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Abstract
The prevalence of check fraud, particularly with stolen checks sold
on platforms such as Telegram, creates significant challenges for
both individuals and financial institutions. This underscores the ur-
gent need for innovative solutions to detecting and preventing such
fraud on social media platforms. While deep learning techniques
show great promise in detecting objects and extracting informa-
tion from images, their effectiveness in addressing check fraud is
hindered by the lack of comprehensive, open-source, large training
datasets specifically for check information extraction. To bridge
this gap, this paper introduces “CheckGuard,” a large labeled image-
to-text cross-modal dataset designed for check information extrac-
tion. CheckGuard comprises over 7,000 real-world stolen check
image segments from more than 15 financial institutions, featuring
a variety of check styles and layouts. These segments have been
manually labeled, resulting in over 50,000 samples across seven key
elements: Drawer, Payee, Amount, Date, Drawee, Routing Number,
and Check Number. This dataset supports various tasks such as
visual question answering (VQA) on checks and check image cap-
tioning. Our paper details the rigorous data collecting, cleaning, and
annotation processes that make CheckGuard a valuable resource
for researchers in check fraud detection, machine learning, and mul-
timodal large language models (MLLMs). We not only benchmark
state-of-the-art (SOTA) methods on this dataset to assess their per-
formance but also explore potential enhancements. Our application
of parameter-efficient fine-tuning (PEFT) techniques on the SOTA
MLLMs demonstrates significant performance improvements, pro-
viding valuable insights and practical approaches for enhancing
model efficacy on this task. As an evolving project, CheckGuard
will continue to be updated with new data, enhancing its utility and
driving further advancements in the field. Our PEFT-based MLLM
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1 Introduction
Financial fraud involving stolen checks poses significant challenges,
particularly with platforms such as Telegram being used to sell
these checks illicitly. This trend makes it easier for criminals to
distribute stolen checks, increasing the need for effective detection
and prevention methods. To effectively alert financial institutions or
their clients, it is crucial to extract check information from images
found on these platforms. Traditional methods, including manual
inspections and Optical Character Recognition (OCR) systems, are
inadequate. Manual methods are labor-intensive and cannot scale
with the rising volume of fraud. Traditional OCR systems struggle
with handwritten content variability and depend on predefined
check layouts, limiting their effectiveness in accurately detecting
and categorizing check information.

The advent of deep learning and multimodal large language
models (MLLMs) has shown great promise in various applications,
including visual question answering (VQA) [13] and image caption-
ing (IC) [4]. However, these models require extensive training data
to achieve high performance on the check information extraction
task, which presents a significant hurdle. Current publicly available
datasets for check analysis, e.g., [2], are limited in size and scope,
restricting the potential of these advanced models.
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To address these limitations, we introduce “CheckGuard,” a large-
scale cross-modal image-to-text dataset designed to train deep learn-
ing models, such as MLLMs, for tasks including VQA and IC. Our
contributions can be summarized as follows:

1. Novel Cross-Modal Dataset: We present CheckGuard, a com-
prehensive dataset consisting of 7,245 check image segments an-
notated with information on seven key elements: Drawer, Payee,
Date, Amount, Drawee, Routing Number, and CheckNumber, result-
ing in 50,715 image-to-text samples. This dataset offers valuable
training data for the community, enabling the development and
evaluation of advanced MLLMs for check information extraction.

2. Realistic and Diverse Data: All images are collected from
social media platforms used for selling stolen checks. Unlike clean
and legit checks obtained using highly standardized scanning tem-
plates and protocols, our dataset largely contains check images
with different lighting environments, varying degrees of mutila-
tion, and random graffiti. This presents unique challenges but also
provides distinct training examples to improve the models’ gener-
alization ability. Furthermore, this dataset comprises checks from
more than 15 financial institutions with diverse layouts and
formats, enhancing the robustness of trained models.

3. Benchmarking State-of-the-Art Methods: We evaluate
state-of-the-art OCR-based andMLLM-basedmethods on the Check-
Guard dataset. Additionally, we explore potential enhancements to
these models by employing parameter-efficient fine-tuning (PEFT)
techniques. Our benchmarks provide detailed insights into the
performance of these methods across different key elements, high-
lighting their strengths and limitations.

4. Image Rectification Method: We propose a novel coarse-to-
fine image rectification method to correct the orientation of check
images during data cleaning and collection. Tilted images hinder
the image annotation process and can significantly impact model
performance. Our method ensures high-quality data, enhancing the
effectiveness of subsequent data annotation and model training.

In summary, CheckGuard addresses the critical need for a large-
scale, high-quality dataset in the domain of check information
extraction. By providing this resource and benchmarking advanced
methods, we aim to drive further advancements in the field, im-
proving the detection and prevention of financial fraud.

2 Related Work
Currently there is no large scale public check image dataset avail-
able, let alone one for stolen check images. Existing datasets, such
as the IDRBT Cheque Image Dataset [2] and the Bank Check Seg-
mentation Dataset (BCSD) [8], lack the data diversity needed for
effective model generalization. The IDRBT Cheque Image Dataset
focuses on verifying pen inks of handwritten signatures and con-
tains only 112 checks from four banks in India, scanned at 300
dpi resolution. Similarly, BCSD provides 158 check images with
manually labeled segmentation masks for signatures, sourced from
the IDRBT dataset and additional anonymized checks from the
Internet. These datasets feature idealized data without shadows or
distortions, leading to limited effectiveness in training models for
real-world applications.

Large multimodal foundation models such as Internvl [1] and
BLIP-2 [10] have significantly advanced vision-language tasks but

fall short in OCR tasks due to insufficient OCR-specific training
data. LLaVA-NeXT [11], designed to excel in handwritten OCR
tasks, leverages a pretraining dataset enriched with OCR samples
to enhance accuracy. However, the lack of check samples in these
pretraining datasets limits their performance in check information
extraction. To address this gap, we propose CheckGuard, a compre-
hensive cross-modal dataset for check information extraction. With
a total of 50,715 labeled samples, CheckGuard supports parameter-
efficient fine-tuning and the evaluation of advanced MLLMs.

3 CheckGuard Dataset Construction
In this section, we introduce our methods for constructing the
CheckGuard dataset, a large cross-modal image-to-text dataset
focused on paper check images collected from online platforms
that present significant challenges due to their complex layouts,
varied formats, and handwritten content. We annotated seven key
elements for each check image segment, shown in Fig. 1.

Figure 1: Visualization of the CheckGuard dataset annota-
tions. The image shows a check image segment with an-
notated elements including Drawer, Payee, Date, Amount,
Drawee, Routing Number, and Check Number. Each annota-
tion includes the textual information and the bounding-box
coordinates in the format <center x, center y, width, height>
(Sensitive details have been blurred to ensure privacy. For
full access to the dataset, please contact the authors.)

3.1 Element Definition
Seven key elements are identified from checks, including Drawer,
Payee, Date, Amount, Drawee, Routing Number, and Check Num-
ber, which play critical roles in financial transactions and fraud
detection. For instance:
• Drawer: The entity who writes the check, e.g., “John Doe.”
• Payee: The recipient of the check, e.g., “ABC Company.”
• Date: The date the check is written, e.g., “05/21/2024.”
• Amount (numerical): The monetary value of the check in nu-
merical form, e.g., “$1,234.56.”

• Drawee: The bank or financial institution where the check can
be cashed, e.g., “Bank of America.”

• RoutingNumber: The bank’s unique identifier, e.g., “12-345/678.”
• Check Number: A number identifying the check, e.g., “1001.”

Additionally, we labeled data for other elements such as the
amount inwords, memo, signature, and payee address. However, the
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amount in words is semantically similar to the numerical amount,
and some elements, such as memo and payee address, are less
frequently present. Therefore, in this dataset, we only focus on the
primary seven elements on checks.

3.2 Dataset Acquisition
All the samples in our dataset are extracted from the real-world
images provided by the cyber intelligence company DarkTower. As
shown in Fig. 2, the imagery includes scenes of considerable com-
plexity and variability, with checks often overlapping and appearing
at different angles. This variability presents significant challenges
in automated processing, necessitating check segmentation and
rectification for accurate data extraction.

Figure 2: Examples of real-world check images, including
overlapping checks and various orientations. Colored areas
represent SAM’s check segmentation output (Sensitive details
have been blurred to ensure privacy. For full access to the
dataset, please contact the authors.)

3.3 Check Segmentation and Rectification
To address the challenges presented by the variability in check
images, we employed a robust data acquisition and cleaning pro-
cess. First, all obtained images were processed using the Segment
Anything Model (SAM) [9] to isolate potential check image seg-
ments. These segments were then classified using a pre-trained
YOLO model [7] to identify relevant check segments, ensuring that
only check segments proceed to the next stage.

Identified check segments underwent a two-step coarse-to-fine
image rectification process to correct skewness and perspective
distortions. First, a customized YOLO model [7] is trained to detect
72 rotation degrees, each covering a 5-degree interval, for coarse-
level correction. This initial step provides a rough alignment of the
check segments. Following this, the Line Segment Detector (LSD)
[14] refines the alignment by identifying prominent lines within
the image and determining the predominant inclination angle. This
comprehensive coarse-to-fine rectification process effectively cor-
rects excessive rotations and aligns the checks accurately. After
rectification, the aligned check segments are sent to annotators
for labeling. This approach ensures that the CheckGuard dataset is
both extensive and of high quality, suitable for training advanced
models in check information extraction.

3.4 Data Annotation and Label Format
After segmentation and rectification, we obtained 7,245 check im-
age segments, divided into 6,236 for training, 504 for validation,

and 505 for testing. Using the VGG Image Annotator (VIA) tool
[3], we meticulously annotated the seven key elements of all seg-
ments. Each annotation includes both the textual information and
the bounding-box coordinates, formatted for the YOLO model [7],
providing the center point (x, y), width, and height as four float
values. These annotations are stored in JSON files, where each ele-
ment type is a key, and the associated ground truth textual labels
and bounding-box coordinates are the values. An example is shown
in Fig. 1.

In summary, the CheckGuard dataset construction involves el-
ement definition, diverse data acquisition, precise image segmen-
tation and rectification, and detailed annotation to create a robust
resource for developing advanced check information extraction
models.

4 Experiment for Benchmarking
In this section, we benchmark the performance of various models
in extracting key textual information from checks. We evaluate
the SOTA multimodal large language model (MLLM), LLaVA-Next
with Mistral [6] backbone, a contemporary OCR-based method
(PaddleOCR [12]), and enhanced versions of these models using
YOLO model [7] and parameter-efficient fine-tuning (PEFT) [5].

4.1 Experiment Setup
We conducted experiments using threemethods: YOLO-OCR, YOLO-
MLLM, and MLLM. Each MLLM model has two versions: zero-shot
and PEFT. In the YOLO-based approachs, a YOLO model is trained
to detect the 7 elements of interest, and the other part, e.g., OCR or
MLLM, processes only these sub-areas of the check image. There-
fore, YOLO-based methods only focus on the detected areas of
interest, while methods without YOLO process the entire check
image directly.

We select Low-Rank Adaptation (LoRA) as our PEFT method.
The hyperparameters for LoRA, i.e., LoRA’s rank and scaling factor,
are set to 128 and 256, respectively. The LoRA layers are applied
only on the large language model part of MLLM: Mistral. All the
linear layers inside the Mistral will be appended with additional
LoRA layers. Each key element extraction task has its own set of
LoRA weights trained to optimize performance.

We evaluated the performance of these models across seven key
elements: Drawer, Payee, Date, Amount, Drawee, Routing Number,
and Check Number. Accuracy (ACC) is measured based on an exact
match, requiring a 100% correct extraction. We also use normalized
edit distance (NED) [15] to evaluate the performance for certain
elements, where a lower NED indicates better performance.

4.2 Results and Analysis
This section presents the results for the seven key elements in the
dataset and discusses the challenges and potential research gaps.

4.2.1 Date Element Extraction. As shown in Fig. 3 (a-c), our PEFT-
based MLLM achieved over 90% accuracy across all three classes
(year, month, and day) for the Date element, with an impressive
97.62% accuracy for the year element. These results demonstrate
significant improvements over the OCR-based method and the
other MLLM-based models, highlighting the effectiveness of PEFT
in enhancing model performance. However, the performance on
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Figure 3: Benchmark results of the experiment

the day component is consistently lower than that on the month
and year. This is due to the handwritten “/” being similar to “1”,
which can confuse the models. For example, the handwritten date
“2/2/2024” could be misrecognized as “12” or “21”.

4.2.2 Amount Element Extraction. As shown in Fig. 3 (d), the PEFT-
based MLLM demonstrates a substantial lead on this task, with
an accuracy of 89.68%. This represents significant improvements
over both the OCR-based method, enhancing accuracy by 82.24%. A
potential research direction here is that, since a check typically has
two fields with amount information, i.e., numerical field and textual
$ amount field, leveraging both areas could potentially enhance
model performance.

4.2.3 Payee Element Extraction. For extracting payee information,
the PEFT-based MLLM achieved a marked improvement in nor-
malized edit distance (NED), achieving a value of 0.2494 shown in
Fig. 3 (e). This performance substantially surpasses the OCR-based
method and the other MLLM-based models, with reductions in
NED by 0.3500 and 0.2705 (compared to zero-shot-YOLO-MLLM),
respectively. Most of the payee samples are handwritten, which is
challenging for OCR-based methods. Since most payees are entities
that can be found online, integrating Retrieval-Augmented Genera-
tion (RAG) [16] could potentially further improve performance.

4.2.4 Drawee, Routing Number, Check Number, and Drawer Element
Extraction. As shown in Fig. 3 (f-i), the PEFT-based MLLM consis-
tently outperforms the other methods, highlighting its robustness.
Without PEFT fine-tuning, MLLMs struggle to locate elements of
interest due to the similar appearance and formatting of certain
elements (e.g., check number and routing number both appearing
as integers), which can confuse the models. YOLO-based methods
perform better in these cases because YOLO assists in accurately
identifying target areas. However, there are risks associated with
using this method as incorrect element area detections from the
customized YOLO model could introduce noise and potentially
negatively impact the performance. Interestingly, YOLO-OCR out-
performs zero-shot YOLO-MLLM for Drawee, Routing Number,
Check Number, and Drawer elements, but performs worse on Date,
Payee, and Amount elements, which are mostly handwritten. This
indicates that OCR is better suited for handling printed content,

while MLLM excels at processing handwritten content. The results
demonstrate the effectiveness of fine-tuning (PEFT) in significantly
improving model accuracy for these challenging tasks.

Overall, the PEFT enhancements enable the MLLM to signifi-
cantly outperform the SOTA methods, setting a new benchmark in
the field of automated check analysis.

5 Conclusion and Future Work
This paper presents CheckGuard, a large cross-modal image-to-text
dataset designed for the emerging field of paper check fraud detec-
tion. The dataset’s extensive real-world labeled check data provides
a valuable resource for training deep learning models, including
multimodal large language models (MLLMs). We established bench-
marks on seven key elements and explored potential improvement
directions, such as model combination and parameter-efficient fine-
tuning (PEFT) on state-of-the-art MLLMs.

In the future, we aim to expand and enhance CheckGuard in sev-
eral ways. First, we will collect and annotate more real-world data
to enrich the dataset. Second, we will explore more sophisticated
image rectification methods to improve automation. Third, we plan
to investigate MLLM capabilities in key element area detection,
enabling the model to generate both content and corresponding lo-
cations (e.g., bounding box coordinates) of key elements. Fourth, we
intend to reduce the hallucinations of MLLMs by adopting Retrieval-
Augmented Generation (RAG) techniques, thereby improving the
accuracy and reliability of information extraction. Finally, we intend
to streamline the process for dataset access, reducing paperwork
and making it more convenient for researchers.
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