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Abstract—To enhance the integrity of mail-in voting, we in-
troduce BubbleSig, an Al-assisted framework that detects same-
hand ballot stuffing by analyzing “signature-like” patterns on
ballot marks. This method is voter-independent that relies solely
on discrepancies in marking styles across different ballots, thus
preserving voter anonymity and avoiding the use of biometric or
historical voter data, e.g., fingerprints or signatures. Capable of
handling diverse ballot formats and layouts with a single model,
BubbleSig eliminates the need for retraining across election
cycles. Its efficacy is demonstrated through real election data,
achieving an F1 score of 0.925 on Same-Hand Ballot Stuffing
Detection dataset, 100% accuracy in both mark and ballot level
stuffing detection for a small set of real ballots known filled by the
same person, and notable mean Average Precision (m A P) and Hit
Rate ( R) scores in retrieving ballots suspected of stuffing, using
expanded test sets containing both real and synthetic ballots. Our
experimental results demonstrate the model’s promise to handle
diverse data collection processes, including variations in scanner
types and scanning resolutions, and generalizability to various
real-world ballot formats and layouts, underscoring its practical
applicability. While the AI tool significantly aids in flagging
potential ballot stuffing activities, final adjudications on ballot
legitimacy remain with election officials, who examine suspicious
ballots returned by the AI tool using the physical evidence on
paper ballots.

Index Terms—Ballot Stuffing Detection, Deep Learning

I. INTRODUCTION

Among various voting methods, mail-in voting with paper
ballots has been popular for its simplicity and accessibility.
However, this method is not without its vulnerabilities, no-
tably the threat of same-hand ballot stuffing. This type of
activity, where an individual illicitly marks multiple paper
ballots, can manifest in various forms, including insertion
of fraudulent/fake ballots or coercive practices, e.g., spousal
coercion, where one spouse may unduly influence or even cast
a ballot on behalf of the other, often without their consent.
High-profile cases, such as Barry Morphew submitting an
absentee ballot on behalf of his wife [1], underscore its direct
threats to election integrity. Additionally, the 2008 Minnesota
senate election [2] demonstrated how even a single mark or
a small number of them can significantly alter election
results, potentially overturning the election itself. These
cases highlight the potential of same-hand ballot stuffing to
compromise the accuracy of elections, emphasizing the need
to strengthen existing security measures, e.g., election audits,
to safeguard electoral integrity more effectively.

This work was supported by NSF CNS-2154589 and 2154507, “Collabora-
tive Research: SaTC: CORE: Medium: Bubble Aid: Assistive Al to Improve
the Robustness and Security of Reading Hand-Marked Ballots,” $1,200,000,
10/01/2022-09/30/2026.

Our Al-assisted BubbleSig framework is designed to work
as a supportive tool to existing election security measures,
particularly beneficial in scenarios where historical signatures
are unavailable for verification. Ballot marks can function
similarly to signatures, where marks made by the same hand
can exhibit distinct “signature-like” patterns. BubbleSig uti-
lizes a Siamese-based neural network to compare marks across
ballots and detects marks filled out by the same hand when it
identifies similar marking styles. This pioneering solution is
distinguished by its focus on analyzing ballot marks alone, a
first in this domain. Its unique voter independence obviates the
need for retraining the model with each new voter or election,
allowing it to handle diverse elections with a single model.

The main contributions: 1. Problem formulation and
model development for detecting same-hand ballot stuffing:
we propose to formulate this ballot level detection problem
as a mark/bubble level detection one, where the proposed
model makes a prediction by comparing marks extracted
from two different ballots directly and in a fully automatic
way, without requiring any prior knowledge or biometric data
from voters, e.g., fingerprints or signatures. This is also the
first deep learning-based model for such purposes and has
shown promising results. The detected suspicious ballots will
be sent to election officials for further inspection. 2. Voter-
independent detection of ballot stuffing: the proposed ballot
stuffing detector is voter-independent. Unlike the state-of-
the-art (SOTA) voter-dependent method proposed in [3], in
which one model is created for each writer/voter, our method
only needs one single model to handle various voters and
various types of ballot layouts. There is no need to retrain the
model when new voters enter the database. Furthermore, our
model has shown reasonable robustness to data from different
collection processes, e.g., different types of scanners and
scanning resolutions, overcoming bottlenecks of traditional
computer vision-based methods.

This study represents the first significant effort in detecting
same-hand ballot stuffing. Our assumption is that the at-
tacker exhibits a passive behavior with a certain level of
consistency in their marking style. Cases where attackers
deliberately alter their marking styles to evade detection fall
outside our current scope but are an important avenue for
future research. Despite potential marking style variations,
the increased volume of fraudulently marked ballots from an
attacker will inevitably lead to the emergence of discernible
patterns on the attacker’s marks. These patterns enable our
model to determine whether different marks are likely from
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the same hand, effectively identifying stuffing activities even
amidst attempts at variation. Since there is no ground truth
for incidents of ballot stuffing in real-world election ballot
datasets, we assume, at least during training, that two marks
from the same ballots are similar (positive pairing), otherwise
dissimilar (negative pairing), shown in Fig. 1. During testing,
a set of real ballots marked by the same person are used to test
the model. Pairings from different ballots classified as “sim-
ilar” are subject to further visual inspection and verification
for frauds.
II. RELATED WORK

The SOTA methods for detecting same-hand ballot stuffing
have significant limitations: 1. Manual methods verifying voter
identity primarily through signature matching, are impractical
for large-scale elections due to their time-consuming, labor-
intensive nature, and high susceptibility to human error. 2.
Biometric data-based automated methods primarily rely on
biometric verification methods, such as fingerprint-matching
systems. SOTA techniques, such as those in references [4] and
[5], demonstrate high accuracy but raise privacy and ethical
concerns due to the sensitive nature of the data required. 3.
Other forms of data-based methods mainly depend on quanti-
tative analysis of historical voting results and patterns. Those
methods, e.g., [6], can identify potential electoral anomalies
but often fall short in pinpointing individual fraudsters or
specific instances of same-hand ballot stuffing. An example
of a more targeted approach is found in [3]. The authors
developed a method to identify individual bubble markers by
their marking styles using a dataset of 1,840 marks from 92
participants, analyzed through PCA, Shape, and Color features
using Weka’s SMO [7] classifier. This pairwise (1 vs 1) classi-
fication required (N*N-1)/2 classifiers for N classes, feasible
for only small N (e.g., 92 respondents) and impractical for
hundreds of thousands of voters, as each new voter necessitates
retraining all (N*N-1)/2 models.

III. METHODOLOGY

Our BubbleSig framework for detecting ballot stuffing in
mail-in ballots utilizes a two-step process:

& & & =

(a) A positive pair (b) A negative pair

Fig. 1: Samples of positive and negative pairs

1. Mark Extraction: We employ the SOTA mark detection
model [8] to extract marks from scanned ballots. All marks
are cropped strictly according to the bounding box generated
by our previous work in [8]. 2. Ballot Stuffing Detection:
The BubbleSig utilizes a Siamese-based architecture that pro-
cesses pairs of marks as input and outputs a similarity score.
The score ranges from O (not similar) to 1 (highly similar),
reflecting the probability of the marks being filled out by the
same hand.

The BubbleSig framework offers flexibility in choosing
the encoder sub-network (backbone) with options including
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VGG16, VGG19, ResNet50, ResNet101, and DensNet121. All
these backbones were pre-trained on Imagenet dataset. These
encoders extract features from the input mark pairs, which are
then processed through different sub-networks to calculate the
final similarity score.
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Fig. 2: The proposed ballot stuffing detection model

We present three variations of the Siamese architecture, each
with its unique approach to processing the extracted features:

Siamese; model (Fig. 2a): In this variation, the high-
level features from both encoders are concatenated along the
channel axis. This setup allows the model to autonomously
learn and leverage the relationship between the two feature
maps during its training process. The concatenated features
are then passed through a convolutional layer and stacked fully
connected layers, culminating in a sigmoid activation function
to produce the similarity score. The intuition behind this model
is to enable an automated discovery of relationships between
mark pairs.

Siamese;; model (Fig. 2b): This model computes an
element-wise L1 distance between the feature maps extracted
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from the two input marks. By focusing on the discrepancies
between the two images, this model guides the neural network
to identify subtle differences, enhancing its ability to detect
ballot stuffing instance. The element-wise distance approach
aims to make the model more sensitive to variations in the
mark patterns. After the element-wise distance calculation,
the feature maps will be flattened and sent to stacked fully
connected layers to generate final predictions.

Siamese;, model (Fig. 2c): The third variation applies a
Euclidean (L2) distance with a sigmoid activation function.
This structure outputs a probability score based on the L2
distance between the feature maps, offering a direct measure
of similarity. The motivation for this model is to provide a
straightforward and effective way to quantify the similarity
between ballot marks.

Our work uses two real-world ballot datasets: Merced
County, with 7,120 RGB images (1272x2100 resolution), and
Stanislaus County, with 3,151 grayscale images (1700x2800
resolution). The initial experiment was conducted on the
Same-Hand Ballot Stuffing Detection dataset (BSD), created
from Merced’s ballots to simulate a voter-independent setting
where pairs of marks from the same image are labeled positive,
otherwise negative. As mentioned in Section III, the method
in [8] is used to extract marks and resize them to uniform
51x51 grayscale images while preserving aspect ratios. BSD
comprises 16,272 training, 2,084 validation, and 1,972 testing
mark pairs, with an even split between positive and negative
samples. To test our model’s generalizability, we collected 464
new ballots in the Stanislaus format using two distinct setups:
the first set consisted of 160 ballots filled by 5 volunteers, each
contributing 32 ballots, scanned at a resolution of 5100x6600;
the second set comprised 304 ballots filled by 38 volunteers,
each contributing 8 ballots, scanned at 1275x1753. Different
scanning resolutions and scanner types were utilized for each
set to simulate diverse operational conditions. The model
training was done on a single NVIDIA Tesla P100 16GB GPU
with 100 epochs and an early stop.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For stuffing detection on the BSD dataset, as shown in
Table I, the Siamese;, architecture with a DenseNetl121 back-
bone achieved the highest F1 score of 0.925. Compared to the
VGG16 and VGGI19-based models, the performance of the
relatively deeper networks, ResNet and DenseNet, is better.
Notably, all three variations of our Siamese architecture out-
performed the SOTA hand-crafted feature-based models [3]:
Shape (0.673), PCA (0.602), Color (0.748), and Combined,
which integrates all three features (0.744). Furthermore, the
performance of the ResNet and DenseNet-based Siamese;,
models was at least 21.12% better than those models. Since
Siamese;; and Siamese;, outperform Siameseg, we use them
in the subsequent study.

1. Evaluation on real ballots filled out by same hands.
In the Stanislaus dataset never been seen during training,
manual inspection found that 16 ballots (containing 46 marks)
were filled out by the same election staff who manually
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TABLE I: Results of ballot stuffing detection on BSD dataset

Siamese Model Variants (F1 score)

Backbone Si @ | Si 1| Si 2
VGG16 0.813 0.859 0.830
VGG19 0.850 0.864 0.879
ResNet50 0.872 0.885 0.906
ResNet101 0.874 0.896 0.907
DenseNet121 0.893 0.917 0.925

TABLE II: Mark-level ballot stuffing detection results

Model Backbone Accuracy/Recall FNR
ResNet50 93.744% 6.256%
Siamesey | ResNet101 99.798% 0.202%
DenseNet121 100.000% 0.000%
ResNet50 99.395% 0.605%
Siamese; > ResNet101 95.055% 4.9445%
DenseNet121 99.294% 0.706%

duplicated some low-quality paper ballots, which is a common
practice. We conducted three experiments on this: (a) Mark-
level detection (Table II) tests the model on 991 mark pairs
generated by the 46 marks. Each mark in a ballot forms a
unique pair with each mark from every other ballot. Our model
achieved at least 93% recall, validating its high sensitivity to
ballot stuffing. (b) Ballot-level detection (Table III) evaluates
the model on all the unique 120 ballot pairs generated by
the 16 ballots. For each pair of ballots, each mark in one
ballot is paired with each mark in the other ballot, respectively.
Our model achieves a higher recall (a lower False Negative
Rate, FNR) by adopting more relaxed criteria, such as at least
one mark pair matching and majority vote, than requiring
all mark pairs to match. However, the first two may yield
a much higher FPR (False Positive Rate). (c) Retrieval of
suspected ballots (Table IV). Each of the 16 ballots served
as a query against the other 3,150 ballots in the Stanislaus
dataset including the remaining 15. The similarity score for
a ballot pair is aggregated from all mark pairs’ scores within
the ballot pair using average, median, or maximum scoring
methods. We use mAPQF as the metric: Suppose a query
ballot has m True matches, the system generates up to k
recommended items/ballots ranked in decreasing order of their
similarity score to the query ballot. The average precision
score at k (APQk) for this query can be calculated by:
APQk = YF | P(i)/min(k,m) where P(i) = 0 if the
i-th ranked ballot is False and P(i) = T'seen;/i if other-
wise. T'seen; represents the total number of True matches

TABLE III: Ballot-level ballot stuffing detection results

Criterion Model Accuracy/Recall FNR
L1 100% 0.000%
All mark pairs matching
L2 95.833% 4.167%
L1 100% 0.000%
At least one matching
L2 100% 0.000%
L1 100% 0.000%
Majority vote
L2 100% 0.000%

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on June 16,2025 at 02:02:41 UTC from IEEE Xplore. Restrictions apply.



TABLE IV: The mAPQFk scores on the database containing 3,151 original ballots (L1: Siamese;, L2: Siamese;,)

Ranked by | Model | mAPQ1 mAPQ2 | mAPQ3 | mAPQ4 | mAPQ5 | mAPQ6 | mAPQ7 | mAPQ8 | mAPQ9
Average L1 75.000% 70.313% 65.625% 63.672% 59.438% 56.823% 54.190% 51.420% 47.790%
L2 62.500% 57.813% 54.514% 49.870% 43.396% 39.809% 34.632% 31.182% 27.949%

) L1 75.000% 68.750% 62.500% 63.672% 60.688 % 55.087% 52.447% 49.895% 48.518%
Median L2 81.250% 68.750% 63.194% 59.896% 54.917% 48.194% 45.136% 41.935% 38.511%

. L1 50.000% 57.813% 49.653% 49.349% 50.229% 48.628% 47.294% 45.777% 43.700%
Maximum L2 87.500% 82.813% 74.653% 64.583% 56.167% 50.625% 47.985% 44.135% 40.774%

among the top i ballots. The mAPQFk can be calculated as:
mAPQk = Z;VZI AP;Qk/N, in which N represents the
total number of queries, and AP;QF stands for the average
precision score at k for the j-th query. The Siamese;, model
(maximum score) showcased robust performance in the top-4
ranks but a drastic performance drop after rank 5. Siamese;
model (average score) demonstrates competitive performance,
particularly when & value is much larger. This indicates that
the average score method tends to provide a more balanced as-
sessment across multiple mark pairs. In contrast, the maximum
score method, while effective at identifying the most likely
matches, might overemphasize the highest scores, leading to
a sharper performance decline as the rank increases.
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Fig. 3: Hit rate of Siamese;; model

2. Extended evaluation with synthetic data. As mentioned
in Section III, we expanded the Stanislaus dataset to 3,615
ballots by integrating 464 ballots collected from 43 volunteers.
The query set now includes 480 ballots, comprising the
464 newly collected ballots and the 16 previously existing
ballots. We initially evaluated performance using mAPQk.
Interestingly, this result did not mirror the optimal outcomes
illustrated in Table IV, potentially due to several factors: (i)
a large subset of participants (38 out of 43, or approximately
88%) contributed fewer ballots each (only 8 per volunteer),
resulting in only 7 positive pairings per query out of 3,614
pairings, sharply increasing the difficulty level of the task,
and (ii) a substantial decrease in image resolution in the
newly added data from the second set detailed in Section
III, which obscured critical details and compromised the
model’s effectiveness. We will explore this direction in our
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future work while we continue to collect more data. In our
next experiment, we use Hit Rate (H R) as metric, which
emphasizes whether the system can detect potential ballot
stuffing within a reasonably sized set of top-k candidates,
rather than how these candidates are ranked. HR can be
formulated as: HR = (Zf\;l hit;)/N, where N represents
the total number of queries evaluated, and hit; is an indicator
function that equals 1 if the ¢-th query contains at least one
true-positive among the generated top-k recommendations, and
0 otherwise. As shown in Fig. 3, all methods achieve a hit rate
> 72% within the top 5 returned ballots, which highlights the
model’s adeptness at identifying stuffing activities. Notably,
the Maximum-based method exhibits a sharper increase in
performance as k value grows, surpassing the 90% hit rate
when k reaches 15. This suggests that the Maximum-based
method benefits from increased tolerance to false positives at
higher & values. In contrast, the Average- and Median-based
methods show more gradual improvements.

V. CONCLUSIONS

BubbleSig, our novel Al-assisted framework utilizing
Siamese architecture to process diverse ballot formats, can
effectively address same-hand ballot stuffing in mail-in voting
without needing retraining for new elections or voters. This
pioneering research proposes a scalable, supportive tool for
election officials to enhance mail-in voting integrity.
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