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Abstract: Myriad studies over the last decade have highlighted the immense influence of environmen-
tal factors on mental health, as well as the key role environmental data play in tracking diseases. The
ease of access to data on physical surroundings within epidemiological studies is critical to unlocking
these relationships and promoting positive future mental health outcomes. The Adolescent Brain Cog-
nitive Development (ABCD) Study is the largest ongoing longitudinal and observational study explor-
ing brain development and child health among children from 21 sites across the United States. The new
“Urban-Satellite” (UrbanSat) variables of the ABCD Study® consists of 11 satellite-data derived envi-
ronmental indicators associated with each subject’s residential address at their baseline visit, including
land cover and land use, nighttime lights, and population characteristics. In this paper, we present these
UrbanSat variables and provide a review of the current literature that links environmental indicators
with mental health, as well as key aspects that must be considered when using satellite data for mental
health research. We also highlight and discuss significant links of the satellite data variables to the de-
fault mode network clustering coefficient and cognition. This comprehensive dataset provides the foun-

dation for large-scale environmental epidemiology research.
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1. Introduction

The idea of mapping diseases spatially to understand how they relate to the human and physical envi-
ronment has a rich history of applications, going back to the pioneering work of John Snow, who in
1854 mapped the locations of cholera cases in London to identify its source around a pump at Broad
Street [1]. Since then, many studies have highlighted the complex inter-relationships between the phys-
ical environment and public health [2,3]. Recent studies emphasize the link between environmental
factors and mental disorders [4], with 12-20% of conditions like depression and anxiety attributed to
environmental influences [5].

Projected to cause around 250,000 additional deaths annually between 2030 and 2050 [6], climate change
also challenges mental health, especially during extreme weather events, with more than two thirds of
children experiencing posttraumatic stress symptoms post- disasters (reviewed in [7]) and extreme
weather conditions and crises elevating anxiety and distress [8,9] [10]. Such detrimental effects on
health have spurred the adoption and development of Geographical Information Systems (GIS) tech-
nologies , including geospatial and remotely sensed observations for understanding the impacts of ep-
idemics and other health aspects on human’s lives [11].

Newer satellites are enhancing remote sensing for global environmental monitoring [12]. They
provide synoptic coverage at various spatial and temporal resolutions [13], allowing understanding of
many aspects of Earth’s surface, water, and atmospheric systems, especially in remote areas affected by
climate change[14].As of 2023, 6,718 operational satellites orbit Earth [15], capturing electromagnetic
radiation to elucidate land changes and approximate environmental conditions [16], hence allowing to
track environment influences on physical and mental health, and supporting disease mapping and ep-
idemiology [16,17]. Despite ever improving satellite data and more than half of the world’s population
living in cities, a gap remains in investigating the impact of the physical environment on mental health.

We introduce "Urban Satellite" variables (UrbanSat) [2], measuring population density to repre-
sent urbanicity using satellite imagery. This refined UrbanSat version, featuring 11 environmental at-
tributes, is part of the Adolescent Brain Cognitive Developments™ Study (ABCD Study®) the largest
ongoing U.S. study on child brain development across 21 sites [18] encompassing a cohort of over 11,000
children aged 9-10 with extensive measures on physical and mental health, neurocognition, social and
emotional functions, culture, environment, and multimodal brain imaging [19].

In the following sections, we review recent studies on UrbanSat attributes relating to mental health
and neuroimaging data and describe our developed variables linking satellite imagery with a USA-

wide longitudinal neuroimaging cohort of adolescents.

2. Satellite data sources for public health research



The first studies to utilize satellite-based observations for public health applications looked at Aer-
osol Optical Depth (AOD) data to examine the relation between environmental pollution and autism
spectrum disorder (ASD) [20] and impaired adaptive and cognitive functioning [21] following early life
exposure to PM:zs. The main advantage of satellite measurements of air pollutants (PMzs, NOz and oth-
ers) over in sity measurements of air quality is their availability across space and time and the ability to
track their change and distribution [22].

With the launch and availability of satellite data in ever improving spatial, spectral and temporal
resolutions, studies have begun examining the relation between other measurable aspects of Earth and
public health, such as land cover, land use, landscape structure, vegetation cover, water bodies [23],
population distribution and nighttime lights, with applications that include assessing risk areas, map-
ping diseases [12] and predicting disease distribution [24] in geographical areas that have traditionally

been less accessible.

2.1. Remote sensing satellites and sensors

Remote spectral imaging began in the 1960s with the Television Infrared Observation Satellite (TI-
ROS) series, initiating experimental weather satellites for systematic Earth imaging [25]. Advancements
post-1960s significantly expanded satellite imagery availability, with key satellites marking the evolu-

tion (Figure 1).
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Figure 1. Milestones in the launch of Earth observation satellites, with resolution given in paren-

theses.

Some of the major satellites used in the field of mental health include Landsat, the Moderate Res-
olution Imaging Spectroradiometer (MODIS), Sentinel series of satellites, the Defense Meteorological
Satellite Program Operational Line Scanner (DMSP/OLS) and high and very-high spatial resolution
imagery collected by small satellites and satellite constellations (e.g., RapidEye, Terra Bella and SpaceX)

which have become available since the 2000’s.

2.1.1. Landsat



The 1972 launch of Landsat-1, marking the onset of systematic, repetitive Earth observations, rev-
olutionized the accessibility of multispectral satellite imagery and its use across many applications [26].
To date, the Landsat series of satellites has collected more than 10 million satellite images of the Earth.
While Landsat data have been used for a wide range of public health applications [27] [28,29], the ex-
ploration of land cover and land use impacts on mental health, including schizophrenia [30] and related

cognitive facets [31], presents an emerging field of research.

2.1.2. MODIS

The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on Terra and
Aqua satellites (1999 and 2002, respectively) marked another milestone in satellite records, offering a
broad spectral range and field of view, with a spatial resolution of 250 m — 1000 m and 1-2 day revisit
periods. Numerous studies have leveraged MODIS data to explore mental health correlations, such as
Aerosol Optical Depth (AOD) with schizophrenia [32] and depression [31,33], to evaluate urban green-
ness' alleviative effects on depression [34], stratified by age, socioeconomic status, and urbanization

[35], and temperature's relation to depression [36] and cognitive decline [37].

2.1.3. Sentinel

The European Space Agency (ESA) and the European Commission 's Sentinel program, comprises
satellites like Sentinel-1 and Sentinel-2, launched in 2014 and 2015 respectively, equipped with radar
and multispectral instruments for diverse environmental monitoring. These publicly accessible data
have since been applied for public health, including mental health relations to AODs [38], COVID-19
distribution analysis [39] and the impact of the pandemic on winter cropping through management

practices [40].

2.1.4. DMSP-OLS and VIIRS

Sensors like the Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS)
collect data to measure Earth's nighttime lights (NTL), widely used by the scientific community for
various applications [41]. The assumption is that NTL emission, indicative of developed land, can infer
the urban extent, economic activity across scales, and light exposure impacts on health [42,43].
DMSP/OLS NTL data has been associated with adverse mental health outcomes, including a higher
risk of autism spectrum disorders [44], and increased depressive mood [3]. While a direct link to mental
health may not be evident, nighttime light can serve as an important proxy for studying the potential
relationships between urbanization, lower socioeconomic status [3], and factors such as disrupted sleep

patterns [45] influencing mental health outcomes.



The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Part-
nership (S-NPP) satellite, launched in 2011, succeeds DMSP-OLS for low-light Earth imaging. VIIRS
day/night band (DNB) offers higher spatial resolution, reduced city center “over-saturation” due to a
wider radiometric range and onboard calibration enhancing data quality [46]. These improvements
make VIIRS DNB effective for mapping lighting temporal changes [47], offering higher resolution and
frequency to better infer socio-economic properties such as population counts, gross regional product
(GRP) and electrical power generation [48]. Several studies have relied on VIIRS data for establishing
the link between artificial outdoor light and mental disorders, including substance use disorder and

depression [49], and sleep disorders [50].

2.1.5. High-resolution satellite EO imagery

Since the 2000's, there has been a significant advancement in the availability of high-resolution
and very high-resolution Electro-Optical (EO) satellite imagery. Very high-resolution data collected by
IKONQOS, Quickbird and GeoEye, followed by the increasing availability of small satellites and satellite
constellations (e.g., RapidEye, Terra Bella and SpaceX) have become available since the 2000’s, allowing
access to cheaper and more frequent daily imagery [51]. Several studies employed high to very high-
resolution imagery in the context of mental health, for instance linking reduced air pollution through
green spaces to improved working memory and decreased inattentiveness [52].

We provide in the Supplementary materials a description of methods for satellite data extraction

and processing.

3. A decade of remotely sensed epidemiology: academic literature trends

Since satellite data’s adoption in public health, studies examining its relation to environmental
characteristics and mental health outcomes such as depression and anxiety [53] have steadily increased.
Additionally, satellite data has been crucial in responding to public health crises, aiding understanding

and response to the COVID-19 pandemic [54-57].

3.1. Land Cover and Land Use measurements and their relation to mental health

While discussions surrounding the environmental determinants of physical health are well-estab-
lished [58-60], the association between Land Use and Land Cover (LULC) patterns and mental disor-
ders has emerged as an increasingly crucial area of research.

As such, a major focus is on urbanization, which has been linked to a higher prevalence of mental

health disorders [61], while conversely, the density of green spaces and access to nature within urban



environments have shown an inverse relationship with stress levels and the incidence of mental disor-
ders [62]. As such, Dzhambov et al. (2018) [63] used Landsat-8 data to find that neighborhood green
spaces moderate the negative impact of traffic noise on mental health.

Interestingly, evidence suggests that green spaces have a positive influence on development from
an early age. For instance, Engemann et al (2019) [62] demonstrated that childhood residence in low-
green areas elevated mental illness risk by up to 55% in Danes [62], with both genetic predisposition
and green space exposure influencing schizophrenia risk [64]. Similar positive effects on cognitive de-
velopment [52], partly attributed to a decrease in air pollution levels , and reduced problematic behav-
iors [120] in children were observed in studies from Barcelona and South Korea, using high-resolution
satellite data and the modified soil-adjusted vegetation index (MSAVI) respectively, highlighting the
benefits of green environments for children's mental development. Longitudinal evidence shows short
and long-term greenspace exposure near residences reduces adolescent aggressive behaviors, with
even slight vegetation increases causing significant behavioral improvement. These associations re-
mained unaffected by sociodemographic and neighborhood quality factors, suggesting greenspace as
a preventive measure for urban externalizing problems[65]. Likewise, studies in China and Rome also
linked higher vegetation indexes and residential greenness to reduced ADHD symptoms [66] and im-
proved attention-related test performance in children, partly attributed to lowered nitrogen dioxide
(NO2) levels [67]. Interestingly, protective effects of green space might be particularly relevant for cer-
tain subgroups with children from lower-income households with greenspace access experiencing
lower perceived stress against environmental risks like artificial light at night and air pollution [68].
First evidence also points to beneficial effects of green space in the prenatal period. Residential street
view-based green space, particularly tree coverage, was associated with lower postpartum depression
risk [69], and satellite-based vegetation measurements of green space were linked to a reduced somati-
zation and anxiety symptoms among mothers in a Spanish birth cohort [70]. These results underscore
the multifaceted benefits of green environments by highlighting their potential to promote maternal
mental well-being during critical developmental periods, ultimately contributing to fostering positive
child outcomes.

Notably, these benefits extend beyond early development. A comparison of street view and satel-
lite methods assessing green and blue spaces in Beijing revealed an inverse association with geriatric
depression [71]. Further, Brown et al., 2018 [72] confirmed the link between green surroundings, meas-
ured by NDVI, and mental health in elderly Medicare beneficiaries in Florida , showing 18% and 28%
lower risk of Alzheimer's disease and depression, respectively, in greener areas. Interestingly, as also
noted above in children, the positive effect specifically applied to low-income neighborhoods, where

an increased greenness was correlated with a 37% lower depression risk compared to wealthier areas



suggesting green environments may boost mental well-being in older adults, especially in disadvan-
taged areas, possibly through promoting physical activity, social interaction, and, thereby, stress reduc-
tion. Indeed, several studies have established a link between green space and lower stress. For instance,
a study on older men from the Caerphilly Prospective Study found urban environment aspects, like
housing type and easy street access , associated with reduced psychological distress, highlighting the
significance of careful urban planning for healthier communities [73]. Indeed, residential tree canopy
coverage (TCC) had the potential to counteract the impact of the Covid-19 pandemic on psychological
distress with a 1% increase in TCC linked to a 5% decrease in distress prevalence [74].

Evidence shows protective effects of green spaces on mental health globally, yet it's underexplored
in rapidly urbanizing regions with economic disparities like sub-Saharan Africa. A study from South
Africa showcased the role of green environments in mitigating depression, particularly among middle-
income individuals and African populations, emphasizing the importance of incorporating environ-
mental considerations into sustainable socioeconomic development efforts in such contexts [75]. While
delving into such relationships, it becomes apparent that ecological and economic factors intertwine in
distinct ways across countries. As such, urban green space and Gross Domestic Product (GDP) were
linked to a nation's happiness level, with urban green space influencing happiness in wealthier coun-
tries and GDP in less wealthy ones. Social support mediated the relationship between urban green
space and happiness, while GDP moderated this connection [76].

While numerous studies have highlighted the positive impacts of green spaces on mental health,
it is essential to approach this subject with a nuanced perspective taking into account critical mediators
of this relationship. A recent Dutch study delved into the long-term relationship between residential
greenery exposure and adult suicide mortality, emphasizing individual level risk factors in this associ-
ation [77]. Likewise, it has been revealed that the presence and severity of affective disorders are asso-
ciated not just with population density, but with the quality of neighborhood's socioeconomic, physical,
and social characteristics.[78]. Further evidence for such indirect pathways was provided by Wang et
al. 2020 [79] who found that 62% of the relationship between streetscape greenery and mental wellbeing
is mediated by factors like physical activity, stress, air quality, noise, and social cohesion, while NDVI
greenery is partially mediated by physical activity and social cohesion, explaining 22% of the associa-
tion. This suggests that factors beyond urbanization, including elements like socioeconomic status,

noise levels, social cohesion, and safety, may significantly influence mental health outcomes.

3.3 Remotely sensed nighttime light measurements and mental health

Satellite-measured nighttime lights (NTL) acting as proxies for urbanization, economic and indus-

trial activity, and population distribution, have demonstrated relationships with a variety of mental



health outcomes. For instance, Ohayon et al. (2016) [45] relied on DMSP-OLS observations to link higher
nighttime lights (NTL) levels with delayed bedtime and wake up time, shorter sleep duration, increased
daytime sleepiness, and dissatisfaction with sleep quantity and quality, raising the likelihood of circa-
dian rhythm disorder diagnosis. This relationship was confirmed in a study involving US adolescents
associating higher NTL levels with later weeknight bedtimes, shorter sleep durations, and an increased
past-year mood and anxiety disorders prevalence [80]. Similarly, in children aged 2 to 18, increased
NTL exposure within 500 meters of residence elevated sleep disturbances and sleep disorders risk ,
particularly among those under 12 [50]. These findings underscore the importance of further research
to explore potential interventions for reducing NTL exposure to improve mental and sleep quality.
Further, research has additionally highlighted the links between higher NTL and worse mental
health outcomes. In South Korea, Min and Min (2018) [43] found significant associations between NTL
and depressive symptoms and suicidal behaviors in South Korean adults. Similarly, in the Netherlands,
NTL exposure within 100 meters of residence was related to higher depressive symptoms among indi-
viduals aged 18 to 65, even after adjusting for confounding factors like air pollution with no such rela-
tionship observed for larger 600-meter buffers around residences [81]. This was confirmed by Liao et
al. (2022) [3] using data extracted from United Kingdom Biobank Cohort participants to associate higher
NTL with increased mental, including depressed mood, tiredness/lethargy, and physical health prob-
lems such as obesity as well as more air pollution, less green space, higher economic and neighborhood
deprivation and higher household poverty. Leveraging this dataset, a further study established a con-
nection between heightened NTL exposure and an elevated risk of substance use disorder and depres-
sion, particularly in individuals with increased iron deposition in the hippocampus and basal ganglia
[49]. Several studies have also tied NTL emissions with measurements of people’s perceptions of health
and safety, at times showing beneficial effects of NTL, such as feelings of safety and self-reported health

[82].

3.4 Satellite data and neuroimaging

Despite many opportunities, research exploring the relationship between satellite data, brain fea-
tures and mental health remains scarce. A seminal stud by Xu et al. (2022) [2] provided evidence for a
satellite-data derived urbanicity factor being negatively related to medial prefrontal cortex volume and
positively to cerebellar vermis volume in Chinese (“CHIMGEN “ sample) and European young adults
(“IMAGEN" cohort). Urbanicity also correlated with functional network connectivity, particularly in
Chinese participants, and was associated with both positive and negative outcomes like perspective-
taking and depression symptoms, mediated by brain changes, with susceptibility peaking during mid-

childhood and adolescence.



In addition, Dadvand et al. (2018) [83] demonstrated that green neighborhoods may benefit brain
development and cognitive function. Specifically, greenness exposure was associated with prefrontal
cortex and cerebellar and premotor white matter, predicting improved working memory and reduced

inattentiveness.

4. UrbanSat variables in the ABCD Study
4.1. Sample description

The ABCD Study’s UrbanSat variables consist of 11 key environmental indicators representing
land cover characteristics, nighttime lights, population estimates and remote sensing indices in 2017
(see supplemental Figure 1 for a histogram), which were derived from multiple sources, including the
Copernicus Global Land Service (CGLS) [84], the Earth Observation Group (EOG) of the Colorado
School of Mines [85], WorldPop [86] and Sentinel-2 data processed within Google Earth Engine (GEE)
(Table 1). The data are available through the NIMH data archive as part of the ABCD Study 5.0 release

(http://dx.doi.org/10.15154/8873-zj65) and include satellite data values linked up to three concurrent
addresses for each participant at the baseline study visit when the participants were 9-10 years-old [87],

more information is in the supplement.

Table 1: A description of the 11 key UrbanSat environmental indicators within the ABCD Study

Description Units Source

1 Land Use and Land Cover (LULC)
1.1 Percent 2017 Built-up land use Fraction of total (0 —1) CGLS
1.2 Percent 2017 forest area Fraction of total (0 — 1) CGLS
1.3 Percent 2017 cropland use Fraction of total (0 —1) CGLS
1.4 Percent 2017 grass area Fraction of total (0 —1) CGLS
1.5 Percent 2017 permanent inland water area Fraction of total (0 —1) CGLS
1.6 Percent 2017 seasonal water area Fraction of total (0 —1) CGLS

2 Nighttime Lights
2.1 Total monthly average 2017 night-light radiance nW/cm?/sr CGLS

3 Population
3.1 Total 2017 population Number of people WorldPop

4 Spectral Indices
4.1 Percent 2017 area with NDVI index over 0.2 Fraction of total (0 — 1) Sentinel-2 (GEE)
4.2 Percent 2017 area with NDWI index over 0.3 Fraction of total (0 —1) Sentinel-2 (GEE)
4.3 Average 2017 NDBI index value NDBI index value Sentinel-2 (GEE)

Abbreviations: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normal-
ized Difference Built-up Index (NDBI), Copernicus Global Land Service (CGLS), Google Earth Engine (GEE)

4.2. Data analysis


http://dx.doi.org/10.15154/8873-zj65

Various Urban-Satellite data sources were unified into new raster files with identical parameters

(extent, pixel size, and pixel locations) using a custom Python script, aggregated at approximately 1km

grid covering the 48 contiguous US states, with detailed methodology available in the supplement.

Input data for each dataset were obtained for the year 2017 to align with the baseline ABCD Study

visit timing (October 2016 thru October 2018) and comprised LULC (Figure 2 and Table 2), NTL and

population data (Figure 3) and spectral indices (Figure 4), which are described in more detail in the

supplement.

Table 2: A description of the UrbanSat Copernicus classifications incorporated into the ABCD

Study.

LULC

Copernicus classification

Forest

Grass
Crop
Urban
Water

111 — 116: Closed Forest (evergreen or deciduous, needle or broad leaf,
mixed, unknown)

121 - 126: Open Forest (evergreen or deciduous, needle or broad leaf,
mixed, unknown)

30: Herbaceous vegetation

40: Cultivated and managed vegetation/ agriculture (cropland)

50: Urban/ built up

80: Permanent inland water bodies




Figure 2: The spatial distribution and characteristics of five of the Land Use / Land Cover (LULC) maps

covering the 48 contiguous US states incorporated in the “Urban Satellite” indicators: (a) forest percent; (b) crop

percent; (c) grass percent; (d) permanent inland water percent; € seasonal water percent.
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Figure 3: The spatial distribution of (a) nighttime light sourced from the Earth Observation Group (EOG)
Annual VNL V2 product [88]. These data provide an average monthly radiance at an original resolution of 15
arc-seconds (approximately 500 m). The VNL 2 data are based on VIIRS satellite observations and include filter-
ing for clouds, removal of fires, and background isolation. Our aggregated nighttime light product provides the
sum of annual nighttime light radiance values within each 1 km output pixel.(b) population data from 2017 are
based on WorldPop Population Counts [89], specifically the US unconstrained top-down 100 m resolution da-
taset. These data take population census counts and use other geospatial data to disaggregate census tract infor-
mation into 100 m by 100 m pixels. Our aggregated population raster sums the WorldPop populations within

each 1 km pixel. at the national (top) and regional (bottom) levels.
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Figure 4: The spatial distribution of (a) Normalized Difference Vegetation Index (NDVI), (b) Normalized

Difference Built-up Index (NDBI) and (c) Normalized Difference Water Index (NDWI) within the Urban-Satellite
dataset calculated using 2017 Sentinel-2 Multispectral Instrument Level-1C data accessed through Google Earth
Engine (GEE); A comparison between the percentage of (e) forest cover and (f) NDBI within the Washington DC

area (reference is provided in figure (d).

4.3. UrbanSat characterization and association with behavioral, cognition and brain function in the ABCD
Study

The UrbanSat data in ABCD release 5.0 encompasses 11 variables across 3 baseline addresses, re-
flecting diverse regional environmental aspects (see supplement and Supplemental Figure 1). A strong
correlation emerged between forest and built-up land use, NDVI, NDBI, nighttime lights, and popula-
tion, whereas NDWI showed moderate correlations with other indicators (Figure 5, left), and details

are available in the supplement).
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Figure 5: Left: Cross correlation among 11 UrbanSat indicators in the ABCD Study. Right: Seven
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ICNs within the default mode network. ACC: anterior cingulate cortex, PCC: posterior cingulate cortex.

4.3.1 Behavior and cognition



To demonstrate the influence of UrbanSat indicators on behavior, cognition and brain function,
we examined associations with measures from the ABCD’Study’s baseline assessments at ages 9-10 and
utilized the total problem count from the Child Behavior Checklist (CBCL) [90] and the total score com-
posite from the NIH Toolbox® cognition battery [91] for our analyses. Detailed assessment methodol-

ogies and findings are available in the supplement.

4.3.2. Resting state functional MRI data

We extracted 53 intrinsic connectivity networks (ICNs) via a spatially constrained independent
component analysis framework, organizing them into seven functional domains (see supplemental Fig-
ure 2 and Table S1). We computed Functional Network Connectivity (FNC) and represented the brain
as a connected graph, focusing on the default mode network (DMN, Figure 5 right). We calculated the
average clustering coefficient of DMN ICNs to represent brain function in our UrbanSat association

analyses. Detailed methodologies and equations are provided in the supplementary materials.

4.3.3. Results

We evaluated the correlation between SES (household income and parental education) and UrbanSat
indicators (supplementary materials and Table S2). The level of parental education was significantly
and negatively correlated to built-up land, NDBI, nighttime lights, and population, and positively cor-
related to crop land, forest land and NDVI. Household income presented very similar associations with
UrbanSat indicators and was most significantly correlated with NDBI. Therefore, due to multi-colline-
arity two sets of linear mixed effect models were examined with and without SES covariates, were
implemented for UrbanSat association analyses.

Without including SES, UrbanSat indicators were associated with cognition and DMN clustering (ex-
cept for forest land), with NTL also being associated with problem behavior (Table 3 top panel). Under
consideration of SES, NDBI was significantly associated with the cognitive total score, and NTL was
significantly associated with DMN clustering coefficient and associated with cognitive score with a

trend toward significance (Table 3 bottom panel).

Table 3. Significant associations of UrbanSat indicators with the CBCL total problem, cognitive total

score and DMN clustering coefficient in children ages 9-10 years.

UrbanSat CBCL total problem Cognitive total score | DMN clustering
indicators N= 8715 N= 8561 N= 6837
P-value | % Variance | P-value | % Variance | P-value | % Variance
(sign*) (sign®) (sign*)

Top: Linear mixed effect model without SES




Built-up land N.S. N.S. 1.28e-13  0.81%(-)  6.90e-03t  0.20%(+)

Forest land N.S. N.S. 7.96e-21 1.89%(+) N.S. N.S.
NDBI N.S. N.S. 8.79e-59 7.21%(-) 1.92e-04  0.50%(+)
NDVI N.S. N.S. 7.27e-38  4.58%(+) 1.54e-03 0.34%(-)
Nighttime lights ~ 6.40e-03*  0.11%(+)  1.20e-38 2.62%(-) 1.86e-08  0.60%(+)
Population N.S. N.S. 1.99e-20 5.06%(-) 1.76e-03  0.21%(+)

Bottom: Linear mixed effect model with SES covariates

NDBI N.S. N.S. 391e-07  0.74%(-) N.S. N.S.
Nighttime lights N.S. N.S. 5.51e-03t  0.11%(-) 1.71e-03  0.20%(+)
Household incomet 5.38e-18 1.53%(-) 5.57e-74  7.26%(+) 2.13e-08 0.84%(-)
Educationt N.S. N.S. 2.05e-77  7.28%(+)  5.24e-03*  0.20%(-)

*: sign of linear effect; N.S.: not significant.
*: Treading significant with 1.00e-2 > p value > 4.5e-3 (Bonferroni correction threshold).

1: effects are similar across different UrbanSat indicators. We report results from NDBI models.

5. Discussion

In the last few decades understanding the complex links between physical environment and men-
tal health has advanced significantly due to enhanced satellite and airborne sensor technologies. This
paper highlights studies exploring mental health correlations with environmental properties captured
via satellite imagery, like land cover, urbanization, and NTL. These satellites offer insights into various
spatial, spectral and temporal dimensions of human's physical environment, even in traditionally in-
accessible areas.

However, while there is an exponential increase in the availability of satellite records of Earth,
integrating them with mental health presents challenges, due to scarce public health datasets on mental
well-being. The ABCD database, with its deep phenotyping information encompassing mental health,
cognition, and other health indicators, will aid in disentangling these effects. It captures over 11,800
children with biennial brain scans, itis considered the largest ongoing study on brain development and
child health across 21 US sites.

Within the large domain of the linked external data within the ABCD Study [87], this paper intro-
duces the set of “Urban Satellite” variables, and provides unprecedent opportunity to understand the
interrelation of macro scale environmental factors when the children are 9-10 year-olds with brain de-
velopment and health.

As proof of concept our simple analyses lend support for the interrelation of environmental factors
derived from satellite image with brain and cognitive development, and mental health, while also hint-
ing at the need for careful modeling multicollinearity between UrbanSat indicators and SES indicators.
Thereby, we provided evidence for NTL being linked to more dense clustering of DMN with the rest

of brain, and NTL and NDBI negatively affecting cognitive ability when controlled for SES. However,



the results presented here need to be understood with consideration of limitations. Indeed, the mecha-
nisms linking environmental factors such as UrbanSat variables and mental health, and neurobiological
correlates, remain unclear. These connections involve complex physiological, psychological, and social
pathways, providing important avenues for future research. For instance, in terms of biologically plau-
sible pathways, the strengthening of physiological systems, such as respiratory health and immune
function may act as crucial players linking green space, less build-up to mental health [92]. Further, it
has been observed that environmental pollutants, especially fine particles, can breach the protective
barrier around the brain, potentially causing damage to the nervous system by triggering neuro-in-
flammation, disrupting neural signaling, and provoking immune responses [93]. Regarding indirect
effects, nature exposure can enhance psychological aspects by reducing negative emotions, while pro-
moting positive feeling [94] and replenishing cognitive resources [95], while also contributing to adap-
tive perceptions of stressors and the development of self-esteem and new competencies [96]. Moreover,
it has been suggested that neighborhood socioeconomic and social aspects; such as diminished social
cohesion and reduced safety [78], along with physical activity [79] may mediate the relationship be-
tween urbanization and mental health. On the other hand, shared experiences in nature could poten-
tially yield social benefits by encouraging communication, providing support, and fostering coopera-
tion [97]. We expect to see more in-depth investigations of such intricate relationships in the future by
linking the UrbanSat indicators with the ABCD data from National Institute of Mental Health’s Data

Archive (NDA) (https://dx.doi.org/10.15154/8873-2j65).
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