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Abstract

Metabotropic glutamate receptors (mGluRs) are class C G protein-coupled receptors that

function as obligate dimers in regulating neurotransmission and synaptic plasticity in the

central nervous system. The mGluR1 subtype has been shown to be modulated by the

membrane lipid environment, particularly cholesterol, though the molecular mechanisms

remain elusive. In this study, we employed all-atom molecular dynamics simulations to

investigate the effects of cholesterol on the conformational dynamics of the mGluR1 seven-

transmembrane (7TM) domain in an inactive state model. Simulations were performed

with three different cholesterol concentrations (0%, 10%, and 25%) in a palmitoyl-oleoyl

phosphatidylcholine (POPC) lipid bilayer system. Our results demonstrate that cholesterol

induces conformational changes in the mGluR1 dimer more significantly than in the indi-

vidual protomers. Notably, cholesterol modulates the dynamics and conformations of the

TM1 and TM2 helices at the dimer interface. Interestingly, an intermediate cholesterol

concentration of 10% elicits more pronounced conformational changes compared to both

cholesterol-depleted (0%) and cholesterol-enriched (25%) systems. Specific electrostatic in-

teraction unique to the 10% cholesterol system further corroborate these conformational

differences. Given the high sequence conservation of the 7TM domains across mGluR sub-

types, the cholesterol-dependent effects observed in mGluR1 are likely applicable to other

members of this receptor family. Our findings provide atomistic insights into how cholesterol

modulates the conformational landscape of mGluRs, which could impact their function and

signaling mechanisms.

KEYWORDS: metabotropic glutamate receptors, GPCR, cholesterol, molecular dynamics

simulation
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Introduction

The intricate interplay between membrane lipids and integral membrane proteins plays a

crucial role in regulating various cellular processes, from signal transduction to membrane

trafficking.1,2 Among the diverse array of membrane lipids, cholesterol stands out due to its

unique physicochemical properties and functional versatility.3 Cholesterol not only modu-

lates the biophysical properties of cell membranes, such as fluidity and permeability, but also

engages in specific interactions with membrane proteins, influencing their structure, stabil-

ity, and activity.4–7 Deciphering the complex relationship between cholesterol and membrane

proteins is therefore essential for understanding the molecular mechanisms underlying cellu-

lar signaling and function.

G protein-coupled receptors (GPCRs) constitute a prominent class of membrane proteins

that mediate a wide range of physiological responses to extracellular stimuli.8,9 Within the

GPCR superfamily, metabotropic glutamate receptors (mGluRs) are key regulators of synap-

tic transmission and neuronal excitability in the central nervous system.10–13 As members

of the Class C GPCR family, mGluRs exhibit a unique structural architecture, comprising

a large extracellular Venus Flytrap domain (VFT) responsible for ligand binding, coupled

to a seven-transmembrane helical bundle (7TM) that transduces signaling events across

the membrane.4,14–17 The activation of mGluRs triggers a cascade of intracellular signaling

events,18–20 modulating synaptic plasticity and neuronal function.21–23

Given the vital role of mGluRs in synaptic transmission and neuronal function, elucidat-

ing the factors that regulate their structure and function is of utmost importance. Recent

studies have shed light on the significance of membrane lipids, particularly cholesterol, in

modulating mGluR structure and function.4,16,24–26 For instance, cholesterol depletion has

been shown to impair the function of mGluR1 in hippocampal neurons, leading to reduced

calcium signaling and altered synaptic plasticity.24,27,28 Moreover, cholesterol has been impli-

cated in the localization and trafficking of mGluRs, with cholesterol-rich lipid rafts serving
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as platforms for mGluR signaling complexes.16,29–32 These findings suggest a potential role

for lipid-protein interactions in fine tuning mGluR signaling.

Despite these insights, the molecular mechanisms underlying cholesterol-dependent mod-

ulation of mGluRs, particularly mGluR1, remain poorly understood. Investigating the im-

pact of cholesterol on the conformational dynamics of mGluR1 is necessary for unraveling

the molecular basis of mGluR signaling and may have implications for the development of

novel therapeutic strategies targeting mGluRs in neurological disorders.

In this study, we employ molecular dynamics (MD) simulations to investigate the re-

lationship between cholesterol dependence and mGluR1 conformational changes, aiming to

gain insights into this dynamic process. MD simulations have emerged as a powerful tool

for probing protein-lipid interactions at the atomic level, providing invaluable insights into

the dynamic behavior of membrane proteins.33–36 Our findings suggest that cholesterol could

stabilize specific conformational states of mGluR1, potentially impacting its activation and

signaling properties. We show that cholesterol binding to specific regions on mGluR1 could

modify the receptor’s conformational landscape, possibly favoring conformations conducive

to G protein coupling and subsequent downstream signaling events. The insights gained from

this study not only advance our understanding of the complex interplay between cholesterol

and mGluR1 but also have broader implications for the role of lipid-protein interactions

in regulating GPCR signaling. By shedding light on the molecular mechanisms behind

cholesterol-dependent modulation of mGluR1, our findings could contribute to a better

understanding and offer potential avenues for developing therapeutic strategies targeting

mGluRs in neurological disorders like schizophrenia and Parkinson’s disease, where abnor-

mal mGluR signaling is implicated.37–44
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Fig. 1. A cartoon representation of mGluR1 (PDB: 4OR2) illustrates the interaction sites
of cholesterol within the protein embedded in a lipid membrane (blue with gray
headgroups). Cholesterol molecules (green) are shown interacting between the
monomers of mGluR1 (highlighted in red) and within the grooves of the trans-
membrane helices.
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Methods

We conducted all-atom MD simulations to investigate the influence of cholesterol on the

conformational changes of mGluR1 using a homogeneous lipid bilayer consisting of pure

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and heterogeneous lipid bilayers

consisting of 10% cholesterol and 90% POPC), and 25% cholesterol and 75% POPC. We

constructed two sets of three mGluR1 systems, excluding the bound thermostabilized apoc-

ytochrome b562 (BRIL) protein from the crystal structure in both sets. The first set incor-

porated the six molecules of cholesterol from the crystal structure into the 10% and 25%

systems, whereas the second set had these initial cholesterol molecules removed. Simulations

were set up using the CHARMM-GUI platform,45–47 utilizing the crystal structure of the

human class C G protein-coupled mGluR1 in complex with a negative allosteric modulator

(PDB entry: 4OR2).48 Cholesterol molecules present in the crystal structure were removed

for the 0% system in both sets, while the protein was placed in lipids, solvated in a box of

TIP3P waters, and 0.15M NaCl using CHARMM-GUI.45–47 The box size for the systems was

approximately ≈ 150 Å × 150 Å × 130 Åand ≈ 84 Å × 84 Å × 112 Å for both systems, with a

total of 152713, 196337, and 192820 atoms for 0%, 10%, and 25%, respectively in set1, and

71848, 73930, and 73260 atoms for 0%, 10%, and 25% respectively in set2, and all systems

were simulated in apo conditions (that is without the bound negative allosteric modulator

from the crystal structure).48 The final systems contained the following lipid compositions:

For Set 1, there were 598 lipids, with 298 lipids in the upper leaflet and 300 lipids in the

lower leaflet for 0% cholesterol. For 10% cholesterol, there were 630 lipids, including 31

cholesterol and 279 POPC lipids in the upper leaflet, and 32 cholesterol and 288 POPC

lipids in the lower leaflet respectively. For 25% cholesterol, there were 668 lipids, consisting

of 83 cholesterol and 249 POPC lipids in the upper leaflet, and 84 cholesterol and 252 POPC

lipids in the lower leaflet respectively. For Set 2, there were 232 lipids, with 115 lipids in the

upper leaflet and 117 lipids in the lower leaflet for 0% cholesterol. For 10% cholesterol, there
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were 250 lipids, comprising 12 cholesterol and 108 POPC lipids in the upper leaflet, and 13

cholesterol and 117 POPC lipids in the lower leaflet. For 25% cholesterol, there were 250

lipids, including 32 cholesterol and 96 POPC lipids in the upper leaflet, and 33 cholesterol

and 99 POPC lipids in the lower leaflet.

All systems were simulated with NAMD 2.10/2.1349 and the CHARMM36m all-atom

additive force field50.51 Initially each system was energy-minimized for 10,000 steps using

the conjugate gradient algorithm.52 Then, we relaxed the systems by applying restraints in

a stepwise manner (for a total of ∼1ns) using the standard CHARMM-GUI equilibration

protocol.53 Production runs were carried out for 960ns each and 1 µs each for both sets

respectively. The initial relaxation was performed in an NVT ensemble, while all production

runs were performed in an NPT ensemble. Simulations were conducted at 310 K using a

Langevin integrator with a damping coefficient of γ = 0.5 ps−1. The pressure was maintained

at 1atm using the Nosé-Hoover Langevin piston method.52,54 The smoothed cutoff distance

for non bonded interactions was set to 10-12 Å, and long-range electrostatic interactions

were computed with the particle mesh Ewald (PME) method.55

The TM helices and other subdomains were defined as follows: TM1 (residue 592 - 616),

TM2 (629 - 647), TM3 (654- 683), TM4 (703 - 727), TM5 (753- 772), TM6 (784 - 809),

TM7 (812 - 840), ICL1 region (617 -628), ICL2 loop (681-702), ICL3 (773-783), ECL1(648-

653), ECL2(731-745), ECL3(810-811).48 The root mean square deviation (RMSD) trajectory

tool of VMD56–58 was used to calculate the RMSD, with Cα atoms considered for these

calculations. Root mean square fluctuation (RMSF) of individual residues was calculated

using Cα atoms, and the VMD timeline plugin was employed to identify salt bridges. Lipid-

protein interactions were characterized by counting the number of lipid molecules within 4

Å of the protein or specific protein domains at every frame. Principal component analysis

(PCA) was conducted using PRODY software,59 considering only Cα atoms. Hydrogen bond

analysis was performed using the VMD HBond plugin, with a cutoff distance of 3.5 Å and

an angle of 30◦. Dynamical network analysis was done using VMD60 and Carma.61
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Results and Discussion

Cholesterol Influences the Conformational Changes of the Internal

Protein and Acts Less Significantly on Individual Protomers
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Fig. 2. Projections of the principal components (PC’s) 1 and 2 [A-C], and the root mean
square deviation analysis [D-F] of mGluR1 in the presence and absence of choles-
terol, in the first simulation set.

To provide mechanistic insights into cholesterol sensitivity for the mGluR1 receptor, PCA

was employed to identify the most significant differences in conformational dynamics between

the three studied systems: mGluR1 in the presence of 0%, 10%, and 25% cholesterol. The

projections of the MD trajectories onto the first two principal components (PC1 and PC2)

reveal distinct behaviors of individual protomers and the entire mGluR1 protein (Fig. 2A-C).

The PCA results demonstrate that the most pronounced conformational changes captured by

PC1, exhibit significant variations between the cholesterol-containing systems (10% and 25%
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CHOL) and the cholesterol-free system (0% CHOL). Notably, the system without choles-

terol displays reduced motion along PC1, indicating a more restricted conformational space

(Fig. 2C). The differences in conformational dynamics are more evident when considering

the entire mGluR1 protein compared to individual protomers. This observation suggests

that cholesterol exerts a more pronounced influence on the interprotomer conformational

dynamics rather than the dynamics of single protomers. The presence of cholesterol appears

to modulate the collective motions and coordinated conformational changes of the mGluR1

dimeric assembly. We also observe from the PCA results that the system with 10% choles-

terol exhibits higher conformational variability compared to the system with 0% and 25%

cholesterol (Fig. 2C) when considering the whole protein structural conformation. This find-

ing implies that increasing cholesterol concentration may induce a more ordered and less

dynamic structure of mGluR1. It is plausible that higher cholesterol levels promote stronger

interactions between the receptor and the lipid bilayer, constraining the conformational flex-

ibility of the protein.62–64

To assess the structural stability of mGluR1 during the simulations, we calculated the

RMSD of the protein backbone (Fig. 2D-F) for the final 1000 frames. Our results show that

the cholesterol-free system (0% CHOL) exhibits lower RMSD values compared to the systems

with 10% and 25% cholesterol in protomer A and B, however the highest conformational

change is observed when the entire protein structure is considered and more in the 10%

system.

The combined analysis of PCA and RMSD results (Fig. 2) reveals that cholesterol signifi-

cantly influences the global conformational stability and dynamics of mGluR1. The presence

of cholesterol induces distinct conformational changes in the overall protein structure, while

its impact on individual protomers appears to be less pronounced. These findings high-

light the importance of considering the lipid environment, particularly cholesterol, when

studying the functional dynamics of mGluR1 and other membrane proteins.62 The observed

cholesterol-dependent modulation of mGluR1 conformational dynamics could have impli-
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cations for understanding the receptor’s function and its potential as a therapeutic target.

The interaction between cholesterol and mGluR1 may influence the receptor’s ability to bind

ligands, undergo conformational changes, and initiate downstream signaling cascades.65,66

Low Cholesterol Concentration (10% CHOL) Induces a Higher

Conformational Change

The previous analysis suggested that 10% cholesterol exhibits higher conformational vari-

ability compared to the system with 0% and 25% cholesterol (Fig. 2C & F). To confirm

this, we investigated the influence of cholesterol on the inter-protomer distance and angle

of mGluR1. From our result, the inter-protomer distance showed the lowest distance in the

cholesterol-free system (0% CHOL), with the system with higher cholesterol (25% CHOL)

displaying a relatively similar behavior to 0% CHOL. The inter-protomer distance of 0%

CHOL maintains a distance of approximately 38-39 Å throughout the simulation, while 25%

fluctuates from 39-40 Å (Fig. 3A). However, the system containing 10% cholesterol displays

a distinct behavior compared to the other two systems. The inter-protomer distance in the

10% cholesterol system undergoes significant fluctuations, reaching a minimum of around

38 Å and a maximum of approximately 42 Å (Fig. 3A). This observation indicates that

an intermediate cholesterol concentration induces a more dynamic and flexible arrangement

of the mGluR1 protomers, allowing for a wider range of conformational states. The simi-

lar behavior of the cholesterol-free and 25% cholesterol systems suggests that the mGluR1

dimer maintains a stable and consistent conformation in the absence of cholesterol and at

high cholesterol concentrations. This finding implies that the impact of cholesterol on the

inter-protomer distance is not linear and may exhibit a concentration-dependent effect.
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Fig. 3. Time series representation of the inter protomer distance (left panel) and inter
protomer angle (right panel) in simulation set 1.

The analysis of the inter-protomer angle (Fig. 3B) further supports the distinct behavior

of the 10% cholesterol system. While the cholesterol-free and 25% cholesterol systems show

higher inter-protomer angles throughout the simulation, the 10% cholesterol system showed

the lowest angle, ranging from approximately 20◦ to 5◦ (Fig. 3B). This indicates that an

intermediate cholesterol concentration promotes a more dynamic and flexible relative orien-

tation between the mGluR1 protomers.
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Fig. 4. Water density maps illustrate the initial frame (first 200 ns) and final frames (last
200 ns) for Set 1 across 0%, 10%, and 25% cholesterol concentrations. Variations
in correlation are represented by a color gradient, ranging from 0 (pale yellow) to
1 (dark blue).

In addition, the water density maps show the average water occupancy within the simu-

lation system during the initial and final 200 nanoseconds of the trajectories. Within the 0%

CHOL system, the water density maps reveal a relatively consistent distribution of water

molecules surrounding the mGluR1 protein throughout the simulation. The protein exhibits

a uniform pattern of water occupancy in both the initial and final frames of the trajectory,

but with a slightly higher water density in the final frames.(Fig. 4). However, when the

cholesterol concentration is increased to 10%, a notable change in the water density dis-

tribution is observed. During the initial 200 nanoseconds, we observe a significant water

occupancy, but in the final 200 nanoseconds, a distinct shift in the water density pattern

is observed. The water occupancy within specific regions of the protein seems to decrease,
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suggesting a reorganization or exclusion of water molecules from these areas (Fig. 4). This

observation contrasts with the more consistent water density patterns observed in the systems

with 0% and 25% cholesterol. The system containing 25% cholesterol displays a relatively

stable water density distribution throughout the entire simulation (Fig. 4), indicating a more

persistent and uniform environment surrounding the mGluR1 receptor. To summarize, com-

paring the initial frames of the first 200 nanoseconds to the final frames, we observed a slight

increase in water occupancy at 0%, a decrease at 10%, and a relative uniformity at 25%.

These localized alterations in water occupancy around the receptor could be indicative of

specific structural rearrangements or the formation of cholesterol-mediated interactions that

influence the protein’s conformational landscape.
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Fig. 5. Time series of the salt bridge network between Cα atoms of R661 and E728 in
Protomer A (A) and Protomer B (B). The right panel illustrates a graphical rep-
resentation of mGluR1, highlighting the salt bridge interactions between R661
(red) and E728 (blue) in the 10% CHOL system for Protomer A.

The analysis of the salt bridge interaction distance between Glu 728 and Arg 661 in

Protomer A and B (Fig. 5A & B) provides additional insights into the cholesterol-mediated

effects on the mGluR1 receptor. Our results reveal that the Glu 728-Arg 661 distance

is most stable in the presence of 10% cholesterol in Protomer A. In this system, the salt

bridge interaction is not initially present in the crystal structure, but forms at around 200

nanoseconds and is then maintained for the duration of the simulation (Fig. 5A), indicating

the development and persistence of this structural feature. In contrast, the cholesterol-free

system (0% CHOL) and the 25% cholesterol system exhibit more fluctuations in the Glu
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728 - Arg 661 distance within Protomer A (Fig. 5A). This suggests that the absence of

cholesterol and the presence of a high cholesterol concentration may lead to a less stable

interaction between these critical amino acid residues in this particular protomer. However,

the observations in Protomer B reveal a different pattern. In the 0% cholesterol system, a

less stable interaction between Glu 728 and Arg 661 is observed for about 300 nanoseconds.

Notably, this salt bridge interaction is not present in any of the cholesterol-rich systems (10%

and 25% CHOL) within Protomer B (Fig. 5B). These findings suggest that an intermedi-

ate cholesterol concentration of 10% may contribute to the overall structural integrity and

functional organization of the mGluR1 receptor, potentially through the stabilization of key

interresidue interactions (Tab. S1), such as the Glu 728-Arg 661 salt bridge.

Cholesterol in mGluR1 is Localized at the Inter-Protomer Interface

and Interacts Preferentially with Transmembrane Helices 1 and 2

Our dynamical network analysis reveals significant differences in correlation patterns between

the cholesterol-free system (0% CHOL) and systems containing cholesterol (10% and 25%

CHOL) (Fig. 6). Particularly, pronounced differences are observed within the transmem-

brane helices 1 and 2 (TM1-TM2) of both protomers A and B. The presence of cholesterol

induces substantial changes in the correlated motions of residues in these regions, evident by

the darker red gradient in Figure 6. This indicates cholesterol’s crucial role in modulating

the dynamics and interactions of the transmembrane helices surrounding mGluR1’s inter-

phase. The altered correlations in TM1-TM2 residues upon cholesterol addition suggest

cholesterol’s influence on the conformational flexibility and coupling of transmembrane he-

lices, potentially modulating the receptor’s ability to transmit signals across the membrane. 4

Remarkably, our analysis reveals that the system with 10% cholesterol (Fig. 6A) exhibits

more pronounced differences in residue correlations compared to the 25% cholesterol system

(Fig. 6B). This suggests that a relatively low concentration of cholesterol (10%) significantly

impacts mGluR1 dynamics, potentially optimizing lipid-protein interactions and stabiliz-
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ing specific conformational states of the receptor. The preferential impact of cholesterol on

the transmembrane helices surrounding mGluR1’s inter-phase highlights this region’s im-

portance in receptor function and regulation. These helices are implicated in dimerization

and allosteric communication between mGluR1 protomers.67,68 Cholesterol-induced changes

in TM1-TM2 dynamics may influence the stability and signaling properties of the mGluR1

dimer, impacting receptor activation and downstream signaling pathways.67,68

A B

Fig. 6. The dynamical network analysis illustrates correlation differences between the 0%
cholesterol and 10% cholesterol systems (A), and between the 0% cholesterol and
25% cholesterol systems (B) for simulation set 1. Differences in correlation are
shown as a red gradient, where darker shades indicate higher differences, ranging
from 0 to 1.

Our findings contribute to the understanding of cholesterol’s critical role in GPCR func-

tion and regulation.4,16,69–71 Cholesterol interacts with specific regions of GPCRs, such as

the cholesterol recognition amino acid consensus (CRAC) motif, modulating their struc-

tural and functional properties.72–75 The preferential impact of cholesterol on mGluR1’s

transmembrane helices aligns with cholesterol-mediated GPCR regulation, emphasizing the

significance of considering the lipid environment in investigating GPCR dynamics and func-

tion.
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Fig. 7. A graphical representation highlighting the preferred localization region of choles-
terol (green) within the mGluR1 (red) systems with 10% (A) and 25% (B) choles-
terol concentrations.

In Figure 7, we present a graphical representation highlighting the predominant localiza-

tion of cholesterol within the interphase of both the 10% and 25% systems. This localization

pattern is notably observed between protomers, suggesting a specific affinity for this region

(Fig. 7A & B). To further substantiate this finding, our analysis of interhelical angles re-

veals notable fluctuations, particularly involving TM1 with other helices, as well as TM2 with

other helices (Fig. S1, S2). Considering that TM1 and TM2 collectively form the interphase

region of the receptor, it’s evident that cholesterol tends to concentrate in this region. This

localization within the interphase underscores the significance of cholesterol in influencing

the conformational dynamics and structural organization of mGluR1, particularly in regions

crucial for receptor function and regulation.
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Impact of Removing Initial Six Cholesterol Molecules on Receptor

Conformational Dynamics

Examining Set 2, which excludes the initial six cholesterol molecules from the crystal struc-

ture, offers additional insights. As in Set 1, significant changes in conformational dynamics

are most evident when considering the entire mGluR1 protein rather than individual pro-

tomers (Fig. 8A-F). Notably, Set 2 reveals a heightened degree of conformational change

in the absence of cholesterol (0%), with a similar trend observed for both the 0% and 25%

systems, contrasting with the distinct behavior seen in the 10% system, echoing observations

from Set 1 (Fig. 8C & F).
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Fig. 8. Projections of the principal components (PC’s) 1 and 2 [A-C], and the root mean
square deviation analysis [D-F] of mGluR1 in the presence and absence of choles-
terol, in the second simulation set.

This indicates that the absence of cholesterol amplifies conformational variability in

mGluR1, allowing for increased flexibility within the protein structure. Conversely, the

presence of cholesterol, particularly at 10% concentration, influences conformational dy-
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namics differently, suggesting a balance between stabilization and flexibility mediated by

cholesterol-lipid interactions.
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Fig. 9. RMSD distribution plots across different cholesterol concentrations in Simulation
Set 1 [A-C] and Simulation Set 2 [D-F].

The RMSD distribution plots support the observations and provide insights into the in-

terplay between individual protomers and the overall behavior of the receptor complex. In

Set1, the system with no cholesterol (0% CHOL) displays a distinct high peak in the RMSD

distributions of both Protomer A and Protomer B (Fig. 9A & B). However, when consider-

ing the whole protein (Fig. 9C ), the RMSD distribution shows a lower and broader peak,

indicating a more diverse conformational sampling of the receptor complex in the absence of

cholesterol. The system with 25% cholesterol (Fig. 9A-C) maintains a consistent mid-range

peak in the RMSD distributions across the individual protomers and the whole protein. This

suggests that the presence of a high cholesterol concentration induces a stabilization of the

receptor’s structure, limiting the extent of conformational fluctuations. In contrast, the 10%

cholesterol system (Fig. 9A-C) exhibits a more complex pattern, with the whole protein
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(Fig. 9C) displaying a lower and broader peak compared to the individual protomers. This

observation implies that the intermediate cholesterol concentration may lead to increased

conformational diversity in the overall receptor complex, potentially reflecting a more dy-

namic and adaptable state. The observations from the first simulation set (Set1) highlight

the asymmetric behavior of the mGluR1 protomers and the distinct impact of cholesterol

on the conformational dynamics of the individual subunits and the receptor as a whole.

Interestingly, the patterns observed in Set2 reveal a somewhat different scenario. In this

set, the system with no cholesterol (0% CHOL) (Fig. 9D-F) exhibits the lowest peaks in

the RMSD distributions of the individual protomers (Protomer A and Protomer B), while

the whole protein (Fig. 9F) displays the highest peak. This suggests that in the absence

of cholesterol, the receptor complex may adopt a more diverse conformational landscape

compared to the individual protomers. Furthermore, the 10% cholesterol system in Set2

(Fig. 9F) shows the lowest peak in the RMSD distribution of the whole protein, revealing a

bimodal pattern similar to that observed in the first simulation set. The patterns observed

across the two independent simulation sets (Set1 and Set2) underscore the nature of the

findings and a relatively consistent reproducibility of the cholesterol-mediated modulation

of mGluR1 conformational dynamics. The asymmetric behavior of the protomers and the

distinct receptor-level responses to varying cholesterol concentrations highlight the complex

and context-dependent nature of the receptor’s structural flexibility.
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Fig. 10. Time series representation of the inter-protomer distance (left panel) and inter-
protomer angle (right panel) in Simulation Set 2.

Considering the inter-protomer angle and distance, the observations from the second sim-

ulation set (Set2) reveal a somewhat inconsistent yet similar pattern. In this set, the 0%

and 25% cholesterol systems exhibit similar behavior, albeit with a higher inter-protomer

distance and lower angle (Fig. 10A) compared to Set1 (Fig. 3). Notably, the 10% cholesterol

system in Set2 displays a distinct behavior, showing a lower inter-protomer distance and a

higher angle, contrasting with Set1 (Fig. 10B). The observed cholesterol-dependent modula-

tion of the inter-protomer distance and angle has important implications for understanding

the functional dynamics of mGluR1. The dimeric arrangement of mGluR1 plays a crucial

role in its signaling properties and allosteric regulation. Changes in the inter-protomer dis-

tance and angle may affect the stability and communication between the mGluR1 protomers,

potentially influencing receptor activation and downstream signaling events.
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Fig. 11. Water density maps illustrate the initial frame (first 200 ns) and final frames
(last 200 ns) for Set 1 across 0%, 10%, and 25% cholesterol concentrations. Vari-
ations in correlation are represented by a color gradient, ranging from 0 (pale
yellow) to 1 (dark blue).

Additionally, when analyzing the water density in Set 2, specifically with 10% cholesterol,

the presence of water in the lower leaflet persists consistently throughout the entire simulation

duration (Fig. 11). In contrast, in the simulations with 0% and 25% cholesterol, there is a

noticeable decrease in water density during the last 200 ns compared to the initial 200 ns of

the simulations (Fig. 11).

Overall, we note contrasting yet consistent trends across the two distinct simulation

sets (Set1 and Set2). While we consistently observe greater conformational changes when

considering the entire protein rather than individual protomers, and the 10% system consis-

tently behaving differently, we also observe a reversal in the arrangement. This underscores

the significance of the findings and the reproducibility of cholesterol-mediated modulation
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of mGluR1 conformational dynamics. The asymmetric behavior of the protomers and the

distinct responses of the receptor to different cholesterol concentrations underscore the com-

plex and context-dependent nature of the receptor’s structural flexibility. These insights

contribute to a deeper understanding of the structure-function relationship of mGluR1 and

the pivotal role of cholesterol in regulating its conformational dynamics. This knowledge may

have important implications for the development of targeted pharmacological interventions

that leverage the cholesterol-mediated modulation of mGluR1 for therapeutic applications.
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Conclusion

In this study, we have investigated the influence of cholesterol on the conformational dynam-

ics of mGluR1. We have observed that cholesterol exerts a more pronounced impact on the

overall conformation of mGluR1 compared to individual protomers, indicating a collective

effect on the receptor’s structural flexibility. Furthermore, our analysis reveals a preferential

localization of cholesterol within the inter-phase of the protein.

Notably, our findings demonstrate that the system with a lower cholesterol concentration

(10%) exhibits greater conformational changes compared to those with higher cholesterol

levels (25%). This observation suggests a concentration-dependent effect of cholesterol on

mGluR1 dynamics, with lower concentrations inducing more pronounced alterations in pro-

tein conformation. Moreover, as cholesterol concentration increases, we observe a trend

towards a more ordered protein structure, characterized by reduced motion between the he-

lices. This highlights the role of cholesterol in stabilizing specific conformational states of

mGluR1, potentially influencing its functional properties.

Additionally, our investigation into the impact of removing the initial six cholesterol

molecules from the crystal structure underscores the significance of cholesterol in shaping

receptor conformational dynamics. We observe notable alterations in the conformational be-

havior of mGluR1 upon the removal of these cholesterol molecules, indicating the importance

of cholesterol-lipid interactions in maintaining the structural integrity of the receptor.

Overall, our study contributes valuable insights into the role of cholesterol in modulat-

ing the conformational dynamics of mGluR1. By elucidating the concentration-dependent

effects of cholesterol and its localization within the protein interphase, we enhance our un-

derstanding of the structural and functional implications of cholesterol-protein interactions

in G protein-coupled receptor signaling. These findings may have broader implications for

drug discovery and therapeutic interventions targeting mGluR1 and related receptors in

neurological disorders.
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(13) Cong, X.; Chéron, J.-B.; Golebiowski, J.; Antonczak, S.; Fiorucci, S. Allosteric modu-

lation mechanism of the mGluR5 transmembrane domain. Journal of chemical infor-

mation and modeling 2019, 59, 2871–2878.

(14) Wu, H.; Wang, C.; Gregory, K. J.; Han, G. W.; Cho, H. P.; Xia, Y.; Niswender, C. M.;

Katritch, V.; Meiler, J.; Cherezov, V. et al. Structure of a class C GPCR metabotropic

glutamate receptor 1 bound to an allosteric modulator. Science 2014,
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