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Abstract— Learning-based approaches have recently shown
notable success in legged locomotion. However, these ap-
proaches often lack accountability, necessitating empirical tests
to determine their effectiveness. In this work, we are interested
in designing a learning-based locomotion controller whose
stability can be examined and guaranteed. This can be achieved
by verifying regions of attraction (RoAs) of legged robots to
their stable walking gaits. This is a non-trivial problem for
legged robots due to their hybrid dynamics. Although previous
work has shown the utility of Hamilton-Jacobi (HJ) reachability
to solve this problem, its practicality was limited by its poor
scalability. The core contribution of our work is the employment
of a deep learning-based HJ reachability solution to the hybrid
legged robot dynamics, which overcomes the previous work’s
limitation. With the learned reachability solution, first, we can
estimate a library of RoAs for various gaits. Second, we can
design a one-step predictive controller that effectively stabilizes
to an individual gait within the verified RoA. Finally, we can
devise a strategy that switches gaits, in response to external
perturbations, whose feasibility is guided by the RoA analysis.
We demonstrate our method in a two-link walker simulation,
whose mathematical model is well established. Our method
achieves improved stability than previous model-based methods,
while ensuring transparency that was not present in the existing
learning-based approaches.

I. INTRODUCTION

A. Motivation & Key Ideas

Locomotion is one of the fundamental modes of mobility
for robots. The recent success of deep reinforcement learning
(RL) in achieving robust, stable walking for legged robots
[1], [2], [3] underscores the strength of learning-based poli-
cies. Despite this success, the mechanisms underlying the RL
policies remain opaque. For example, the RL policy in [1]
stretches the leg when the robot is pushed to keep its bal-
ance. However, this action, derived from a black-box neural
network, leaves us unable to explain the underlying rationale.
Generally, we seek more than just empirical observations to
determine why and when a policy works.

To address this limitation, our study focuses on developing
explainable learning-based policies for stable locomotion.
Specifically, we seek to elucidate
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1) the region in which the robot state can be perturbed
without compromising its ability to return to a stable gait,

2) the rationale for selecting a feasible target gait among the
library of candidate gaits,

3) the way of evaluating the feasibility of gait transition.

By designing a learning-based policy which accompanies
answers to these questions, we can furnish learning-based
locomotion with a layer of interpretability and assurance.

The central idea of our approach to tackle these questions
is to resort to the region of attraction (RoA) concept. The
RoA defines the state space region from which a system can
stabilize to a desired attractor—in the case of legged robots,
a periodic walking gait. A policy informed by the RoAs can
determine when stabilization is feasible and how. Although
RoA analysis is a classic topic in controls, its application
to legged robots has been hindered by the robots’ complex
hybrid dynamics, with a few notable exceptions [4], [5], [6].
The method in [6] stands out for recovering largest portion of
the RoA through reachability analysis, yet it is significantly
limited by the computational demands of solving Hamilton-
Jacobi (HJ) partial differential equations (PDEs) numerically.

Our approach builds upon [6] but circumvents the compu-
tational hurdles of the numerical method by leveraging neural
networks to approximate the HJ PDE solutions. Adapting the
approach in [7], we tailor the learning of HJ PDE solutions
to the hybrid dynamics and diverse gaits of legged robots.
Our walking policy is designed around the learned HJ PDE
solution. By ensuring that it stabilizes to a feasible gait based
on the RoA evaluation, we not only significantly enhance
the stabilization capabilities of the robot, but also provide a
transparent rationale behind the controller’s decisions.

B. Contributions

The main novelty of this work is the first-ever application
of the deep learning-based reachability to hybrid system
dynamics and locomotion control design. Its primary purpose
is to provide users with an RoA estimate from which the
robot can stabilize to a set of stable walking gaits. With the
learned value function, the solution of the HJ PDE, we are
able to estimate RoAs of individual gaits, and their union
shapes the feasible space for stable walking.

Second, we design a control policy that stabilizes to an
individual gait, based on the learned HJ PDE solution. Rather
than resorting to the optimal reachability policy that mini-
mizes the Hamiltonian of the learned value function [6], we
devise a one-step predictive control design. It seeks the best
control in minimizing the value function at the next timestep,



which mitigates the learning errors of the neural network
more effectively and achieves enhanced stabilization.

Finally, we devise an effective gait switching strategy
whose feasibility is provable by the RoA analysis. This gait
transition is inevitable, especially when the robot is subjected
to unmodeled perturbations that lead the system state to
escape the RoA of the current gait. By evaluating RoAs,
we can cleverly select which gait the robot switches to, and
continue stable walking without falling.

We demonstrate the aforementioned contributions in a
simple two-link walker robot simulation. Although the dy-
namics of the robot is simplistic as a legged robot, its low
dimensionality allows us to conduct a detailed analysis of
the verified RoAs and access to its detailed mathematical
model allows a fair comparison to existing model-based
control methods. Our experiment reveals that 1) RoAs of the
gaits can be estimated accurately with the proposed learning-
based framework, 2) the designed controller achieves a
significantly higher success rate than model-based stabiliza-
tion controllers like the hybrid zero dynamics-based input-
output (IO) linearization controller [8], and nonlinear model
predictive controller (NMPC) [9], and 3) gait transitions can
be conducted stably when the robot is pursing a sequence of
varying gaits or when it is subjected to strong perturbations.
C. Related work

1) Learning-based approach for locomotion: The success
recipe for deep RL-based locomotion includes many ele-
ments such as high-fidelity simulations [10], good composite
reward design [11], appropriate training schemes like domain
randomization [1] or curriculum learning [11], and a suitable
model architecture [12]. All in all, carefully trained RL
policies achieved state-of-the-art performance in locomotion.

2) Model-based analysis and control design for loco-
motion: Numerous mathematical tools are proposed for
the analysis of stability of locomotion—Lyapunov methods
[4], [5], Poincaré map [13], capturability [14], contraction
analysis [15], Riemannian partition [16], and reachability [6],
[17], [18]. Although each method has its unique strengths
and drawbacks, verifying an invariant and stable domain is
the central theme of most methods.

The control design approaches also vary from IO lin-
earizaiton [19] to NMPC [9], [20], [21], [22] and many oth-
ers. The common challenge in these designs is addressing the
varying gait sequence and the associated contact dynamics.
The main benefit of our approach is that the hybrid dynamics
are already accounted for in the construction of the value
function, and no further treatment of the contacts is needed
for the control synthesis.

3) Combination of model & learning-based locomotion:
Combinations of learning and Lyapunov-based constraints
are explored in [23], [24], [25]. A residual model of the
robot dynamics is learned online in [26]. Combinations of
RL and NMPC are also proposed in [27], [28]. The vision
of these works is to combine the strengths of model-based
design and machine learning. In our work, we hope to
enhance explainability of the learning-based controller with
the reachability-informed design.

4) Physics-informed Machine Learning for Control: The
approach we undertake, which learns solutions of the HJ
PDE with neural networks, falls into the category of physics-
informed machine learning for control [29]. Solving any
PDEs numerically is inherently subjected to the curse of
dimensionality [30]; thus, physics-informed neural network
(PINN) [31] is suggested as an alternative for finding ap-
proximate solutions. Its applications to solving HJ PDEs are
proposed in [32], [33], [7], and we develop our method based
on [7] which is tailored for reachability.

II. PROBLEM DESCRIPTION

A. Problem Setup

1) Hybrid dynamics model of walking robots: We de-
scribe the walking dynamics of the legged robot as

ẋ = f(x, u), x /∈ S (1a)

x+ = ∆
(
x−) , x− ∈ S, (1b)

where x ∈ Rn is the state and u ∈ U is the control
input. S indicates the switching surface where the reset
map ∆ is applied; under the reset event at time t, the state
x− := limτ↗t x(τ) instantaneously shifts to x+. The state x
consists of generalized coordinates q and its time derivative;
x= [q; q̇]. The trajectory of the robot is composed of a
set of continuous trajectories driven by the continuous-mode
dynamics f , and discontinuous jumps whenever the state hits
the switching surface S, which captures the impact event
between the swinging foot and the ground. The continuous
mode dynamics (1a) can be derived from Euler-Lagrangian
mechanics of the robot, constrained by the contact force at
the stance leg. The reset map (1b) can be modeled based on
the rigid impact model and the relabeling of the coordinates
for switching the swing and stance legs. For more details of
the derivation of the dynamics, please refer to [8, Sec.3.4].

2) Stable hybrid limit cycle walking gaits: A stable walk-
ing gait of the robot is represented as a non-trivial Tp-
periodic solution of the system (1), denoted as x∗(·), a
trajectory in time, which undergoes resets at times kTp for
positive integer k. We call O := {x | ∃t ≥ 0, x = x∗(t)} a
hybrid limit cycle of the system. The limit cycle is assumed
to be forward invariant and stable under some baseline
controller π0 :Rn→U , in a small neighborhood around O.

3) Parametrized walking gaits: There might exist multiple
stable hybrid limit cycles of the system, each corresponding
to various walking gaits of the robot. Each gait is conditioned
on various gait parameters, such as average forward velocity
or step length. We denote this gait parameter vector as β,
which will result in a parameter-conditioned hybrid limit
cycle walking gait O(β). We will often refer to the gait
parameter β itself as the “gait” in the manuscript for the sake
of brevity. Finally, we denote B as a set of gait parameters
which result in a feasible stable walking gait, meaning that
for all β ∈ B, the limit cycle O(β) exists and is stable.

4) Unmodeled perturbations: We model perturbations not
captured in (1), such as push or impact with other objects as
a drift (or instantaneous jump) of the robot state. We assume
that the perturbations we deal with are temporary.



B. Objectives
The overall objective is twofold. First, for each gait,

we seek to compute a region of state space Ω ⊆ Rn

around O(β), from which there exists a feedback control
law that asymptotically stabilizes the system to O(β). We
call Ω(β) the (asymptotically) stabilizable region, or region
of attraction (RoA) for O(β). The goal is to verify in which
robot state it is possible to stabilize to an individual gait, and
the associated stabilizing feedback control law π :Rn→U .

Next, we are interested in when transitioning to a new gait
is possible or necessary, when the robot state is perturbed
or if the user wants to command the robot to change its
gait. That is, given a state x, we are interested in finding
Bfeas(x) ⊆ B such that for all gait parameters in the set,
β ∈ Bfeas(x), the state is inside the RoA of the corresponding
gait, x ∈ Ω(β). Then, a gait transition is necessary if the
current walking gait of the robot β is not in Bfeas(x), to
ensure stability of the walking. Upon transition, the robot
has to select one of the gait β that is included in Bfeas(x).

III. BACKGROUND

A. HJ reachability analysis for RoA computation

In this section, we first present an overview of Hamilton-
Jacobi (HJ) reachability analysis for continuous systems [34]:
the dynamics given by ẋ = f(x, u) without the reset. Let
ξux,t(τ) denote the state at time τ by starting at initial state
x and initial time t, and applying input signal u(·) over
[t, τ ]. Given a target set L ⊂ Rn, the Backward Reachable
Tube (BRT) of L is defined as the set of initial states from
which there exist a control signal under which the system
will eventually reach L within the time horizon T :

BRT (L;T ) :={x | ∃u : [−T, 0]→ U ,
∃τ ∈ [−T, 0], ξux,−T (τ)∈L}.

For our problem, we define the target set as a small
neighborhood of the gait O(β), denoted as L(β), such
that the baseline controller π0 can stabilize to the limit
cycle from anywhere inside L. Such a neighborhood region
exists for any asymptotically stable attractor [35]. If we set
O(β) directly as the target set, only the states that can
achieve finite-time convergence to the gait can be verified,
excluding states that are not finite-time stabilizable but still
asymptotically stabilizable to the gait. By the definition of
BRTs, any state x in BRT (L(β);T ) is reachable to L(β)
in finite-time, and once it reaches the target set, it can be
stabilized to O(β). Therefore, for every state that can be
verified as an element of a finite-time BRT of L(β), we can
conclude that it is an element of Ω(β), the RoA of the gait. In
fact, if T →∞, the BRT recovers the full RoA of the given
gait, i.e. limT→∞ BRT (L(β);T ) = Ω(β). Thus, the BRTs
computed for long enough time horizon can be considered
as a maximal estimation of the RoAs of the gaits.

In HJ reachability, the computation of BRT is considered
an optimal control problem, which can be solved with
dynamic programming. First, a signed distance function to
L, l(x), is defined whose zero-sublevel set is L, i.e. L =

{x : l(x) ≤ 0}. Here, the dependency on β is dropped for
simplicity. Next, we define the minimum signed distance to
L over time along the trajectory as

J(t, x, u(·)) = min
τ∈[−t,0]

l(ξux,−t(τ)). (2)

When l(τ) ≤ 0, the system is inside L at time τ , thus,
reaches the target set. Thus, for the goal of computing the
BRT, we compute the optimal control that minimizes this
distance (so that it achieves a non-positive value of J). As
such, we define the value function as

V (t, x) = inf
u(·)

{
J
(
t, x, u(·)

)}
. (3)

The value function in (3) can be computed using dynamic
programming, which results in the following Hamilton-
Jacobi partial differential equation (HJ PDE) [36]:

min
{
−DtV (t, x) +H(t, x), l(x)− V (t, x)

}
= 0, (4)

with the initial value function V (0, x) = l(x), where

H(t, x) := min
u
∇V (t, x) · f(x, u). (5)

Dt and ∇ represent the time and spatial gradients of the
value function. H is the Hamiltonian that encodes the role
of dynamics and the optimal control input. Once V (t, x) is
obtained by solving the HJ PDE, the BRT is given as the
zero sub-level set of the value function BRT (L(β); t) =
{x | V (t, x) ≤ 0}. The corresponding optimal control for
reaching the target set L is derived as

π∗(t, x) = argmin
u
∇V (t, x) · f(x, u). (6)

B. HJ reachability for walking robots

We next summarize the extension of the reachability
framework in [6], to account for discontinuous state resets.
The value function in the presence of state resets, (1b), can
be obtained by solving a constrained version of the HJ PDE:

min
{
−DtV (t, x)+H(t, x), l(x)−V (t, x)

}
=0, x /∈ S, (7a)

V (t, x) = V (t,∆(x)), x ∈ S, (7b)

with the initial value function

V (0, x)= l(x) if x /∈S, V (0, x)= l(∆ (x)) if x∈S. (8)

In words, the value function can be obtained by solving the
usual HJ PDE for the states that are not on the switching
surface, and for the states that are on the switching surface,
the value is given by that of the corresponding post-reset
state. This is because if the state is on the switching surface,
it will instantaneously change to the post-reset state. Since
(7) reasons about the state resets, the obtained value function
and the associated optimal controller (6) implicitly exploit
the reset map to reach the target set as quickly as possible.

The HJ PDEs in (4) and (7) can be effectively solved using
numerical algorithms like level set methods described in [36],
[37]. The only additional step in solving (7), compared to
(4) is to enforce (7b) at every timestep, which does not add
computational complexity to the original algorithm. Please
refer to [6] for more details of the numerical algorithm.



C. Limitations of numerical methods for HJ reachability

Applying the numerical algorithms for solving the HJ PDE
to legged robot dynamics encounters several key obstacles.
First, since the algorithm is in essence a brute force dynamic
programming, it is practically infeasible to be applied to
realistic legged robots due to the curse of dimensionality
[30]. The computational load and the memory requirements
grow exponentially with respect to the state dimension.

Next, the numerical stability of the PDE solutions is tightly
coupled with the maximal norm of the Hamiltonian (5) [38].
This necessitates a denser computational grid for robots with
stiffer dynamics, characterized by larger magnitudes of their
vector fields. Legged robots exhibit stiffer behaviors than
simpler systems like mobile robots or near-hover drones
[34], previously addressed by HJ reachability. Consequently,
balancing computational time against numerical accuracy
often results in a value function whose gradient, critical for
determining the optimal control, suffers poor accuracy.

Finally, the computation of BRTs for legged robots
presents another efficiency challenge when considering the
gait parameter β. Solving for BRTs individually across
each gait parameter leads to considerable computational
redundancy and memory waste. This is because BRTs for
neighboring gaits tend to exhibit similar shapes, as we will
see later in the paper. In this regard, a parametric approach
to representing the gait BRTs can address these inefficiencies
effectively. By computing the BRTs in a unified process that
accounts for all possible gait parameters, only the shape
parameters of the BRT need to be stored and can significantly
reduce the computation and memory requirements.

D. Deep learning-based reachability for continuous systems

In light of the limitations of the brute force numerical
methods in solving the HJ PDE, a deep learning-based
approximate solution for HJ reachability, named DeepReach,
was proposed in [7] for continuous systems. DeepReach
utilizes sinusoidal activation functions [39] to represent the
value function and employs a loss function that learns the
HJ PDE solution in self-supervised fashion.

During the training, DeepReach samples a batch of time
and state samples from the target domain. The loss function
for a given sample (ti, xi) where i is the index of the sample,
is given as h(ti, xi) = λ1h1 + λ2h2 where

h1 =
∣∣min{−DtVθ(ti, xi) +H(ti, xi),

l(xi)− Vθ(ti, xi)}
∣∣,

h2 =|l(xi)− Vθ(0, xi)|.
(9)

h1 evaluates the left hand side of (4) at the training sample,
and h2 evaluates the initial condition of the PDE.

Since h1 depends on gradients of the value function,
the neural network should not only approximate the value
function well but also its gradients. The widely popular
ReLU-based neural networks struggle to accurately represent
their gradients, which can lead to a poor approximation of
the value function. Thus, DeepReach employs a sinusoidal
activation function [39], which is known to produce accurate

gradients due to its inherent differentiability. After the train-
ing, the BRT can be represented by the zero-sublevel set of
the learned value function.

IV. OUR METHOD

A. Extension of DeepReach for learning gait BRTs

Our method mainly extends the DeepReach framework to
address the parameter-conditioned varying target gaits and
the hybrid dynamics of the legged robots. In our framework,
we incorporate four key features not present in the original
DeepReach work: 1) parameterization of the value function
with respect to the gait parameter β, 2) an additional loss
term that captures the condition (7b) resulting from the
state reset, and 3) sequence-to-sequence (Seq2seq) training
scheme, to mitigate the “forgetting” effect in long-horizon
training. We provide the details of each extension below.

1) Extension of DeepReach to parameterized BRTs of
hybrid limit cycle: The neural network value function will
be denoted as Vθ(t, x), where θ indicates the weights of the
sinusoidal network. As proposed in [40], we can augment
the input of the network to treat the gait parameter as a
virtual state. Consequently, our value function is expressed
as Vθ(t, x;β). This enables us to derive RoAs for different
gaits using a single learned value function model and through
a single training procedure.

2) Loss function: In each training iteration, we sample a
batch of time, state, and gait parameter samples from the
target domain of each input entity. The loss function for a
given sample (ti, xi;βi), consists of four loss terms as below:

h(ti, xi;βi) = λ1h1 + λ2h2 + λ3h3 + λ4h4, (10)

where h1 and h2 are given in (9), and
h3 =|Vθ(ti, xi;βi)− Vθ(ti,∆(xi);βi)| (for xi ∈ S), (11)
h4 =max{V (ti, xi, βi)− l(xi;βi), 0}

+max{V (ti, xi, βi)−V (tj , xi, βi), 0} where tj<ti.

Here, λi for i = 1, 2, 3, 4 are weights of each loss term.
We introduce two new loss terms, h3 and h4. The loss
term h3 ensures that the states before and after the reset
share the same value function values, to satisfy the condition
(7b). This is the essential loss term that captures the effect
of the impact event of the walking behavior to the gait
stabilization. From the definition of the value function in (3),
it can only monotonically decrease in time due to minτ∈[−t,0]

in (2). Thus, we impose this condition by adding the loss
term h4, which penalizes Vθ if the monotonically decreasing
condition is not met. Including this term incentivizes the
neural network to learn a more accurate value function.

3) Seq2seq Training: In DeepReach, during the training,
the sample time domain [0, T ] is scheduled in a curriculum
learning fashion, by gradually increasing the maximum time
T . It is important that the value function is shaped from
the initial condition constraint in the beginning, and it is
carved out as the training proceeds through the PDE loss
h1 and other loss terms. Thus, the initial condition serves as
an “anchor” for the value function. However, the anchoring



effect of the initial condition gets less effective for t that is
further away from 0. Thus, an apparent issue with training a
single model for the entire time domain [0, T ] is that the
value function starts to forget information of l when the
time horizon is longer. This issue is more severe when the
dynamics are stiff and involve state jumps, as in our problem.

To mitigate this issue, we employ a Seq2seq training
scheme from [41]. Basically, Seq2seq splits the time domain
into multiple subdomains, and trains separate neural network
models for each subdomain. This divide-and-conquer ap-
proach is effective in mitigating the forgetting phenomenon;
for each subdomain, we can introduce the initial condition
loss again, which will anchor the value function not only
at t = 0 but also at the intervals of the subdomains. Each
subsequent sequence benefits from the model trained on the
preceding sequence as its supervision signal.

B. One-step predictive stabilizing controller

Once we train the value function Vθ(t, x;β), we can
easily derive the gradient-based optimal controller in (6),
to stabilize the states within the RoA to the gait. However,
in our evaluation, applying (6) was not successful mainly
due to the learning errors of the value function and its
gradients. The effect of the error is severe for the closed-
loop performance of the gradient-based controller. This is
because when the trajectory evolves, the accumulation of
the error effect is tightly coupled with the stability of the
closed-loop dynamics. It becomes a more severe issue for
legged robots that involve discrete contact dynamics (1b).

In this work, we design our controller as an one-step
predictive (OSP) control problem, which does not directly
rely on the value function gradient. This formulation is in fact
the discrete-time approximation of the optimal control law in
(6), and if the value function is accurate, they should produce
the same result with small enough timestep. However, with
the neural network value function, in our experiments, we
observed that the new formulation achieves a much higher
success rate of stabilization than (6). At each time step i, the
OSP controller solves an optimization problem

min
ui∈U

Vθ(ti, x̂i+1;β)

where ti is such that Vθ(ti, xi;β) = 0,

x̂i+1 = f(xi, ui).

(12)

The time ti is determined as a (minimal) Time-to-Reach
(TTR) at the current state xi [38], clipped by the time horizon
T . Since the value function is non-increasing with respect to
time, such TTR value is uniquely determined. We can find
the value by doing a binary search for when Vθ(ti, xi;β)
becomes zero. By taking TTR as the time index for the
value function evaluation, the controller is trying to “slide
along with” the zero-level set of the value function—the
BRT—over time, until the BRT shrinks to the target set. The
discrete-time dynamics f(x, u) in (12) is determined based
on the continuous system dynamics described in (1). Finally,
the objective determines a control input that leads the state
at the next time step to the one where the value function is
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leg). (b) Hybrid limit cycle gaits in q1-q2 space with various walking step
lengths. Black line indicates the switching surface. (c) q1-q2 slice of the
numerical (top) and learned (bottom) target function l(x;β) for β = 0.13.
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Fig. 2: Comparison between the value functions V (T, x;β) for the gait
with β=0.13, obtained by (a) the numerical method in [37], [6], and (b)
(c) our method, where in (b), Vθ is not parametrized and β is fixed as 0.13.
The values are visualized in color contour map in q1 − q2 slices along the
gait. The zero-level sets (thick white line) represent the estimated BRTs.

maximally decreased. By iteratively updating the TTR and
descending the value function, the controller can ultimately
converge to the target set.

Given that the optimization problem involves a non-convex
cost function and the constraint represented by a neural
network, one can adopt a discretization or sampling-based
search (evaluating over discrete samples in the input set U )
to perform the optimization. For our one-step problem, this
can be done promptly in real-time as it only requires a single-
instance batch neural network inference for all the samples.
However, the complexity can increase if (12) is extended to
a multi-step predictive control problem.

C. Gait switching controller

Based on the OSP controller in (12), we are able to
effectively stabilize the robot state to a single gait O(β),
when the state xi is inside BRT (L(β);T ), where T is the
maximum time horizon the value function is trained for.
However, if xi /∈ BRT (L(β);T ), although in practice we
can still deploy (12) by setting the TTR ti as T , since the
state is outside of the RoA estimate, there is no guarantee that
it will eventually stabilize to the gait. Recalling the second
objective in Section II-B, we always want to commit to a
gait to which stabilization is feasible. The main advantage
of having access to the parametrized value function is being
able to switch the target β actively online to achieve this.

We assume that a desired gait parameter β∗ is specified by
a user command or by a pre-specified sequence of desired
gaits. Whenever before (12) is executed with β = β∗, we can
check whether xi ∈ BRT (L(β∗);T ), and if this condition is
not satisfied, change β to a member of Bfeas(xi). In the case



Algorithm 1: Gait switching strategy
Input : Current state xi, Desired gait parameter β∗

Output: Selected gait parameter βi

if Vθ(T, xi;β
∗) ≤ 0 then

return β∗

end
min value← +∞, βi ← None
for β in B do

if min value > Vθ(T, xi;β) then
min value← Vθ(T, xi;β), βi ← β

end
end
if min value > 0 then

Warning: Bfeas(xi) is empty
end
return βi

where the state xi is perturbed by unmodeled disturbance,
the feasibility condition will be checked for all possible
gaits and the gait will be switched to a new feasible gait.
For perturbations whose magnitude is significant so that
Bfeas(xi) is empty, the user will be aware that the walking
stability is not ensured anymore. This gait switching strategy
is summarized in Algorithm 1.

V. CASE STUDY: TWO-LINK WALKER

We consider a compass-gait walker, which consists of two
links with an actuated joint between them. We consider a
pinned model of the robot, with the configuration variable
q := [q1, q2]

T as illustrated in Fig. 1 (a), and we define
the state as x := [q, q̇]T . The switching surface is defined as
where the swing foot hits the ground with a negative velocity
and the stance leg angle crosses a predefined threshold q̄1,
S :={x | q1≤ q̄1, 2q1+q2=0, 2q̇1+q̇2<0}.

The stable gaits of the robot are represented as swing
leg angle q2,r being a polynomial function of q1. These
polynomial gaits are obtained from trajectory optimization
[8] for desired stance leg angle at the event of impact, q1,d,
ranging from 0.072 to 0.145. We set β = q1,d which decides
the walking step length of the gait. The closed-loop dynamics
under an input-output (IO) linearization controller [19] is
considered in the optimization, thus, the obtained gaits are
stable limit cycle under the IO linearization controller. The
IO linearization controller also provides the baseline stabilz-
ing controller π0 discussed in Section II-A. The obtained
parametrized gaits are visualized in Fig. 1 (b).

1) Training details: The target function l(x;β) is con-
structed by evaluating the distance between the state x and
the gait O(β). Evaluating the distance numerically for all
samples in each training iteration significantly slows down
the training. Instead, we use a neural network to represent
l(x;β). We generate 100,000 samples with 21 values of β
from X and B, and learn the target function with supervised
learning. The learned l(x;β) is shown in Fig. 1 (c).

In the value function training, we employ a 3-layer neural
network with 512 hidden nodes in each layer to represent the
learned value function and we utilize the sinusoidal function

as the activation function. Additionally, we set the time span
of the BRTs to T = 0.5. We break up the time span to
four sequences for Seq2seq training. In each sequence, we
uniformly sample 130,000 samples of (ti, xi;βi). It takes
approximately 8 hours to complete one sequence of training
on the RTXA5000 GPU, and total time cost for the entire
training of the parametrized BRTs is 32 hours. This is
notably shorter than the direct numerical method in [6], as a
computation for a single gait BRT takes 12 hours.

2) Learned Value function: The learned value function is
visualized in Fig. 2 for β = 0.13, where we compare our
solution to the numerical solution obtained in [6]. Note that
the numerical solution is not necessarily the “ground-truth”,
as discussed in Sec. III-C, due to numerical errors. The value
functions of our method are calibrated after training, based
on the approach in [42], which provides an empirical 95%
success rate of stabilization from the calibrated BRT. Overall,
our learned value function generates larger estimation of the
BRT compared to the numerical solution. Meanwhile, our
parametrization does not sacrifice much accuracy in BRT
estimation, as depicted in Fig. 2 (b) and (c).

3) Regions of Attraction: The trained BRTs, representing
the RoAs of the gaits, given as the zero-level sets of the
learned value function Vθ(T, x;β), are visualized in Fig. 3.
For any states encapsulated in the BRT of β, theoretically, we
can ensure their convergence to the target gait of parameter β.
From the overlapping region of all BRTs, any gait parameter
can be selected as the target gait. In contrast, at a state that
does not belong to any RoAs, it might not be feasible to
stabilize the robot, no matter how good the control policy is.

4) Stabilization performance and comparison to other
controllers: The mechanism of the OSP controller in (12) is
visualized in Fig. 4, along a trajectory that is stabilized from
a perturbed initial state to the gait. It shows that over time, the
BRT evaluated at TTR shrinks to the target set and guides the
trajectory to successfully converge to the gait. Next, we do a
quantitative analysis of the performance of our stabilization
controller. We evaluate the success rate of the stabilization
within two walking steps among 6,600 trajectories initialized
within the state space grid. The states whose swing foot lies
below the ground are filtered out, as they represent physically
unrealistic configurations. The learned gait BRT encapsulates
13.74% of the tested initial states. We compare the success
rates of our controller, the IO linearization controller, and a
simple receding-horizon NMPC controller that minimizes the
tracking error to the gait. The NMPC prediction horizon is
set to 0.35, and increasing the horizon decreased the success
rate, due to more occurrence of infeasible solutions. The
success rates and the hit map of the successful initial states
are reported in Fig. 5. The success rate of our controller
(25.7%) surpasses the success rates of the others by 10%.

5) Gait switching for enhanced stabilization: When the
user commands to change the gait or if a perturbation occurs
to our robot, it becomes necessary for the robot to transition
and stabilize to a new gait based on the gait switching
strategy in Algorithm 1. We first demonstrate scenarios
where the user commands a sequence of desired gaits. We
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Fig. 4: Snapshots of the phase portrait of the trajectory, initialized at a per-
turbed state, stabilizing to the gait with β = 0.13, under the OSP controller
(12). The trajectory evolves from yellow to blue while taking two walking
steps, and we show the first walking step portion. Green dots represent
the state where the snapshot is taken. The color contour map visualizes
Vθ(ti, ·;β) in (12). [Video (https://youtu.be/P7Vnr8jwSPc)]
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Fig. 5: Success rate of stabilization evaluated over a grid of 6,600 initial
states. At each (q1, q2) ∈ [−0.3, 0.3]× [−1.0, 1.0] value, we evaluate 25
combinations of (q̇1, q̇2) ∈ ×[−1.0, 1.0] × [−2.5, 2.5], and visualize the
rate of the trajectories successfully converging to the gait (β = 0.13).

evaluate our controller under the three different commands
of desired gait sequences: (a) gradually increasing β, (b)
gradually decreasing β, and (c) dramatically switching β
between its minimum and maximum values for every two
steps. The results are displayed in Fig. 6. The proposed
algorithm enables the robot to switch between different gaits
while trading off stability against the commanded gait. This
can be particularly seen in the third case where the robot
doesn’t immediately switch to the minimum gait as that
might result in loss of stability—instead, the robot switches
to intermediate gaits determined by the algorithm.

We also introduce a strong perturbation to the robot
which is stably tracking an initial gait (β1), mandating it
to transition to a new gait (β2) since the perturbed state is
not included in the BRT (β1). We utilize our gait switching
controller to identify a new feasible gait and stabilize the

robot to it. The results are shown in Fig.7.

VI. CONCLUSION

In this work, we utilized deep learning-based reachability
analysis to create a library of Regions of Attraction (RoAs)
for various gaits of legged robots with hybrid dynamics. The
analysis with the estimated RoAs provides a transparent logic
behind our gait-stabilizing controller and the gait switching
strategy.

In future research, several intriguing directions are worth
exploring. First, although our use of neural networks to
approximate solutions to the HJ PDE has shown promise,
our learned value function can be still inaccurate due to
accumulated errors in the learning process. Therefore, the
estimated RoAs cannot precisely guarantee safety for the
robots. Investigating recent advancements that provide prob-
abilistic guarantees on learned solutions [42] could mitigate
this limitation. Additionally, we aim to explore scenarios
with persistent disturbances, such as payloads, and design
control policies that are robust against bounded disturbances.
This could be achieved by employing a differential game-
based robust reachability formulation [36]. Finally, apply-
ing our approach to higher-dimensional, real-world walking
robots will be an exciting direction.
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