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Abstract—Brain disorders are often associated with changes in brain structure and function, 

where functional changes may be due to underlying structural variations. Gray matter (GM) 
volume segmentation from 3D structural MRI offers vital structural information for brain 
disorders like schizophrenia, as it encompasses essential brain tissues such as neuronal cell bodies, 
dendrites, and synapses, which are crucial for neural signal processing and transmission; changes 
in GM volume can thus indicate alterations in these tissues, reflecting underlying pathological 
conditions. In addition, the use of the ICA algorithm to transform high-dimensional fMRI data into 
functional network connectivity (FNC) matrices serves as an effective carrier of functional 
information. In our study, we introduce a new generative deep learning architecture, the 
conditional efficient vision transformer generative adversarial network (cEViT-GAN), which 
adeptly generates FNC matrices conditioned on GM to facilitate the exploration of potential 
connections between brain structure and function. We developed a new, lightweight self-attention 
mechanism for our ViT-based generator, enhancing the generation of refined attention maps 
critical for identifying structural biomarkers based on GM. Our approach not only generates high 
quality FNC matrices with a Pearson correlation of 0.74 compared to real FNC data, but also uses 
attention map technology to identify potential biomarkers in GM structure that could lead to 
functional abnormalities in schizophrenia patients. Visualization experiments within our study 
have highlighted these structural biomarkers, including the medial prefrontal cortex (mPFC), 
dorsolateral prefrontal cortex (DL-PFC), and cerebellum. In addition, through cross-domain 
analysis comparing generated and real FNC matrices, we have identified functional connections 
with the highest correlations to structural information, further validating the structure-function 
connections. This comprehensive analysis helps to understand the intricate relationship between 
brain structure and its functional manifestations, providing a more refined insight into the 
neurobiological research of schizophrenia. 

 
Ⅰ. INTRODUCTION 

The complex relationship between the brain's structural and functional properties is a critical 
area of research, especially for understanding brain health and disorders, which significantly 
impact human quality of life. Schizophrenia is a profoundly serious and complex brain disorder 
with a wide range of symptoms and manifestations. Research suggests that structural changes in 
the brain, such as changes in the medial prefrontal cortex and enlargement of the lateral ventricles, 
may occur in the early stages of schizophrenia [39]. Whether these structural changes are 
causative factors for the functional abnormalities observed in patients with schizophrenia remains 
a topic worthy of investigation. Structural MRI (sMRI) and functional MRI (fMRI) are essential 
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neuroimaging tools that offer unique insights into the brain's physiology in health and disease [1], 
[2], [3]. sMRI provides high-resolution images crucial for detecting morphological changes in 
gray matter (GM), such as cortical atrophy and hippocampal shrinkage, which are key indicators 
of neurological conditions like Alzheimer’s disease [4], [5]. In contrast, fMRI captures brain 
activity patterns, identifying regions active during specific tasks or states, and is vital for studying 
disorders like schizophrenia or autism where these patterns are often disrupted [6]. The interaction 
between the brain's structural changes and functional abnormalities is intricate and bidirectional. 
Structural alterations can lead to functional impairments, affecting cognitive processes and 
behavior. Despite recognition of this connection, it remains not fully understood due to individual 
differences and the influences of genetic and environmental factors [7].  

The rapid advancement of artificial intelligence, particularly deep learning, offers promising 
potential in neuroimaging and diagnosis of brain diseases. Data fusion techniques in deep learning 
have been employed to explore the correlations between structural and functional brain imaging 
[8]. However, most research in this area has primarily focused on using multimodal information 
for predicting behavioral outcomes [9] or diagnosing brain disorders [10]. These studies highlight 
the increased accuracy in detecting brain disorders using multimodal techniques in neuroscience, 
demonstrating that information from different imaging modalities can be effectively integrated. 
However, the specific processes by which structural and functional modalities correlate, 
particularly in the context of specific brain disorders, remain poorly understood. This knowledge 
gap hinders a better understanding of how structural and functional aspects of the brain influence 
each other. Developing methods to identify common information shared between structural and 
functional imaging in brain disorders is critical, yet challenging, as it involves unraveling complex 
interactions that are not fully explained by current technologies. Nevertheless, existing evidence 
suggests a significant correlation between inter-subject variations in brain structural networks and 
those observed in resting-state fMRI networks [11]. This indicates an underexplored yet 
potentially fruitful area of research in understanding the complex interplay between the brain’s 
structure and function.  

Generative deep learning models, such as generative adversarial networks (GANs) and 
variational autoencoders (VAEs), have shown significant success in neuroimaging applications. 
They excel at simulating neuroimaging data, detecting disease-specific patterns, and enabling 
modality translation, such as converting T1-weighted to T2-weighted MRI scans [45], [46]. This 
proficiency suggests the existence of a potential unifying biological or structural principle in brain 
imaging, bridging the gap between different imaging techniques [12], [13], [14], [15], [16]. The 
differing techniques of these imaging modalities might intersect at a common point of neural 
information within the brain, which argues for a unified strategy to gain insights into brain 
function. However, the integration and synthesis of GM and fMRI data, particularly in deep 
learning applications, remain comparatively underexplored [17], [18]. This contrasts with the 
substantial advancements in GAN models that predominantly focus on medical image synthesis 
between different modalities [47], [48]. fMRI data is typically high-dimensional, posing greater 
complexity in data fusion and generation. As a result, converting high-dimensional fMRI into an 
FNC matrix using ICA algorithms for translation between structural and functional images has not 
been previously explored and is the focus of our investigation. 

The emergence of the vision transformer (ViT) marks a significant shift in computer vision, 
particularly within the realm of neuroimaging [19]. This innovative model diverges from 



traditional convolutional neural networks (CNNs) by incorporating mechanisms initially crafted 
for language processing, such as the self-attention mechanism, enabling a more nuanced and 
holistic image analysis [20]. ViT’s architecture, which dissects images into patches for processing 
through multiple transformer layers, allows for an in-depth analysis, independent of an image 
segment’s spatial location. However, its computational demands, particularly its O(N2 ) 
complexity, pose challenges, propelling the quest for more streamlined architectures [21].  

As researchers seek to enhance the efficiency of ViT through methods like architecture 
pruning and knowledge distillation without compromising performance [22], [23], the value of 
ViT in neuroimaging becomes increasingly apparent. The need for precision in brain scans calls 
for advanced, yet efficient, models, making ViT an attractive option due to its superior 
interpretability facilitated by attention mechanisms. Notably, ViT has been shown to outperform 
conventional CNNs in handling complex medical imaging datasets, which raises the possibility 
that ViT could replace CNNs as the foundational architecture in GANs. Such a shift could utilize 
ViT’s detailed representational capabilities, which could be particularly advantageous for complex 
neuroscientific studies like attention mapping. By capitalizing on ViT’s precision and 
computational efficiency, it could pave the way for significant breakthroughs in detecting and 
visualizing specific biomarkers within brain regions, thereby enhancing our understanding of the 
links between structural and functional neuroimaging. However, for high-dimensional 3D GM 
images, how to reduce the size of patches to obtain more detailed and accurate attention maps 
without significantly increasing the computational complexity of the ViT self-attention module is 
an important issue addressed in this paper. 

To solve the problem of structural to functional brain image synthesis, this paper describes 1) 
the creation of a new conditional GAN model, which is called cEViT-GAN, that can generate 
functional connectivity matrices from GM data. As the generator and discriminator, an efficient 
ViT model is used. Since we utilize the attention maps generated by the ViT to identify potential 
biomarkers of schizophrenia in the brain's structure, we set smaller patches. However, our model 
remains capable of efficient training and operation. 2) In contrast to conventional self-attention 
operations, we select a block-wise self-attention layer that significantly reduces the computational 
cost without compromising performance. The mechanism for block-wise self-attention is versatile. 
The model accentuates regional relationships by employing self-attention operations in each block, 
thereby capturing localized patterns and interactions. In contrast, when inter-block self-attention is 
enabled, it ensures that long-term dependencies across the larger structure are not neglected. This 
dual strategy is ideal for identifying brain biomarkers from GM data. Focusing on specific 
regional relationships that indicate certain conditions or abnormalities is essential, but it is also 
necessary to analyze the entire brain image to completely comprehend and diagnose the issue. 3) 
To enhance training efficiency, we employ a pretrained ViT patch embedding layer, which was 
derived from an upstream task of diagnosing schizophrenia using the same model architecture. 
This allows the GAN model's generator to effectively extract already learned features, thereby 
improving the training efficiency. 4) In addition, our GAN model has the potential to be used as a 
biomarker identification tool for identifying the structural and functional connections of the 
human brain, particularly for various brain diseases such as schizophrenia. 

Ⅱ. RELATED WORKS 
Generative adversarial networks (GANs), initially proposed by [24] and extended by [25], 

have significantly advanced as essential AI tools in various generative tasks. These tasks include 



image and signal generation [26], as well as text-to-image and image-to-image synthesis [27]. In 
medical imaging, GANs play a crucial role in super-resolution, where they enhance image clarity 
and detail, and in the generation of synthetic images. The creation of these synthetic images is 
fundamental for data augmentation, training simulations, and the provision of enhanced diagnostic 
insights without the need for additional radiation exposure or patient involvement [28] [15]. 
Traditionally, GANs have predominantly utilized CNNs for both the generator and discriminator. 
However, the emergence of ViTs has led researchers to investigate more efficient architectures for 
ViT-based GAN models [29] [30]. ViTs are particularly effective in brain imaging, excelling at 
capturing comprehensive brain patterns, thus ensuring a more complete representation and 
superior feature extraction [49], [50]. This capability is especially beneficial in recognizing 
complex neural structures, surpassing the performance of CNNs. For instance, [31] introduced a 
pre-trained ViT model for classifying brain tumors, addressing the limitations of CNNs that tend 
to focus predominantly on minute pixel variations. Additionally, [32] demonstrated an enhanced 
ViT architecture capable of utilizing both structural and functional MRI data for predicting various 
stages of Alzheimer’s disease. Furthermore, the integration of ViT and GAN has emerged as a 
novel trend in medical imaging. An example of this is the study by Zhao et al. [33], who 
developed a swin transformer-based GAN model [34] aimed at effective reconstruction of 
high-resolution MRI images. 

In the domain of medical image synthesis, the focus has been on generating images across 
different modalities, such as CT, MRI, PET, and others. Dalmaz et al. [35] created a new GAN 
model that combines CNNs with transformer blocks. This model makes it much easier to make 
medical images that are similar and work better. However, we were hardly able to find related 
works that corresponded to MRI structural and functional image synthesis, besides our previous 
works, which synthesized FNC data from given sMRI and achieved a high correlation between 
real FNC and generated FNC data [36]. However, our previous use of a basic ViT-based GAN 
architecture was time-consuming and did not include the generation of structural biomarkers, 
which was a significant shortcoming. 

Ⅲ. METHODS 
Our methodology is an innovative combination of deep learning architectures that address the 

complex problem of generating functional neural connectivity (FNC) maps from 3D GM data. Our 
model cEViT-GAN was designed to learn and generate high-fidelity FNC representations. We 
propose an efficient block-wise self-attention technique to avoid the significant computational 
overhead typically associated with ViT's processing of small image patches. This personalized 
strategy preserves ViT's tremendous feature extraction capabilities while maintaining 
computational efficiency, allowing the model to handle the large amounts of data associated with 
GM. We enhance our methods by superimposing the attentional weights from each layer of the 
ViT encoders onto the spatial information of 3D GM images, thereby aiding in the creation of 
sophisticated attention maps that not only reflect activations but also differentiate brain patterns 
between schizophrenia (SZ) and healthy control (HC) participants. Our technique paves the way 
for more insightful neuroimaging studies, potentially aiding early diagnosis and intervention 
efforts for mental health problems, by providing a visual and quantitative differentiation between 
groups. 
A. Generative Adversarial Networks 

Integrating generative adversarial networks (GANs) into the domain of medical imaging 



necessitates a nuanced understanding of their loss functions. For our specific application of 
synthesizing FNC maps from 3D GM data, we construct a composite loss function that ensures the 

generation of realistic and medically informative images. The total loss total  of our GAN 

framework is a weighted sum of four components: 

1 2total G D MSE corr     ,   (1) 

where G  denotes the generator loss, D the discriminator loss, MSE the mean squared 

error loss, and corr the correlation loss. The terms 1 and 2 are hyperparameters that balance 

the contribution of the MSE loss and the correlation loss, respectively. 

The generator loss G  is defined as: 

~ ( )[log ( ( ))]G p D G 
zz z z ,     (2) 

where G is the generator, D is the discriminator, and z is a point sampled from the generator’s 

input noise distribution ( )pz z . The discriminator loss D  is formulated as: 

~ ( ) ~ ( )[log ( )] [log(1 ( ( )))]
dataD p pD D G   

zx x z zx z ,  (3) 

where x represents real data samples from the distribution ( )datap x . The mean squared error 

loss MSE is incorporated to penalize the pixel-wise differences between the generated and real 

images, thus preserving the structural integrity of the FNC maps: 
2

, ( )MSE G   x z z x‖ ‖ .    (4) 

The innovation in our approach is embodied by the correlation loss corr , which ensures that 

the statistical dependencies between regions in the generated FNC maps are reflective of the true 
data. This is crucial for maintaining the biological fidelity of the neural connectivity patterns. The 
correlation loss is defined as: 

   ( )

( )

( )
1
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x z
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x z
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where µ and σ denote the mean and standard deviation, respectively. This loss encourages the 
generated maps to have a correlation structure similar to that of the real FNC maps. 

Our GAN architecture also incorporates a conditional input, whereby the generator receives 
both a sample of noise z and a label indicating the class (SZ or HC). This guides the generator 
towards producing FNC maps that are not only realistic but also correctly aligned with the 
specified condition: 

( )G yz  where {SZ, HC}y .   (6) 



In essence, by carefully crafting the loss function and incorporating conditionality, our 
method aims to drive the  

 
Fig. 1. The proposed methodology involves the analysis of brain MRI scans, specifically those 
labeled as SZ and HC. The objective is to generate group difference FNC data by utilizing an 
well-trained efficient generator from the cEViT-GAN framework. Additionally, attention weights 
are extracted from the ViT encoder to obtain 3D GM attention maps for the different groups. We 
then apply this approach to identify biomarkers associated with schizophrenia. 
 
GAN towards producing medically valuable outputs. 
B. Vision Transformer 
 The vision transformer (ViT) innovatively adapts transformer mechanisms, originally 
designed for natural language processing, to computer vision by treating image patches as a 
sequence of tokens and applying self-attention mechanisms to capture global dependencies within 
the image. 

1) Pre-trained 3D Patch Embedding: The utility of pretrained models in deep learning is 
unparalleled, particularly in domains where data is scarce or where training from scratch is 
computationally prohibitive. Leveraging a pre-trained 3D ViT model, our generator benefits from 
an advanced starting point. This model, initially trained on upstream tasks such as the 
classification of SZ and HC from GM, has already learned a rich hierarchy of features that are 
highly relevant to our target domain. The pre-trained model forms the cornerstone of our 
generator’s architecture. Specifically, for the patch embedding process, we utilize the pre-trained 
embeddings, denoted as: 

  1 2Pre ; ; ; N E P P P ,   (10) 

where iP  corresponds to the flattened vector of the i-th 3D patch, and N is the number of 

non-overlapping 3D patches extracted from the GM input. The function Pre (·) encapsulates the 
process of obtaining the embedded representations using the pre-trained ViT model. 



These pre-trained patch embeddings already encode the spatial hierarchies learned from the 
upstream classification task, providing a richly structured feature space that is finetuned for the 
generator: 

*
pos E E E ,   (11) 

where *E  represents the embeddings that will be utilized in the transformer encoder, and 

posE  is the positional encoding added to the pre-trained embeddings. 

These embeddings serve as the input to the ViT encoder, which comprises multiple layers of 
multi-headed self-attention and feed-forward networks: 

ViTEncoder( )T E ,   (8) 

where T denotes the sequence of transformer encoder outputs corresponding to each patch 
embedding. Subsequently, each token produced by the ViT encoder is passed through a multilayer 
perceptron (MLP) network. This MLP is designed to reconstruct the small patches of the 
generated FNC matrix, transforming the abstract representations learned by the ViT into spatially 
structured outputs: 

 MLP
ipa iFNC T .    (9) 

The collection of FNC patches 
ipaFNC is then reassembled to form the complete FNC map, 

which serves as the generator’s final output: 

 1 2
Reassemble , , ,

Ngen pa pa pa FNC FNC FNC FNC . 

For the discriminator, the 3D ViT discerns between the real and generated FNC maps, 
employing a similar patch-based approach to extract features and perform classification. The 
discriminator’s role is to evaluate the authenticity and quality of the generated FNC maps, guiding 
the generator through the adversarial training process to produce outputs that are increasingly 
indistinguishable from the real FNC maps derived from GM data. By integrating the ViT model 
into both the generator and discriminator of our GAN, we harness its potent capacity for capturing 
intricate patterns and dependencies within the complex data structure of three-dimensional brain 
imaging. 

2) Block-wised Multi-head Self-attention: Incorporating the block-wise multi-head 
self-attention (BMHSA) [37] mechanism into our model optimizes computing efficiency while 
keeping the delicate features required for high-resolution biomarker detection from 3D GM data. 
We used BMHSA in vision tasks because of its excellent performance in dealing with long-text in 
NLP tasks. BMHSA partitions the collection of 3D GM patch embeddings into smaller, 
computationally efficient chunks, facilitating focused self-attention within these subdivisions to 
handle the small patch sizes essential for maintaining resolution in biomarker analysis of 3D GM 
data. Within each block, BMHSA operates by computing self-attention independently, which 
drastically reduces the overall computational load compared to traditional methods. 
Mathematically, the self-attention within a block b can be expressed as: 



 Attn , , softmax
T

b b
b b b b

k

Q KQ K V V
d

 
  

 
 

,   (13) 

where bQ , bK , and bV  are the queries, keys, and values for the block b, and kd  

represents the scaling factor for the dot products within the softmax function to ensure numerical 
stability. 

Leveraging the concept of multi-head attention, BMHSA allows the model to concurrently 
attend to different representational subspaces and positions within each block, formulated as: 

 1BMHSA( , , ) Concat head , ,  head O
hQ K V W  ,  (14) 

  where head Attn , ,Q K V
i i i iQW KW VW ,  (15) 

with each Q
iW  , K

iW , and V
iW  denoting the respective parameter matrices for each 

attention head i, and OW  being the output linear transformation matrix. 

The BMHSA approach ensures the emphasis of intra-block (regional) relationships while 
facilitating the preservation of inter-block (long-range) dependencies. These long-range 
dependencies are crucial for the analysis of structural brain images, as they allow the model to 
piece together localized information to form a comprehensive understanding of the brain’s 
structure: 

    1Concat BMHSA , ,BMHSA B pos  T E E E ,    (16) 

In this equation, T is the output of all the transformer encoder layers put together. It includes 

both detailed and general information about the brain’s structure. The BE  terms show the 

embeddings from each block, and the posE  terms show the positional encodings that are needed 

to keep the 3D MRI data’s natural spatial relationships. 
BMHSA Complexity Analysis: By employing the block-wise multi-head self-attention 

(BMHSA) mechanism, our model achieves significant reductions in computational costs while 
successfully generating high-resolution attention maps. Traditional self-attention mechanisms, 
such as those used in ViT models, exhibit a computational complexity that scales quadratically 

with the length of the sequence n. This complexity is expressed as  2O n d , where d is the 

dimensionality of the attention heads. For long sequences, this scaling becomes computationally 
prohibitive. 

BMHSA addresses this issue by partitioning the input sequence into smaller, fixed-size 
blocks, each of length k. Within each block, self-attention is computed independently, leading to a 

complexity of  2O k d  per block. If the input sequence is divided into m such blocks, with the 

total sequence length n being equal to m k , the initial thought would be to express the overall 

complexity as the sum across all blocks, leading to  2O m k d  . 



However, a more accurate representation of BMHSA’s complexity takes into account the 
parallelizability of these block computations. Since each block’s computation is independent, the 

per-block complexity of  2O k d remains, but the computations across different blocks can be 

performed in parallel. Therefore, the overall computational load does not directly scale with the 
number of blocks m. 

Thus, the total computational complexity of BMHSA can be more accurately described as:  

 2O k d   parallelization factor, 

In conclusion, by judiciously choosing an appropriate block size k, BMHSA effectively 
balances the trade-off between manageable computational costs and the granularity of attention 
required for detailed analysis in tasks such as high resolution biomarker detection from 3D GM 
data. 
C. cEViT-GAN Architecture 

The cEViT-GAN architecture, uniquely designed for analyzing 3D GM data and synthesizing 
FNC maps, stands out in the field of medical image processing by employing a purely 
self-attention mechanism instead of standard convolutional techniques. This purely ViT-based 
approach, in contrast to traditional CNN-based GAN architectures, as detailed in Table 1 which 
outlines the various layers and functions of our cEViT-GAN model. Figure 2 depicts the pipeline 
and overall architecture of cEViT-GAN. 

Generator Architecture: The generator begins by taking small 3D GM patches, labeled as 
either SZ or HC . These patches are initially processed through pre-trained 3D embedding layers, 
utilizing the pre-trained ViT model to capitalize on its extensive feature extraction capabilities 
from GM data. The data then passes through BMHSA layers, which are crucial for efficient 
feature extraction and computational load management. The final stage involves MLPs 
reconstructing the FNC maps from these features, converting transformer outputs into spatially 
structured FNC patches, which are then assembled into a complete FNC map.  

Discriminator Architecture: The discriminator's design features a pure 2D ViT that starts by 
segmenting FNC maps into patches and processing them through the ViT encoder, effectively 
discerning patterns to classify the input and produce a probability score indicating the authenticity 
of the FNC map, a crucial feedback mechanism for the adversarial training of the generator to 
create accurate and realistic FNC maps. 

Ⅳ. EXPERIMENT 
This section will describe the process of experimental setup, including the datasets and 

preprocessing, the training and testing of the models, the establishment of baselines, the 
implementation of the cEViT-GANs, and the experimental design to assess the structural and 
functional aspects of the brain.  
A. Experimental Setups 

1) Datasets: In our study, we utilized two comprehensive datasets pertinent to clinical 
schizophrenia research. Dataset 1 amalgamated data from three distinct studies: fBIRN 
(Functional Imaging Biomedical Informatics Research Network) across seven sites, MPRC 
(Maryland Psychiatric Research Center) spanning three sites, and COBRE (Center for Biomedical 
Research Excellence) at a single site. This aggregation culminated in a total of 827 participants, 
comprising 477 control subjects (average age: 38.76 ± 13.39, encompassing 213 females and 264 



males) and 350 individuals diagnosed with schizophrenia (average age: 38.70 ± 13.14, including 
96 females and 254 males). The fBIRN dataset was acquired using uniform resting-state fMRI 
(rsfMRI) parameters across all sites. We used a standard gradient echo-planar imaging (EPI) 
sequence with a repetition time (TR) of 2000 ms and an echo time (TE) of 30 ms. The voxels were 
3.4375 × 3.4375 × 4 mm in size, and the field of view (FOV) was 220 × 220 mm. The data was 
captured using six Siemens Tim Trio 3-Tesla scanners and one General Electric Discovery MR750 
3.0 Tesla scanner. In the COBRE segment, rsfMRI images were also taken using a standard EPI 
sequence, but with a slightly different TR/TE of 2000/29 ms and voxel sizes of 3.75 × 3.75 × 4.5 
mm, within a field of view (FOV) of 240 × 240 mm, using a 3-Tesla Siemens Tim Trio scanner. 
The MPRC dataset was gathered using a trio of distinct 3-Tesla Siemens scanners, namely the 
Siemens Allegra, Trio, and Tim Trio. 

Dataset 2 contained a total of 815 subjects, collected from several Chinese hospitals, 
including 326 subjects (age: 29.81 ± 8.68, females: 167, males: 159) of typical controls and 489 
SZ individuals (age: 28.98 ± 7.63, females: 229, males: 260). The subjects were Chinese ethnic 
Han groups. The dataset was recruited from seven sites in China with the same recruitment 
criterion, including Peking University Sixth Hospital; Beijing Huilongguan Hospital; Xinxiang 
Hospital Simens; Xinxiang HospitalGE; Xijing Hospital; Renmin Hospital of Wuhan University; 
Zhumadian Psychiatric Hospital [51]. The resting-state fMRI data were collected with the 
following three different types of scanners across the seven sites: 3.0 Tesla Siemens Tim Trio 
Scanner, 3.0 T Siemens Verio Scanner, and 3.0 T Signa HDx GE Scanner (TR/TE = 2000/30 ms, 
voxel spacing size = 3 × 3 × 3 mm, FOV = 220 × 220 mm, and 480/360 volumes). Subjects were 
instructed to relax and lie still in the scanner while remaining calm and awake.

 

Fig. 2. cEViT-GAN’s detailed architecture: The 3D GM and its label (SZ/HC) are input into the 
cEViT-GAN generator, passing through pre-trained 3D embedding layers and an efficient ViT 
encoder, followed by MLP outputs to form the FNC. The discriminator architecture is similar to a 
typical 2D ViT. 
 

2) Pre-processing: To prepare the fMRI data, several critical processes were required: slice 



timing correction, realignment, normalization to the EPI template, and smoothing with a 6 mm 
kernel. Our prior studies contain detailed descriptions of these preprocessing methods. 
Furthermore, FNC data was obtained using fMRI time series cross-correlation analysis. As spatial 
priors, a fully automated spatially limited ICA method and the NeuroMark template [38] were 
utilized. We used a voxel-based morphometry process on the sMRI data to acquire voxel-level 
GM data. 
B. Models 

1)Baselines: The primary goal of our comprehensive investigation of the efficacy and 
performance of several GAN models was to evaluate these models in terms of image-generating 
capabilities and output quality. The baseline models for comparison were carefully chosen, with 
special consideration given to their relevance to our pioneering work in synthesizing FNC from 
GM. While there are no clear previous works for synthesizing FNC, the closest similarity is found 
in the realm of image synthesis. As a result, we chose GAN models known for their expertise in 
this field as our baselines. 

The first group of baselines includes CNN-based GAN models like Pix2Pix and deep 
convolutional GAN (DCGAN). The Pix2Pix model, which employs a U-Net generator and a 
PatchGAN discriminator, is well-known for its ability to solve image-to-image translation 
problems. The importance of this model in our research arises from its demonstrated ability to 
generate high-fidelity images from input images, a process that is like our goal of FNC synthesis 
from GM data. The integration of low and high-level characteristics in the generator by the U-Net 
architecture improves the detail and quality of the output images. Furthermore, the PatchGAN 
discriminator focuses on judging the realism of local image patches, which contributes greatly to 
image sharpness and overall coherence. As a result, these models provide a solid foundation for 
assessing the potential of GANs in our groundbreaking effort to synthesize FNC from GM. 
Moreover, we use traditional self-attention-based cViT-GAN as other baselines, which can show 
the efficiency of our model. 

2) cViT-GAN: We employ the traditional cViT-GAN as another baseline for ablation studies, 
which utilizes conventional self-attention mechanisms. This comparison aims to demonstrate the 
distinct lightweight advantages of our ViT-encoder that incorporates core blockwise multi-head 
self-attention (BMHSA) layers. This experiment not only underscores our design's ability to 
reduce training time and computational complexity but also confirms that our lightweight 
approach maintains training accuracy despite the simplifications. 
    3)cEViT-GANs: Our research into novel GAN models resulted in the creation of the 
cEViT-GAN framework, a revolutionary technique developed exclusively for FNC synthesis. The 
cEViT-GAN models incorporate cutting-edge approaches, including a pre-training strategy 
focused on embedding 3D 

TABLE Ⅰ 
CEVIT-GAN ARCHITECTURE OVERVIEW 

Component Layer/Function Description 
Generator Input Processes 3D GM patches labeled SZ or HC 

Pre-trained 3D Embedding Utilizes pre-trained ViT model for feature 
extraction 

BMHSA Layers Manages computational load, extracts features 
MLPs for Reconstruction Converts encoder outputs to structured FNC 



patches 
Output Assembly Assembles patches into complete FNC map 

Discriminator Patch Embedding Divides FNC maps into patches for processing 
ViT Encoder Processes embedded patches, extracts features 
Classification Output MLP that outputs probability of real or generated 

map 
 
patches and efficient usage of ViT blocks via blockwise self-attention. This novel combination 
intends to improve picture synthesis quality by combining the strengths of CNNs and 
transformers. 
 To optimize cEViT-GAN for our specific needs, we introduced several modifications. The 
first, cEViT-GAN-b3, consists of three parallel BMHSA blocks without interblock self-attention, 
prioritizing speed and efficiency while still delivering high quality images. In addition, the 
cEViT-GAN-b3large includes an interblock self-attention mechanism to enhance the model's 
ability to capture and integrate complex data patterns for more accurate FNC synthesis. In addition, 
the cEViT-GAN-b6 uses six parallel BMHSA blocks without inter-block connections to explore 
the effects of increased parallelism on computational efficiency and image quality. Our most 
advanced configuration, the cEViT-GAN-b6large, forms the cornerstone of our study and serves 
as the basis for all visualization and analysis. This model combines multiple BMHSA layers with 
interblock self-attention, designed to balance precise feature acquisition with efficient processing 
of 3D GM data. The inclusion of interblock self-attention is critical, as it allows for more effective 
integration of information across layers, which can lead to more refined and accurate synthesis of 
FNC from GM data. 
E. Experiments Details 

1) Pre-training: When testing our ViT-based GAN models, including the baseline and our 
cViT-GAN variants, we utilize pre-trained 3D linear embeddings. These embeddings are obtained 
from a previously developed multimodal deep learning model designed for schizophrenia 
diagnosis and classification [17]. The significance of this pre-training is particularly pronounced 
for the generator components of our GANs, facilitating an efficient transfer of learned features 
across medical imaging tasks. This enhances the generalizability and robustness of our models. 

The generators in our cEViT-GANs benefit significantly from starting with weights derived 
from these pre-trained embeddings. This not only accelerates the training process by providing an 
informed initialization but also improves the models’ overall efficiency and effectiveness. The 
embeddings encapsulate a wealth of features relevant to schizophrenia, enriching the generators 
with nuanced neuroimaging patterns associated with the condition. Consequently, our GAN 
models can synthesize FNC images from GM data that are more detailed, and clinically relevant to 
our neurological focus. 

2) Train and Validation: It’s worth noting that while all CNN-based GAN models employ a 
uniform set of parameters and training techniques, ViT-based GANs, including baseline and 
cEViT-GAN variations, utilize a distinct set. For CNN-based GANs, we use Kaiming initialization 
for selecting initial weights and the AdamW optimizer for both the generator and the discriminator, 
setting the learning rate at 1e-3 with a MultistepLR schedule that adjusts at the 20th, 50th, and 
150th epochs. Conversely, ViT-based GAN models, which incorporate pre-trained weights for 3D 
patch embedding in the generator, require a lower learning rate of 1e-4, also with AdamW as the 



optimizer and a MultistepLR schedule making adjustments at the 20th, 50th, and 90th epochs. All 
models are trained with a batch size of 32, and the pre-training stage typically leads to 
convergence around the 90th epoch. 

Using cross-validation on both types of models improves model resilience and dependability. 
This technique is useful for determining how the models would perform on different data sets, 
decreasing the danger of over-fitting and assuring generalization. Our training and validation 
operations are powered by 8 NVIDIA Tesla V100 GPUs, and we utilize PyTorch as our model 
framework. We adopt parallel and distributed training approaches, specifically using PyTorch's 
distribution methods, to distribute the training load across multiple GPUs. This strategy not only 
enhances processing efficiency but also significantly reduces training times. It is particularly 
beneficial for handling the large volumes of data and complex neural network architectures 
required in our research. In addition, we use PyTorch's built-in distribution strategies, which use 
the all-reduce algorithm rather than a parameter server approach. This method efficiently 
aggregates gradients across multiple GPUs to ensure synchronized updates and optimal training 
performance.  
F. Evaluation Metrics 

In our research, we deploy a trio of critical metrics to assess the efficacy of our model in 
synthesizing FNC patterns. These metrics include the Mean Squared Error (MSE), the Pearson 
Correlation Coefficient, and the Cosine Similarity. Each of these metrics plays a crucial role in 
evaluating the precision and reliability of the FNC patterns generated by our model, offering 
distinct insights into the model’s performance and facilitating a comprehensive assessment when 
compared to authentic FNC data. 

1) Mean Squared Error (MSE): MSE is a metric commonly utilized in regression analysis 
and signal processing. It quantifies the average of the squares of errors, which are the differences 
between the estimated values and the actual values. In the context of our FNC data, the MSE is 
calculated as follows: 

 
2

1

1 ˆMSE
n

i i
i

Y Y
n 

   
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superior model performance, signifying a reduced deviation from the true FNC values. 
2) Pearson Correlation Coefficient (PCC): The PCC is a measure that quantifies the linear 

correlation between two datasets. It yields a value within the range of -1 to 1, where 1 denotes a 
total positive linear correlation, 0 signifies no linear correlation, and -1 indicates a total negative 
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Where Y  and Ŷ  are the mean values of the actual and estimated FNCs, respectively. A 



higher absolute value of this coefficient implies a stronger correlation between the generated 
FNCs and the real data. 

3) Cosine Similarity: Cosine Similarity is a metric employed to ascertain the similarity 
between two vectors, irrespective of their magnitude, and is especially pertinent in 
high-dimensional spaces. The cosine similarity between the actual and the model-generated FNC 
vectors is computed as: 
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In this formula, the numerator represents the dot product of the actual and estimated FNC 
vectors, while the denominator is the product of the Euclidean norms of these vectors. 

Together, these metrics provide a strong and flexible way to check how accurate and similar 
the FNC patterns our model creates are to real FNC data. This gives us important information 
about how well the model can copy complex neural connectivity patterns. 
G. Visualizations 

We performed intense brain anatomical and functional visualization based on self-attention 
operations in two phases. The first step is to use attention weights on original brain maps to find 
any biomarkers in GM data while also making a matching FNC. The second step is to compare the 
made FNC with the real FNC, which could help find functional biomarkers for SZ disease. 

1) MRI Attention Maps: To extract attention weights, we used a rollout method, 
concatenating weights from each block from blockwise multihead self-attention and 
superimposing the weights of interblock self-attention onto the averaged block weights, producing 
a comprehensive attention map useful for detecting potential biomarkers in GM data. High 
attention weights help us identify regions of interest that may be connected with various 
neurological diseases, such as SZ. The attention map serves as a guide, showing the most 
important sections of the GM data. Researchers can get insights into the fundamental mechanisms 
of SZ and potentially other neurological illnesses by better understanding these areas. The 
incorporation of attention weights into GM data analysis represents a significant improvement in 
neuroimaging and the research of brain diseases. Fortunately, analyzing the group difference 
(HZ-HC) attention map allowed us to identify brain areas strongly associated with SZ that aligned 
with our existing knowledge. Following on from the analysis of group differences, our model also 
supports the generation of FNC maps based on individual cases of GM. This capability represents 
a promising avenue for the exploration of personalized biomarkers, as it allows the adaptation of 
our approach to individual variations in GM data. By tailoring the analysis to each individual 
subject, researchers can potentially uncover unique patterns and connections in brain structures 
that are specific to individual neurological profiles, increasing the precision and relevance of 
biomarker discovery in conditions such as SZ and other neurological diseases.  

2) FNC Maps: Our cEViT-GANs are capable of generating reasonably accurate FNC maps. 
We generate FNC maps for each subject by conditioning on the GM data from each group (SZ and 
HC), and then average these maps to assess and validate the accuracy and effectiveness of our 
model. Further, by analyzing the averaged group differences in FNC maps, we demonstrate that 
our model can effectively learn these distinctions, using GM as structural input to derive 
functional differences, thereby substantiating the biological significance of the connection 



between structure and function. 
Ⅴ. RESULTS 

This section presents the outcomes of the experiments as well as a visualization of the 
structure and function of the brain using attention maps and FNC biomarkers. Initially, we 
conducted exhaustive experiments on various baselines and our cEViT-GAN variants to ensure 
that our model exhibited superior accuracy and robustness. 
A. Model Performance 

The experimental results shown in Figure 3 highlight the performance differences between 
our baseline models (Pix2Pix, DCGAN, and cViT-GAN) and our new cEViT-GAN variants. From 
these results, it is clear that the standard DCGAN, which uses a pure CNN backbone, 
underperforms in FNC generation, suggesting that pure CNN architectures are not particularly 
effective for this task. Pix2Pix, a well-known GAN model that adapts both the generator and the 
discriminator, meets the requirement for high quality image generation to some extent.  

The use of a pure ViT backbone, as in cViT-GAN, is advantageous for the extraction of 
long-range features due to its self-attention mechanism, but results in higher computational costs. 
Further reduction of the patch size in this context could lead to memory overload. Our proposed 
cEViT-GAN, especially the cEViT-GAN-b6large model with interblock self-attention, shows 
excellent performance; however, the inclusion of interblock self-attention increases the training 
time. The base model of EViT-GAN, such as cEViT-GAN-b6, significantly reduces training 
complexity without compromising accuracy - maintaining the same level of accuracy as 
cViT-GAN but with reduced training time. Therefore, as we explore ways to further reduce patch 
sizes in the future, the use of EViT-GAN could not only reduce training times, but also maintain 
the quality and accuracy of the generated FNCs while improving the refinement of attention maps. 

 



Fig. 3. Comparison of different models in terms of Cosine Similarity and Training Time. 
 

TABLE II 
MODEL PERFORMANCE COMPARISON  

Model Backbone Cosine Similarity Pearson 
Correlation 

Training Time 
(hours) 

Pix2Pix CNN 0.7 0.71 21.4 
DCGAN CNN 0.693 0.693 21.8 

cViT-GAN ViT 0.74 0.74 24.2 
cEViT-GAN-b3 ViT with BMHSA 0.732 0.731 23.4 
cEViT-GAN-b6 ViT with BMHSA 0.74 0.741 23.8 

cEViT-GAN-b6-large ViT with BMHSA 0.741 0.741 24.4 
 
B. MRI Attention Maps 

We analyzed attention weights in our cEViT-GAN generator to generate our 3D GM attention 
maps. We created subject-specific attention maps for each member of our testing set, then tested 
for group differences using a two-sample t-test. Each voxel in our attention maps represents a 
t-value from this statistical test. To account for multiple comparisons, we used the false discovery 
rate (FDR) method with a q < 0.05 threshold. This approach accounts for the possibility of type I 
errors while running several statistical tests. The attention maps that arise emphasize areas with 
statistically significant changes in activation patterns between groups. Figure 4 shows the attention 
maps in a three-plane view. 

 

Fig. 4. The 3D MRI attention maps for group difference analysis (SZ vs HC), which indicate the 
significant ROIs that are strongly associated with schizophrenia disease. 
 

Figure 4 indicates that while generating the related functional outputs, our model prioritized 
four brain regions: the medial pre-frontal cortex (mPFC), the dorsolateral prefrontal cortex 
(DL-PFC), the temporal lobe, and the cerebellum. Schizophrenia is a diverse, complex psychiatric 



condition that frequently involves dysfunctions in numerous brain circuits. Based on traditional 
neuroscience and previous knowledge, mFPC is intimately related to executive processes and 
decision-making, both of which can be affected in schizophrenia [39]. The mPFC is also involved 
in emotional processing, and abnormalities here can be linked to negative schizophrenia 
symptoms including apathy and social disengagement [40]. DL-PFC is required for cognitive 
control and working memory, both of which are frequently impaired in people with schizophrenia. 
Deficits in this area can contribute to the disorder’s hallmarks of disorganized thinking and trouble 
focusing attention. The superior temporal gyrus, in particular, is connected with auditory 
processing and language. Temporal lobe dysfunction has been linked to auditory hallucinations 
and language difficulties seen in schizophrenia patients [41]. Finally, the cerebellum’s significance 
in cognitive processing is now recognized. Cerebellar abnormalities may contribute to cognitive 
impairments and affective dysregulation in schizophrenia, according to recent research [42], [43]. 
C. FNC Biomarkers 

1) FNC Analysis: In this study, a sophisticated GAN model was employed to generate FNC 
outputs from a test dataset. Our analysis revealed that the model’s output for the whole average 
FNC exhibited a strong correlation (0.97) with the actual FNC data across all subjects. This is 
effectively visualized in Figure 5, which compares the model-generated whole average FNC with 
the genuine FNC data. The ability of our GAN model to replicate FNC from 3D MRI scans of GM 
with high accuracy can be credited to the identification of neural structures via independent 
component analysis (ICA). ICA has been known to uncover network-like structures within the 
resting gray matter, providing insights into the model’s capability to replicate these intricate neural 
patterns. The correlation observed in our model’s output with the real data not only validates our 
approach but also aligns it with previous scientific research in neuroimaging [44], [16], [11]. 

2) Group Difference Analysis: We also show the produced and real group-difference FNC 
(HC-SZ). Figure 5 shows a comparison of calculated and actual FNC group differences. Our 
model can infer group-difference FNC from brain structure with a remarkably high correlation 
(0.74) especially given brain function contains unique information above and beyond brain 
structure. Our cEViT-GAN model can identify a strong similarity between the generated 
group-difference FNC and the real one, and the patterns are those that are know to be implicated 
in schizophrenia, including subcortical areas. These include connections between the cerebellum 
and the subcortical (CB-SC), auditory (CB-AUD), somatomotor (CB-SM), visual (CB-VS), 
cingulo-opercular (CB-CC), default mode (CB-DM), and the cerebellum itself (CB-CB). The 
synthetic FNC data obtained by GM has a remarkable correlation with real FNC data, with 
similarities reaching 0.85 in certain subcortical linkages. 

This important finding shows that subcortical structures are important for identifying 
differences between HC and SZ participants and that the cEViT-GAN model has a good 
performance of showing these important structural-functional relationships. The remarkable 
similarity in subcortical areas shows that our model is quite good at reproducing complicated, 
potentially clinically relevant brain patterns. Such capabilities signal new opportunities to improve 
our understanding of diseases such as schizophrenia, to offer more precise diagnostic measures, 
and to personalize therapy methods. Furthermore, our model demonstrates that there is a high 
level of agreement in the difference in values for other pairs of connections, such as 
cingulo-opercular (CC-CC), somatomotor-default mode (SM-DM), and visual-default mode 
(VS-DM). We also find moderate parallelism in visual-auditory (VS-AUD) and 



cingulo-opercular-somatomotor (CC-SM) pairs. These findings provide greater insight into how 
the disparities in FNC observed between the HC and SZ groups may be caused by underlying 
structural issues. The combined insights are critical for developing more refined diagnostic tools 
and therapy approaches for navigating the complexities of schizophrenia. 

3) Cross-domain Analysis: Our FNC matrix cross-domain analysis provides a more detailed 
view of the link between structural and functional data. The produced and real FNC matrices have 
a total similarity measure of 0.74, which shows that there is a significant relationship, but the 
structural data does not fully reflect all functional features. The complicated nature of brain 
functionality, which cannot be entirely extrapolated from structural imaging, may account for this 
disparity. 

Upon examining the cross-domain correlations, it becomes apparent that the within-domain 
correlations, such as AUD-AUD, exhibit a remarkably high similarity (0.955). This suggests that 
the structural data accurately reflects the functional connection of the auditory network. This is 
supported by strong correlations in subdomains like SC-AUD (0.847) and SC-SM (0.824), which 
show stable structural-functional alignment in the motor function and sensory processing domains. 

The cEViT-GAN model captures the cerebellum’s constant functional patterning, as 
evidenced by its strong intra-domain correlation (CB-CB at 0.821). Cross-domain interactions, 
like those between the default mode network and the cerebellum (DMN-CB) and the somatomotor 
and cerebellar regions (SM-CB), have moderate to high correlations. This means that the model 
can show how different parts of the brain work together. Notably, the lower correlations in 
coupling between other regions including SC-CB (0.160) and AUD-CB (0.053) show the 
challenge of mapping functional networks from structural data, especially when there are 
complicated connections between regions. These areas may indicate distinct functional 
characteristics or dynamic interconnections that are not readily apparent in GM data. These 
correlations are specific across domain sizes, from the small 2x2 matrices to the large 17x17 
matrices. This makes them useful for checking the authenticity of FNC representations that have 
been made. Furthermore, it identifies areas where the generative model’s performance could be 
enhanced to more accurately replicate the intricate tapestry of human brain connectivity. 

Finally, our findings highlight the benefits and drawbacks of employing cEViT-GAN to 
replicate FNC matrices using structural data. The model’s high fidelity in some domains 
encourages its use in clinical settings, whereas inequalities in others call for further research into 
the multidimensional nature of brain structure-function interactions. 



 
Fig. 5. The generated whole average FNC vs. real whole average FNC 

D. Structural-to-functional Connectivity 
The identification of biomarkers in SZ by combining structural and functional neuroimaging 

data tells a captivating story about the disorder’s neuropathology. The findings of our investigation 
show a significant agreement between structural and functional indicators, highlighting the 
complicated connection between brain structure and function in SZ. 

Significant structural sections include the medial frontal cortex (mPFC), dorsolateral 
prefrontal cortex (DL-PFC), and cerebellum. Similar functional regions show significant changes 
in connection patterns, particularly in the default mode network (DMN) and auditory and 
somatomotor activities. This correspondence between structural changes and functional 
connectivity disturbances allows for a more comprehensive understanding of SZ pathophysiology. 
For example, functional connectivity disruptions in the mPFC and DL-PFC, which are important 
for executive functioning and cognitive control, coincide with structural alterations in these areas, 
contributing to the cognitive and affective dysregulation seen in SZ patients. Both structural and 
functional findings highlight the importance of the cerebellum in SZ, an area that has been 
understudied until now. Changes in cerebellar areas correspond structurally with changes in 
functional connectivity within the cerebellum and its linkages to other brain networks. This shows 
that the cerebellum may play a role in the larger network dysfunctions that characterize SZ, going 
beyond its traditional concept of motor control. 

Furthermore, the temporal lobe, a region involved in auditory processing, exhibits both 
structural and functional abnormalities, which correspond to clinical symptoms such as auditory 
hallucinations, which are common in SZ. This is supported by the significant correlation in 
functional networks, including the auditory cortex (AUD), which mirrors the anatomical findings. 
These similarities hint at a more integrated model of SZ in which structural anomalies are not 
isolated but have a considerable impact on the functional network dynamics. This model supports 
the idea that SZ is a disorder of "disconnected connection," with the symptoms being caused by 
the interaction of damage to the structure and problems with the way the network works. 

In conclusion, the convergence of structural and functional biomarkers in our work have 
provided some new insights into our understanding of SZ. It demonstrates the interrelated nature 
of structural and functional network changes, providing a more comprehensive view of the 



disorder’s neurobiological roots. We hope our understanding can be further increase by an 
integrative approach like this, pontentially leading to the development of more effective diagnostic 
tools and targeted treatment options that are tailored to the personalized nature of SZ. 

 
Ⅵ. DISCUSSION AND CONCLUSION 

 
In this study, we introduced the cEViT-GAN, a novel approach that combines GAN with ViT 

and a new lightweight blockwise multihead self-attention technique. This model effectively 
generates FNC matrices from brain structural GM data, supporting the neuroscientific and 
biological perspective that there is a link between brain structure and function. 

In particular, in neurological disorders such as schizophrenia, changes in brain function are 
often due to underlying changes in brain GM structure. By analyzing the results generated on a 
per-subject basis, our use of attention map technology has enabled the pinpointing of brain 
structures, such as the medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex (DL-PFC), 
and cerebellum, that drive functional changes. Furthermore, our model effectively simulates 
characteristics and changes similar to those found in real FNCs, providing potential evidence that 
these functional changes originate from specific brain structures. This is particularly evident when 
comparing generated FNCs with real FNCs.  

However, our model has limitations. For example, the conditional generative model, which 
typically operates under the supervision of a target generative object, is influenced by that target 
and attempts to replicate its statistical properties. Consequently, the FNC matrices generated by 
our model are supervised by actual FNC data and are not generated solely on the basis of 
structural GM data. To isolate the unique information derived from FNC structural data, it is 
necessary to eliminate the influence of unconditional generation from actual FNC data, a factor 
not addressed in our experiments. 

Despite these limitations, our model represents a pioneering exploration of the use of 
data-driven 3D structural data to generate high quality FNCs. Our findings on a schizophrenia 
dataset provide guidance for future work. In the future, we aim to further extend and validate our 
model to develop a more generalized pipeline that is potentially applicable to a broader range of 
brain disorders and datasets. 

 



Fig. 6. The generated ’fake’ group difference FNC matrix vs. real group difference FNC matrix. 
 
Ethics for data: We are doing secondary analysis of data from public and private repositories. All 
data were collected under appropriate ethics approval and all subject signed informed consent. 
 
CRediT authorship contribution statement: Yuda Bi: Investigation, Validation, Visualization, 
and Writing – original draft, Writing – review & editing. Anees Abrol: Formal analysis, Writing – 
review & editing. Sihan Jia: Writing – review & editing. Jing Sui: Writing – review & editing, 
Data curation. Vince D. Calhoun: Funding acquisition, Resources, Writing – review & editing. 
 

REFERENCES 
[1] G. D. Pearlson and V. Calhoun, “Structural and functional magnetic resonance imaging in 

psychiatric disorders,” The Canadian Journal of Psychiatry, vol. 52, no. 3, pp. 158–166, 2007.  
[2] R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M.-O. Habert, M. Chupin, 

H. Benali, O. Colliot, A. D. N. Initiative et al., “Automatic classification of patients with 
alzheimer’s disease from structural mri: a comparison of ten methods using the adni database,” 
neuroimage, vol. 56, no. 2, pp. 766–781, 2011.  

[3] U. Khatri and G.-R. Kwon, “Alzheimer’s disease diagnosis and biomarker analysis using 
resting-state functional mri functional brain network with multi-measures features and 
hippocampal subfield and amygdala volume of structural mri,” Frontiers in aging neuroscience, 
vol. 14, p. 818871, 2022.  

[4] X. Zhao, C. K. E. Ang, U. R. Acharya, and K. H. Cheong, “Application of artificial 
intelligence techniques for the detection of alzheimer’s disease using structural mri images,” 
Biocybernetics and Biomedical Engineering, vol. 41, no. 2, pp. 456–473, 2021.  

[5] N. Franzmeier, N. Koutsouleris, T. Benzinger, A. Goate, C. M. Karch, A. M. Fagan, E. 
McDade, M. Duering, M. Dichgans, J. Levin et al., “Predicting sporadic alzheimer’s disease 
progression via inherited alzheimer’s disease-informed machine-learning,” Alzheimer’s & 
Dementia, vol. 16, no. 3, pp. 501–511, 2020.  

[6] J. Oh, B.-L. Oh, K.-U. Lee, J.-H. Chae, and K. Yun, “Identifying schizophrenia using 
structural mri with a deep learning algorithm,” Frontiers in psychiatry, vol. 11, p. 16, 2020.  

[7] C. J. Honey, J.-P. Thivierge, and O. Sporns, “Can structure predict function in the human 
brain?” Neuroimage, vol. 52, no. 3, pp. 766– 776, 2010.  

[8] V. D. Calhoun and J. Sui, “Multimodal fusion of brain imaging data: a key to finding the 
missing link (s) in complex mental illness,” Biological psychiatry: cognitive neuroscience and 
neuroimaging, vol. 1, no. 3, pp. 230–244, 2016.  

[9] J. Sui, R. Jiang, J. Bustillo, and V. Calhoun, “Neuroimaging-based individualized 
prediction of cognition and behavior for mental disorders and health: methods and promises,” 
Biological psychiatry, vol. 88, no. 11, pp. 818–828, 2020.  

[10] B. Rashid and V. Calhoun, “Towards a brain-based predictome of mental illness,” 
Human brain mapping, vol. 41, no. 12, pp. 3468–3535, 2020.  

[11] N. Luo, J. Sui, A. Abrol, J. Chen, J. A. Turner, E. Damaraju, Z. Fu, L. Fan, D. Lin, C. 
Zhuo et al., “Structural brain architectures match intrinsic functional networks and vary across 
domains: a study from 15 000+ individuals,” Cerebral Cortex, vol. 30, no. 10, pp. 5460–5470, 
2020.  



[12] J. Pan, B. Lei, Y. Shen, Y. Liu, Z. Feng, and S. Wang, “Characterization multimodal 
connectivity of brain network by hypergraph gan for alzheimer’s disease analysis,” in Pattern 
Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 
29–November 1, 2021, Proceedings, Part III 4. Springer, 2021, pp. 467–478.  

[13] X. Dai, Y. Lei, Y. Fu, W. J. Curran, T. Liu, H. Mao, and X. Yang, “Multimodal mri 
synthesis using unified generative adversarial networks,” Medical physics, vol. 47, no. 12, pp. 
6343–6354, 2020.  

[14] Y. Skandarani, P.-M. Jodoin, and A. Lalande, “Gans for medical image synthesis: An 
empirical study,” Journal of Imaging, vol. 9, no. 3, p. 69, 2023.  

[15] Y. Liu, A. Chen, H. Shi, S. Huang, W. Zheng, Z. Liu, Q. Zhang, and X. Yang, “Ct 
synthesis from mri using multi-cycle gan for head-andneck radiation therapy,” Computerized 
medical imaging and graphics, vol. 91, p. 101953, 2021.  

[16] N. Luo, J. Sui, A. Abrol, D. Lin, J. Chen, V. M. Vergara, Z. Fu, Y. Du, E. Damaraju, Y. 
Xu et al., “Age-related structural and functional variations in 5,967 individuals across the adult 
lifespan,” Human brain mapping, vol. 41, no. 7, pp. 1725–1737, 2020.  

[17] Y. Bi, A. Abrol, Z. Fu, and V. Calhoun, “Multivit: Multimodal vision transformer for 
schizophrenia prediction using structural mri and functional network connectivity data,” in 2023 
IEEE 20th International Symposium on Biomedical Imaging (ISBI). IEEE, 2023, pp. 1–5.  

[18] M. A. Azam, K. B. Khan, S. Salahuddin, E. Rehman, S. A. Khan, M. A. Khan, S. Kadry, 
and A. H. Gandomi, “A review on multimodal medical image fusion: Compendious analysis of 
medical modalities, multimodal databases, fusion techniques and quality metrics,” Computers in 
biology and medicine, vol. 144, p. 105253, 2022.  

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. 
Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: 
Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.  

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. 
Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 
30, 2017.  

[21] L. Papa, P. Russo, I. Amerini, and L. Zhou, “A survey on efficient vision transformers: 
algorithms, techniques, and performance benchmarking,” arXiv preprint arXiv:2309.02031, 2023.  

[22] Y. Tang, K. Han, Y. Wang, C. Xu, J. Guo, C. Xu, and D. Tao, “Patch slimming for 
efficient vision transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, 2022, pp. 12 165–12 174.  

[23] X. Chen, Q. Cao, Y. Zhong, J. Zhang, S. Gao, and D. Tao, “Dearkd: data-efficient early 
knowledge distillation for vision transformers,” in Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2022, pp. 12 052–12 062.  

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. 
Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information 
processing systems, vol. 27, 2014.  

[25] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint 
arXiv:1411.1784, 2014.  

[26] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative 
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision and 
pattern recognition, 2019, pp. 4401– 4410.  



[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with 
conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and 
pattern recognition, 2017, pp. 1125– 1134.  

[28] C. Han, L. Rundo, K. Murao, T. Noguchi, Y. Shimahara, Z. Á. Milacski, S. Koshino, E. 
Sala, H. Nakayama, and S. Satoh, “Madgan: Unsupervised medical anomaly detection gan using 
multiple adjacent brain mri slice reconstruction,” BMC bioinformatics, vol. 22, no. 2, pp. 1–20, 
2021.  

[29] K. Lee, H. Chang, L. Jiang, H. Zhang, Z. Tu, and C. Liu, “Vitgan: Training gans with 
vision transformers,” arXiv preprint arXiv:2107.04589, 2021.  

[30] S. Hirose, N. Wada, J. Katto, and H. Sun, “Vit-gan: Using vision transformer as 
discriminator with adaptive data augmentation,” in 2021 3rd International Conference on 
Computer Communication and the Internet (ICCCI). IEEE, 2021, pp. 185–189.  

[31] S. Tummala, S. Kadry, S. A. C. Bukhari, and H. T. Rauf, “Classification of brain tumor 
from magnetic resonance imaging using vision transformers ensembling,” Current Oncology, vol. 
29, no. 10, pp. 7498– 7511, 2022.  

[32] S. Sarraf, A. Sarraf, D. D. DeSouza, J. A. Anderson, M. Kabia, and A. D. N. Initiative, 
“Ovitad: Optimized vision transformer to predict various stages of alzheimer’s disease using 
resting-state fmri and structural mri data,” Brain Sciences, vol. 13, no. 2, p. 260, 2023.  

[33] X. Zhao, T. Yang, B. Li, and X. Zhang, “Swingan: A dual-domain swin 
transformer-based generative adversarial network for mri reconstruction,” Computers in Biology 
and Medicine, vol. 153, p. 106513, 2023.  

[34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: 
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF 
international conference on computer vision, 2021, pp. 10 012–10 022.  

[35] O. Dalmaz, M. Yurt, and T. Çukur, “Resvit: Residual vision transformers for multimodal 
medical image synthesis,” IEEE Transactions on Medical Imaging, vol. 41, no. 10, pp. 2598–2614, 
2022.  

[36] Y. Bi, A. Abrol, J. Sui, and V. Calhoun, “Cross-modal synthesis of structural mri and 
functional connectivity networks via conditional vitgans,” arXiv preprint arXiv:2309.08160, 2023.  

[37] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang, “Blockwise self-attention for 
long document understanding,” arXiv preprint arXiv:1911.02972, 2019.  

[38] Y. Du, Z. Fu, J. Sui, S. Gao, Y. Xing, D. Lin, M. Salman, A. Abrol, M. A. Rahaman, J. 
Chen et al., “Neuromark: An automated and adaptive ica based pipeline to identify reproducible 
fmri markers of brain disorders,” NeuroImage: Clinical, vol. 28, p. 102375, 2020.  

[39] X. J. Chai, S. Whitfield-Gabrieli, A. K. Shinn, J. D. Gabrieli, A. Nieto Castañón, J. M. 
McCarthy, B. M. Cohen, and D. Öngür, “Abnormal medial prefrontal cortex resting-state 
connectivity in bipolar disorder and schizophrenia,” Neuropsychopharmacology, vol. 36, no. 10, 
pp. 2009– 2017, 2011.  

[40] J. H. Callicott, A. Bertolino, V. S. Mattay, F. J. Langheim, J. Duyn, R. Coppola, T. E. 
Goldberg, and D. R. Weinberger, “Physiological dysfunction of the dorsolateral prefrontal cortex 
in schizophrenia revisited,” Cerebral cortex, vol. 10, no. 11, pp. 1078–1092, 2000.  

[41] L. L. Davidson and R. W. Heinrichs, “Quantification of frontal and temporal lobe 
brain-imaging findings in schizophrenia: a meta-analysis,” Psychiatry Research: Neuroimaging, 
vol. 122, no. 2, pp. 69–87, 2003.  



[42] N. C. Andreasen and R. Pierson, “The role of the cerebellum in schizophrenia,” 
Biological psychiatry, vol. 64, no. 2, pp. 81–88, 2008.  

[43] H. Picard, I. Amado, S. Mouchet-Mages, J.-P. Olié, and M.-O. Krebs, “The role of the 
cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences,” 
Schizophrenia bulletin, vol. 34, no. 1, pp. 155–172, 2008.  

[44] J. M. Segall, E. A. Allen, R. E. Jung, E. B. Erhardt, S. K. Arja, K. Kiehl, and V. D. 
Calhoun, “Correspondence between structure and function in the human brain at rest,” Frontiers 
in neuroinformatics, vol. 6, p. 10, 2012. 

[45] Dar, S. U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., & Cukur, T. (2019). Image 
synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE 
transactions on medical imaging, 38(10), 2375-2388. 

[46] Zhan, B., Li, D., Wu, X., Zhou, J., & Wang, Y. (2021). Multi-modal MRI image 
synthesis via GAN with multi-scale gate mergence. IEEE Journal of Biomedical and Health 
Informatics, 26(1), 17-26. 

[47] Kalantar, R., Messiou, C., Winfield, J. M., Renn, A., Latifoltojar, A., Downey, K., ... & 
Blackledge, M. D. (2021). CT-based pelvic T1-weighted MR image synthesis using UNet, 
UNet++ and cycle-consistent generative adversarial network (Cycle-GAN). Frontiers in Oncology, 
11, 665807. 

[48] Cao, B., Zhang, H., Wang, N., Gao, X., & Shen, D. (2020, April). Auto-GAN: 
self-supervised collaborative learning for medical image synthesis. In Proceedings of the AAAI 
conference on artificial intelligence (Vol. 34, No. 07, pp. 10486-10493). 

[49] Chen, J., He, Y., Frey, E. C., Li, Y., & Du, Y. (2021). Vit-v-net: Vision transformer for 
unsupervised volumetric medical image registration. arXiv preprint arXiv:2104.06468. 

[50] Barhoumi, Yassine, Nidhal C. Bouaynaya, and Ghulam Rasool. "Efficient scopeformer: 
Towards scalable and rich feature extraction for intracranial hemorrhage detection." IEEE Access 
(2023). 

[51] Meng, Xing, Armin Iraji, Zening Fu, Peter Kochunov, Aysenil Belger, Judy M. Ford, 
Sara McEwen et al. "Multi-model order spatially constrained ICA reveals highly replicable group 
differences and consistent predictive results from resting data: A large N fMRI schizophrenia 
study." NeuroImage: Clinical 38 (2023): 103434. 



Gray Matters: ViT-GAN Framework for Identifying 

Schizophrenia Biomarkers Linking Structural MRI and 

Functional Connectivity 
Yuda Bi∗, Anees Abrol∗, Sihan Jia∗, Jing Sui∗, Vince D. Calhoun∗ 

∗Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), 
Georgia State, Georgia Tech, Emory, Atlanta, GA-30303, USA 

 
Abstract—Brain disorders are often associated with changes in brain structure and function, 

where functional changes may be due to underlying structural variations. Gray matter (GM) 
volume segmentation from 3D structural MRI offers vital structural information for brain 
disorders like schizophrenia, as it encompasses essential brain tissues such as neuronal cell bodies, 
dendrites, and synapses, which are crucial for neural signal processing and transmission; changes 
in GM volume can thus indicate alterations in these tissues, reflecting underlying pathological 
conditions. In addition, the use of the ICA algorithm to transform high-dimensional fMRI data into 
functional network connectivity (FNC) matrices serves as an effective carrier of functional 
information. In our study, we introduce a new generative deep learning architecture, the 
conditional efficient vision transformer generative adversarial network (cEViT-GAN), which 
adeptly generates FNC matrices conditioned on GM to facilitate the exploration of potential 
connections between brain structure and function. We developed a new, lightweight self-attention 
mechanism for our ViT-based generator, enhancing the generation of refined attention maps 
critical for identifying structural biomarkers based on GM. Our approach not only generates high 
quality FNC matrices with a Pearson correlation of 0.74 compared to real FNC data, but also uses 
attention map technology to identify potential biomarkers in GM structure that could lead to 
functional abnormalities in schizophrenia patients. Visualization experiments within our study 
have highlighted these structural biomarkers, including the medial prefrontal cortex (mPFC), 
dorsolateral prefrontal cortex (DL-PFC), and cerebellum. In addition, through cross-domain 
analysis comparing generated and real FNC matrices, we have identified functional connections 
with the highest correlations to structural information, further validating the structure-function 
connections. This comprehensive analysis helps to understand the intricate relationship between 
brain structure and its functional manifestations, providing a more refined insight into the 
neurobiological research of schizophrenia. 

 
Ⅰ. INTRODUCTION 

The complex relationship between the brain's structural and functional properties is a critical 
area of research, especially for understanding brain health and disorders, which significantly 
impact human quality of life. Schizophrenia is a profoundly serious and complex brain disorder 
with a wide range of symptoms and manifestations. Research suggests that structural changes in 
the brain, such as changes in the medial prefrontal cortex and enlargement of the lateral ventricles, 
may occur in the early stages of schizophrenia [39]. Whether these structural changes are 
causative factors for the functional abnormalities observed in patients with schizophrenia remains 
a topic worthy of investigation. Structural MRI (sMRI) and functional MRI (fMRI) are essential 
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neuroimaging tools that offer unique insights into the brain's physiology in health and disease [1], 
[2], [3]. sMRI provides high-resolution images crucial for detecting morphological changes in 
gray matter (GM), such as cortical atrophy and hippocampal shrinkage, which are key indicators 
of neurological conditions like Alzheimer’s disease [4], [5]. In contrast, fMRI captures brain 
activity patterns, identifying regions active during specific tasks or states, and is vital for studying 
disorders like schizophrenia or autism where these patterns are often disrupted [6]. The interaction 
between the brain's structural changes and functional abnormalities is intricate and bidirectional. 
Structural alterations can lead to functional impairments, affecting cognitive processes and 
behavior. Despite recognition of this connection, it remains not fully understood due to individual 
differences and the influences of genetic and environmental factors [7].  

The rapid advancement of artificial intelligence, particularly deep learning, offers promising 
potential in neuroimaging and diagnosis of brain diseases. Data fusion techniques in deep learning 
have been employed to explore the correlations between structural and functional brain imaging 
[8]. However, most research in this area has primarily focused on using multimodal information 
for predicting behavioral outcomes [9] or diagnosing brain disorders [10]. These studies highlight 
the increased accuracy in detecting brain disorders using multimodal techniques in neuroscience, 
demonstrating that information from different imaging modalities can be effectively integrated. 
However, the specific processes by which structural and functional modalities correlate, 
particularly in the context of specific brain disorders, remain poorly understood. This knowledge 
gap hinders a better understanding of how structural and functional aspects of the brain influence 
each other. Developing methods to identify common information shared between structural and 
functional imaging in brain disorders is critical, yet challenging, as it involves unraveling complex 
interactions that are not fully explained by current technologies. Nevertheless, existing evidence 
suggests a significant correlation between inter-subject variations in brain structural networks and 
those observed in resting-state fMRI networks [11]. This indicates an underexplored yet 
potentially fruitful area of research in understanding the complex interplay between the brain’s 
structure and function.  

Generative deep learning models, such as generative adversarial networks (GANs) and 
variational autoencoders (VAEs), have shown significant success in neuroimaging applications. 
They excel at simulating neuroimaging data, detecting disease-specific patterns, and enabling 
modality translation, such as converting T1-weighted to T2-weighted MRI scans [45], [46]. This 
proficiency suggests the existence of a potential unifying biological or structural principle in brain 
imaging, bridging the gap between different imaging techniques [12], [13], [14], [15], [16]. The 
differing techniques of these imaging modalities might intersect at a common point of neural 
information within the brain, which argues for a unified strategy to gain insights into brain 
function. However, the integration and synthesis of GM and fMRI data, particularly in deep 
learning applications, remain comparatively underexplored [17], [18]. This contrasts with the 
substantial advancements in GAN models that predominantly focus on medical image synthesis 
between different modalities [47], [48]. fMRI data is typically high-dimensional, posing greater 
complexity in data fusion and generation. As a result, converting high-dimensional fMRI into an 
FNC matrix using ICA algorithms for translation between structural and functional images has not 
been previously explored and is the focus of our investigation. 

The emergence of the vision transformer (ViT) marks a significant shift in computer vision, 
particularly within the realm of neuroimaging [19]. This innovative model diverges from 



traditional convolutional neural networks (CNNs) by incorporating mechanisms initially crafted 
for language processing, such as the self-attention mechanism, enabling a more nuanced and 
holistic image analysis [20]. ViT’s architecture, which dissects images into patches for processing 
through multiple transformer layers, allows for an in-depth analysis, independent of an image 
segment’s spatial location. However, its computational demands, particularly its O(N2 ) 
complexity, pose challenges, propelling the quest for more streamlined architectures [21].  

As researchers seek to enhance the efficiency of ViT through methods like architecture 
pruning and knowledge distillation without compromising performance [22], [23], the value of 
ViT in neuroimaging becomes increasingly apparent. The need for precision in brain scans calls 
for advanced, yet efficient, models, making ViT an attractive option due to its superior 
interpretability facilitated by attention mechanisms. Notably, ViT has been shown to outperform 
conventional CNNs in handling complex medical imaging datasets, which raises the possibility 
that ViT could replace CNNs as the foundational architecture in GANs. Such a shift could utilize 
ViT’s detailed representational capabilities, which could be particularly advantageous for complex 
neuroscientific studies like attention mapping. By capitalizing on ViT’s precision and 
computational efficiency, it could pave the way for significant breakthroughs in detecting and 
visualizing specific biomarkers within brain regions, thereby enhancing our understanding of the 
links between structural and functional neuroimaging. However, for high-dimensional 3D GM 
images, how to reduce the size of patches to obtain more detailed and accurate attention maps 
without significantly increasing the computational complexity of the ViT self-attention module is 
an important issue addressed in this paper. 

To solve the problem of structural to functional brain image synthesis, this paper describes 1) 
the creation of a new conditional GAN model, which is called cEViT-GAN, that can generate 
functional connectivity matrices from GM data. As the generator and discriminator, an efficient 
ViT model is used. Since we utilize the attention maps generated by the ViT to identify potential 
biomarkers of schizophrenia in the brain's structure, we set smaller patches. However, our model 
remains capable of efficient training and operation. 2) In contrast to conventional self-attention 
operations, we select a block-wise self-attention layer that significantly reduces the computational 
cost without compromising performance. The mechanism for block-wise self-attention is versatile. 
The model accentuates regional relationships by employing self-attention operations in each block, 
thereby capturing localized patterns and interactions. In contrast, when inter-block self-attention is 
enabled, it ensures that long-term dependencies across the larger structure are not neglected. This 
dual strategy is ideal for identifying brain biomarkers from GM data. Focusing on specific 
regional relationships that indicate certain conditions or abnormalities is essential, but it is also 
necessary to analyze the entire brain image to completely comprehend and diagnose the issue. 3) 
To enhance training efficiency, we employ a pretrained ViT patch embedding layer, which was 
derived from an upstream task of diagnosing schizophrenia using the same model architecture. 
This allows the GAN model's generator to effectively extract already learned features, thereby 
improving the training efficiency. 4) In addition, our GAN model has the potential to be used as a 
biomarker identification tool for identifying the structural and functional connections of the 
human brain, particularly for various brain diseases such as schizophrenia. 

Ⅱ. RELATED WORKS 
Generative adversarial networks (GANs), initially proposed by [24] and extended by [25], 

have significantly advanced as essential AI tools in various generative tasks. These tasks include 



image and signal generation [26], as well as text-to-image and image-to-image synthesis [27]. In 
medical imaging, GANs play a crucial role in super-resolution, where they enhance image clarity 
and detail, and in the generation of synthetic images. The creation of these synthetic images is 
fundamental for data augmentation, training simulations, and the provision of enhanced diagnostic 
insights without the need for additional radiation exposure or patient involvement [28] [15]. 
Traditionally, GANs have predominantly utilized CNNs for both the generator and discriminator. 
However, the emergence of ViTs has led researchers to investigate more efficient architectures for 
ViT-based GAN models [29] [30]. ViTs are particularly effective in brain imaging, excelling at 
capturing comprehensive brain patterns, thus ensuring a more complete representation and 
superior feature extraction [49], [50]. This capability is especially beneficial in recognizing 
complex neural structures, surpassing the performance of CNNs. For instance, [31] introduced a 
pre-trained ViT model for classifying brain tumors, addressing the limitations of CNNs that tend 
to focus predominantly on minute pixel variations. Additionally, [32] demonstrated an enhanced 
ViT architecture capable of utilizing both structural and functional MRI data for predicting various 
stages of Alzheimer’s disease. Furthermore, the integration of ViT and GAN has emerged as a 
novel trend in medical imaging. An example of this is the study by Zhao et al. [33], who 
developed a swin transformer-based GAN model [34] aimed at effective reconstruction of 
high-resolution MRI images. 

In the domain of medical image synthesis, the focus has been on generating images across 
different modalities, such as CT, MRI, PET, and others. Dalmaz et al. [35] created a new GAN 
model that combines CNNs with transformer blocks. This model makes it much easier to make 
medical images that are similar and work better. However, we were hardly able to find related 
works that corresponded to MRI structural and functional image synthesis, besides our previous 
works, which synthesized FNC data from given sMRI and achieved a high correlation between 
real FNC and generated FNC data [36]. However, our previous use of a basic ViT-based GAN 
architecture was time-consuming and did not include the generation of structural biomarkers, 
which was a significant shortcoming. 

Ⅲ. METHODS 
Our methodology is an innovative combination of deep learning architectures that address the 

complex problem of generating functional neural connectivity (FNC) maps from 3D GM data. Our 
model cEViT-GAN was designed to learn and generate high-fidelity FNC representations. We 
propose an efficient block-wise self-attention technique to avoid the significant computational 
overhead typically associated with ViT's processing of small image patches. This personalized 
strategy preserves ViT's tremendous feature extraction capabilities while maintaining 
computational efficiency, allowing the model to handle the large amounts of data associated with 
GM. We enhance our methods by superimposing the attentional weights from each layer of the 
ViT encoders onto the spatial information of 3D GM images, thereby aiding in the creation of 
sophisticated attention maps that not only reflect activations but also differentiate brain patterns 
between schizophrenia (SZ) and healthy control (HC) participants. Our technique paves the way 
for more insightful neuroimaging studies, potentially aiding early diagnosis and intervention 
efforts for mental health problems, by providing a visual and quantitative differentiation between 
groups. 
A. Generative Adversarial Networks 

Integrating generative adversarial networks (GANs) into the domain of medical imaging 



necessitates a nuanced understanding of their loss functions. For our specific application of 
synthesizing FNC maps from 3D GM data, we construct a composite loss function that ensures the 

generation of realistic and medically informative images. The total loss total  of our GAN 

framework is a weighted sum of four components: 

1 2total G D MSE corr     ,   (1) 

where G  denotes the generator loss, D the discriminator loss, MSE the mean squared 

error loss, and corr the correlation loss. The terms 1 and 2 are hyperparameters that balance 

the contribution of the MSE loss and the correlation loss, respectively. 

The generator loss G  is defined as: 

~ ( )[log ( ( ))]G p D G 
zz z z ,     (2) 

where G is the generator, D is the discriminator, and z is a point sampled from the generator’s 

input noise distribution ( )pz z . The discriminator loss D  is formulated as: 

~ ( ) ~ ( )[log ( )] [log(1 ( ( )))]
dataD p pD D G   

zx x z zx z ,  (3) 

where x represents real data samples from the distribution ( )datap x . The mean squared error 

loss MSE is incorporated to penalize the pixel-wise differences between the generated and real 

images, thus preserving the structural integrity of the FNC maps: 
2

, ( )MSE G   x z z x‖ ‖ .    (4) 

The innovation in our approach is embodied by the correlation loss corr , which ensures that 

the statistical dependencies between regions in the generated FNC maps are reflective of the true 
data. This is crucial for maintaining the biological fidelity of the neural connectivity patterns. The 
correlation loss is defined as: 

   ( )

( )

( )
1
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G
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x z

x z

x z
,    (5) 

where µ and σ denote the mean and standard deviation, respectively. This loss encourages the 
generated maps to have a correlation structure similar to that of the real FNC maps. 

Our GAN architecture also incorporates a conditional input, whereby the generator receives 
both a sample of noise z and a label indicating the class (SZ or HC). This guides the generator 
towards producing FNC maps that are not only realistic but also correctly aligned with the 
specified condition: 

( )G yz  where {SZ, HC}y .   (6) 



In essence, by carefully crafting the loss function and incorporating conditionality, our 
method aims to drive the  

 
Fig. 1. The proposed methodology involves the analysis of brain MRI scans, specifically those 
labeled as SZ and HC. The objective is to generate group difference FNC data by utilizing an 
well-trained efficient generator from the cEViT-GAN framework. Additionally, attention weights 
are extracted from the ViT encoder to obtain 3D GM attention maps for the different groups. We 
then apply this approach to identify biomarkers associated with schizophrenia. 
 
GAN towards producing medically valuable outputs. 
B. Vision Transformer 
 The vision transformer (ViT) innovatively adapts transformer mechanisms, originally 
designed for natural language processing, to computer vision by treating image patches as a 
sequence of tokens and applying self-attention mechanisms to capture global dependencies within 
the image. 

1) Pre-trained 3D Patch Embedding: The utility of pretrained models in deep learning is 
unparalleled, particularly in domains where data is scarce or where training from scratch is 
computationally prohibitive. Leveraging a pre-trained 3D ViT model, our generator benefits from 
an advanced starting point. This model, initially trained on upstream tasks such as the 
classification of SZ and HC from GM, has already learned a rich hierarchy of features that are 
highly relevant to our target domain. The pre-trained model forms the cornerstone of our 
generator’s architecture. Specifically, for the patch embedding process, we utilize the pre-trained 
embeddings, denoted as: 

  1 2Pre ; ; ; N E P P P ,   (10) 

where iP  corresponds to the flattened vector of the i-th 3D patch, and N is the number of 

non-overlapping 3D patches extracted from the GM input. The function Pre (·) encapsulates the 
process of obtaining the embedded representations using the pre-trained ViT model. 



These pre-trained patch embeddings already encode the spatial hierarchies learned from the 
upstream classification task, providing a richly structured feature space that is finetuned for the 
generator: 

*
pos E E E ,   (11) 

where *E  represents the embeddings that will be utilized in the transformer encoder, and 

posE  is the positional encoding added to the pre-trained embeddings. 

These embeddings serve as the input to the ViT encoder, which comprises multiple layers of 
multi-headed self-attention and feed-forward networks: 

ViTEncoder( )T E ,   (8) 

where T denotes the sequence of transformer encoder outputs corresponding to each patch 
embedding. Subsequently, each token produced by the ViT encoder is passed through a multilayer 
perceptron (MLP) network. This MLP is designed to reconstruct the small patches of the 
generated FNC matrix, transforming the abstract representations learned by the ViT into spatially 
structured outputs: 

 MLP
ipa iFNC T .    (9) 

The collection of FNC patches 
ipaFNC is then reassembled to form the complete FNC map, 

which serves as the generator’s final output: 

 1 2
Reassemble , , ,

Ngen pa pa pa FNC FNC FNC FNC . 

For the discriminator, the 3D ViT discerns between the real and generated FNC maps, 
employing a similar patch-based approach to extract features and perform classification. The 
discriminator’s role is to evaluate the authenticity and quality of the generated FNC maps, guiding 
the generator through the adversarial training process to produce outputs that are increasingly 
indistinguishable from the real FNC maps derived from GM data. By integrating the ViT model 
into both the generator and discriminator of our GAN, we harness its potent capacity for capturing 
intricate patterns and dependencies within the complex data structure of three-dimensional brain 
imaging. 

2) Block-wised Multi-head Self-attention: Incorporating the block-wise multi-head 
self-attention (BMHSA) [37] mechanism into our model optimizes computing efficiency while 
keeping the delicate features required for high-resolution biomarker detection from 3D GM data. 
We used BMHSA in vision tasks because of its excellent performance in dealing with long-text in 
NLP tasks. BMHSA partitions the collection of 3D GM patch embeddings into smaller, 
computationally efficient chunks, facilitating focused self-attention within these subdivisions to 
handle the small patch sizes essential for maintaining resolution in biomarker analysis of 3D GM 
data. Within each block, BMHSA operates by computing self-attention independently, which 
drastically reduces the overall computational load compared to traditional methods. 
Mathematically, the self-attention within a block b can be expressed as: 



 Attn , , softmax
T

b b
b b b b

k

Q KQ K V V
d

 
  

 
 

,   (13) 

where bQ , bK , and bV  are the queries, keys, and values for the block b, and kd  

represents the scaling factor for the dot products within the softmax function to ensure numerical 
stability. 

Leveraging the concept of multi-head attention, BMHSA allows the model to concurrently 
attend to different representational subspaces and positions within each block, formulated as: 

 1BMHSA( , , ) Concat head , ,  head O
hQ K V W  ,  (14) 

  where head Attn , ,Q K V
i i i iQW KW VW ,  (15) 

with each Q
iW  , K

iW , and V
iW  denoting the respective parameter matrices for each 

attention head i, and OW  being the output linear transformation matrix. 

The BMHSA approach ensures the emphasis of intra-block (regional) relationships while 
facilitating the preservation of inter-block (long-range) dependencies. These long-range 
dependencies are crucial for the analysis of structural brain images, as they allow the model to 
piece together localized information to form a comprehensive understanding of the brain’s 
structure: 

    1Concat BMHSA , ,BMHSA B pos  T E E E ,    (16) 

In this equation, T is the output of all the transformer encoder layers put together. It includes 

both detailed and general information about the brain’s structure. The BE  terms show the 

embeddings from each block, and the posE  terms show the positional encodings that are needed 

to keep the 3D MRI data’s natural spatial relationships. 
BMHSA Complexity Analysis: By employing the block-wise multi-head self-attention 

(BMHSA) mechanism, our model achieves significant reductions in computational costs while 
successfully generating high-resolution attention maps. Traditional self-attention mechanisms, 
such as those used in ViT models, exhibit a computational complexity that scales quadratically 

with the length of the sequence n. This complexity is expressed as  2O n d , where d is the 

dimensionality of the attention heads. For long sequences, this scaling becomes computationally 
prohibitive. 

BMHSA addresses this issue by partitioning the input sequence into smaller, fixed-size 
blocks, each of length k. Within each block, self-attention is computed independently, leading to a 

complexity of  2O k d  per block. If the input sequence is divided into m such blocks, with the 

total sequence length n being equal to m k , the initial thought would be to express the overall 

complexity as the sum across all blocks, leading to  2O m k d  . 



However, a more accurate representation of BMHSA’s complexity takes into account the 
parallelizability of these block computations. Since each block’s computation is independent, the 

per-block complexity of  2O k d remains, but the computations across different blocks can be 

performed in parallel. Therefore, the overall computational load does not directly scale with the 
number of blocks m. 

Thus, the total computational complexity of BMHSA can be more accurately described as:  

 2O k d   parallelization factor, 

In conclusion, by judiciously choosing an appropriate block size k, BMHSA effectively 
balances the trade-off between manageable computational costs and the granularity of attention 
required for detailed analysis in tasks such as high resolution biomarker detection from 3D GM 
data. 
C. cEViT-GAN Architecture 

The cEViT-GAN architecture, uniquely designed for analyzing 3D GM data and synthesizing 
FNC maps, stands out in the field of medical image processing by employing a purely 
self-attention mechanism instead of standard convolutional techniques. This purely ViT-based 
approach, in contrast to traditional CNN-based GAN architectures, as detailed in Table 1 which 
outlines the various layers and functions of our cEViT-GAN model. Figure 2 depicts the pipeline 
and overall architecture of cEViT-GAN. 

Generator Architecture: The generator begins by taking small 3D GM patches, labeled as 
either SZ or HC . These patches are initially processed through pre-trained 3D embedding layers, 
utilizing the pre-trained ViT model to capitalize on its extensive feature extraction capabilities 
from GM data. The data then passes through BMHSA layers, which are crucial for efficient 
feature extraction and computational load management. The final stage involves MLPs 
reconstructing the FNC maps from these features, converting transformer outputs into spatially 
structured FNC patches, which are then assembled into a complete FNC map.  

Discriminator Architecture: The discriminator's design features a pure 2D ViT that starts by 
segmenting FNC maps into patches and processing them through the ViT encoder, effectively 
discerning patterns to classify the input and produce a probability score indicating the authenticity 
of the FNC map, a crucial feedback mechanism for the adversarial training of the generator to 
create accurate and realistic FNC maps. 

Ⅳ. EXPERIMENT 
This section will describe the process of experimental setup, including the datasets and 

preprocessing, the training and testing of the models, the establishment of baselines, the 
implementation of the cEViT-GANs, and the experimental design to assess the structural and 
functional aspects of the brain.  
A. Experimental Setups 

1) Datasets: In our study, we utilized two comprehensive datasets pertinent to clinical 
schizophrenia research. Dataset 1 amalgamated data from three distinct studies: fBIRN 
(Functional Imaging Biomedical Informatics Research Network) across seven sites, MPRC 
(Maryland Psychiatric Research Center) spanning three sites, and COBRE (Center for Biomedical 
Research Excellence) at a single site. This aggregation culminated in a total of 827 participants, 
comprising 477 control subjects (average age: 38.76 ± 13.39, encompassing 213 females and 264 



males) and 350 individuals diagnosed with schizophrenia (average age: 38.70 ± 13.14, including 
96 females and 254 males). The fBIRN dataset was acquired using uniform resting-state fMRI 
(rsfMRI) parameters across all sites. We used a standard gradient echo-planar imaging (EPI) 
sequence with a repetition time (TR) of 2000 ms and an echo time (TE) of 30 ms. The voxels were 
3.4375 × 3.4375 × 4 mm in size, and the field of view (FOV) was 220 × 220 mm. The data was 
captured using six Siemens Tim Trio 3-Tesla scanners and one General Electric Discovery MR750 
3.0 Tesla scanner. In the COBRE segment, rsfMRI images were also taken using a standard EPI 
sequence, but with a slightly different TR/TE of 2000/29 ms and voxel sizes of 3.75 × 3.75 × 4.5 
mm, within a field of view (FOV) of 240 × 240 mm, using a 3-Tesla Siemens Tim Trio scanner. 
The MPRC dataset was gathered using a trio of distinct 3-Tesla Siemens scanners, namely the 
Siemens Allegra, Trio, and Tim Trio. 

Dataset 2 contained a total of 815 subjects, collected from several Chinese hospitals, 
including 326 subjects (age: 29.81 ± 8.68, females: 167, males: 159) of typical controls and 489 
SZ individuals (age: 28.98 ± 7.63, females: 229, males: 260). The subjects were Chinese ethnic 
Han groups. The dataset was recruited from seven sites in China with the same recruitment 
criterion, including Peking University Sixth Hospital; Beijing Huilongguan Hospital; Xinxiang 
Hospital Simens; Xinxiang HospitalGE; Xijing Hospital; Renmin Hospital of Wuhan University; 
Zhumadian Psychiatric Hospital [51]. The resting-state fMRI data were collected with the 
following three different types of scanners across the seven sites: 3.0 Tesla Siemens Tim Trio 
Scanner, 3.0 T Siemens Verio Scanner, and 3.0 T Signa HDx GE Scanner (TR/TE = 2000/30 ms, 
voxel spacing size = 3 × 3 × 3 mm, FOV = 220 × 220 mm, and 480/360 volumes). Subjects were 
instructed to relax and lie still in the scanner while remaining calm and awake.

 

Fig. 2. cEViT-GAN’s detailed architecture: The 3D GM and its label (SZ/HC) are input into the 
cEViT-GAN generator, passing through pre-trained 3D embedding layers and an efficient ViT 
encoder, followed by MLP outputs to form the FNC. The discriminator architecture is similar to a 
typical 2D ViT. 
 

2) Pre-processing: To prepare the fMRI data, several critical processes were required: slice 



timing correction, realignment, normalization to the EPI template, and smoothing with a 6 mm 
kernel. Our prior studies contain detailed descriptions of these preprocessing methods. 
Furthermore, FNC data was obtained using fMRI time series cross-correlation analysis. As spatial 
priors, a fully automated spatially limited ICA method and the NeuroMark template [38] were 
utilized. We used a voxel-based morphometry process on the sMRI data to acquire voxel-level 
GM data. 
B. Models 

1)Baselines: The primary goal of our comprehensive investigation of the efficacy and 
performance of several GAN models was to evaluate these models in terms of image-generating 
capabilities and output quality. The baseline models for comparison were carefully chosen, with 
special consideration given to their relevance to our pioneering work in synthesizing FNC from 
GM. While there are no clear previous works for synthesizing FNC, the closest similarity is found 
in the realm of image synthesis. As a result, we chose GAN models known for their expertise in 
this field as our baselines. 

The first group of baselines includes CNN-based GAN models like Pix2Pix and deep 
convolutional GAN (DCGAN). The Pix2Pix model, which employs a U-Net generator and a 
PatchGAN discriminator, is well-known for its ability to solve image-to-image translation 
problems. The importance of this model in our research arises from its demonstrated ability to 
generate high-fidelity images from input images, a process that is like our goal of FNC synthesis 
from GM data. The integration of low and high-level characteristics in the generator by the U-Net 
architecture improves the detail and quality of the output images. Furthermore, the PatchGAN 
discriminator focuses on judging the realism of local image patches, which contributes greatly to 
image sharpness and overall coherence. As a result, these models provide a solid foundation for 
assessing the potential of GANs in our groundbreaking effort to synthesize FNC from GM. 
Moreover, we use traditional self-attention-based cViT-GAN as other baselines, which can show 
the efficiency of our model. 

2) cViT-GAN: We employ the traditional cViT-GAN as another baseline for ablation studies, 
which utilizes conventional self-attention mechanisms. This comparison aims to demonstrate the 
distinct lightweight advantages of our ViT-encoder that incorporates core blockwise multi-head 
self-attention (BMHSA) layers. This experiment not only underscores our design's ability to 
reduce training time and computational complexity but also confirms that our lightweight 
approach maintains training accuracy despite the simplifications. 
    3)cEViT-GANs: Our research into novel GAN models resulted in the creation of the 
cEViT-GAN framework, a revolutionary technique developed exclusively for FNC synthesis. The 
cEViT-GAN models incorporate cutting-edge approaches, including a pre-training strategy 
focused on embedding 3D 

TABLE Ⅰ 
CEVIT-GAN ARCHITECTURE OVERVIEW 

Component Layer/Function Description 
Generator Input Processes 3D GM patches labeled SZ or HC 

Pre-trained 3D Embedding Utilizes pre-trained ViT model for feature 
extraction 

BMHSA Layers Manages computational load, extracts features 
MLPs for Reconstruction Converts encoder outputs to structured FNC 



patches 
Output Assembly Assembles patches into complete FNC map 

Discriminator Patch Embedding Divides FNC maps into patches for processing 
ViT Encoder Processes embedded patches, extracts features 
Classification Output MLP that outputs probability of real or generated 

map 
 
patches and efficient usage of ViT blocks via blockwise self-attention. This novel combination 
intends to improve picture synthesis quality by combining the strengths of CNNs and 
transformers. 
 To optimize cEViT-GAN for our specific needs, we introduced several modifications. The 
first, cEViT-GAN-b3, consists of three parallel BMHSA blocks without interblock self-attention, 
prioritizing speed and efficiency while still delivering high quality images. In addition, the 
cEViT-GAN-b3large includes an interblock self-attention mechanism to enhance the model's 
ability to capture and integrate complex data patterns for more accurate FNC synthesis. In addition, 
the cEViT-GAN-b6 uses six parallel BMHSA blocks without inter-block connections to explore 
the effects of increased parallelism on computational efficiency and image quality. Our most 
advanced configuration, the cEViT-GAN-b6large, forms the cornerstone of our study and serves 
as the basis for all visualization and analysis. This model combines multiple BMHSA layers with 
interblock self-attention, designed to balance precise feature acquisition with efficient processing 
of 3D GM data. The inclusion of interblock self-attention is critical, as it allows for more effective 
integration of information across layers, which can lead to more refined and accurate synthesis of 
FNC from GM data. 
E. Experiments Details 

1) Pre-training: When testing our ViT-based GAN models, including the baseline and our 
cViT-GAN variants, we utilize pre-trained 3D linear embeddings. These embeddings are obtained 
from a previously developed multimodal deep learning model designed for schizophrenia 
diagnosis and classification [17]. The significance of this pre-training is particularly pronounced 
for the generator components of our GANs, facilitating an efficient transfer of learned features 
across medical imaging tasks. This enhances the generalizability and robustness of our models. 

The generators in our cEViT-GANs benefit significantly from starting with weights derived 
from these pre-trained embeddings. This not only accelerates the training process by providing an 
informed initialization but also improves the models’ overall efficiency and effectiveness. The 
embeddings encapsulate a wealth of features relevant to schizophrenia, enriching the generators 
with nuanced neuroimaging patterns associated with the condition. Consequently, our GAN 
models can synthesize FNC images from GM data that are more detailed, and clinically relevant to 
our neurological focus. 

2) Train and Validation: It’s worth noting that while all CNN-based GAN models employ a 
uniform set of parameters and training techniques, ViT-based GANs, including baseline and 
cEViT-GAN variations, utilize a distinct set. For CNN-based GANs, we use Kaiming initialization 
for selecting initial weights and the AdamW optimizer for both the generator and the discriminator, 
setting the learning rate at 1e-3 with a MultistepLR schedule that adjusts at the 20th, 50th, and 
150th epochs. Conversely, ViT-based GAN models, which incorporate pre-trained weights for 3D 
patch embedding in the generator, require a lower learning rate of 1e-4, also with AdamW as the 



optimizer and a MultistepLR schedule making adjustments at the 20th, 50th, and 90th epochs. All 
models are trained with a batch size of 32, and the pre-training stage typically leads to 
convergence around the 90th epoch. 

Using cross-validation on both types of models improves model resilience and dependability. 
This technique is useful for determining how the models would perform on different data sets, 
decreasing the danger of over-fitting and assuring generalization. Our training and validation 
operations are powered by 8 NVIDIA Tesla V100 GPUs, and we utilize PyTorch as our model 
framework. We adopt parallel and distributed training approaches, specifically using PyTorch's 
distribution methods, to distribute the training load across multiple GPUs. This strategy not only 
enhances processing efficiency but also significantly reduces training times. It is particularly 
beneficial for handling the large volumes of data and complex neural network architectures 
required in our research. In addition, we use PyTorch's built-in distribution strategies, which use 
the all-reduce algorithm rather than a parameter server approach. This method efficiently 
aggregates gradients across multiple GPUs to ensure synchronized updates and optimal training 
performance.  
F. Evaluation Metrics 

In our research, we deploy a trio of critical metrics to assess the efficacy of our model in 
synthesizing FNC patterns. These metrics include the Mean Squared Error (MSE), the Pearson 
Correlation Coefficient, and the Cosine Similarity. Each of these metrics plays a crucial role in 
evaluating the precision and reliability of the FNC patterns generated by our model, offering 
distinct insights into the model’s performance and facilitating a comprehensive assessment when 
compared to authentic FNC data. 

1) Mean Squared Error (MSE): MSE is a metric commonly utilized in regression analysis 
and signal processing. It quantifies the average of the squares of errors, which are the differences 
between the estimated values and the actual values. In the context of our FNC data, the MSE is 
calculated as follows: 
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Here, n denotes the total number of FNC entries, iY  represents the actual FNC value, and 

îY  signifies the estimated FNC value produced by the model. A lower MSE value is indicative of 

superior model performance, signifying a reduced deviation from the true FNC values. 
2) Pearson Correlation Coefficient (PCC): The PCC is a measure that quantifies the linear 

correlation between two datasets. It yields a value within the range of -1 to 1, where 1 denotes a 
total positive linear correlation, 0 signifies no linear correlation, and -1 indicates a total negative 
linear correlation. In evaluating our model, this coefficient is defined as: 
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Where Y  and Ŷ  are the mean values of the actual and estimated FNCs, respectively. A 



higher absolute value of this coefficient implies a stronger correlation between the generated 
FNCs and the real data. 

3) Cosine Similarity: Cosine Similarity is a metric employed to ascertain the similarity 
between two vectors, irrespective of their magnitude, and is especially pertinent in 
high-dimensional spaces. The cosine similarity between the actual and the model-generated FNC 
vectors is computed as: 
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In this formula, the numerator represents the dot product of the actual and estimated FNC 
vectors, while the denominator is the product of the Euclidean norms of these vectors. 

Together, these metrics provide a strong and flexible way to check how accurate and similar 
the FNC patterns our model creates are to real FNC data. This gives us important information 
about how well the model can copy complex neural connectivity patterns. 
G. Visualizations 

We performed intense brain anatomical and functional visualization based on self-attention 
operations in two phases. The first step is to use attention weights on original brain maps to find 
any biomarkers in GM data while also making a matching FNC. The second step is to compare the 
made FNC with the real FNC, which could help find functional biomarkers for SZ disease. 

1) MRI Attention Maps: To extract attention weights, we used a rollout method, 
concatenating weights from each block from blockwise multihead self-attention and 
superimposing the weights of interblock self-attention onto the averaged block weights, producing 
a comprehensive attention map useful for detecting potential biomarkers in GM data. High 
attention weights help us identify regions of interest that may be connected with various 
neurological diseases, such as SZ. The attention map serves as a guide, showing the most 
important sections of the GM data. Researchers can get insights into the fundamental mechanisms 
of SZ and potentially other neurological illnesses by better understanding these areas. The 
incorporation of attention weights into GM data analysis represents a significant improvement in 
neuroimaging and the research of brain diseases. Fortunately, analyzing the group difference 
(HZ-HC) attention map allowed us to identify brain areas strongly associated with SZ that aligned 
with our existing knowledge. Following on from the analysis of group differences, our model also 
supports the generation of FNC maps based on individual cases of GM. This capability represents 
a promising avenue for the exploration of personalized biomarkers, as it allows the adaptation of 
our approach to individual variations in GM data. By tailoring the analysis to each individual 
subject, researchers can potentially uncover unique patterns and connections in brain structures 
that are specific to individual neurological profiles, increasing the precision and relevance of 
biomarker discovery in conditions such as SZ and other neurological diseases.  

2) FNC Maps: Our cEViT-GANs are capable of generating reasonably accurate FNC maps. 
We generate FNC maps for each subject by conditioning on the GM data from each group (SZ and 
HC), and then average these maps to assess and validate the accuracy and effectiveness of our 
model. Further, by analyzing the averaged group differences in FNC maps, we demonstrate that 
our model can effectively learn these distinctions, using GM as structural input to derive 
functional differences, thereby substantiating the biological significance of the connection 



between structure and function. 
Ⅴ. RESULTS 

This section presents the outcomes of the experiments as well as a visualization of the 
structure and function of the brain using attention maps and FNC biomarkers. Initially, we 
conducted exhaustive experiments on various baselines and our cEViT-GAN variants to ensure 
that our model exhibited superior accuracy and robustness. 
A. Model Performance 

The experimental results shown in Figure 3 highlight the performance differences between 
our baseline models (Pix2Pix, DCGAN, and cViT-GAN) and our new cEViT-GAN variants. From 
these results, it is clear that the standard DCGAN, which uses a pure CNN backbone, 
underperforms in FNC generation, suggesting that pure CNN architectures are not particularly 
effective for this task. Pix2Pix, a well-known GAN model that adapts both the generator and the 
discriminator, meets the requirement for high quality image generation to some extent.  

The use of a pure ViT backbone, as in cViT-GAN, is advantageous for the extraction of 
long-range features due to its self-attention mechanism, but results in higher computational costs. 
Further reduction of the patch size in this context could lead to memory overload. Our proposed 
cEViT-GAN, especially the cEViT-GAN-b6large model with interblock self-attention, shows 
excellent performance; however, the inclusion of interblock self-attention increases the training 
time. The base model of EViT-GAN, such as cEViT-GAN-b6, significantly reduces training 
complexity without compromising accuracy - maintaining the same level of accuracy as 
cViT-GAN but with reduced training time. Therefore, as we explore ways to further reduce patch 
sizes in the future, the use of EViT-GAN could not only reduce training times, but also maintain 
the quality and accuracy of the generated FNCs while improving the refinement of attention maps. 

 



Fig. 3. Comparison of different models in terms of Cosine Similarity and Training Time. 
 

TABLE II 
MODEL PERFORMANCE COMPARISON  

Model Backbone Cosine Similarity Pearson 
Correlation 

Training Time 
(hours) 

Pix2Pix CNN 0.7 0.71 21.4 
DCGAN CNN 0.693 0.693 21.8 

cViT-GAN ViT 0.74 0.74 24.2 
cEViT-GAN-b3 ViT with BMHSA 0.732 0.731 23.4 
cEViT-GAN-b6 ViT with BMHSA 0.74 0.741 23.8 

cEViT-GAN-b6-large ViT with BMHSA 0.741 0.741 24.4 
 
B. MRI Attention Maps 

We analyzed attention weights in our cEViT-GAN generator to generate our 3D GM attention 
maps. We created subject-specific attention maps for each member of our testing set, then tested 
for group differences using a two-sample t-test. Each voxel in our attention maps represents a 
t-value from this statistical test. To account for multiple comparisons, we used the false discovery 
rate (FDR) method with a q < 0.05 threshold. This approach accounts for the possibility of type I 
errors while running several statistical tests. The attention maps that arise emphasize areas with 
statistically significant changes in activation patterns between groups. Figure 4 shows the attention 
maps in a three-plane view. 

 

Fig. 4. The 3D MRI attention maps for group difference analysis (SZ vs HC), which indicate the 
significant ROIs that are strongly associated with schizophrenia disease. 
 

Figure 4 indicates that while generating the related functional outputs, our model prioritized 
four brain regions: the medial pre-frontal cortex (mPFC), the dorsolateral prefrontal cortex 
(DL-PFC), the temporal lobe, and the cerebellum. Schizophrenia is a diverse, complex psychiatric 



condition that frequently involves dysfunctions in numerous brain circuits. Based on traditional 
neuroscience and previous knowledge, mFPC is intimately related to executive processes and 
decision-making, both of which can be affected in schizophrenia [39]. The mPFC is also involved 
in emotional processing, and abnormalities here can be linked to negative schizophrenia 
symptoms including apathy and social disengagement [40]. DL-PFC is required for cognitive 
control and working memory, both of which are frequently impaired in people with schizophrenia. 
Deficits in this area can contribute to the disorder’s hallmarks of disorganized thinking and trouble 
focusing attention. The superior temporal gyrus, in particular, is connected with auditory 
processing and language. Temporal lobe dysfunction has been linked to auditory hallucinations 
and language difficulties seen in schizophrenia patients [41]. Finally, the cerebellum’s significance 
in cognitive processing is now recognized. Cerebellar abnormalities may contribute to cognitive 
impairments and affective dysregulation in schizophrenia, according to recent research [42], [43]. 
C. FNC Biomarkers 

1) FNC Analysis: In this study, a sophisticated GAN model was employed to generate FNC 
outputs from a test dataset. Our analysis revealed that the model’s output for the whole average 
FNC exhibited a strong correlation (0.97) with the actual FNC data across all subjects. This is 
effectively visualized in Figure 5, which compares the model-generated whole average FNC with 
the genuine FNC data. The ability of our GAN model to replicate FNC from 3D MRI scans of GM 
with high accuracy can be credited to the identification of neural structures via independent 
component analysis (ICA). ICA has been known to uncover network-like structures within the 
resting gray matter, providing insights into the model’s capability to replicate these intricate neural 
patterns. The correlation observed in our model’s output with the real data not only validates our 
approach but also aligns it with previous scientific research in neuroimaging [44], [16], [11]. 

2) Group Difference Analysis: We also show the produced and real group-difference FNC 
(HC-SZ). Figure 5 shows a comparison of calculated and actual FNC group differences. Our 
model can infer group-difference FNC from brain structure with a remarkably high correlation 
(0.74) especially given brain function contains unique information above and beyond brain 
structure. Our cEViT-GAN model can identify a strong similarity between the generated 
group-difference FNC and the real one, and the patterns are those that are know to be implicated 
in schizophrenia, including subcortical areas. These include connections between the cerebellum 
and the subcortical (CB-SC), auditory (CB-AUD), somatomotor (CB-SM), visual (CB-VS), 
cingulo-opercular (CB-CC), default mode (CB-DM), and the cerebellum itself (CB-CB). The 
synthetic FNC data obtained by GM has a remarkable correlation with real FNC data, with 
similarities reaching 0.85 in certain subcortical linkages. 

This important finding shows that subcortical structures are important for identifying 
differences between HC and SZ participants and that the cEViT-GAN model has a good 
performance of showing these important structural-functional relationships. The remarkable 
similarity in subcortical areas shows that our model is quite good at reproducing complicated, 
potentially clinically relevant brain patterns. Such capabilities signal new opportunities to improve 
our understanding of diseases such as schizophrenia, to offer more precise diagnostic measures, 
and to personalize therapy methods. Furthermore, our model demonstrates that there is a high 
level of agreement in the difference in values for other pairs of connections, such as 
cingulo-opercular (CC-CC), somatomotor-default mode (SM-DM), and visual-default mode 
(VS-DM). We also find moderate parallelism in visual-auditory (VS-AUD) and 



cingulo-opercular-somatomotor (CC-SM) pairs. These findings provide greater insight into how 
the disparities in FNC observed between the HC and SZ groups may be caused by underlying 
structural issues. The combined insights are critical for developing more refined diagnostic tools 
and therapy approaches for navigating the complexities of schizophrenia. 

3) Cross-domain Analysis: Our FNC matrix cross-domain analysis provides a more detailed 
view of the link between structural and functional data. The produced and real FNC matrices have 
a total similarity measure of 0.74, which shows that there is a significant relationship, but the 
structural data does not fully reflect all functional features. The complicated nature of brain 
functionality, which cannot be entirely extrapolated from structural imaging, may account for this 
disparity. 

Upon examining the cross-domain correlations, it becomes apparent that the within-domain 
correlations, such as AUD-AUD, exhibit a remarkably high similarity (0.955). This suggests that 
the structural data accurately reflects the functional connection of the auditory network. This is 
supported by strong correlations in subdomains like SC-AUD (0.847) and SC-SM (0.824), which 
show stable structural-functional alignment in the motor function and sensory processing domains. 

The cEViT-GAN model captures the cerebellum’s constant functional patterning, as 
evidenced by its strong intra-domain correlation (CB-CB at 0.821). Cross-domain interactions, 
like those between the default mode network and the cerebellum (DMN-CB) and the somatomotor 
and cerebellar regions (SM-CB), have moderate to high correlations. This means that the model 
can show how different parts of the brain work together. Notably, the lower correlations in 
coupling between other regions including SC-CB (0.160) and AUD-CB (0.053) show the 
challenge of mapping functional networks from structural data, especially when there are 
complicated connections between regions. These areas may indicate distinct functional 
characteristics or dynamic interconnections that are not readily apparent in GM data. These 
correlations are specific across domain sizes, from the small 2x2 matrices to the large 17x17 
matrices. This makes them useful for checking the authenticity of FNC representations that have 
been made. Furthermore, it identifies areas where the generative model’s performance could be 
enhanced to more accurately replicate the intricate tapestry of human brain connectivity. 

Finally, our findings highlight the benefits and drawbacks of employing cEViT-GAN to 
replicate FNC matrices using structural data. The model’s high fidelity in some domains 
encourages its use in clinical settings, whereas inequalities in others call for further research into 
the multidimensional nature of brain structure-function interactions. 



 
Fig. 5. The generated whole average FNC vs. real whole average FNC 

D. Structural-to-functional Connectivity 
The identification of biomarkers in SZ by combining structural and functional neuroimaging 

data tells a captivating story about the disorder’s neuropathology. The findings of our investigation 
show a significant agreement between structural and functional indicators, highlighting the 
complicated connection between brain structure and function in SZ. 

Significant structural sections include the medial frontal cortex (mPFC), dorsolateral 
prefrontal cortex (DL-PFC), and cerebellum. Similar functional regions show significant changes 
in connection patterns, particularly in the default mode network (DMN) and auditory and 
somatomotor activities. This correspondence between structural changes and functional 
connectivity disturbances allows for a more comprehensive understanding of SZ pathophysiology. 
For example, functional connectivity disruptions in the mPFC and DL-PFC, which are important 
for executive functioning and cognitive control, coincide with structural alterations in these areas, 
contributing to the cognitive and affective dysregulation seen in SZ patients. Both structural and 
functional findings highlight the importance of the cerebellum in SZ, an area that has been 
understudied until now. Changes in cerebellar areas correspond structurally with changes in 
functional connectivity within the cerebellum and its linkages to other brain networks. This shows 
that the cerebellum may play a role in the larger network dysfunctions that characterize SZ, going 
beyond its traditional concept of motor control. 

Furthermore, the temporal lobe, a region involved in auditory processing, exhibits both 
structural and functional abnormalities, which correspond to clinical symptoms such as auditory 
hallucinations, which are common in SZ. This is supported by the significant correlation in 
functional networks, including the auditory cortex (AUD), which mirrors the anatomical findings. 
These similarities hint at a more integrated model of SZ in which structural anomalies are not 
isolated but have a considerable impact on the functional network dynamics. This model supports 
the idea that SZ is a disorder of "disconnected connection," with the symptoms being caused by 
the interaction of damage to the structure and problems with the way the network works. 

In conclusion, the convergence of structural and functional biomarkers in our work have 
provided some new insights into our understanding of SZ. It demonstrates the interrelated nature 
of structural and functional network changes, providing a more comprehensive view of the 



disorder’s neurobiological roots. We hope our understanding can be further increase by an 
integrative approach like this, pontentially leading to the development of more effective diagnostic 
tools and targeted treatment options that are tailored to the personalized nature of SZ. 

 
Ⅵ. DISCUSSION AND CONCLUSION 

 
In this study, we introduced the cEViT-GAN, a novel approach that combines GAN with ViT 

and a new lightweight blockwise multihead self-attention technique. This model effectively 
generates FNC matrices from brain structural GM data, supporting the neuroscientific and 
biological perspective that there is a link between brain structure and function. 

In particular, in neurological disorders such as schizophrenia, changes in brain function are 
often due to underlying changes in brain GM structure. By analyzing the results generated on a 
per-subject basis, our use of attention map technology has enabled the pinpointing of brain 
structures, such as the medial prefrontal cortex (mPFC), dorsolateral prefrontal cortex (DL-PFC), 
and cerebellum, that drive functional changes. Furthermore, our model effectively simulates 
characteristics and changes similar to those found in real FNCs, providing potential evidence that 
these functional changes originate from specific brain structures. This is particularly evident when 
comparing generated FNCs with real FNCs.  

However, our model has limitations. For example, the conditional generative model, which 
typically operates under the supervision of a target generative object, is influenced by that target 
and attempts to replicate its statistical properties. Consequently, the FNC matrices generated by 
our model are supervised by actual FNC data and are not generated solely on the basis of 
structural GM data. To isolate the unique information derived from FNC structural data, it is 
necessary to eliminate the influence of unconditional generation from actual FNC data, a factor 
not addressed in our experiments. 

Despite these limitations, our model represents a pioneering exploration of the use of 
data-driven 3D structural data to generate high quality FNCs. Our findings on a schizophrenia 
dataset provide guidance for future work. In the future, we aim to further extend and validate our 
model to develop a more generalized pipeline that is potentially applicable to a broader range of 
brain disorders and datasets. 

 



Fig. 6. The generated ’fake’ group difference FNC matrix vs. real group difference FNC matrix. 
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