2021 22nd International Symposium on Quality Electronic Design (ISQED) | 978-1-7281-7641-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ISQED51717.2021.9424308

An End-to-end Multi-task Object Detection using
Embedded GPU in Autonomous Driving

Shanglin Zhou!, Mimi Xie2, Yufang Jin2, Fei Miao!, Caiwen Ding1

'University of Connecticut

2The University of Texas at San Antonio

E-mail: ' {shanglin.zhou, fei.miao, caiwen.ding} @uconn.edu
2{mimi.xie, yufang.jin} @utsa.edu

Abstract—Autonomous driving has gained popularity due to its
high reliability compared to human drivers. Autonomous vehicles
combine variety of sensors to perceive their surroundings, and
use deep learning (DL) to extract complicated information from
the sensing data. However, there are several challenges: Many
DL models have explosive model sizes, and therefore not only
time consuming but also power consuming when implementing
on embedded systems on vehicles, further degrading the battery
life-cycle. The current on-board AI treats lane detection and
car location separately. In this paper, we propose an end-to-end
multi-task environment detection framework. We fuse the 3D
point cloud object detection model and lane detection model, with
model compression technique applied. As on-board sensors for-
ward information to the multi-task network, it not only parallel
two detection tasks to extract combination information, but also
reduces entire running time of the DL model. Experiments show
by adding the model compression technique, the running speed
of multi-task model improves more than 2x. Also, running time
of lane detection model on Nvidia Jetson TX2 is almost 6x less
comparing with running on CPU, which shows reasonableness of
using embedded Al computing device on autonomous vehicle.

Index Terms—3D Object Detection, LIDAR Point Cloud, Lane
Detection, Weight Pruning, Embedded Computing Device

I. Introduction

Autonomous driving has been attracting public attention for
over decades as a disruptive technology and opens the door to
multi-billion markets [1], [2]. An autonomous vehicle depends
on IoT sensors such as camera, LIDAR, ultrasonic, etc. on its
external structure to obtain detail environmental “images” [3].
An algorithm is needed to convert all these collected “images”
into information that can be read and understood by the on-
board IoT system. This system can enable vehicle act upon
these traffic, weather, or surrounding information and make
informed decisions [4].

Deep learning (DL) has shown great promise in many
state-of-the-arts such as image classification [5] and speech
recognition [6]. Object detection a prerequisite for autonomous
driving because a self-driving vehicle must be able to keep
track of its surrounding moving and stationary objects. Flaw-
lessly combining and analysis of collected environment in-
formation from on-board sensors and then sending them to
the control system for decision making makes deep learning
play an integral role in the autonomous driving technique.
However, DL models with different focus return different
environmental information. Some of the information can be
directly used, while some need to be fused with others for
further analysis [7]. For instance, object detection models
locate neighboring vehicles, lane detection models detect lane

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 122

markings. One example is obtaining the neighboring vehicles’
lane indices. Fusing output of these models will then return
lane indices.

To ensure accuracy and performance, deep learning models
usually stack many layers with millions of parameters. VG-
GNet [8], a widely used deep convolutional neural network,
which forms backbone for many DL models, has 15 layers and
134 x 10° parameters. YOLONet [9], the first efficient object
detection network, has 25 layers and 64 x 106 parameters [10].
The maximum power consumption of Quadro RTX 6000 GPU
is 295W [11]; GeForce RTX 2080 Ti GPU is 302W [12].
Running deep learning models on these machines will exceed
an autonomous vehicle’s battery output power. Thus, equipped
a low-power and efficient device is essential. But embedded
devices are light in storage and memory. Jetson X1 and X-
Carrier have 16GB flash storage and 4GB memory [13], Jetson
TX2 has 32GB storage and 8GB memory [!4]. Reducing
both computation and storage costs of evaluating a model
is important [15]. Various techniques exist in this area, e.g.
weight pruning, sparsity regularization, quantization, all aim
to reduce model size without harming the performance of the
model.

In this paper, we design an end-to-end multitask environ-
ment detection model that can output neighbouring vehicles’
lane indices and their location information. This multitask
environment detection model combines two models: 3D point
cloud object detection model which only performs on LIDAR
point cloud data, and lane detection model which only per-
forms on camera RGB images. Two difficulties for this mul-
titask model: 1) two models have different network structures
and scales that cause different running time, so we cannot
parallel run the two tasks and get result simultaneously; 2)
these two deep learning models are with large model size, so
that real-time detection is hard especially on embedded device.

To achieve real-time and parallel, we add the state-of-
the-art Alternate Direction Method of Multipliers (ADMM)-
based DNN model compression [16] on our multitask envi-
ronment detection model. ADMM-based model compression
can achieve very high compression rate while maintain the
prediction accuracy on many DNN architectures. In this case,
not only the two models are pruned to appropriate model
size that can run on embedded computing device, but also
running time of two models decrease to real-time level to meet
autonomous driving object detection standard.

We summarize our contributions as:

22nd Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

o Combine 3D point cloud object detection task and lane
detection task to one multi-task model that can directly
return neighbouring vehicles’ information.

o Add ADMM-based model compression and realize real-
time running of large scale models.

e Our multi-task model combines two networks with dif-
ferent scales and enables them running in parallel.

II. Related Work
A. 3D Object Detection using LIDAR point clouds

The existing 3D point cloud object detection methods
mostly analyze and extract the geometric attributes, shape
attributes, structural attributes or the combination of multiple
attributes of the objects and then do comparison and learning,
to complete the object recognition and classification. As it is
an intrinsically three-dimensional problem, using 3D convolu-
tional network to solve it becomes a natural thing [17].

PointCNN [18] directly sorts the point cloud data and then
do convolution. It learns a permutation matrix to sort and
weight the input data. PointNet [19] also directly deals with
input data. It extracts order-independent information on feature
points using symmetric functions to approximate the global
information from point cloud.

However, as the amount of point cloud data acquired by
LiDAR is super large, fully connection of the point cloud data
will grow explosively, which bringing a great computational
burden. The voxel-based approach attempts to convert irreg-
ularly distributed point clouds, or meshes, into a rasterized
representation of a regular distribution [20], then uses con-
volution directly on the 3D data. FPNN [21] represents 3D
spaces as volumetric fields, employs field probing filters to
efficiently extract features from 3D point cloud. VoxelNet [20]
introduces an end-to-end network that converts sparse voxel
to dense vector and transforms a group of points within each
voxel into a unified feature representation.

B. Lane Detection

Lane detection is a fundamental problem because lane mark-
ings are the main static component on the road that instruct
the vehicles to interactively and safely drive on the way. Deep
learning methods that applied to lane detection usually treat the
problem as a semantic segmentation task [22]. VPGNet [23]
proposes a multi-task network guided by vanishing points
for lane and road marking detection. It tries to address not
accurate detection under poor weather conditions. SCNN [24]
tries to use visual information more efficiently by aggregating
information from different dimensions via processing sliced
features and adding them together one by one. Other methods
focus on real-time running of the algorithm, such as SAD [25]
that applies attention distillation mechanism to improve the
representation learning of CNN-based lane detection models.

C. Weight Pruning

Many investigations have shown that there exists redun-
dancy in DNN model parameters [27]-[29]. As shown in
Fig. 1, effective model compression with negligible accuracy
loss can be achieved using weight pruning methods. One
fundamental work is [27], that uses a three-step method

S
%

Fig. 1: Mlustration of weight pruning for DNNs. Left side is
network before pruning, right side is network after pruning,
with several neurons and synapses being dropped [26].

prunes redundant connections in DNNs. This work reduces 9x
number of parameters in AlexNet on ImageNet dataset without
accuracy degradation. However, indices are needed to locate
which weight to pruning. This is not friendly in hardware
implementations for low-performance improvement [30]. This
problem is partially addressed by several works [31], [32].
Energy efficiency-aware pruning method [33], [34] facilitates
energy-efficient hardware implementations [35], allowing for
certain accuracy degradation, and structured sparsity learning
technique is proposed for irregular network structure after
pruning.
III. End to End Environment Detection Network

Fig. 2 shows the end-to-end system structure and our
multi-task environment detection network that deployed on
the embedded Al device. It consists of two main parts: on-
board sensors — including LIDAR and camera; and multi-
task environment detection network — our mainly designed
network that will fuse information from two detection models
and outputs result to decision-making module.

On-board LIDAR captures point cloud and forwards it to the
3D point cloud object detection part of the on-board multi-task
environment detection network (shown in the blue rectangle).
This part processes the point cloud data and output neigh-
bouring vehicles’ information. Meanwhile, on-board camera
captures images, forwards them to the lane detection part of
the multi-task environment detection network (shown in the
light blue rectangle). This part deals with these images, doing
analysis and output lane markings information.

Output information from the two parts is then forwarded to
the combination part of the detection network (in the orange
rectangle). Information is fused, being post-processed and
forwarded to decision-making module for further analysis.

A. 3D Object Detection using Point Cloud

The 3D point cloud object detection model deals with LI-
DAR point clouds as input and detects location of each neigh-
bouring vehicle. To achieve this task, we adopt the method of
PointPillars [36]. PointPillars utilizes PointNets [37], which
organizes LIDAR point clouds in vertical columns (pillars)
form to learn the representation. As shown in left part of Fig. 2,
network structure is constructed by three main parts.

First part is Pillar Feature Net, which is a feature encoder
network that converts raw point clouds to sparse pseudo-
images. This is done by evenly gridding the x — y plane
with P = H x W pillars (H and W are height and width
of x — y plane), encoding points in each pillar with D = 9

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

Sample Output

CEE—
iy

4 On-board Camera

fl

! Lane Detection Pa.t\

1 :
\ | On-board Multi-task Environment i
4/ - 1
¢! - Detection Network i -
! .q.u:' 1 ; Auxiliary
- | Segmentation
. i("___“‘1
Pillar o e el I
FeatureNet | | I .l
- | Lane Index | L ; !
I F § Lod I
Backbone 1 i [} ! o Conv |
(2D CNN) - 1 5 Pl I
1] : B b I
i i I = : 1 I
Detection - P : .
Head (SSD) i - | 2D bbox G C points | [g : l“______“‘
+ 1 [Neighboring Vehicles’ Size of all lane marks i'e ;
I ;| Center Points 30 Coomdinate . 13 i
- Observation Angle r o !
Eordn Retation o ! i
L iy L. CombinationPart !
e I fe oo v o o o o v o n mm m o m mm ommn omm ow omm w mmw i
- 1
e — | : Auxiliary Branch /

Fig. 2: Autonomous vehicle equipped with on-board sensors and embedded Al devices. On-board LIDAR and camera forward
captured images to the embedded device with designed multi-task environment detection network. 3D object detection part
(left) deals with point clouds and returns neighbouring vehicles’ information. Lane detection part (right) deals with images
and returns lane information. Combination part (middle) fuses information and returns post-processing information. Upper left
shows a sample output, with neighbouring vehicles’ lane indices and bounding boxes, and label of lane markings.

dimension vector {, y, z, T, Zc, Yes Ze, Tp, Yp), Where {z,y, 2}
are original true position coordinates, r is the reflectance,
{Z¢,Ye, 2.} are offsets of this point from the mean point
of all points in the pillar, and {zp,y,} are offsets of point
with respect to pillar geometric center. Because the number
of points in each pillar is different, points in pillars with
more than N points are randomly sampled while points in
pillars with less than N points are padding with 0. In this
case, a dense tensor with size (D, P, N) is created. Then a
simplified version of PointNet is applied to output a (C, P, N)-
size tensor, and finally operate max over the channels to output
the pseudo-image with size (C, P) = (C, H, W).

The second part is a 2D convolution backbone that pro-
cesses the pseudo-images into high-level representations [20].
Pseudo-images are continuously down-sampled to small spa-
tial resolution features. Convolution, normalization, and non-
linear layers are applied to capture these feature information
at different scales. Then features are up-sampled using trans-
posed 2D convolution and then being concatenated together.

The third part is detection head for object classes prediction
and 3D bounding box calculation. Single shot detector [32]
is leveraged. It uses features from the backbone network to
predict 3D bounding boxes for objects.

Mean Average Precision (mAP) measures the performance
of object detection model [39]. Three concepts are used while
calculating mAP. First is intersection over union (IOU). It
evaluates the overlap between predicted bounding box B
and ground truth bounding box By with equation JOU =

area(BpNBg:)
area(B,0By: " Second are frue positive (TP) and false positive

(FP). ﬁhth a self-defined threshold, TP refers to correct
detection that defines as detection with JTOU > threshold,
and FP refers to incorrect detection that deﬁnes as detection
with JOU < threshold. Then Precision = W defines
the ability of a model to identify only the relevant objects,
and Recall = mgﬂiﬁ defines the ability of a model to
find all the relevant cases. Precision x Recall curve can evaluate
performance of a detector. But the curve is zigzag that hard
to do comparison. Hence average precision (AP) is defined
as the area under the curve (AUC) of the PrecisionxRecall
curve. Then, mAP is the average of all the classes” AP [10].
B. Lane Detection

The lane detection model deals with camera images and
detect detailed coordinate of each lane markings. We applied
method from Ultra-Fast-Lane-Detection [1]. Ultra-Fast-Lane-
Detection uses ResNet-18 as backbone for global context.
It aggregates auxiliary segmentation task that utilizes multi-
scale features by extracting middle step feature maps to model
local features. This method is not only light and effective that
friendly to embedded computing device, but also addresses the
no-visual-clue problem in the lane detection area, which means
if the lane markings are blurred, affected by light, or even
completely obscured, this Ultra-Fast-Lane-Detection method
can still accurately detect the lane markings.

Instead of segmenting every pixel of lanes, images are
decomposed to a collection of rows, which are called row
anchors. Then lane detection is redefined as finding the set

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

that contains positions of lane markings in certain rows of
the image, i.e., row-based selection and classification based on
global image. As shown in Fig. 3. If images have size H x W,
usually h row anchors are selected. Each row anchor is then di-
vided into many grids/cells. So, detect the location of lanes can
be converted to localize certain cells over these row anchors.
Comparing with traditional segmentation approaches that need
to deal with H x W classification problems, Ultra-Fast-Lane-
Detection only needs to deal with classification problems on
h rows, except that the classification on each row is W-
dimensional. It simplifies the original H x W classification
problems to only h classification problems. Generally, h is
much smaller than the image height H.

I—— 0,
No row anchors
in this area

1

=
[
Row
anchors
S
o
o

H

t

l Selecting location of the lane at this row anchor l

Fig. 3: Illustration of row anchors and decomposition of lanes.
Row anchors are predefined as horizontally selecting rows in
the images. Each lane marking is decomposed into gridding
cells in row anchors.

To handle challenging scenarios such as severe occlusion
and extreme lighting conditions, Ultra-Fast-Lane-Detection
uses whole image as receptive field to maintain global features.
Context information from other locations of the image can
be utilized. Auxiliary segmentation learns from prior layers’
feature maps, so prior information like shape and direction of
lanes can be learned and leveraged in main classification task.

Evaluation metrics for lane detection tasks under different
datasets are different. Accuracy is sometimes used, as per-
centage of the correctly predicted number of lane points [42].

_ 2XPrecisionx Recall : . - D)
Fl = S5 recall 18 another criteria [24].

C. Multi-task Model

3D point cloud object detection model returns 2D bounding
box coordinate, 3D size, 3D location, observation angle and
rotation of all neighbouring vehicles, while lane detection
model returns detailed pixel coordinates of points on all lane
markings. Lane detection model can locate up to four lane
markings in one image, up to five lanes can be segmented.
We mark these lanes from left to right with index -2, -1, 0,
1, 2. To get lane index of each neighbouring vehicle, we use
2D bounding box information of neighbouring vehicles (from
point cloud detection model), set the centre point of the lower
bound of the bounding box as the key point and get its x-
y coordinate. Because y-axis coordinates of points in each
lane marking are determined by predefined row anchors, we
compare the key point’s x-axis coordinate with all points from
lane markings that with same y-axis coordinate with this key

point, and use bisection method to calculate index of the lane
that this key point fell between.

D. Weight Pruning to Enhance Synchronous Information

Processing time of 3D object detection using PointPillars is
significantly longer (11.16x) than lane detection using Ultra-
Fast-Lane-Detection. To synchronously obtain the neighbour-
ing vehicles’ location and lane markings’ information, we
adopt ADMM-based weight pruning technique [16], [43] on
PointPillars network to reduce its running time.

Alternating Direction Method of Multipliers (ADMM) is
an optimization algorithm that breaks an optimization problem
into two sub-problems, each of which can be solved iteratively.
It can be understood as a smart regularization technique with
regularization target dynamically updated in each ADMM
iteration, thereby resulting in higher performance in model
compression than prior work.

If we consider a general N-layer DNN with loss function
f({©®;}X)), the overall problem of DNN weight pruning is
minimizing this loss function subject to " layer’s weight
belongs to {©; | card (supp (0;)) < t;}, where ¢; is desired
numbers of non-zero weights. We can then use indicator
function and incorporate auxiliary variables to re-formulate
the loss function to Eq. 1 as

. N N
ml?érglze f ({G)Z}i:1> + Zi:l gi (Pi)
e,=P;,,i=1,...,.N

(D

subject to

Eq. | can then be decomposed into two sub-problems through
application of the augmented Lagrangian [43], and can be
solved iteratively until convergence.

Euclidean projection is performed during training to guaran-
tee most weights in each layer are non-zero. Then zero-weights
are masked and the network is retrained until converge.

IV. Experiments
In this section, we include detail of our experiments, in-
cluding dataset, experimental settings, data augmentation. We
show ADMM result applied on two detection models. Also,
we compare power consumption and running speed of models
on GPU, CPU, and TX2 under different compression rate.

A. Model and Datasets

For 3D point cloud object detection, we use PointPil-
lars’ pretrained model following OpenPCDet repository .
Experiments are conducted on KITTI object detection bench-
mark [44]. The KITTI dataset contains both LIDAR point
clouds and camera RGB images samples. Only LIDAR point
clouds are used during training. The samples are divided
into 7,481 training and 7,518 testing. During experiments, the
training part is then be separated to 3,712 training samples
and 3,769 validation.

For lane detection, we use pretrained model from Ultra-
Fast-Lane-Detection on TuSimple lane detection benchmark .
TuSimple dataset is collected with stable lighting conditions

Thttps://github.com/open-mmlab/OpenPCDet
Zhttps://github.com/TuSimple/tusimple-benchmark

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

. gh
UoB oW N e
o o o o o

backbone_2d.blocks.0.1.wei

o
o
O

100 200 300 400
After R i

0

ght

backbone_2d.blocks.1.1.wei

0 200 300 400 200 300 400 500
Before Pruning After ADMM Training

0 100 200 300 400 500
After Retrain

=

=]

K]

2

I

-

E 0.0125

K] 0.0100

2

E‘ 0.0075

()

2

o

<

] 0.0025

3 120
0.0000

0 400 600 800 1000 400 600 800 1000 0 200 400 600 800 1000

Before Prunlng After ADMM Training After Retrain

model.layerl.0.convl.weight

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Before Pruning After ADMM Training After Retrain

500 1000 1500

0 romf?enﬁgoacﬁ are s

200 . 000

dme Q hp contains la?)ellecfofgfpe

0.0200 0

4009 ﬁ@,};h% of i 1mages are 7@0 S eottmg range

koMM T
o [T18°With®

0.0175

0.0050 1500 g

e tORoggult

. d hBwysodiesuebbsEl ¢ olion
NVIDIA Pascmafofaﬁmhwﬁgp% foa‘%ed with 8GB of &m&ﬁ%ﬁﬁ% lsﬁ%lwlthout model’ compressmr Fg%lf’g o °tﬁé5°ADMM

0.0200 Q
i

OO%

experlments Ri@me toud:

s of mas‘]gggo-

*10

0] I\I\ I HI HII | il I\ H“IIHHHHH\ T HHHI i NI “HH i HHIIHHH |
E;:IH /\ | II{ J ‘ IIV M ‘ EEE H ‘ ‘ \ \H i j 2 H VII ’ ‘ H ‘ ‘ EEE
JITH N

retraining. Models with model compression are 3x faster than
without compression, with only 1.4% of accuracy drop. CPU
running time on different models is also reported. Under the
same model, CPU needs 6x time than Jetson TX2. For power
consumption, GPU consumes 33x more power than Jetson
TX2 under the same model.

Effectiveness of Weight Pruning: Fig. 4 shows heatmaps
of a randomly selected layer in the two models. In both
of the models, weights are non-zero before pruning. After
ADMM pruning applied, most of the weights become zero.
After retrain, some of the weights are back to non-zero values,
but the majority are left being zero. This states that by applying
ADMM pruning on the two models, most of the weight will be
pruned to zero so that running time of the model will reduce.
This shows the effectiveness of applying weight pruning.

V. Conclusion

In this paper, we propose an end-to-end multitask envi-
ronment detection model that can be used in embedded Al
computing device for autonomous driving. This multitask
model combines 3D point cloud object detection and lane
detection. With input being LIDAR point cloud and camera
images from onboard IoT sensors, the network can efficiently
combine outputs, do analysis and deliver comprehensive in-
formation like lane indices of neighbouring vehicles. As 3D
object detection model is much slower as the bottleneck of
the multitask network, we apply ADMM model compression.
Experiment shows running time of 3D object detection model
is reduced 2x with slightly mAP drops. We also compare
running speed and power consumption on GPU, CPU and
Jetson TX2. Experiments show speed on CPU is 6x than
on TX2, power consumption of GPU is 33x than TX2. This
proves efficient and effective of embedded computing device.

ACKNOWLEDGMENT

This work was supported in part by the NSF S&AS-
1849246 grant.

REFERENCES
[1] McKinsey & Company, “Ten ways autonomous driv-
ing could redefine the automotive world,” https://www.

mckinsey.com/industries/automotive-and-assembly/our-insights/
ten- ways-autonomous-driving-could-redefine-the-automotive-world. 1

[2] Shanglin Zhou, Bingbing Li, Caiwu Ding, Lu Lu, and Caiwen Ding,
“An efficient deep reinforcement learning framework for uavs,” in 2020
21st International Symposium on Quality Electronic Design (ISQED).
IEEE, 2020, pp. 323-328. 1

[3] Anil Gupta, “Machine learning algorithms in autonomous driv-
ing,” https://iiot-world.com/artificial-intelligence-ml/machine-learning/
machine-learning-algorithms-in-autonomous-driving/, 2020. 1

[4] Rilind Elezaj, “How do self-driving cars work?,” https://www.iotforall.
com/how-do-self-driving-cars-work, 2020. 1

[5] Alex Krizhevsky and et al., “Imagenet classification with deep convo-
lutional neural networks,” Communications of the ACM, vol. 60, no. 6,
pp. 84-90, 2017. 1

[6] Geoffrey Hinton and et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups,” IEEE
Signal processing magazine, vol. 29, no. 6, pp. 82-97, 2012. 1

[71 Ekim Yurtsever and et al., “A survey of autonomous driving: Common
practices and emerging technologies,” IEEE Access, vol. 8, 2020. 1

[8] Karen Simonyan and Andrew Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014. 1

[9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Joseph Redmon and et al., “You only look once: Unified, real-time
object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 779-788. 1

Li Liu and et al., “Deep learning for generic object detection: A survey,”
International journal of computer vision, vol. 128, no. 2, 2020. 1
Nvidia, “Quadro rtx 6000,” https://www.nvidia.com/en-us/
design-visualization/quadro/rtx-6000/, 2020. 1

Chris Angelini, “Aorus geforce rtx 2080 ti xtreme 11g review:
In a league of its own,” https://www.tomshardware.com/reviews/
gigabyte-aorus-geforce-rtx-2080-ti-xtreme- 11g,5953-4.html, 2020. 1
Chris Angelini, “Jetson tx1 module,” https://developer.nvidia.com/
embedded/jetson-tx1, 2020. 1

Nvidia Developer, “Jetson tx2 module,” https://developer.nvidia.com/
embedded/jetson-tx2, 2020. 1, 5

Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang, Jiexiong Guan,
Caiwen Ding, Pu Zhao, Sijia Liu, Bin Ren, and Yanzhi Wang, “Achiev-
ing real-time execution of transformer-based large-scale models on
mobile with compiler-aware neural architecture optimization,” arXiv
preprint arXiv:2009.06823, 2020. 1

Tianyun Zhang and et al., “A systematic dnn weight pruning framework
using alternating direction method of multipliers,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018. 1, 4

Martin Engelcke and et al., “Vote3deep: Fast object detection in 3d
point clouds using efficient convolutional neural networks,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 1355-1361. 2

Yangyan Li and et al., “Pointcnn: Convolution on x-transformed points,”
Advances in neural information processing systems, vol. 31, 2018. 2
Charles R Qi and et al., “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 652-660. 2

Yin Zhou and Oncel Tuzel, “Voxelnet: End-to-end learning for point
cloud based 3d object detection,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 2, 3

Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and Leonidas J Guibas,
“Fpnn: Field probing neural networks for 3d data,” Advances in Neural
Information Processing Systems, vol. 29, pp. 307-315, 2016. 2

Jihun Kim and Minho Lee, “Robust lane detection based on convolu-
tional neural network and random sample consensus,” in International
conference on neural information processing. Springer, 2014. 2
Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak Shin, Oleksandr
Bailo, Namil Kim, Tae-Hee Lee, Hyun Seok Hong, Seung-Hoon Han,
and In So Kweon, “Vpgnet: Vanishing point guided network for lane and
road marking detection and recognition,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1947-1955. 2
Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou Tang,
“Spatial as deep: Spatial cnn for traffic scene understanding,” arXiv
preprint arXiv:1712.06080, 2017. 2, 4

Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change Loy, “Learn-
ing lightweight lane detection cnns by self attention distillation,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1013-1021. 2

Ao Ren and et al., “Admm-nn: An algorithm-hardware co-design
framework of dnns using alternating direction methods of multipliers,”
in Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 925-938. 2

Song Han, Jeff Pool, John Tran, and William Dally, “Learning both
weights and connections for efficient neural network,” Advances in
neural information processing systems, vol. 28, pp. 1135-1143, 2015. 2
Jian-Hao Luo, Jianxin Wu, and Weiyao Lin, “Thinet: A filter level
pruning method for deep neural network compression,” in Proceedings
of the IEEE international conference on computer vision, 2017. 2
Yijue Wang, Chenghong Wang, Zigeng Wang, and et al., “Mcmia:
Model compression against membership inference attack in deep neural
networks,” arXiv preprint arXiv:2008.13578, 2020. 2

Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang
Liu, and Caiwen Ding, “Efficient transformer-based large scale language
representations using hardware-friendly block structured pruning,” arXiv
preprint arXiv:2009.08065, 2020. 2

Tianyun Zhang, Xiaolong Ma, Zheng Zhan, and et al., “A unified dnn
weight compression framework using reweighted optimization methods,”
arXiv preprint arXiv:2004.05531, 2020. 2

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

[32] Yifan Gong, Zheng Zhan, Zhengang Li, and et al., “A privacy-
preserving-oriented dnn pruning and mobile acceleration framework,”
in Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020,
pp. 119-124. 2

[33] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze, ‘“Designing energy-
efficient convolutional neural networks using energy-aware pruning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 5687-5695. 2

[34] Deniz Gurevin, Shanglin Zhou, Lynn Pepin, Bingbing Li, Mikhail
Bragin, Caiwen Ding, and Fei Miao, “A surrogate lagrangian relaxation-
based model compression for deep neural networks,” arXiv preprint
arXiv:2012.10079, 2020. 2

[35] Bingbing Li, Santosh Pandey, Haowen Fang, Yanjun Lyv, Ji Li, Jieyang
Chen, Mimi Xie, Lipeng Wan, Hang Liu, and Caiwen Ding, “Ftrans:
energy-efficient acceleration of transformers using fpga,” in Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics
and Design, 2020, pp. 175-180. 2

[36] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang,
and Oscar Beijbom, “Pointpillars: Fast encoders for object detection
from point clouds,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12697-12705. 2

[37] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas,
“Frustum pointnets for 3d object detection from rgb-d data,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 918-927. 2

[38] Wei Liu and et al., “Ssd: Single shot multibox detector,” in European
conference on computer vision. Springer, 2016, pp. 21-37. 3

[39] Mark Everingham and et al., “The pascal visual object classes (voc)
challenge,” International journal of computer vision, vol. 88, no. 2, pp.
303-338, 2010. 3

[40] R. Padilla and et al., “A survey on performance metrics for object-
detection algorithms,” in 2020 International Conference on Systems,
Signals and Image Processing (IWSSIP), 2020. 3

[41] Zequn Qin, Huanyu Wang, and Xi Li, “Ultra fast structure-aware deep
lane detection,” arXiv preprint arXiv:2004.11757, 2020. 3

[42] TuSimple, “Tusimple competitions for cvpr2017,” https://github.com/
TuSimple/tusimple-benchmark, 2020. 4, 5

[43] Stephen Boyd, Neal Parikh, and Eric Chu, Distributed optimization and
statistical learning via the alternating direction method of multipliers,
Now Publishers Inc, 2011. 4

[44] Andreas Geiger and et al., “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2012. 4

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 16,2025 at 00:15:02 UTC from IEEE Xplore. Restrictions apply.

