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Wasserstein speed limits for Langevin systems
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Physical systems transition between states with finite speed that is limited by energetic costs. In this work, we
derive bounds on transition times for general Langevin systems that admit a decomposition into reversible and
irreversible dynamics, in terms of the Wasserstein distance between states and the energetic costs associated with
respective reversible and irreversible currents. For illustration we discuss Brownian particles subject to arbitrary

forcing and an RLC circuit with time-varying inductor.
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I. INTRODUCTION

Over the latter part of the twentieth century, the quest to
quantify energetic costs and the timing of thermodynamic
transitions far from equilibrium, has given rise to stochastic
thermodynamics [1,2]. This discipline lies at the confluence of
statistical mechanics and stochastic control, and has enabled
effective models and exact results that pertain to microscopic
thermodynamic ensembles subject to thermal fluctuations.

A most insightful discovery has been to express the mini-
mal dissipation in thermodynamic transitions of overdamped
particles as a path length traversed in a suitably metrized space
of thermodynamic states [3,4]. Thus, for overdamped dynam-
ics, entropy production serves as the long-sought notion of
thermodynamic length [5-8] and has received considerable
attention [9-18].

The enabling new insight took the form of a bound,

= > L Waioo. po)*, (1)
T

on the total entropy ¥ produced when steering a collection of
overdamped particles via position-dependent forces, in a heat
bath of temperature 7" and friction coefficient y. The distance
Wh(po, pr) between end-point thermodynamic states po and
pr 1s known as the Wasserstein metric [19]. In turn, Eq. (1a)
readily provides a lower bound on the time 7 of transition
in terms of the total entropy produced X, as well as, a tight
expression of the Wasserstein speed [16] at time ¢,

Wa(pr, |T
lim M < |=o, (1b)
T—07F T Y

where o, is the entropy production rate. Thermodynamic
speed limits such as this one have had several applications,
including the refinement of Landauer’s thermodynamic cost
of bit erasure [3,20,21] and estimation of relevant thermo-
dynamic quantities, such as free energy and dissipation, in
experimental settings [22—24].
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The salient ingredient in Eq. (1a) is that the Wasserstein
metric is the minimal of an action integral [25] involving the
probability current J that drives the thermodynamic state from
po to p; via the Fokker-Planck dynamics

dp=—-V-J.

In the overdamped regime, that same action integral captures
entropy production, in that

T 2
2:1//“—”dxdz. @)
T Jo P

The term irreversible is typically ascribed to probability cur-
rents that satisfy such a relation.

The simple relation (2) is no longer valid in the under-
damped setting where only a portion of the probability current
in the phase plane is directly responsible for entropy pro-
duction. This is formalized for a general class of Langevin
dynamics by defining even and odd degrees of freedom [26],
such as position and velocity, that leads to a decomposition of
the probability current

J — Jirr + Jrev

into irreversible and reversible components, so that
. LT
o;,p=-V-J, while ¥ = / f ——=dxdvdt,
0 P

where M is a mobility matrix that depends on the diffusion
coefficients of the Fokker-Planck dynamics1 [26].

It is now evident that the connection with Wasserstein
distance cannot be naturally restored unless one considers a
second quantity, reflecting the effect of J*'. Namely, while
¥ arises from currents that generate entropy, a second action
integral Y, analogously defined as

T rev |12
T::/[dedvdt,
0 P

'In general, there is freedom in setting the mobility matrix, and this
freedom, along with the dependence on the Fokker-Planck dynamics,
is discussed in Sec. II C.

Published by the American Physical Society



SABBAGH, MOVILLA MIANGOLARRA, AND GEORGIOU

PHYSICAL REVIEW RESEARCH 6, 033308 (2024)

arises from currents that do not. Thus, the purpose of this work
is to explore the extent to which the intimate link between
irreversibility, Wasserstein length, and speed limits for over-
damped dynamics carries over to underdamped and to more
general stochastic thermodynamic systems.

To this end, in the present paper, we develop the above
formalism and explore time-symmetry properties of probabil-
ity currents for general dynamics, to derive thermodynamic
bounds for Langevin systems. In complete analogy with the
overdamped regime, we utilize the fluid dynamic framework
of Wasserstein geometry albeit in “phase space” [25].

In this broader context, we show that both action integrals,
¥ and Y, contribute to limit the speed of thermodynamic
transitions via inequalities such as

1
D 2—TW2,M(P0, o), (3a)

where Wh m(po, pr) is an M-weighted Wasserstein distance
[see Eq. (4b)]. Similar to Eq. (1b), Eq. (3a) implies the speed
limit

lim M <V2o +y). (b

=0+

2:/ o:dt and T:/ yede.
0 0

A collection of such thermodynamic bounds are developed
and specialized to underdamped Brownian particles subject
to arbitrary forcing. The paper concludes with two examples
that highlight applications of the framework.

where

II. PRELIMINARIES
A. On optimal mass transport

Let P,(R") denote the space of probability distributions
with finite second-order moments on R”. Then,

f Ix — vl (x, y)dxdy,
R"xR"

Wi (po, p) = \/ner}&fo,m
defines a metric on P,(R") that is referred to as the L*-
Wasserstein metric. In this definition, pg, p; € P>(R") and
I1(po, pr) denotes the set of probability distributions on
R™ x R" having pg and p, as marginals.

The Wasserstein metric, originally interpreted as an op-
timal mass transfer cost, can be equivalently defined in
the framework of continuum mechanics via the so-called
Benamou-Brenier formulation [25]. Specifically, for any time-
interval [0, ], the square of the metric can be expressed as
the minimizer of an action integral,

Wz(po,pr)i=\/infT// p(t, x)|ut, x)||*dxds,  (4a)
p,u 0 JR~

where minimization is carried out over time-dependent densi-
ties p(t, x) and velocity fields u(z, x) € R” that together obey
the continuity equation

3,,0 =-V. (pl/l),

fort € [0, t], along with the marginal density constraints

p0,)=po and po(z,:) = p..

A weighted Wasserstein metric can be defined in a similar
manner, by suitably scaling the Euclidean norm ||u||§4 =
u” Mu with a positive-definite matrix M, as

Wi m(po, pr) = \/ipnfr//]R p(t, x)||u(t, x)||3,dxdr.
su 0 n
(4b)

It turns out that YW, y can be expressed directly in terms of
W,, warping first the space of densities by M [27], i.e.,

Whm(po, pr) = Wh(dtipo, dftp:),

with ¢fp being the push-forward of p via the linear map
¢ : x> M!/2x, that corresponds to a change of variables as
dictated by the map ¢.

B. Stochastic model

A prototypical example of Langevin dynamics with re-
versible and irreversible probability currents models the
motion of Brownian particles at position x(¢) € R and veloc-
ity v(t) € R, and is given by

dx = vdt,
mdv = F(t, x, v)dt — yvdt + /2ykgTdB,,

where F is an arbitrary force and B, € R denotes standard
Brownian motion. Throughout, y denotes the scalar friction
coefficient, kp the Boltzmann constant, and 7" the bath temper-
ature. The corresponding probability density p(t, x, v) obeys
the Fokker-Planck equation

dop=-=V-J, &)
where the components of the probability current J are

Jr =vp, (6a)

1 )/kBT
—(F —yv— V,logp )p. (6b)
m m

Jy

Alternatively, Eq. (5) can be written as d;p = L,p with the
(forward Kolmogorov) operator £, satisfying

Lip=-V-].

As alluded to in the introduction, the driving current J can be
written as a sum of reversible and irreversible components de-
noted by J and J'™, respectively. The irreversible current is
then used to define the entropy production, which is seen as a
measure of time-reversal symmetry-breaking of the dynamics
[26].

In general, and to that end, we first identify the parity of the
variables and parameters in the system by classifying them as
even or odd based on their sign change under the time reversal
operation. In our case, x is even and v is odd. Then, we flip
the sign of all odd variables and parameters in

1 kgT
Li=—vV,— =V, [(F —yo)- 1+ T2 A,
m m
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to get the conjugate operator

L= vvf+lVJw*+qu+ZE;Aw
m m
The notation F' implies that all odd variables and parameters
in F must also be flipped®. By construction, the kinematic
involution f transforms £, into an operator that corresponds
to the dynamics responsible for generating the time-reversed
paths in phase space. By decomposing L into its odd and
even parts with respect to {, we obtain the reversible (odd)

and irreversible (even) evolution operators

L — L) Lo+ L
2 9

L= 3

and L™ :=
that reflect a time-symmetry, since
() =~ and (£)' = £
Finally, the corresponding currents are identified from
L0 =—V-Jand Lp = -V - J,

so that, in the present case,

v
JreV= lFl‘eV PO, (721)

) 0
=, p, (D)
wF'" = (v + %E Yy log p)

where
F+F' v F—F'
F* = * and F'" =
2
In general, the Fokker-Planck equation can be written as
atp — _V . Jrev _ V . Jirr. (8)

The current decomposition can also be obtained by defining
an involution on J directly. This yields a conjugate current
that satisfies

CT,O - _V ,JT’
leading to
J-J

J+J
—

The irreversible current J'™ is the only party responsible for
the total entropy produced.

Jrev — and Jirr —

C. Entropy production

During a thermodynamic transition, the total entropy pro-
duction ¥ can be decomposed into

= 2:sys + Xenv,

where Xy is the entropy produced in the system and Xeqy
is the entropy produced in the environment. The term Xy

2For example, in some instances, when a magnetic field is present,
its orientation is flipped under time reversal.

is defined to be the Shannon entropy difference between the
initial and final states, and can also be written as

Teys = —kB/ /8“0 log o dxdvdt
0

=k3/ /V~(Jrev+Ji")logp dxdvdt. )
0

The second term can be further decomposed into
Eenv = Eres + Epua

where X is the entropy production mediated by the heat
dissipated into the reservoir [[1], Eq. (4.3)]

t kgT
Yipes = Z //(U + B—Vu log p)UdedUdt
T 0 m

T
k
Y| a2 (10)
T 0 m
with the second equality following via integration by parts,
and X, is the entropy “pumped” into the environment by
external forcing [26], [[28], Eq. (26)],

T Firr 2 _ 2 Firr k )
Tu :/ / (—( ) 2yeF —BVUF*>,odxdvdt.
0 yT m

The term X, is typically present only when F' depends on
v. More compactly, ¥¢,, can be written in terms of the irre-
versible and reversible current components as

T irr (2
Dew = / / —”J ”MdJCdUdl
0 Y

- kB/ / V- (J*® + J™)log pdxdudt,
0

and as a result, the total entropy produced becomes

T irr 2
E:// I3 ”dedvdt,
0 Y

1 y2 0

w=srlo ) o
is a temperature-scaled mobility matrix. In general,
the Fokker-Planck dynamics 80 = —), 0 (A4;ip) —
Zi 831, (D;p), dictate that, whenever D; # 0, the corresponding
diagonal entry of M is kg/D; [26]. For this reason, the 2-2
entry in Eq. (11) is specified, whereas the 1-1 entry can be
selected as an arbitrary scaling factor with the appropriate
units. This freedom is explored in Sec. III B 1, while here we
make the natural choice and select M so that the ratio between
the 1-1 and the 2-2 entries is the square of the characteristic
time scale m/y.

where

III. SPEED LIMITS

In this section we develop speed limits for thermodynamic
transitions based on the Benamou-Brenier formulation of op-
timal mass transport. We begin in Sec. III A by discussing
the setting of general Langevin dynamics. In Sec. III B, we
further explore the consequences of the Benamou-Brenier
formulation by specializing to thermodynamic transitions in
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phase space for underdamped Brownian particles with arbi-
trary forcing.

A. General Langevin dynamics

For a finite time transition from py to p,, two quantities that
characterize the effect of reversible and irreversible currents
can be defined, specifically, the irreversible action (entropy

production)
T irr (12
2:]/ I3 ”dedvdt,
0 P

and the reversible action

T rev (|12
T ://dedvdt.
0 P

From Eq. (4b), with x = (x, v) and J = p(¢, X)u(¢, X),

T J 2
T//%dxdvdt > Wam(po, pe)’
0

Substituting J = J*¥ + J' gives

[T+ @+ ) > Wampo. o) | (12)

where
o = 2/ / W dxdvds (13)
0

is a cross-action integral, and ( - )y denotes the inner-product
with respect to M. Inequality (12) is one of the main points of
this contribution. Although rudimentary, it applies to general
Langevin dynamics described by (5) with a current that admits
a decomposition into reversible and irreversible components.>
Furthermore, it implies the Wasserstein speed limit

. W s T
tim 2eMPpen) ST s

>0t T

where
o, =3, y,:T, and ¢[=d>.

In light of the fact that |¢;| < o; + y;, Eq. (12) implies (3a).
The essence in Eq. (14) is that the speed of the Fokker-
Planck flow in the Wasserstein metric, for a fairly general
class of Langevin dynamics, is bounded by energetic costs of
reversible and irreversible rates in this precise way.

In the overdamped regime (J' = 0) there is always an
optimal choice for the force that saturates inequality (12), and
equivalently Eq. (1a). However, this is not the case for more
general dynamics. As discussed in Ref. [29], in the under-
damped regime the ability to specify directly the entries of
the probability current J is limited, since the relation between
position and velocity is dictated by Newton’s equations of
motion [see Eq. (6)]. Indeed, the J, component of J can only
be influenced by the applied force F indirectly, by way of the

3In the special case of overdamped dynamics when there are
no odd variables/parameters, T = ® = 0 and Eq. (1a) follows for
M=y /T. Likewise, for a deterministic system with reversible
dynamics, T = W3\ (0o, pe).

system dynamics. In this sense, we do not have full control
authority [30], which is the ability to specify the components
of J directly via a suitable selection of forces. Thus, there may
not exist values for F to saturate Eq. (12), and the bound in
(12) need not be tight. In what follows, (12) is specialized to
the general underdamped dynamics introduced in Sec. II B,
and corresponding thermodynamic inequalities are derived.

B. Underdamped dynamics

Hereafter, we specialize Eq. (12) to the case of under-
damped dynamics where*
2
>dn

==L

1 T y T
T=— / (IF™|1*)dt + = / (v?)dr,
vT Jo T Jo

which gives a lower bound on the integral square of externally
applied forces, namely,

fwas {17
0 0 m

The first term on the right-hand side is a Fisher information
functional, while the second

K kgT
ﬂ_v_B_vvlogp
Y m

and

2
V,logp >dt + ©. (15)

L., ykgTt

0= ;WQ,N(POs o) +2y (AEKin — T Xgys — >7
depends on boundary conditions. Specifically, AFExj, is the
change in the average kinetic energy of the particle between
the endpoints and N = diag[y?, m?]. The integral-square of
forces can be interpreted as the “control effort” required to
drive a Langevin system between two states in a fixed time 7.

The bound applies with no restriction on the type of exter-
nal forces F (¢, x, v), and its tightness can be studied with tools
of minimum energy control [30-32]. The proof of Eq. (15) is
provided in the Appendix.

1. Coarse graining

As noted earlier, there is a freedom in selecting M in (12),
which impacts both sides of the inequality. Specifically, we
obtain the family of bounds

Wi, (o, pr)?
TN, 4oy (@ + %)

1 le)/2 0
MC( = — 21
yT| O oym

with a,, &, > 0 dimensionless parameters and

T Jrev 2
T, =//wdxdvdt.
0 Y

“Throughout, the notation ( ) denotes phase-space expectation, in-
tegrating with respect to p.

(16)

where
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The choice of «,/a, skews the metric, giving different im-
portance to Y, and ® + X, and can be exploited to provide
different bounds, as explained below.

In light of the fact that

(03, )’

oy 2
Wam, (po, p0)* = ==Wha(og, p7)

one can readily obtain speed limits for coarse-grained dynam-
ics in each of the two degrees of freedom, focusing on the
corresponding marginal densities

p":/pdv and p° =/pdx,

at the two end points in time. To this end, from Eq. (16),

5 2
> axy*Wa(pg. p7)” + am®Wa(pg. py)
forf M dxdvdt

, a7

and therefore, bounds on t in the two cases follow by taking
the limit of the right-hand side as o, — 0, and as «, — 0,
respectively.

It turns out that tighter bounds can be obtained by employ-
ing Eq. (4a) on the coarse-grained evolution equations

9,0 =-V.J, and 0,0’ =—V,J,, (18)

J_X=/1de and J, = /Judx.

Comparison of the two sets of bounds, obtained via Egs. (17)
and (18), respectively, using the Cauchy-Schwarz inequality,
is as follows:

where

N W (03, p¥)? Wi (o8, p¥)?
SETIAT Z T (19a)
fof Tdth fo/ dedvdt
and
Wi (g, p?)° Wi(og, o)’
> 0> Mt 0’ Fr (19b)

T = .
T oS Y dudr [y L drduds

Both Egs. (19a) and (19b) imply lower bounds on X.
Namely, the right-most bound in Eq. (19a), combined with
Eq. (10), yields

14 v o2 vks
2 EWZ(va PF)" + Sgys + Tpu — gt (20)

and the right-most bound in Eq. (19b) can be rearranged into

2

m
x> _Wz(p()’ 101:

——/ (IF™|%ydr — . (21)
yTt

For special cases of F, the bounds in Egs. (20) and (21)
become independent of the transition path. Briefly, if FI™ = 0
and F is independent of v, then X,, = 0 and the right-hand
side of Eq. (20) contains only boundary terms. Likewise, if
F™ =0, then ® =0 and the right-hand side of Eq. (21)
contains only boundary terms.

2. Special cases for F

We highlight results obtained from Eq. (16) for the special
cases where F™ = 0 and F'™ = 0, respectively.

(1) Fr¢¥ = 0. This corresponds to a Brownian particle sub-
ject exclusively to forces that are odd under time reversal
(F" = —F). Examples of such cases are the controlled fric-
tion in molecular refrigerator systems and forces on charged
particles due to an irreversible magnetic field.’ Since ® = 0,
Eq. (16) reduces to

(22a)

1 yo, [
T > Wi, (o, po)* — / (v*)dt
T T Jo

for o, > 0 and o, = 1. On the other hand, Eq. (19b) gives

// Pl —zwz(po,pf)

It is not clear which of Eqgs. (22a) and (22b) is tighter in
general. Focusing on Eq. (22b), the right-most bound contains
no information on the spatial distribution of the particles.
Moreover, the middle expression involving J, can be inter-
preted as coarse-grained entropy production, obtained by only
observing the dynamics of the particle’s velocity. This implies
the intuitive assertion that coarse-graining can at most reduce
the observed dissipation [9]. One might think that Eq. (22b)
is trivial since in the absence of position-dependent forcing,
the velocity dynamics become an overdamped system in v,
making the saturation of the bound possible. The result in
Eq. (22b), however, still holds even when position-dependent
forcing is present, as long as it is odd under time reversal.

(2) F'™ = 0. This corresponds to Brownian particles sub-
ject to a force F that is even under time reversal (F™ = F).
Examples include forces due to a position-dependent potential
or to a reversible magnetic field. Interestingly, in general,
when FT = F, ® becomes

AE in
<1>=—2( K
T

which is a key to subsequent inequalities. The proof of
Eq. (23) can be found at the beginning of the Appendix.

The expression in Eq. (23) combined with Eq. (16) yields
an upper bound on the entropy production,

2 < Yy + By

that holds for all («,, «,) (that without loss of generality can
be normalized to o, = 1 and o, > 0), and where

(22b)

+ Eenv), (23)

(24a)

2 1
B, = 22:sys — = AEkin — _1/‘}2,M‘x (po, pr )2
T T
depends only on boundary conditions. Bounding the squared
Wasserstein distance in Eq. (24a) by the sum of the coarse-
grained marginals as in Eq. (17), and taking the limit o, — 0,

SWhile for the most part we consider one-dimensional Brownian
particles, the framework readily extends to higher dimensions, where
magnetic fields apply as a source of forcing.
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we obtain that

s <— [(uFe P+, (24b)
vT Jo
where
B = Zziyﬁ - EAEKin - m_ZWZ(IO(I))a pv)z.
w7 yTt i

The same expression follows from Eq. (21) by substituting
Eq. (23) and rearranging terms. The last expression coin-
cides with an upper bound on entropy production rate derived
recently in Ref. [33] for position-dependent forcing at steady-
state. Here we include both Eq. (24a) and Eq. (24b) since it is
not clear that one is tighter than the other.

We conclude with two lower bounds, one on control effort
and one on entropy production. The first,

/ (F)dt > yTZp, + T (25)
0

follows by substituting Eq. (23) into Eq. (12) (see detailed
steps in the Appendix), where

1 ykpTt
I'= ;WZ,N(p()’ 10‘17)2 +vy <2AEKin - Tzsys - )»

m

depends on boundary conditions. The right-hand side of
Eq. (25) contains X,,, which typically depends on the transi-
tion path. However, in many cases where V,F™ =0, X, =
0 and the right-hand side of Eq. (25) contains only boundary
terms. The second,

2 T 72 2
v [T I y :
x> — dxdr > Wh(pog, pF 26
VT/O/ s> Lowa(os )| 06)

is analogous to Eq. (22b) in that the bound contains no in-
formation on the distribution of particle velocities. This result
was first derived in Ref. [9] for the special case where F™
is independent of v, although it holds without this condition.
As explained in Ref. [9], the bound in Eq. (26) is the natural
analog of the overdamped version in Eq. (la), though it is
not tight. Once again, now, the middle expression involving
J in Eq. (26) can be interpreted as a coarse-grained entropy
production obtained by only observing the dynamics of the
spatial distribution of particles. Finally, if in the typical case
where F™ is independent of v, Xy > ykgt/m, Eq. (20)
becomes tighter than Eq. (26). Nevertheless, it is interesting
to note the symmetry of the results in Eqgs. (22b) and (26),
each of which holds for arbitrary F, as long as F' has a definite
parity under time reversal.

IV. EXAMPLES

A. Quadratic time-varying potential

In this example, we compare the tightness of the speed
limits obtained from inequalities (25) and (26) for different
values of y/m. To that end, consider a particle with mass
m = 10 [ng] confined in the quadratic time-varying potential

U(t,x) =L qt)x* 1 €0, 7],

where ¢(¢) denotes the control protocol of the potential so that
F =-V,U=—q(t)x.

I
______ /‘
0.8f o
S ’

©w \ /
= 06 \ /
< il —_
[¢b)}
g 041 \\.' - =Ty
= T25

0.2+

0 | .
1072 10° 102

v/m (in s71)

FIG. 1. Lower bounds 1,4 (dashed) and 7,5 (dotted) on the tran-
sition time t (solid) for different values of y /m using the optimal
protocol in the overdamped limit.

In this case, FT = F. By defining the time-averaged control
effort (CE) and the time-averaged entropy production (EP)
over the transition as

1 )y
CE = — (F°)dt and EP = —,
T Jo T

inequalities (25) and (26) can be rearranged into
arz+br+c>0 and 72 >d,

respectively, where

yszT
a=CE + ,  b=yT Xy — 2y AEgin,
m
c=-Win(po, p)*, d= LWz(Px ,Ox)z
: » O)7, T(EP) 0> Pr) -

Inequalities (25) and (26) yield the lower bounds 14 and 15
on the transition time, respectively, where

—b+ b —dac
T 205 = —
T 2 T = \/3

We compare the bounds 1,4 and 1,5 for different values
of y/m, as illustrated in Fig. 1. To this end, we consider the
control protocol

4kBT Y
q(t) = 2—17 + ot

This control law is the minimum-entropy protocol required

to steer the system from an initial state p ~ N(0,1) to a

final state p] ~ N(0,0.5]) in T = 1 [sec] in the overdamped

limit (y/m > 1/t) [34]. Here, we take T = 295K and
kg =1.38 x 10723 J/K.

Figure 1 shows that both bounds convergetot = 1 as y/m

increases. This is expected since the control protocol has been

chosen to be optimal in the overdamped regime where the full
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R§ L(ﬂ%

FIG. 2. Noisy RLC Circuit with time-varying inductor.

control authority over the probability current is regained.® The
bound 7,4 appears less conservative than 7,5 which may be at-
tributed to utilizing finer information about the system. An in-
teresting behavior of both bounds is observed near y /m = 1,
where the transition between the low and the high friction
regimes takes place.

B. Noisy RLC circuit

While the exposition of Eq. (12) has been carried out for
the dynamics of an underdamped Brownian particle subject
to a general force F, we emphasize that the framework is
applicable to general Langevin dynamics with even and odd
degrees of freedom as outlined in the introduction. We il-
lustrate this by considering the noisy RLC circuit shown in
Fig. 2. Specifically, we consider a time-varying inductor and
a resistor in the network that is in contact with a heat bath of
temperature 7.

The charge g stored at the capacitor together with the
magnetic flux ¢ in the inductor follow second-order stochastic
dynamics given by

q
d¢p = =dt,
¢ C

g ¢ 2T
dg=(-ZL - 2 Var+ /4B,
q (CR L(t)) TR

where C is the value of the capacitance, L(¢) the time-varying
inductance and R the resistance. The corresponding probabil-
ity density p(¢, ¢, q) obeys the Fokker-Planck equation

ap=~Lp=-V"],

where the components of the probability current J are

q ¢ kgT
Jy=l-———-———-——7V,lo .
a < CR_Lt) R ¢ gp>p
It was initially recognized by Casimir [35], in his study of dy-
namic reversibility, that one should treat ¢ and ¢ as even and
odd state variables, respectively, when comparing probability

densities, much like the setting for underdamped Langevin

%The probability current in the overdamped limit J, =
—%p“‘(VxU + kgT V,log p*) can be fully specified by a suitable
choice of U, cf. comment at the end of Sec. III A.

dynamics. This idea was further validated in Ref. [36] for
nonlinear circuits. As a result, we obtain the following de-
composition of the probability current:

Jrev — Q/C p
—¢/Lt)]"

Jirr: 0 p
— & - MV qlogp

which leads to the reversible and irreversible actions

2
>dt
RTC2 / (g*)dt

2
/ ¢ dr,
o \L@)?
respectively, where

1/RT 0
M= .
0 R/T
Moreover, the cross term is given by

< q¢ >dt
- TC L(t)

By noting that the entropies produced in the system and envi-
ronment are, respectively, given by

Y= kgT V41
Ly P

and

1 (7 qksT 2
Zsys = ﬁ ; C Vq IOg)O + kBTVq lOg,O dt
L P ’ dr T
= — 0 p— _’
RT J, \|®" Ve8P RC

1 qkgT a\’
Teny = — v,1 dt
w=rz | ( d ogp+(c)

o /r< %)y — K87
~rre? ), M RC’

the cross term can be expressed as
AE
= —2< Blen | z) @)

where AEc,, is the change in the average electrical energy
stored in the capacitor between t = 0 and ¢ = t. Note the sim-
ilarity between Eqs. (23) and (27). Thus, substituting Eq. (27)
in Eq. (12) yields

2 B
/0 <L‘Z)2> (> Wantmp H e O8)

where N = diag([1/R? 1]) and

kTt

RC

The right-hand-side in Eq. (28) can be interpreted as a
path-independent lower-bound on the minimum control effort
required to steer a system from pg to p, through a time-

varying protocol L(¢). Minimizing control effort relates to
suppressing the thermal fluctuations of the magnetic flux.

B =2AEcy — TSy, —
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This exemplifies an issue that arises in high-resolution in-
strumentation, where thermal fluctuations degrade the quality
of measurements. In this context, feedback control has been
used to mitigate the effect of thermal noise [37,38].

V. CONCLUDING REMARKS

The usage of optimal mass transport for quantifying uni-
versal speed limits for the evolution of physical systems on
discrete spaces was pioneered in Refs. [39,40]. The frame-
work in Refs. [39,40] utilized the Wasserstein V| metric.
In contrast, for continuous spaces where action integrals and
control costs are typically quadratic, the Y/, geometry pur-
sued herein appears natural [9].

In the present paper we presented a universal bound (12)
that is valid for general Langevin systems, provided the
Fokker-Planck equation admits a decomposition

hp=—V.J=—V.JT_v.Je

with J'™ and J® being the even and odd parts of J with
respect to an involution f of the underlying dynamics. For
overdamped Brownian particles where typically positional
variables and (force) parameters are even, the bound in
Eq. (12) reduces to the well-known bound on entropy pro-
duction for overdamped systems, Eq. (1a), namely,

T > Whm(po, pr)*

This inequality is characteristic of systems driven by a f-even
(or irreversible) current; tightness of the inequality, which
holds when sufficient control authority is available, allows
expressing minimal irreversible action (entropy production)
in terms of the Wasserstein length. For systems driven by
f-odd (or reversible) currents a mirror relation holds in that
the bound (12) gives

Y = Wam(po, po)%,

for the reversible action Y.

The purpose of this work has been to explore the extent to
which the intimate connection between irreversibility, Wasser-
stein length, and speed limits, which is well established for
overdamped dynamics, carries over to more general dynamics.
The results that we presented suggest a more nuanced picture,
where entropy production alone is not the main obstacle that
curtails the speed of transition and where tighter bounds can
be obtained by deeper analysis of reversible currents.
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APPENDIX: PROOFS
1. Proof of Eq. (15)

For a general force F', we have

q):%/T FrevFirr _prev,
T Jo 4

= A1+ Ay + Az,

kgT
L2 FeV, log ,0>dt
m

where

A1=L (F?

yT _ Frev2>dl,

2
A2 = __(AEKin + EEHVT)a

ez g [ (e

Notice that if F'™* =0 then A; = A3 =0, and ® = A, =
— 2 (AExin + ZewT), which is Eq. (23). Moving on, the gen-
eral expression for ® combined with Eq. (12) yields

+ —V log p

T

T+<D+E——/ Whdr + — (Fz)dt

yT

- T(AEKin - z:sysT)

t kgT
T 0 m

1
> ;WZ,M(,OOa 00,

2
>dt

so that

1 T y 2
—/ (Fz)dt——/ <‘ >dt
yT Jo T Jo

1
> —Wam(eo, 02)* + 2(AExin/T — Sgys — ykgt /m),
(A1)

kgT
B—V log p
m

which is Eq. (15).

2. Proof of Eq. (25)

Using Egs. (7a) and (7b) and the fact that F'™ = 0, we
expand the right-hand side of Eq. (9) to obtain that Xy equals

all
— logpvv
m Jo

rev kaT
| pF™ —ypv— ——pV,log p |dxdvdr.
m

"

Use integration by parts and collect terms to obtain

Esys—Epu"F T__/<

since
//vVupdxdvdt =—
0

by using integration by parts one more time. Substituting the
“Fisher information” term

V/T kBT
T Jo

in the left-hand side of Eq. (A1) yields Eq. (25).

? Yks
>dt = _Zsys + Zpu + 71’
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