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Wasserstein speed limits for Langevin systems
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Physical systems transition between states with finite speed that is limited by energetic costs. In this work, we

derive bounds on transition times for general Langevin systems that admit a decomposition into reversible and

irreversible dynamics, in terms of the Wasserstein distance between states and the energetic costs associated with

respective reversible and irreversible currents. For illustration we discuss Brownian particles subject to arbitrary

forcing and an RLC circuit with time-varying inductor.
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I. INTRODUCTION

Over the latter part of the twentieth century, the quest to

quantify energetic costs and the timing of thermodynamic

transitions far from equilibrium, has given rise to stochastic

thermodynamics [1,2]. This discipline lies at the confluence of

statistical mechanics and stochastic control, and has enabled

effective models and exact results that pertain to microscopic

thermodynamic ensembles subject to thermal fluctuations.

A most insightful discovery has been to express the mini-

mal dissipation in thermodynamic transitions of overdamped

particles as a path length traversed in a suitably metrized space

of thermodynamic states [3,4]. Thus, for overdamped dynam-

ics, entropy production serves as the long-sought notion of

thermodynamic length [5–8] and has received considerable

attention [9–18].

The enabling new insight took the form of a bound,

� �
γ

τT
W2(ρ0, ρτ )2, (1a)

on the total entropy � produced when steering a collection of

overdamped particles via position-dependent forces, in a heat

bath of temperature T and friction coefficient γ . The distance

W2(ρ0, ρτ ) between end-point thermodynamic states ρ0 and

ρτ is known as the Wasserstein metric [19]. In turn, Eq. (1a)

readily provides a lower bound on the time τ of transition

in terms of the total entropy produced �, as well as, a tight

expression of the Wasserstein speed [16] at time t ,

lim
τ→0+

W2(ρt , ρt+τ )

τ
�

√

T

γ
σt , (1b)

where σt is the entropy production rate. Thermodynamic

speed limits such as this one have had several applications,

including the refinement of Landauer’s thermodynamic cost

of bit erasure [3,20,21] and estimation of relevant thermo-

dynamic quantities, such as free energy and dissipation, in

experimental settings [22–24].
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The salient ingredient in Eq. (1a) is that the Wasserstein

metric is the minimal of an action integral [25] involving the

probability current J that drives the thermodynamic state from

ρ0 to ρτ via the Fokker-Planck dynamics

∂tρ = −∇ · J.

In the overdamped regime, that same action integral captures

entropy production, in that

� =
γ

T

∫ τ

0

∫ ‖J‖2

ρ
dxdt . (2)

The term irreversible is typically ascribed to probability cur-

rents that satisfy such a relation.

The simple relation (2) is no longer valid in the under-

damped setting where only a portion of the probability current

in the phase plane is directly responsible for entropy pro-

duction. This is formalized for a general class of Langevin

dynamics by defining even and odd degrees of freedom [26],

such as position and velocity, that leads to a decomposition of

the probability current

J = Jirr + Jrev

into irreversible and reversible components, so that

∂tρ = −∇ · J, while � =
∫ τ

0

∫ ‖Jirr‖2
M

ρ
dxdvdt,

where M is a mobility matrix that depends on the diffusion

coefficients of the Fokker-Planck dynamics1 [26].

It is now evident that the connection with Wasserstein

distance cannot be naturally restored unless one considers a

second quantity, reflecting the effect of Jrev. Namely, while

� arises from currents that generate entropy, a second action

integral ϒ , analogously defined as

ϒ :=
∫ τ

0

∫ ‖Jrev‖2
M

ρ
dxdvdt,

1In general, there is freedom in setting the mobility matrix, and this

freedom, along with the dependence on the Fokker-Planck dynamics,

is discussed in Sec. II C.
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arises from currents that do not. Thus, the purpose of this work

is to explore the extent to which the intimate link between

irreversibility, Wasserstein length, and speed limits for over-

damped dynamics carries over to underdamped and to more

general stochastic thermodynamic systems.

To this end, in the present paper, we develop the above

formalism and explore time-symmetry properties of probabil-

ity currents for general dynamics, to derive thermodynamic

bounds for Langevin systems. In complete analogy with the

overdamped regime, we utilize the fluid dynamic framework

of Wasserstein geometry albeit in “phase space” [25].

In this broader context, we show that both action integrals,

� and ϒ , contribute to limit the speed of thermodynamic

transitions via inequalities such as

� + ϒ �
1

2τ
W2,M(ρ0, ρτ )2, (3a)

where W2,M(ρ0, ρτ ) is an M-weighted Wasserstein distance

[see Eq. (4b)]. Similar to Eq. (1b), Eq. (3a) implies the speed

limit

lim
τ→0+

W2,M(ρt , ρt+τ )

τ
�

√

2(σt + yt ), (3b)

where

� =
∫ τ

0

σt dt and ϒ =
∫ τ

0

yt dt .

A collection of such thermodynamic bounds are developed

and specialized to underdamped Brownian particles subject

to arbitrary forcing. The paper concludes with two examples

that highlight applications of the framework.

II. PRELIMINARIES

A. On optimal mass transport

Let P2(Rn) denote the space of probability distributions

with finite second-order moments on R
n. Then,

W2(ρ0, ρτ ) :=

√

inf
π∈
(ρ0,ρτ )

∫

Rn×Rn

‖x − y‖2π (x, y)dxdy,

defines a metric on P2(Rn) that is referred to as the L2-

Wasserstein metric. In this definition, ρ0, ρτ ∈ P2(Rn) and


(ρ0, ρτ ) denotes the set of probability distributions on

R
n × R

n having ρ0 and ρτ as marginals.

The Wasserstein metric, originally interpreted as an op-

timal mass transfer cost, can be equivalently defined in

the framework of continuum mechanics via the so-called

Benamou-Brenier formulation [25]. Specifically, for any time-

interval [0, τ ], the square of the metric can be expressed as

the minimizer of an action integral,

W2(ρ0, ρτ ) :=

√

inf
ρ,u

τ

∫ τ

0

∫

Rn

ρ(t, x)‖u(t, x)‖2dxdt, (4a)

where minimization is carried out over time-dependent densi-

ties ρ(t, x) and velocity fields u(t, x) ∈ R
n that together obey

the continuity equation

∂tρ = −∇ · (ρu),

for t ∈ [0, τ ], along with the marginal density constraints

ρ(0, ·) = ρ0 and ρ(τ, ·) = ρτ .

A weighted Wasserstein metric can be defined in a similar

manner, by suitably scaling the Euclidean norm ‖u‖2
M :=

uT Mu with a positive-definite matrix M, as

W2,M(ρ0, ρτ ) :=

√

inf
ρ,u

τ

∫ τ

0

∫

Rn

ρ(t, x)‖u(t, x)‖2
Mdxdt .

(4b)

It turns out that W2,M can be expressed directly in terms of

W2, warping first the space of densities by M [27], i.e.,

W2,M(ρ0, ρτ ) = W2(φ�ρ0, φ�ρτ ),

with φ�ρ being the push-forward of ρ via the linear map

φ : x �→ M1/2x, that corresponds to a change of variables as

dictated by the map φ.

B. Stochastic model

A prototypical example of Langevin dynamics with re-

versible and irreversible probability currents models the

motion of Brownian particles at position x(t ) ∈ R and veloc-

ity v(t ) ∈ R, and is given by

dx = vdt,

mdv = F (t, x, v)dt − γ vdt +
√

2γ kBT dBt ,

where F is an arbitrary force and Bt ∈ R denotes standard

Brownian motion. Throughout, γ denotes the scalar friction

coefficient, kB the Boltzmann constant, and T the bath temper-

ature. The corresponding probability density ρ(t, x, v) obeys

the Fokker-Planck equation

∂tρ = −∇ · J, (5)

where the components of the probability current J are

Jx = vρ, (6a)

Jv =
1

m

(

F − γ v −
γ kBT

m
∇v log ρ

)

ρ. (6b)

Alternatively, Eq. (5) can be written as ∂tρ = Ltρ with the

(forward Kolmogorov) operator Lt satisfying

Ltρ = −∇ · J.

As alluded to in the introduction, the driving current J can be

written as a sum of reversible and irreversible components de-

noted by Jrev and Jirr, respectively. The irreversible current is

then used to define the entropy production, which is seen as a

measure of time-reversal symmetry-breaking of the dynamics

[26].

In general, and to that end, we first identify the parity of the

variables and parameters in the system by classifying them as

even or odd based on their sign change under the time reversal

operation. In our case, x is even and v is odd. Then, we flip

the sign of all odd variables and parameters in

Lt = −v∇x −
1

m
∇v[(F − γ v)· ] +

γ kBT

m2

v,
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to get the conjugate operator

L
†
t = v∇x +

1

m
∇v[(F † + γ v)· ] +

γ kBT

m2

v.

The notation F † implies that all odd variables and parameters

in F must also be flipped2. By construction, the kinematic

involution † transforms Lt into an operator that corresponds

to the dynamics responsible for generating the time-reversed

paths in phase space. By decomposing L into its odd and

even parts with respect to †, we obtain the reversible (odd)

and irreversible (even) evolution operators

L
rev
t :=

Lt − L
†
t

2
and L

irr
t :=

Lt + L
†
t

2
,

that reflect a time-symmetry, since

(

L
rev
t

)† = −L
rev
t and

(

L
irr
t

)† = L
irr
t .

Finally, the corresponding currents are identified from

L
rev
t ρ = −∇ · Jrev and L

irr
t ρ = −∇ · Jirr,

so that, in the present case,

Jrev =

(

v

1
m

F rev

)

ρ, (7a)

Jirr =

(

0

1
m

F irr − γ

m

(

v + kBT
m

∇v log ρ
)

)

ρ, (7b)

where

F rev =
F + F †

2
and F irr =

F − F †

2
.

In general, the Fokker-Planck equation can be written as

∂tρ = −∇ · Jrev − ∇ · Jirr. (8)

The current decomposition can also be obtained by defining

an involution on J directly. This yields a conjugate current

that satisfies

L
†ρ = −∇ · J†,

leading to

Jrev =
J − J†

2
and Jirr =

J + J†

2
.

The irreversible current Jirr is the only party responsible for

the total entropy produced.

C. Entropy production

During a thermodynamic transition, the total entropy pro-

duction � can be decomposed into

� = �sys + �env,

where �sys is the entropy produced in the system and �env

is the entropy produced in the environment. The term �sys

2For example, in some instances, when a magnetic field is present,

its orientation is flipped under time reversal.

is defined to be the Shannon entropy difference between the

initial and final states, and can also be written as

�sys = −kB

∫ τ

0

∫

∂tρ log ρ dxdvdt

= kB

∫ τ

0

∫

∇ · (Jrev + Jirr) log ρ dxdvdt . (9)

The second term can be further decomposed into

�env = �res + �pu,

where �res is the entropy production mediated by the heat

dissipated into the reservoir [[1], Eq. (4.3)]

�res =
γ

T

∫ τ

0

∫ (

v +
kBT

m
∇v log ρ

)

vρdxdvdt

=
γ

T

∫ τ

0

〈v2〉dt −
γ kB

m
τ, (10)

with the second equality following via integration by parts,

and �pu is the entropy “pumped” into the environment by

external forcing [26], [[28], Eq. (26)],

�pu =
∫ τ

0

∫ (

(F irr)2 − 2γ vF irr

γ T
+

kB

m
∇vF †

)

ρdxdvdt .

The term �pu is typically present only when F depends on

v. More compactly, �env can be written in terms of the irre-

versible and reversible current components as

�env =
∫ τ

0

∫ ‖Jirr‖2
M

ρ
dxdvdt

− kB

∫ τ

0

∫

∇ · (Jrev + Jirr) log ρdxdvdt,

and as a result, the total entropy produced becomes

� =
∫ τ

0

∫ ‖Jirr‖2
M

ρ
dxdvdt,

where

M =
1

γ T

[

γ 2 0

0 m2

]

(11)

is a temperature-scaled mobility matrix. In general,

the Fokker-Planck dynamics ∂tρ = −
∑

i ∂xi
(Aiρ) −

∑

i ∂
2
xi

(Diρ), dictate that, whenever Di �= 0, the corresponding

diagonal entry of M is kB/Di [26]. For this reason, the 2-2

entry in Eq. (11) is specified, whereas the 1-1 entry can be

selected as an arbitrary scaling factor with the appropriate

units. This freedom is explored in Sec. III B 1, while here we

make the natural choice and select M so that the ratio between

the 1-1 and the 2-2 entries is the square of the characteristic

time scale m/γ .

III. SPEED LIMITS

In this section we develop speed limits for thermodynamic

transitions based on the Benamou-Brenier formulation of op-

timal mass transport. We begin in Sec. III A by discussing

the setting of general Langevin dynamics. In Sec. III B, we

further explore the consequences of the Benamou-Brenier

formulation by specializing to thermodynamic transitions in
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phase space for underdamped Brownian particles with arbi-

trary forcing.

A. General Langevin dynamics

For a finite time transition from ρ0 to ρτ , two quantities that

characterize the effect of reversible and irreversible currents

can be defined, specifically, the irreversible action (entropy

production)

� =
∫ τ

0

∫ ‖Jirr‖2
M

ρ
dxdvdt,

and the reversible action

ϒ =
∫ τ

0

∫ ‖Jrev‖2
M

ρ
dxdvdt .

From Eq. (4b), with x = (x, v) and J = ρ(t, x)u(t, x),

τ

∫ τ

0

∫ ‖J‖2
M

ρ
dxdvdt � W2,M(ρ0, ρτ )2.

Substituting J = Jrev + Jirr gives

τ (� + � + ϒ) � W2,M(ρ0, ρτ )2 , (12)

where

� = 2

∫ τ

0

∫

(Jrev · Jirr)M

ρ
dxdvdt (13)

is a cross-action integral, and ( · )M denotes the inner-product

with respect to M. Inequality (12) is one of the main points of

this contribution. Although rudimentary, it applies to general

Langevin dynamics described by (5) with a current that admits

a decomposition into reversible and irreversible components.3

Furthermore, it implies the Wasserstein speed limit

lim
τ→0+

W2,M(ρt , ρt+τ )

τ
�

√

σt + φt + yt , (14)

where

σt = �̇, yt = ϒ̇, and φt = �̇.

In light of the fact that |φt | � σt + yt , Eq. (12) implies (3a).

The essence in Eq. (14) is that the speed of the Fokker-

Planck flow in the Wasserstein metric, for a fairly general

class of Langevin dynamics, is bounded by energetic costs of

reversible and irreversible rates in this precise way.

In the overdamped regime (Jrev = 0) there is always an

optimal choice for the force that saturates inequality (12), and

equivalently Eq. (1a). However, this is not the case for more

general dynamics. As discussed in Ref. [29], in the under-

damped regime the ability to specify directly the entries of

the probability current J is limited, since the relation between

position and velocity is dictated by Newton’s equations of

motion [see Eq. (6)]. Indeed, the Jx component of J can only

be influenced by the applied force F indirectly, by way of the

3In the special case of overdamped dynamics when there are

no odd variables/parameters, ϒ = � = 0 and Eq. (1a) follows for

M = γ /T . Likewise, for a deterministic system with reversible

dynamics, τϒ � W2
2,M(ρ0, ρτ ).

system dynamics. In this sense, we do not have full control

authority [30], which is the ability to specify the components

of J directly via a suitable selection of forces. Thus, there may

not exist values for F to saturate Eq. (12), and the bound in

(12) need not be tight. In what follows, (12) is specialized to

the general underdamped dynamics introduced in Sec. II B,

and corresponding thermodynamic inequalities are derived.

B. Underdamped dynamics

Hereafter, we specialize Eq. (12) to the case of under-

damped dynamics where4

� =
γ

T

∫ τ

0

〈∥

∥

∥

∥

Firr

γ
− v −

kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt,

and

ϒ =
1

γ T

∫ τ

0

〈‖F rev‖2〉dt +
γ

T

∫ τ

0

〈v2〉dt,

which gives a lower bound on the integral square of externally

applied forces, namely,

∫ τ

0

〈F 2〉dt �

∫ τ

0

〈∥

∥

∥

∥

γ kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt + �. (15)

The first term on the right-hand side is a Fisher information

functional, while the second

� =
1

τ
W

2
2,N(ρ0, ρτ ) + 2γ

(


EKin − T �sys −
γ kBT τ

m

)

,

depends on boundary conditions. Specifically, 
EKin is the

change in the average kinetic energy of the particle between

the endpoints and N = diag[γ 2, m2]. The integral-square of

forces can be interpreted as the “control effort” required to

drive a Langevin system between two states in a fixed time τ .

The bound applies with no restriction on the type of exter-

nal forces F (t, x, v), and its tightness can be studied with tools

of minimum energy control [30–32]. The proof of Eq. (15) is

provided in the Appendix.

1. Coarse graining

As noted earlier, there is a freedom in selecting M in (12),

which impacts both sides of the inequality. Specifically, we

obtain the family of bounds

τ �
W2,Mα

(ρ0, ρτ )2

ϒα + αv (� + �)
, (16)

where

Mα :=
1

γ T

[

αxγ
2 0

0 αvm2

]

,

with αx, αv > 0 dimensionless parameters and

ϒα =
∫ τ

0

∫ ‖Jrev‖2
Mα

ρ
dxdvdt .

4Throughout, the notation 〈 〉 denotes phase-space expectation, in-

tegrating with respect to ρ.
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The choice of αx/αv skews the metric, giving different im-

portance to ϒα and � + �, and can be exploited to provide

different bounds, as explained below.

In light of the fact that

W2,Mα
(ρ0, ρτ )2

�
αxγ

T
W2

(

ρx
0, ρ

x
τ

)2 +
αvm2

γ T
W2

(

ρv

0 , ρv

τ

)2
,

one can readily obtain speed limits for coarse-grained dynam-

ics in each of the two degrees of freedom, focusing on the

corresponding marginal densities

ρx =
∫

ρdv and ρv =
∫

ρdx,

at the two end points in time. To this end, from Eq. (16),

τ �
αxγ

2W2

(

ρx
0, ρ

x
τ

)2 + αvm2W2

(

ρv

0 , ρv

τ

)2

∫ τ

0

∫

αxγ 2‖Jx‖2+αvm2‖Jv‖2

ρ
dxdvdt

, (17)

and therefore, bounds on τ in the two cases follow by taking

the limit of the right-hand side as αx → 0, and as αv → 0,

respectively.

It turns out that tighter bounds can be obtained by employ-

ing Eq. (4a) on the coarse-grained evolution equations

∂tρ
x = −∇x J̄x and ∂tρ

v = −∇v J̄v, (18)

where

J̄x =
∫

Jxdv and J̄v =
∫

Jvdx.

Comparison of the two sets of bounds, obtained via Eqs. (17)

and (18), respectively, using the Cauchy-Schwarz inequality,

is as follows:

τ �
W2

(

ρx
0, ρ

x
τ

)2

∫ τ

0

∫ ‖J̄x‖2

ρx dxdt
�

W2

(

ρx
0, ρ

x
τ

)2

∫ τ

0

∫ ‖Jx‖2

ρ
dxdvdt

(19a)

and

τ �
W2

(

ρv

0 , ρv

τ

)2

∫ τ

0

∫ ‖J̄v‖2

ρv
dvdt

�
W2

(

ρv

0 , ρv

τ

)2

∫ τ

0

∫ ‖Jv‖2

ρ
dxdvdt

. (19b)

Both Eqs. (19a) and (19b) imply lower bounds on �.

Namely, the right-most bound in Eq. (19a), combined with

Eq. (10), yields

� �
γ

T τ
W2

(

ρx
0, ρ

x
τ

)2 + �sys + �pu −
γ kB

m
τ, (20)

and the right-most bound in Eq. (19b) can be rearranged into

� �
m2

γ T τ
W2

(

ρv

0 , ρv

τ

)2 −
1

γ T

∫ τ

0

〈‖F rev‖2〉dt − �. (21)

For special cases of F , the bounds in Eqs. (20) and (21)

become independent of the transition path. Briefly, if F irr = 0

and F is independent of v, then �pu = 0 and the right-hand

side of Eq. (20) contains only boundary terms. Likewise, if

F rev = 0, then � = 0 and the right-hand side of Eq. (21)

contains only boundary terms.

2. Special cases for F

We highlight results obtained from Eq. (16) for the special

cases where F rev = 0 and F irr = 0, respectively.

(1) Frev
= 0. This corresponds to a Brownian particle sub-

ject exclusively to forces that are odd under time reversal

(F † = −F ). Examples of such cases are the controlled fric-

tion in molecular refrigerator systems and forces on charged

particles due to an irreversible magnetic field.5 Since � = 0,

Eq. (16) reduces to

� �
1

τ
W2,Mα

(ρ0, ρτ )2 −
γαx

T

∫ τ

0

〈v2〉dt (22a)

for αx > 0 and αv = 1. On the other hand, Eq. (19b) gives

� �
m2

γ T

∫ τ

0

∫ ‖J̄v‖2

ρv

dvdt �
m2

γ T τ
W2

(

ρv

0 , ρv

τ

)2
. (22b)

It is not clear which of Eqs. (22a) and (22b) is tighter in

general. Focusing on Eq. (22b), the right-most bound contains

no information on the spatial distribution of the particles.

Moreover, the middle expression involving J̄v can be inter-

preted as coarse-grained entropy production, obtained by only

observing the dynamics of the particle’s velocity. This implies

the intuitive assertion that coarse-graining can at most reduce

the observed dissipation [9]. One might think that Eq. (22b)

is trivial since in the absence of position-dependent forcing,

the velocity dynamics become an overdamped system in v,

making the saturation of the bound possible. The result in

Eq. (22b), however, still holds even when position-dependent

forcing is present, as long as it is odd under time reversal.

(2) F irr
= 0. This corresponds to Brownian particles sub-

ject to a force F that is even under time reversal (F † = F ).

Examples include forces due to a position-dependent potential

or to a reversible magnetic field. Interestingly, in general,

when F † = F , � becomes

� = −2

(


EKin

T
+ �env

)

, (23)

which is a key to subsequent inequalities. The proof of

Eq. (23) can be found at the beginning of the Appendix.

The expression in Eq. (23) combined with Eq. (16) yields

an upper bound on the entropy production,

� � ϒα + Bα (24a)

that holds for all (αx, αv ) (that without loss of generality can

be normalized to αv = 1 and αx > 0), and where

Bα = 2�sys −
2

T

EKin −

1

τ
W2,Mα

(ρ0, ρτ )2

depends only on boundary conditions. Bounding the squared

Wasserstein distance in Eq. (24a) by the sum of the coarse-

grained marginals as in Eq. (17), and taking the limit αx → 0,

5While for the most part we consider one-dimensional Brownian

particles, the framework readily extends to higher dimensions, where

magnetic fields apply as a source of forcing.
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we obtain that

� �
1

γ T

∫ τ

0

〈‖F rev‖2〉dt + B, (24b)

where

B = 2�sys −
2

T

EKin −

m2

γ T τ
W2

(

ρv

0 , ρv

τ

)2
.

The same expression follows from Eq. (21) by substituting

Eq. (23) and rearranging terms. The last expression coin-

cides with an upper bound on entropy production rate derived

recently in Ref. [33] for position-dependent forcing at steady-

state. Here we include both Eq. (24a) and Eq. (24b) since it is

not clear that one is tighter than the other.

We conclude with two lower bounds, one on control effort

and one on entropy production. The first,

∫ τ

0

〈F 2〉dt � γ T �pu + � (25)

follows by substituting Eq. (23) into Eq. (12) (see detailed

steps in the Appendix), where

� =
1

τ
W2,N(ρ0, ρτ )2 + γ

(

2
EKin − T �sys −
γ kBT τ

m

)

,

depends on boundary conditions. The right-hand side of

Eq. (25) contains �pu, which typically depends on the transi-

tion path. However, in many cases where ∇vF rev = 0, �pu =
0 and the right-hand side of Eq. (25) contains only boundary

terms. The second,

� �
γ 2

γ T

∫ τ

0

∫ ‖J̄x‖2

ρx
dxdt �

γ 2

γ T τ
W2

(

ρx
0, ρ

x
τ

)2
(26)

is analogous to Eq. (22b) in that the bound contains no in-

formation on the distribution of particle velocities. This result

was first derived in Ref. [9] for the special case where F rev

is independent of v, although it holds without this condition.

As explained in Ref. [9], the bound in Eq. (26) is the natural

analog of the overdamped version in Eq. (1a), though it is

not tight. Once again, now, the middle expression involving

J̄x in Eq. (26) can be interpreted as a coarse-grained entropy

production obtained by only observing the dynamics of the

spatial distribution of particles. Finally, if in the typical case

where F rev is independent of v, �sys � γ kBτ/m, Eq. (20)

becomes tighter than Eq. (26). Nevertheless, it is interesting

to note the symmetry of the results in Eqs. (22b) and (26),

each of which holds for arbitrary F , as long as F has a definite

parity under time reversal.

IV. EXAMPLES

A. Quadratic time-varying potential

In this example, we compare the tightness of the speed

limits obtained from inequalities (25) and (26) for different

values of γ /m. To that end, consider a particle with mass

m = 10 [ng] confined in the quadratic time-varying potential

U (t, x) = 1
2

q(t )x2, t ∈ [0, τ ],

where q(t ) denotes the control protocol of the potential so that

F = −∇xU = −q(t )x.

FIG. 1. Lower bounds τ24 (dashed) and τ25 (dotted) on the tran-

sition time τ (solid) for different values of γ /m using the optimal

protocol in the overdamped limit.

In this case, F † = F . By defining the time-averaged control

effort (CE ) and the time-averaged entropy production (EP)

over the transition as

CE ≡
1

τ

∫ τ

0

〈F 2〉dt and EP ≡
�

τ
,

inequalities (25) and (26) can be rearranged into

aτ 2 + bτ + c � 0 and τ 2
� d,

respectively, where

a = CE +
γ 2kBT

m
, b = γ T �sys − 2γ
EKin,

c = −W2,N(ρ0, ρτ )2, d =
γ

T (EP)
W2

(

ρx
0, ρ

x
τ

)2
.

Inequalities (25) and (26) yield the lower bounds τ24 and τ25

on the transition time, respectively, where

τ � τ25 ≡
−b +

√
b2 − 4ac

2a
,

τ � τ26 ≡
√

d.

We compare the bounds τ24 and τ25 for different values

of γ /m, as illustrated in Fig. 1. To this end, we consider the

control protocol

q(t ) =
4kBT

(2 − t )2
+

γ

2 − t
.

This control law is the minimum-entropy protocol required

to steer the system from an initial state ρx
0 ∼ N (0, I ) to a

final state ρx
τ ∼ N (0, 0.5I ) in τ = 1 [sec] in the overdamped

limit (γ /m � 1/τ ) [34]. Here, we take T = 295 K and

kB = 1.38 × 10−23 J/K.

Figure 1 shows that both bounds converge to τ = 1 as γ /m

increases. This is expected since the control protocol has been

chosen to be optimal in the overdamped regime where the full
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FIG. 2. Noisy RLC Circuit with time-varying inductor.

control authority over the probability current is regained.6 The

bound τ24 appears less conservative than τ25 which may be at-

tributed to utilizing finer information about the system. An in-

teresting behavior of both bounds is observed near γ /m = 1,

where the transition between the low and the high friction

regimes takes place.

B. Noisy RLC circuit

While the exposition of Eq. (12) has been carried out for

the dynamics of an underdamped Brownian particle subject

to a general force F , we emphasize that the framework is

applicable to general Langevin dynamics with even and odd

degrees of freedom as outlined in the introduction. We il-

lustrate this by considering the noisy RLC circuit shown in

Fig. 2. Specifically, we consider a time-varying inductor and

a resistor in the network that is in contact with a heat bath of

temperature T .

The charge q stored at the capacitor together with the

magnetic flux φ in the inductor follow second-order stochastic

dynamics given by

dφ =
q

C
dt,

dq =
(

−
q

CR
−

φ

L(t )

)

dt +
√

2kBT

R
dBt ,

where C is the value of the capacitance, L(t ) the time-varying

inductance and R the resistance. The corresponding probabil-

ity density ρ(t, φ, q) obeys the Fokker-Planck equation

∂tρ = Ltρ = −∇ · J,

where the components of the probability current J are

Jφ =
q

C
ρ,

Jq =
(

−
q

CR
−

φ

L(t )
−

kBT

R
∇q log ρ

)

ρ.

It was initially recognized by Casimir [35], in his study of dy-

namic reversibility, that one should treat q and φ as even and

odd state variables, respectively, when comparing probability

densities, much like the setting for underdamped Langevin

6The probability current in the overdamped limit Jx =
− 1

γ
ρx (∇xU + kBT ∇x log ρx ) can be fully specified by a suitable

choice of U , cf. comment at the end of Sec. III A.

dynamics. This idea was further validated in Ref. [36] for

nonlinear circuits. As a result, we obtain the following de-

composition of the probability current:

Jrev =

(

q/C

−φ/L(t )

)

ρ,

Jirr =

(

0

− q

CR
− kBT

R
∇q log ρ

)

ρ,

which leads to the reversible and irreversible actions

� =
1

RT

∫ τ

0

〈∥

∥

∥

∥

q

C
+ kBT ∇q log ρ

∥

∥

∥

∥

2〉

dt,

and

ϒ =
1

RTC2

∫ τ

0

〈q2〉dt +
R

T

∫ τ

0

〈

φ2

L(t )2

〉

dt,

respectively, where

M =

[

1/RT 0

0 R/T

]

.

Moreover, the cross term is given by

� =
2

TC

∫ τ

0

〈

qφ

L(t )

〉

dt .

By noting that the entropies produced in the system and envi-

ronment are, respectively, given by

�sys =
1

RT

∫ τ

0

〈

qkBT

C
∇q log ρ +

∥

∥

∥

∥

kBT ∇q log ρ

∥

∥

∥

∥

2〉

dt

=
1

RT

∫ τ

0

〈∥

∥

∥

∥

kBT ∇q log ρ

∥

∥

∥

∥

2〉

dt −
kBτ

RC
,

�env =
1

RT

∫ τ

0

〈

qkBT

C
∇q log ρ +

(

q

C

)2〉

dt

=
1

RTC2

∫ τ

0

〈q2〉dt −
kBτ

RC
,

the cross term can be expressed as

� = −2

(


ECap

T
+ �env

)

, (27)

where 
ECap is the change in the average electrical energy

stored in the capacitor between t = 0 and t = τ . Note the sim-

ilarity between Eqs. (23) and (27). Thus, substituting Eq. (27)

in Eq. (12) yields
∫ τ

0

〈

φ2

L(t )2

〉

dt �
1

τ
W2,N(ρ0, ρτ )2 +

B

R
, (28)

where N = diag([1/R2 1]) and

B = 2
ECap − T �sys −
kBT τ

RC
.

The right-hand-side in Eq. (28) can be interpreted as a

path-independent lower-bound on the minimum control effort

required to steer a system from ρ0 to ρτ through a time-

varying protocol L(t ). Minimizing control effort relates to

suppressing the thermal fluctuations of the magnetic flux.
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This exemplifies an issue that arises in high-resolution in-

strumentation, where thermal fluctuations degrade the quality

of measurements. In this context, feedback control has been

used to mitigate the effect of thermal noise [37,38].

V. CONCLUDING REMARKS

The usage of optimal mass transport for quantifying uni-

versal speed limits for the evolution of physical systems on

discrete spaces was pioneered in Refs. [39,40]. The frame-

work in Refs. [39,40] utilized the Wasserstein W1 metric.

In contrast, for continuous spaces where action integrals and

control costs are typically quadratic, the W2 geometry pur-

sued herein appears natural [9].

In the present paper we presented a universal bound (12)

that is valid for general Langevin systems, provided the

Fokker-Planck equation admits a decomposition

∂tρ = −∇ · J = −∇ · Jirr − ∇ · Jrev,

with Jirr and Jrev being the even and odd parts of J with

respect to an involution † of the underlying dynamics. For

overdamped Brownian particles where typically positional

variables and (force) parameters are even, the bound in

Eq. (12) reduces to the well-known bound on entropy pro-

duction for overdamped systems, Eq. (1a), namely,

τ� � W2,M(ρ0, ρτ )2.

This inequality is characteristic of systems driven by a †-even

(or irreversible) current; tightness of the inequality, which

holds when sufficient control authority is available, allows

expressing minimal irreversible action (entropy production)

in terms of the Wasserstein length. For systems driven by

†-odd (or reversible) currents a mirror relation holds in that

the bound (12) gives

τϒ � W2,M(ρ0, ρτ )2,

for the reversible action ϒ .

The purpose of this work has been to explore the extent to

which the intimate connection between irreversibility, Wasser-

stein length, and speed limits, which is well established for

overdamped dynamics, carries over to more general dynamics.

The results that we presented suggest a more nuanced picture,

where entropy production alone is not the main obstacle that

curtails the speed of transition and where tighter bounds can

be obtained by deeper analysis of reversible currents.
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APPENDIX: PROOFS

1. Proof of Eq. (15)

For a general force F , we have

� =
2

T

∫ τ

0

〈

F revF irr

γ
− F rev

v −
kBT

m
F rev

∇v log ρ

〉

dt

= �1 + �2 + �3,

where

�1 =
1

γ T

∫ τ

0

〈

F 2 − F rev2 〉

dt,

�2 = −
2

T
(
EKin + �envT ),

�3 = � −
γ

T

∫ τ

0

〈∥

∥

∥

∥

v +
kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt .

Notice that if F irr = 0 then �1 = �3 = 0, and � = �2 =
− 2

T
(
EKin + �envT ), which is Eq. (23). Moving on, the gen-

eral expression for � combined with Eq. (12) yields

ϒ + � + � =
γ

T

∫ τ

0

〈v2〉dt +
1

γ T

∫ τ

0

〈F 2〉dt

−
2

T
(
EKin − �sysT )

−
γ

T

∫ τ

0

〈∥

∥

∥

∥

v +
kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt

�
1

τ
W2,M(ρ0, ρτ )2,

so that

1

γ T

∫ τ

0

〈F 2〉dt −
γ

T

∫ τ

0

〈∥

∥

∥

∥

kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt

�
1

τ
W2,M(ρ0, ρτ )2 + 2(
EKin/T − �sys − γ kBτ/m),

(A1)

which is Eq. (15).

2. Proof of Eq. (25)

Using Eqs. (7a) and (7b) and the fact that F irr = 0, we

expand the right-hand side of Eq. (9) to obtain that �sys equals

kB

m

∫ τ

0

∫

log ρ∇v

·
(

ρF rev − γ ρv −
γ kBT

m
ρ∇v log ρ

)

dxdvdt .

Use integration by parts and collect terms to obtain

�sys = �pu +
γ kB

m
τ −

γ

T

∫ τ

0

〈∥

∥

∥

∥

kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt,

since
∫ τ

0

∫

v∇vρ dxdvdt = −τ,

by using integration by parts one more time. Substituting the

“Fisher information” term

γ

T

∫ τ

0

〈∥

∥

∥

∥

kBT

m
∇v log ρ

∥

∥

∥

∥

2〉

dt = −�sys + �pu +
γ kB

m
τ

in the left-hand side of Eq. (A1) yields Eq. (25).
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