollution prediction.

In the context of traffic prediction, the work by Yisheng
[10] introduces an auto-encoder-based model. Another no-
table contribution is from Yao [11], where Attention-based
Graph Convolutional Networks are proposed for monitoring

traffic pollution. Some studies focus on predicting the con-
gestion evolution within large-scale transportation networks
[12], while others [13] employ deep reinforcement learning to
identify optimal traffic signal timing policies.

B. Machine Learning for Crash Severity analysis

Numerous machine learning methods are extensively em-
ployed for assessing traffic crash severity. In the study by
[14], a Supervised Machine Learning (ML) algorithm and
random forest decision tree-based algorithms are proposed
and compared for predicting the severity level and future
crashes based on road crash elements. Similarly, [15] addresses
comparable issues by analyzing data from Louisiana states
using a Convolutional Neural Network (CNN)-based deep
learning algorithm. The model utilizes a customized loss
function to optimize precision and recall directly. Additionally,
crash analysis [16] is conducted on accident data history in
Dhaka spanning from 2007 to 2011.

C. Real time traffic accident prediction

The real-time prediction of traffic accidents involves har-
nessing data from diverse sources to anticipate and notify
authorities or drivers about the potential occurrence of acci-
dents on the road. In a study conducted by Lee, an accident
prediction model was developed using two machine learn-
ing methods: artificial neural networks (ANN) and k-nearest
neighbor. The findings indicated that the ANN outperformed
the k-nearest neighbor, delivering accurate predictions with
less than 30Achu employed geospatial technology to investi-
gate the temporal and spatial behaviors of traffic accidents.
The study utilized various methods, including kernel density
functions, Moran’s-I, and Getis-Ord Gi hotspot analysis, to
analyze the spatiotemporal patterns of traffic accidents [17].
Likewise, Park gathered extensive traffic accident data for
highways in Seoul and constructed a prediction workflow
based on k-means cluster analysis and logistic regression [18].
More recently, Chen [19] utilized human mobility data in
Japan and developed a Stack Denoise Autoencoder to infer
real-time traffic risk.

D. IoT Based Crash Notification System

Internet of Things (IoT)-based Crash Notification System is
a technological solution designed to enhance road safety and
emergency response by leveraging IoT devices and connectiv-
ity. The study in [20] introduces a rapid reporting system de-
signed to promptly notify about road crashes. Utilizing various
sensors, this system gathers vehicle data and signals abnormal
driving situations, facilitating swift responses from rescue
teams, insurance personnel, or relatives for easy navigation
to the incident location. In a parallel investigation, a research
initiative proposed an IoT-based Post Crash Assistance system
with the aim of eliminating dependency on smartphones [21].
This system aims to provide support after a crash, streamlining
the process for reporting and assistance without relying on
mobile devices. Furthermore, in the study referenced as [22],
researchers developed an automatic accident detection and
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notification system within an IoT-based vehicular environment.
In a different context, another research effort, detailed in
[23], proposed a smart helmet designed to serve as both a
means and apparatus for detecting and reporting accidents.
This innovative approach integrates wearable technology to
contribute to improved safety measures on the road.

Nevertheless, the existing IoT systems primarily concentrate
on post-crash notification mechanisms. In contrast, our work
addresses this gap by developing a comprehensive end-to-
end crash notification system that proactively alerts the driver
before an impending collision occurs.

III. METHODOLOGY

The end-to-end traffic notification system comprises two
main components. Firstly, the development of a deep learning-
based model capable of predicting crash risk constitutes the
initial part. Secondly, an multi-node IoT-based network is
established to alert drivers based on predictions generated
by the AI model. This sustainable and low-maintenance IoT
system is then deployed in each hot-spot region.

A. Analysis of Accident History

The foundation of our IoT-based notification system lies in
data. To conduct a thorough analysis, we gathered five years
of accident history data from the state of Texas. Our analysis
comprises two primary components: predictive analysis and
statistical analysis. In predictive analysis, we developed a
deep learning-based model, as detailed in Section III-B, to
forecast crash patterns. Following that, we conducted statistical
analysis to pinpoint locations deemed as frequent crash hot-
spots. These hot-spots serve as areas where the edge-device
collaborative IoT system is deployed to provide real-time crash
risk notifications.

B. CNN training and deployment

Our deep learning based crash prediction model went to
rigorous training with crash history data. The training process
has four phase. (1) Data Pre-processing (2) Label Creation.
(3) Training (4) Psedo-dynamic factor incorporation.

1) Data Pre-processing: In this step, our aim is to improve
the quality of the data, reduce noise, and prepare it for effective
utilization by deep learning algorithms. To ensure data quality
and enable meaningful pattern recognition for the CNN model,
we quantified the string data using label encoding. In label
encoding, string values are converted to several categories
where each unique category is assigned a numerical label.
The labels are typically assigned in ascending order starting
from O or 1. This encoding allows algorithms to operate on
categorical data by representing them as numerical values,
which can be more easily processed by deep learning models.
Furthermore, we pruned unnecessary features from the dataset,
diminishing the total count from 82 to 62. Lastly, any null
or empty values were substituted with appropriate numerical
equivalents, commonly represented as zero.

2) Label Creation: In supervised learning, a ’label” refers
to the output or target variable that the model is trained
to predict. In a dataset used for supervised learning, each
example consists of input features and their corresponding
labels. The goal of the model is to learn a mapping from
the input features to the correct output labels. In the first step,
we created a label called “crash severity.” This severity level
has six outcomes (no-injury, fatal, serious, minor, possible,
unknown). The outcome is calculated based on factors such
as injury count, damage intensity, airbag deployment status,
and so on. In this process, each accident is assigned a crash
severity level with one of these six outcomes.

3) Training: Next, a Convolutional Neural Network (CNN)
model is trained to predict crash severity using crash history
data. The objective is to learn forecasting the crash severity
level based on static parameters. Following that, the CNN
model is expanded with an additional final layer. The purpose
of this layer is to integrate the crash severity level with
dynamic factors to predict the final risk level.

4) Pseudo-dynamic factor: As dynamic factors influencing
crash risks change over time and are only accessible in a real-
time setup, we incorporate pseudo-dynamic factors and rules
in the concluding segment of the trained model to forecast the
risk level. This process is illustrated in Figure 2-(3).

After completing the training process, the finalized predic-
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TABLE I: Description of the proposed Convolutional Neural Network
(CNN) based risk prediction model

Model Detail Layer (type) Weight Shape  Output Shape  Param #
CNN for Conv2d-1 50x1x3x1 1x50x31x1 200
Risk Prediction ReLU-2 50x1x3x1 1x50x31x1 0
BatchNorm2d-3  50x1x3x1 1x50x31x1 100
Input Shape: [1¥62] | Conv2d-4 50x50x4x1 1x50x14x1 10,050
Accuracy: 99.49% ReLU-5 50x50x4x1 1x50x14x1 0
Model Size: 155 KB | BatchNorm2d-6 ~ 50x50x4x1 1x50x14x1 100
Total params: 38,751 | Linear-7 40x700 1x40 28,040
Latency: 7ms Linear-8 6x40 1x6 246
Linear-9 3x6 1x3 21

TABLE II: Evaluation Metrics

Recal
86.29%

F1_score
87.63%

Precision
94.71%

Accuracy
99.49%

Fb_score
87.63%

Latency (P/C)
Tms / 5000ms

tion model is deployed on the edge device to facilitate real-
time predictions, as detailed in the following Section III-C.

C. IoT System Setup

The safety notification IoT system comprises multiple nodes
collaborating within each hot-spot region. This collaborative
setup involves two primary nodes: the decision node and the
display node.

Decision Node: In this setup, a trained CNN model is
deployed for real-time risk prediction. The model runs on
a Raspberry Pi and is connected to strategically deployed
sensors. These sensors capture dynamic information such as
changing weather conditions (e.g., rainy, icy, sunny), traffic
conditions (e.g., average speed, traffic density), and date-time
information (e.g., day of the week, hour of the day). This
dynamic data is fed into the CNN model to perform accurate
risk analysis, as discussed in Section III-B. In Figure 3, blue
node represents the decision node.

Display Node: Within this node, a display system has
been developed to showcase the risk level analyzed by the
decision node. Typically, the display node is positioned ahead

TABLE III: Descriptive Statistics of Crash Data

Year Crash Crash Severity Count

Count | Unknown Serious Minor Possible Fatal No-injury
2017 | 619174 36045 14663 60426 100953 3373 403714
2018 | 623221 41203 12438 55635 103840 3335 406770
2019 | 648019 39298 13273 55999 109167 3353 426929
2020 | 544697 36932 12415 47639 85399 3577 358735
2021 | 633043 40705 16191 62546 89632 4108 419861

of the decision node with the aim of alerting drivers well
in advance of any hazardous regions. As depicted in Figure
2-(5) and Figure 3, our multi-node IoT system includes this
display node (red color), which is often situated approximately
2000 feet away from the decision node. Notably, the display
node is powered by energy harvesting technology, ensuring
sustainability and minimal maintenance for the system.

IV. EXPERIMENTAL EVALUATION

A. Experimental Platform

1) Training: Offline CNN model training is performed on
Intel Xeon Gold 5218 machine at 2.30 GHz using an Nvidia
Quadro RTX 6000 GPU with CUDA 11.6, pytorch 1.12.1.

2) IoT System Hardware: Our IoT System is evaluated with
multiple hardware device. In the decision node, a Raspberry
Pi 4 Model B is used to host CNN model. The device is
connected to transmitter LoRa-32. In the display node, another
LoRa-32 device act as a receiver which also connects an
Arduino Mega 2560 board. This device process the infor-
mation receives from the wireless receiver and display to
the LED broad. We use 64x32 RGB LED Matrix Display
that is connected to the audrino board via Adafruit RGB
Matrix Shield. There are also Raspberry Pi Sense Hat sensors
collecting information such as environmental conditions, baro-
metric pressure, temperature, humidity. For gathering visual
information we use Arducam 16MP Autofocus Camera. The
display node is powered by an energy harvesting module
Keithley 2280S power supply with a power regulator Bq25570
(3.3V) and an energy buffer (100uF capacitor).

3) Datasets: We clean and reformat a dataset by collecting
the traffic crash history in the state of Texas from the year 2017
to 2021 [24] and show the summary of the dataset in Table
III. In total, the dataset contains 3,068,154 number of crashes.
And among these crashes we used 62 total features, where
most important features are described in Table IV. Here, the
features are mostly categorical data which is later quantified
by the data pre-processing steps described in Section III-B1.

B. Experimental Setup

The CNN model is trained offline with above dataset.
At first, data are prepossess by replacing null value and
quantifying the string values. Next the model is trained with
10 epochs, 0.001 learning rate and batch size of 100. The
3 million training data is spited into 3 different sets such
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TABLE IV: Important Features and Descripton

Type Factor Feature Description
Adt_Curnt_Amt Average daily traffic amount for a given road segment and year.
Adt_Curnt_Year Year identifier for the average daily traffic crashes.
Adt_Adj_Curnt_Amt Adjusted average daily traffic for the current year.
Pct_Single_Trk_Adt Percentage of average daily traffic that is single-unit truck.
Road Statistics Pct_Combo_Trk_Adt Percentage of average daily traffic that is combo truck.
Trk_Aadt_Pct Adjusted average daily traffic percent for trucks.
Cnty_ID County Information.
City_ID City Information.
Latitude Latitude.
Longitude Longitude.
Static Road_Type_Id Type of the Road. Such as Highway, Lane count, etc.
Road_Align_Id Straight or Curvy level of the road.
Road Conditon Crash_Speed_limit Maximum Speed Limit on the road.
Active_School_Zone_Fl =~ Whether the road is in active school zone.
Toll_Road_Fl Whether it is a toll road or not.
Thousand_Damage_Fl If the damage cost thousand dollar or more.
Sus_Serious_Injry_Cnt How many people injured seriously.
Non_Injry_Cnt How many people is not injured.
After Effect Tot_Injry_Cnt Total Injury count.
Death_Cnt Total Death Count.
Medical_Advisory_Fl If Medical adivsory is taken.
. Day_of_Week Indicates week (Saturday[0]-Friday[6]).
TimeStamp Hour_of_Day Indicates hour of the day (0-23.)
Wthr_Cond_ID Whether the weather is rainy,sunny or icy.
Dynamic | Weather Light_Cond_ID Whether it is daylight, dawn, dusk or night.
Surf_Cond_Id Whether the surface is dry,wet,icy or muddy.
Traffic Av_Car_Speed Avergage speed of the traffic.
Car_Density Density of traffic.

as training set, testing set and validation set. 80% of the
total dataset are used for training and rest 20% are used for
validation and testing with 10% each. Which means the sample
size of training, validation, testing is 2,454,523, 306,812 and
306,816 respectively. We also make sure that the training,
validation and testing data are splited evenly for each of the
class to avoid data imbalance. It took a total of 30 minutes to
complete the training process. The loss function we have used
is cross entropy loss and the optimization algorithm we chose
is called Adam optimizer [25].

C. Performance Evaluation

1) Evaluation Metrics: We evaluated our CNN model based
on accuracy, precision, recall, F1 and F-beta score metrics.
Precision metrics measures the accuracy of the positive predic-
tions, indicating how many of the predicted positive instances
are actually relevant. Precision is calculated as: Precision =
TP / (TP + FP), where TP is true positives and FP is false
positives. Recall measures the model’s ability to capture all the
relevant instances, indicating how many of the actual positive
instances were correctly predicted. Recall is calculated as:
Recall = TP / (TP + FN), where FN is false negatives. F1
score is the harmonic mean of precision and recall. F1 Score is
calculated as: F1 Score = 2 * (Precision * Recall) / (Precision
+ Recall). F-beta score is a generalized form of the F1 score,
allowing more importance to either precision or recall based
on the value of beta.

2) Training Evaluation: Figure 4 displays the train-
ing/validation loss alongside the training/validation accuracy
metrics. Both the training and validation accuracies are re-
ported as 99.98% and 99.49%, respectively. It took 10 epochs

Training and Validation Loss Training and Validation Accuracy
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Fig. 4: Loss and Accuracy graph during Training and Validation

to converge the model. In this training, a dataset comprising
2,454,523 crash history records was utilized for training pur-
poses, while a 306,812 records were used for validation.

3) Model Evaluation: The structure of the trained model is
illustrated in Table I. This convolutional neural network model
features two convolutional (CONV) layers, each followed by
a ReLU activation function and a Batch Normalization layer.
Subsequently, three consecutive fully connected (FC) layers
are positioned at the end of the model. In total, the model
encompasses 38,751 parameters, which occupy a memory
footprint of 155Kb when represented in 32-bit floating-point
numbers. The input comprises a total of 62 features, and
the weight and output shapes for each layer are detailed in
Table I. As indicated in Table II, the final model attains a
testing accuracy of 99.49%. Furthermore, the precision, recall,
F1 score, and F-beta score are reported as 94.71%, 86.29%,
87.63%, and 87.63%, respectively. The model requires 7ms
for prediction on the Raspberry Pi acting as the decision node
and 5,000ms for sending the results with the display node,
as detailed in Table II. In Figure 5, we present a confusion
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matrix, where the rows represent the actual classes and the
columns represent the predicted classes. The diagonal elements
of the matrix signify instances that were correctly classified,
while the off-diagonal elements indicate instances that were
misclassified. Our analysis reveals that the class predictions
demonstrate a high level of accuracy on most classes.

V. CONCLUSION

In this paper, we introduce a real-time traffic crash risk pre-
diction system aimed at improving public safety by providing
early notifications to drivers. Our system is designed to address
the critical need for proactive measures in reducing traffic
accidents. Leveraging a combination of statistical analysis
and deep learning techniques, our approach is grounded in
comprehensive data analysis and predictive modeling. We
begin by conducting in-depth statistical analysis utilizing five
years of historical traffic crash data from the state of Texas.
This analysis allows us to identify hotspot regions where a
significant number of traffic crashes have occurred. Building
upon this analysis, we deploy a multi-node Internet of Things
system in a hotspot region. At the heart of this system lies the
decision node, which is responsible for running a sophisticated
deep learning-based prediction model. This model, trained
offline using historical crash data, incorporates both dynamic
and static features to accurately assess crash risk in real-time.
Dynamic features, such as traffic flow and weather conditions,
are collected through strategically placed sensors along the
roadway, while static features encompass permanent charac-
teristics of the road environment. Additionally, our system
includes a display node positioned approximately 2,000 feet
ahead of the decision node, ensuring early notification of
predicted crash severity to approaching drivers. By seamlessly
integrating statistical analysis, deep learning, and IoT technol-
ogy, our system offers a proactive approach to traffic safety.
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