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Particle approximations of Wigner distributions for n arbitrary observables
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A class of signed joint probability measures for n arbitrary quantum observables is derived and studied based

on quasicharacteristic functions with symmetrized operator orderings of Margenau-Hill type. It is shown that

the Wigner distribution associated with these observables can be rigorously approximated by such measures.

These measures are given by affine combinations of Dirac delta distributions supported over the finite spectral

range of the quantum observables and give the correct probability marginals when coarse-grained along any

principal axis. We specialize to bivariate quasiprobability distributions for the spin measurements of spin-1/2

particles and derive their closed-form expressions. As a side result, we point out a connection between the

convergence of these particle approximations and the Mehler-Heine theorem. Finally, we interpret the supports

of these quasiprobability distributions in terms of repeated thought experiments.
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I. INTRODUCTION

In 1986, Cohen and Scully developed bivariate quasiprob-

ability distributions for the spin measurements of spin-1/2

particles [1]. Therein, two quasiprobability distributions

based on quasicharacteristic functions induced from sym-

metrized operator orderings were studied. The first, termed the

Margenau-Hill distribution, is given by the Fourier transform

of the quasicharacteristic function

fMH1
(ξ1, ξ2) = tr

(

ρ
eiξ1Ŝ1 eiξ2 Ŝ2 + eiξ2 Ŝ2 eiξ1Ŝ1

2

)

,

where ρ is a density matrix and Ŝ1 and Ŝ2 are the spin oper-

ators along two arbitrary directions in the Bloch sphere. The

second, termed the Wigner distribution, is given by the Fourier

transform of the quasicharacteristic function

fW(ξ1, ξ2) = tr(ρeiξ1Ŝ1+iξ2 Ŝ2 ),

and is the analog of the standard Wigner distribution for spin

observables Ŝ1 and Ŝ2. In 1992, Chandler et al. derived the

trivariate counterparts, with spin observables along mutually

orthogonal directions [2]. Therein, it was shown that the com-

putation for the trivariate Wigner distribution is simpler than

its bivariate counterpart.

In 2020, Schwonnek and Werner studied the Wigner distri-

bution for an arbitrary tuple of bounded Hermitian operators

(Â1, . . . , Ân) on a finite-dimensional Hilbert space [3], and

defined it as the Fourier transform of the quasicharacteristic

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

function

fW(ξ ) = tr(ρeiξ ·Â),

where ξ · Â =
∑n

k=0 ξkÂk, ξ ∈ R
n. The distribution is termed

“Wigner” because it recovers the standard Wigner distribution

when specialized to the canonical pair Â1 = X̂ and Â2 = P̂.

Many of its basic properties, such as the support, location of

singularities, positivity, and behavior under symmetry groups,

were studied and illustrated with examples.

In many aspects, the standard Wigner distribution, defined

by

pW :=
1

(2π )2
F ( fW),

where F (·) is the Fourier transform, has lent itself as a con-

venient choice for the phase-space representation of quantum

states. This, in large part, is due to the Fourier duality of the

canonical pair and their continuous spectra. It is often repre-

sented by a bounded and continuous function that integrates

to 1 and is sign indefinite: a salient nonclassical feature. In

contrast, when the same definition is applied to an n-tuple of

noncommuting matrices such as in Refs. [1–3], the nonclas-

sicality becomes threefold. Not only is the distribution sign

indefinite, but it is no longer a measure to begin with, and

the support need not be discrete. The last two features are

nonclassical because the distribution is intended to be a joint

law on the outcomes of simultaneously measuring the discrete

observables. Indeed, when the observables do commute, pW is

a classical discrete law. In general, however, it is a distribution

supported beyond its intended set, with a rich singularity

structure that is intimately related to the eigenvalues of the

associated observables [3]. For instance, while the Margenau-

Hill distribution studied in Ref. [1] is a discrete measure on the

set of spin measurement outcomes (±h̄/2,±h̄/2), the Wigner

distribution for the same operators is supported on a disk of

radius h̄/2, with a complicated singularity near the boundary.
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FIG. 1. Gaussian-regularized (ε = 0.01) bivariate quasiproba-

bility distributions for the spin-1/2 observables along the x and y

directions, at the state ρ = Î/2 (top) and ρ = 0.5[1 (1 − i)/
√

2; (1 +
i)/

√
2 1] (bottom) represented in the Ŝz eigenbasis. Left: Margenau-

Hill quasiprobability distribution pMH1
consisting of four Dirac

delta distributions supported over the Cartesian product of spin-1/2

eigenvalues (±h̄/2) × (±h̄/2). Right: Wigner quasiprobability dis-

tribution pW supported on a Disk of radius h̄/2 with a complicated

singularity near the boundary.

Gaussian-regularized1 plots for both distributions are shown

in Fig. 1 and analogs for a spin-4 particle are shown in Fig. 2.

Although the Wigner distribution pW lacks basic classical

features, i.e., being a measure and having discrete support,

its most remarkable classical feature still stands. It is the

unique joint distribution for which the marginals of all linear

combinations of the observables coincide with their quantum

counterparts [3]. In contrast, the Margenau-Hill distribution

in Refs. [1,2] is a discrete measure that is supported over the

classical set of measurement outcomes of the observables,

but does not give the correct probability marginals for all

linear combinations like pW does. Thus, each distribution

possesses classical features expected from a joint probability

distribution as well as nonclassical features arising from the

noncommutativity of the observables. A study of these fea-

tures began in Ref. [3] for the Wigner distribution pW, and in

this work we examine the features of a class of Margenau-Hill

counterparts denoted by pMHm
, where m ∈ N.

Specifically, we introduce, analyze, and interpret the

quasiprobability distributions

pMHm
=

1

(2π )n
F ( fMHm

), m ∈ N,

where fMHm
are quasicharacteristic functions defined for an

arbitrary tuple of Hermitian matrices (Â1, . . . , Ân) and a quan-

tum state ρ; see Sec. III A, Eq. (3). It is shown that these

distributions are real-valued, signed, and discrete probabil-

ity measures given by affine combinations of Dirac delta

1See the end of Sec. III for details.

FIG. 2. Gaussian-regularized (ε = 0.1) bivariate quasiprobabil-

ity distributions for the spin-4 observables along the x and y

directions, at the maximally mixed state (top) and the +4h̄ eigenstate

along the y direction (bottom). Left: Margenau-Hill quasiprobability

distribution pMH1
consisting of 81 Dirac delta distributions, each of

which is supported over a Cartesian product of spin eigenvalues,

namely (±k1 h̄) × (±k2 h̄), where k1, k2 ∈ {0, . . . , 4}. Right: Wigner

quasiprobability distribution pW supported on a disk of radius 4h̄

with singularities near concentric rings with radii kh̄, k = 0, . . . , 4.

distributions, and give the correct probability marginal when

coarse-grained along any principal axis.

We shall refer to pMHm
as the Margenau-Hill quasiproba-

bility distribution of order m, and show that

lim
m→∞

pMHm
= pW,

in a suitable topology that can be upgraded to that of uniform

convergence if the distributions are smeared with an appro-

priate Schwarz function. And so, while the general Wigner

distribution pW is not a quasiprobability measure for the asso-

ciated observables, it is not far from being one.

Lastly, we specialize to pairs of spin-1/2 observables along

orthogonal directions and derive closed-form expressions for

pMHm
for any m ∈ N. As a side result, we point out therein a

connection between the convergence of the particle approx-

imations pMHm
to pW and the Mehler-Heine theorem. We

conclude by proposing an interpretation for the supports of the

distributions pMHm
and pW in terms of repeated experiments.

We emphasize that the numerical and analytical tractability

showcased in the main results for general noncommuting ma-

trices (see Sec. III Proposition 3) as well as for spin matrices

in particular (see Sec. IV Proposition 12) exemplifies why it

may be much more desirable to work with these particle ap-

proximations rather than the Wigner distribution, especially in

high dimensions. Namely, the particle approximations pMHm

are always signed probability measures, i.e., they can be used

to assign mass on Borel sets of the generalized phase plane,

and can be computed exactly and systematically. In contrast,

the Wigner distribution corresponding to the same observables

need not have a closed form expression, exhibits compli-

cated singularities, and is never a measure unless all operators

commute [4].
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II. PRELIMINARIES

In this section, we establish notation and survey rele-

vant facts related to the theory of distributions. Then, we

introduce the Wigner distribution and state some of its

properties. Finally, we introduce the Lie-Trotter product for-

mula and the Mehler-Heine theorem. Throughout, we fix

a tuple (Â1, . . . , Ân) of self-adjoint operators on a finite-

dimensional Hilbert space of dimension d and define for

ξ = (ξ1, . . . , ξn) ∈ R
n the linear combination

ξ · Â :=
n
∑

k=1

ξkÂk .

Lastly, we fix a quantum state to be given by a density operator

ρ, i.e., ρ ∈ C
d×d , with ρ = ρ† � 0 and tr(ρ) = 1.

A. Distributions

Let C∞
0 (Rn) ⊆ S (Rn) ⊆ C∞(Rn) denote the spaces of

compactly supported smooth functions, Schwarz functions,

and smooth functions on R
n, respectively, and D′(Rn) ⊇

S ′(Rn) ⊇ E ′(Rn) the corresponding dual spaces of distri-

butions, tempered distributions, and compactly supported

distributions on R
n, respectively. The support and singu-

lar support of p ∈ D′(Rn) are denoted by supp(p) and

singsupp(p), respectively. The n-dimensional Fourier trans-

form

F ( f )(ξ ) =
∫

Rn

f (x)e−ix·ξ dx, ξ ∈ R
n,

is an automorphism on S (Rn) and it induces naturally an

automorphism on the dual S ′(Rn). The inverse map is given

by Fourier’s inversion formula

f (x) =
1

(2π )n

∫

Rn

F ( f )(ξ )eix·ξ dξ, x ∈ R
n.

Next, we state one direction of the Paley-Wiener-Schwartz

theorem [5, Theorem 7.3.1], which relates the support prop-

erties of a function to analyticity properties of its Fourier

transform. To this end, recall that the supporting function of a

convex compact set K ⊆ R
n is

HK (x) = sup
y∈K

〈x, y〉, x ∈ R
n.

Theorem (Paley-Wiener-Schwartz): Let K be a convex com-

pact set in R
n. If f is analytic everywhere in C

n and satisfies

| f (z)| � CeHK (Im(z)), z ∈ C
n,

where Im(z) denotes the imaginary part of z and C > 0, then

the restriction of f to R
n is the Fourier transform of a distri-

bution p ∈ E ′(Rn) with

supp(p) ⊆ K.

This theorem will be used in Sec. III to study support

properties of the distributions pMHm
. A converse statement of

the theorem also holds, see [5, Theorem 7.3.1], but will not be

needed herein.

Finally, we say that a sequence of distributions pn con-

verges to p in D′(Rn) as n → ∞, or simply, pn → p ∈

D′(Rn) as n → ∞, if for all φ ∈ C∞
0 (Rn),

lim
n→∞

〈pn, φ〉 = 〈p, φ〉.

The same definition applies for pn, p ∈ S ′(Rn) or E ′(Rn)

with respect to test functions φ taken in S (Rn) or C∞(Rn),

respectively.

B. Wigner quasiprobability distribution pW

The Wigner quasiprobability distribution pW associated

with the observables Â1, . . . , Ân and the quantum state ρ is

a real-valued distribution in S ′(Rn) given by

pW =
1

(2π )n
F ( fW),

where fW is the quasicharacteristic function

fW(ξ ) = tr
(

ρeiξ ·Â), ξ ∈ R
n.

It was shown in Ref. [3] that pW is compactly supported, i.e.,

pW ∈ E ′(Rn), and moreover that

supp(pW) ⊆ R,

where the compact convex set R ⊆ R
n is the joint numerical

range of the operators Â1, . . . , Ân. In other words, R is the set

of all vectors a ∈ R
n with components ai = tr(σ Âi ) for some

density operator σ . Furthermore, it was shown in Ref. [3] that

singsupp(pW) ⊆ S,

where S is the closure of the set of all vectors a ∈ R
n with

components ai = tr(σ Âi ) for a subset of density operators σ ,

namely, the ones that correspond to non-degenerate eigen-

states of ξ · Â. The set S is semialgebraic (algebraic if n = 2)

and its convex hull is R.

C. Lie-Trotter product formula

Given any complex-valued matrices Â1, . . . , Ân, then

lim
k→∞

(
n
∏

i=1

eÂi/k

)k

= e
∑

i Âi . (1)

The proof for the case of more than two matrices, i.e., n > 2,

follows verbatim the proof given in [6, Theorem 2.10] for

two matrices. The formula is also implied by the proof of

Lemma 1 in Appendix B.

The convergence properties of the Lie-Trotter product for-

mula are key to proving the convergence of the Margenau-Hill

quasiprobability distributions pMHm
to the Wigner distribution

pW as m → ∞. These distributions will be defined and stud-

ied in detail in Sec. III.

D. Mehler-Heine theorem

The Mehler-Heine theorem describes the asymptotic be-

havior of the Jacobi polynomials as their degree tends to

infinity. These polynomials arise by trotterizing exponentials

of spin-1/2 operators along orthogonal directions; see Lemma

2 in Sec. IV. They will be used to elucidate the nature of

the convergence of the quasiprobability distributions pMHm
as

m → ∞. In particular, we show that the convergence of the
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quasicharacteristic functions fMHm
to fW is a special case of

the Mehler-Heine theorem; see Sec. IV.

We first define the Jacobi polynomials

P(³,´ )
n (z) =

1

n!

n
∑

k=0

(
n

k

)

c
³,´

n,k

(
z − 1

2

)k

, z ∈ C, (2)

for ³, ´ ∈ R and c
³,´

n,k
= (n + ³ + ´ + 1)(k)(³ + k + 1)(n−k).

Then, the Mehler-Heine theorem [7] states that

lim
n→∞

n−³P(³,´ )
n

(

cos

(
z

n

))

=
(

z

2

)−³

J³ (z),

uniformly on compact subsets of C, where J³ (z) is the Bessel

function of the first kind of order ³.

III. RESULTS

In this section, we define the Margenau-Hill quasiproba-

bility distributions pMHm
, m ∈ N, and study their properties.

These are discrete signed probability measures associated

with the observables Â1, . . . , Ân and the quantum state ρ.

Their marginals along the ith coordinate coincide with the one

induced by the spectral measure of Âi and ρ, and therefore

give the correct probability law on the measurement outcomes

of the observable Âi. Our main result is that pMHm
→ pW in

E ′(Rn) as m → ∞, and that the convergence can be upgraded

to uniform convergence when the distributions are smeared

with an appropriate Schwarz function.

A. Margenau-Hill quasiprobability distributions pMHm

We define the Margenau-Hill quasiprobability distribu-

tion pMHm
of order m ∈ N associated with the observables

Â1, . . . , Ân and the quantum state ρ to be

pMHm
=

1

(2π )n
F ( fMHm

),

where fMHm
is the quasicharacteristic function

fMHm
(ξ ) =

1

n!
tr

⎛

¿ρ
∑

π∈Sn

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m
À

⎠, (3)

and Sn is the symmetric group. That is, Sn is the set of all per-

mutations of n elements. The products inside the summation

are ordered from left to right, starting from the lowest index

k = 1. That is,

n
∏

k=1

ei
ξπ (k)

m
Âπ (k) = ei

ξπ (1)
m

Âπ (1) ei
ξπ (2)

m
Âπ (2) · · · ei

ξπ (n)
m

Âπ (n) .

The reason why the definition of fMHm
includes a summation

over all possible permutations π ∈ Sn is to ensure that the

distributions pMHm
are real-valued for all m ∈ N. For exam-

ple, when n = 2 and m = 1, we recover the Margenau-Hill

quasicharacteristic function

fMHm
(ξ1, ξ2) = tr

(

ρ
eiξ1Â1 eiξ2Â2 + eiξ2Â2 eiξ1Â1

2

)

,

studied in [1] for the spin-1/2 operators Â1 = Ŝ1 and Â2 =
Ŝ2. In what follows, we state and prove properties of pMHm

,

starting with the most basic ones.

Proposition 1: The distributions pMHm
are tempered and

real-valued; i.e., for all m ∈ N, pMHm
∈ S ′(Rn) and

〈pMHm
, φ〉 = 〈pMHm

, φ〉, ∀φ ∈ S (Rn).

Proof: The functions fMHm
are continuous in ξ ∈ R

n, and

uniformly bounded since

| fMHm
(ξ )| �

1

n!

∑

π∈Sn

tr

(∣
∣
∣
∣
∣
ρ

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m∣
∣
∣
∣
∣

)

,

=
1

n!

∑

π∈Sn

tr(|ρ|) = tr(ρ) = 1, ∀m ∈ N,

where |A| :=
√

AA†. Thus, ∀m ∈ N, the maps

um : φ(ξ ) �→
∫

Rn

fMHm
(ξ )φ(ξ )dξ, φ(ξ ) ∈ S (Rn),

are continuous linear forms on S (Rn). That is, the distribu-

tions um are tempered. Consequently, their images under the

Fourier transform, and therefore

pMHm
=

1

(2π )n
F (um),

are also tempered. Finally, since

fMHm
(ξ ) = fMHm

(−ξ ), ∀m ∈ N,

we have

〈pMHm
, φ〉 := 〈pMHm

, φ〉 =
1

(2π )n
〈um,F

(

φ
)

〉

=
1

(2π )n

∫

Rn

fMHm
(−ξ )F (φ)(−ξ )dξ

= 〈pMHm
, φ〉,

which completes the proof. �

As done for the Wigner distribution pW in Ref. [3], we

demonstrate next how the Paley-Wiener-Schwarz theorem can

be used to prove that the Margenau-Hill distributions pMHm
are

compactly supported for all m ∈ N. To this end, define the set


 := σ (Â1) × σ (Â2) × · · · × σ (Ân),

where σ (Âk ) is the spectrum of Âk , k = 1, . . . , n. The set 


consists of all tuples of eigenvalues and is the classical sup-

port that is expected from a joint probability distribution for

the simultaneous measurement outcomes of the observables

Â1, . . . , Ân. The convex hull of 
, denoted by conv(
), is the

free numerical range of the observables Â1, . . . , Ân, which is

the set of all vectors in R
n with the ith component being equal

to tr(ρiÂi ) for some density matrix ρi. This set contains the

joint numerical range R, which in turn contains the support of

the Wigner distribution pW.

Proposition 2: For all m ∈ N, the distributions pMHm
are

compactly supported, i.e., pMHm
∈ E ′(Rn), and moreover

supp(pMHm
) ⊆ conv(
),

where conv(
) is the convex hull of 
.
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Proof: The set K := conv(
) is a convex solid in R
n with

vertex set

V (K ) = {v ∈ R
n|vk ∈ {λmin(Âk ), λmax(Âk )}, ∀k},

where λmin and λmax denote the minimal and maximal eigen-

values. Thus, the supporting function of K is

HK (x) = max
v∈V (K )

〈v, x〉.

By Proposition 1, pMHm
∈ S ′(Rn) for all m ∈ N. Then by

Fourier’s inversion formula, we have

F (pMHm
) =

1

(2π )n
F
(

F
(

fMHm

))

= gMHm
,

where gMHm
(ξ ) = fMHm

(−ξ ). Finally, observe that the func-

tion gMHm
(z), z ∈ C

n, is analytic everywhere in C
n and

satisfies the estimate

∣
∣gMHm

(z)
∣
∣ �

1

n!

∑

π∈Sn

tr

(∣
∣
∣
∣
∣
ρ

( n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m
∣
∣
∣
∣
∣

)

,

�
emaxv∈V (K )〈v,Im(z)〉

n!

∑

π∈Sn

tr(ρ) = eHK ( Im(z)),

for all m ∈ N. Detailed steps for the last inequality are given

in Appendix A. By the Paley-Wiener-Schwarz theorem, this

completes the proof. �

The above is a powerful approach that can be extended

straightforwardly to bounded self-adjoint operators on an

infinite-dimensional Hilbert space. Therein, 
 need not be a

finite set. In the current finite-dimensional setting, however,


 is always a finite set. Because of this, Proposition 2 can

be significantly refined, and the support can be characterized

more precisely as follows.

Proposition 3: For all m ∈ N, pMHm
is a finite affine com-

bination of Dirac delta distributions with

singsupp
(

pMHm

)

= supp
(

pMHm

)

⊆
1

m

m
∑

i=1


,

where the summation is in the sense of Minkowski.

Proof: Let f ∗m := f ∗ f ∗ · · · ∗ f denote the convolution

of f with itself m times. Then, explicit formal computation

shows that, for all m ∈ N, x ∈ R
n,

pMHm
(x) =

1

(2π )n

∫

Rn

fMHm
(ξ )e−ix·ξ dξ

=
1

n!(2π )n

∑

π∈Sn

tr

(

ρ

∫

Rn

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m

e−ix·ξ dξ

)

,

where

∫

Rn

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m

e−ix·ξ dξ =

(
∫

Rn

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)

e−ix·ξ dξ

)∗m

=

(
n
∏

k=1

(∫

R

ei
ξπ (k)

m
Âπ (k) e−ixπ (k)ξπ (k) dξπ (k)

)
)∗m

=

(
n
∏

k=1

Ûπ (k)

(∫

R

e−iξπ (k)(xπ (k)−
D̂π (k)

m
)dξπ (k)

)

Û
†
π (k)

)∗m

=

(
n
∏

k=1

Ûπ (k)Êπ (k)Û
†
π (k)

)∗m

,

and Ûπ (k)D̂π (k)Û
†
π (k) is the eigendecomposition of Âπ (k). The

diagonal matrix Êπ (k), given by

Êπ (k) =
∫

R

e−iξπ (k)(xπ (k)−
D̂π (k)

m
)dξπ (k),

has in its ith diagonal entry the Dirac delta distribution

2π · δ

(

xπ (k) −
[D̂π (k)]ii

m

)

,

where [D̂π (k)]ii is the ith diagonal entry of D̂π (k). This implies

that

singsupp

(
n
∏

k=1

Ûπ (k)Êπ (k)Û
†
π (k)

)

= supp

(
n
∏

k=1

Ûπ (k)Êπ (k)Û
†
π (k)

)

⊆ 
/m.

By performing the convolution m times, the resulting support

for pMHm
is contained in the set 
/m added to itself m times.

Thus, the distribution pMHm
is a linear combination of Dirac

delta distributions supported in (1/m)
∑m

i=1 
. To show that

this linear combination is affine, i.e., that the coefficients of

the combination add up to 1, it is enough to note that

〈

pMHm
, 1
〉

=
1

(2π )n

∫

Rn

fMHm
(ξ )F (1)dξ

= fMHm
(0) = 1,

which completes the proof. �

Thus, the Margenau-Hill distribution of any order is a

discrete signed probability measure associated with the ob-

servables Â1, . . . , Ân and the quantum state ρ. Finally, we

verify that the marginals of pMHm
along any principal axis give

the correct probability law on the measurement outcomes of

the corresponding observable.

Proposition 4: The jth marginal of pMHm
is given by

∫

Rn−1

pMHm
dx\ j =

d
∑

s=1

〈ψ j (s)|ρ|ψ j (s)〉δ(x j − λ j (s)),
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where dx\ j := dx1 · · · dx j−1dx j+1 · · · dxn and λ j (s), |ψ j (s)〉
are the corresponding eigenvalues and eigenvectors of Â j ,

respectively, with s = 1, . . . , d .

Proof: Starting from the left-hand side of the above,

1

(2π )n

∫

Rn−1

F
(

fMHm

)

ei
∑n

k �= j xkξk dx\ j

∣
∣
∣
∣
ξk=0, ∀k �= j

=
1

2π

∫

R

fMHm
(ξ )e−ix jξ j dξ j

∣
∣
∣
∣
ξk=0, ∀k �= j

=
1

2π

∫

R

tr(ρeiξ j Â j )e−ix jξ j dξ j

= tr

(

ρÛ j

(
1

2π

∫

R

e−iξ j (x j−D̂ j )dξ j

)

Û
†
j

)

=
d
∑

s=1

〈ψ j (s)|ρ|ψ j (s)〉δ(x j − λ j (s)),

where Â j = Û jD̂ jÛ
†
j is the eigendecomposition of Â j , and

λ j (s), |ψ j (s)〉 as claimed. �

B. Convergence to the Wigner distribution pW

Herein, we prove that pMHm
→ pW in E ′(Rn) as m → ∞,

and that the convergence can be upgraded to uniform conver-

gence when the distributions are smeared with an appropriate

Schwarz function.

Proposition 5: The Margenau-Hill quasiprobability distri-

bution pMHm
converges to the Wigner distribution pW in

E ′(Rn) as m → ∞.

Proof: By definition, we must show that

lim
m→∞

〈pMHm
, φ〉 = 〈pW, φ〉, ∀φ ∈ C∞(Rn).

To that end, let χ ∈ C∞
0 (Rn) be a cutoff function equal to 1 on

a neighborhood of K = conv(
) and let

ψ = χφ ∈ C∞
0 (Rn),

for any φ ∈ C∞(Rn); then
〈

pMHm
, φ
〉

= 〈pMHm
, ψ〉

=
1

(2π )n
〈F ( fMHm

), ψ〉

=
1

(2π )n

∫

Rn

fMHm
(ξ )F (ψ )(ξ )dξ . (4)

By the Lie-Trotter product formula (1), we have the pointwise

convergence

lim
m→∞

fMHm
(ξ ) = tr(ρeiξ ·A) = fW(ξ ).

Thus, the integrand in Eq. (4) converges pointwise to

fW(ξ )F (ψ )(ξ ) and is bounded in absolute value by

|F (ψ )(ξ )| ∈ S (Rn) for all m ∈ N. By the dominated conver-

gence theorem we get

lim
m→∞

〈pMHm
, φ〉

=
1

(2π )n

∫

Rn

fW(ξ )F (ψ )(ξ )dξ

=
1

(2π )n
〈F ( fW), ψ〉 = 〈pW, ψ〉 = 〈pW, φ〉,

where the last equality follows from the fact that supp(pW) ⊆
R ⊆ K . �

Thus, we have shown that, while the general Wigner dis-

tribution pW need not be a quasiprobability measure for the

associated observables, it is not far from being one. More

precisely, Proposition 5 implies that, for any ε > 0 and φ ∈
C∞(Rn), there will exist a discrete signed quasiprobability

measure μ such that
∣
∣
∣
∣
〈pW, φ〉 −

∫

Rn

φ dμ

∣
∣
∣
∣
� ε,

with the measure μ being a Margenau-Hill quasiprobability

distribution pMHm
for sufficiently large m.

Finally, the convergence result in Proposition 5 can be

upgraded to uniform convergence if the distributions are

smeared, i.e., convolved, with an appropriate Schwarz func-

tion. To prove this, the following lemma is needed.

Lemma 1: The Margenau-Hill quasicharacteristic function

fMHm
converges to the Wigner quasicharacteristic function fW

as m → ∞ uniformly on compact subsets of C
n.

Proof: The proof is given in Appendix B. �

Evidently, Lemma 1 refers to the analytic extensions of

fMHm
and fW to all C

n. In particular, the original functions

fMHm
converge to fW as m → ∞ uniformly on compact sub-

sets of R
n.

Proposition 6: If ψ ∈ S (Rn) satisfies F (ψ ) ∈ C∞
0 (Rn),

then ψ ∗ pMHm
→ ψ ∗ pW uniformly as m → ∞.

Proof: Recall that since ψ is smooth and the distributions

pMHm
and pW are tempered, then ψ ∗ pMHm

and ψ ∗ pW are

also smooth. Let supp(F (ψ )) ⊆ K compact; then

|ψ ∗ pW − ψ ∗ pMHm
|(x)

=
∣
∣
∣
∣

∫

Rn

F (ψ )(ξ )
[

fW(−ξ ) − fMHm
(−ξ )

]

e−iξ ·x dξ

∣
∣
∣
∣

�

∫

K

|F (ψ )(ξ )|
∣
∣ fW(−ξ ) − fMHm

(−ξ )
∣
∣dξ

�

(∫

K

|F (ψ )(ξ )|dξ

)

· sup
ξ∈K

∣
∣ fW(−ξ ) − fMHm

(−ξ )
∣
∣

�

(∫

K

|F (ψ )(ξ )|dξ

)

· sup
ξ∈−K

∣
∣ fW(ξ ) − fMHm

(ξ )
∣
∣, (5)

where the last integral is finite as F (ψ ) ∈ S (Rn) and therefore

integrable. By Lemma 1, fMHm
→ fW as m → ∞ uniformly

on compact subsets of R
n. Thus,

sup
ξ∈−K

∣
∣ fW(ξ ) − fMHm

(ξ )
∣
∣ → 0,

as m → ∞. Taking the supremum over all x ∈ R
n on both

sides of Eq. (5) implies that

sup
x∈Rn

∣
∣ψ ∗ pW − ψ ∗ pMHm

∣
∣ → 0,

as m → ∞, which completes the proof. �

We illustrate in Figs. 3–7 the convergence of the Margenau-

Hill quasiprobability distributions pMHm
to the corresponding

Wigner distribution pW for pairs of spin operators along

the x and y directions and various quantum states. The fig-

ures display smoothed versions of the distributions obtained

by convolving with a Gaussian function. This is effected by
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FIG. 3. Gaussian-regularized (ε = 0.01) bivariate quasiprobability distributions for the spin-1/2 observables along the x and y directions

and the maximally mixed state ρ = Î/2. From left to right: pMH1
, pMH3

, pMH5
, pMH10

, and pW. Each pMHm
consists of (m + 1)2 Dirac delta

distributions supported over the grid of points (1/m)
∑m

i=1 
.

FIG. 4. Gaussian-regularized (ε = 0.01) bivariate quasiprobability distributions for the spin-1/2 observables along the x and y directions

for the −h̄/2 eigenstate in the x direction. From left to right: pMH1
, pMH3

, pMH5
, pMH10

, and pW. Each pMHm
consists of (m + 1)2 Dirac delta

distributions supported over the grid of points (1/m)
∑m

i=1 
.

FIG. 5. Gaussian-regularized (ε = 0.01) bivariate quasiprobability distributions for the spin-3/2 observables along the x and y directions

and the maximally mixed state ρ = Î/4. From left to right: pMH1
, pMH3

, pMH5
, pMH15

, and pW. Each pMHm
consists of (3m + 1)2 Dirac delta

distributions supported over the grid of points (1/m)
∑m

i=1 
.

FIG. 6. Gaussian-regularized (ε = 0.1) bivariate quasiprobability distributions for the spin-4 observables along the x and y directions for

the +4h̄ eigenstate along the y direction. From left to right: pMH1
, pMH2

, pMH3
, pMH10

, and pW. Each pMHm
consists of (8m + 1)2 Dirac delta

distributions supported over the grid of points (1/m)
∑m

i=1 
.
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FIG. 7. Gaussian-regularized (ε = 0.1) bivariate quasiprobability distributions for the spin-4 observables along the x and y directions

and the maximally mixed state ρ = Î/9. From left to right: pMH1
, pMH2

, pMH3
, pMH5

, and pW. Each pMHm
consists of (8m + 1)2 Dirac delta

distributions supported over the grid of points (1/m)
∑m

i=1 
.

multiplying the quasicharacteristic function f by the decaying

exponential e−εξ 2

, where the regularizing parameter ε is tuned

for best visualization, as explained in Ref. [3]. Specifically,

when ε is too large, the features of the distribution p are

wiped out, and when ε is to small, singularities manifest

with exceedingly large values. An example of the effect of

the regularizing parameter ε on the resolution of the plots is

shown in Fig. 8.

IV. SPIN 1/2

In this section, we specialize to quasiprobability distribu-

tions for a pair of spin-1/2 observables by setting

Â1 = Ŝ1 := Ŝ · n̂1, Â2 = Ŝ2 := Ŝ · n̂2,

where Ŝ is the spin-1/2 operator and n̂1 and n̂2 are orthogonal

directions in the Bloch sphere. The directions are given by the

FIG. 8. Dependence of the resolution of the features of the

Gaussian-regularized Margenau-Hill distribution pMH5
on the regu-

larizing parameter ε, for the spin-3/2 observables along the x and

y directions for the maximally mixed state ρ = Î/4. From top to

bottom: ε = 0.001, 0.005, 0.01, 0.02, 0.05. The distribution pMH5

consists of 162 Dirac delta distributions supported over the grid of

points 1/5
∑5

i=1 
. They are best visualized for ε = 0.001.

unit vectors

n̂i = sin(θi ) cos(φi)x̂ + sin(θi ) sin(φi)ŷ + cos(θi )ẑ,

where n̂1 · n̂2 = 0, for some θi, φi ∈ R, i ∈ {1, 2}. First, we

recall some properties of Ŝ1 and Ŝ2 as well as their Wigner

distribution studied in Refs. [1,3]. Then we compute for

all m ∈ N closed-form expressions for the Margenau-Hill

quasicharacteristic functions fMHm
and quasiprobability dis-

tributions pMHm
. As a byproduct, we elucidate the nature of

the convergence of fMHm
to fW as m → ∞ by relating it to a

special case of the Mehler-Heine theorem. For simplicity of

exposition, we replace the spin-1/2 values ±h̄/2 by ±1.

A. Properties of Ŝ1 and Ŝ2

The operators Ŝ1 and Ŝ2, represented in the Ŝz := Ŝ · ẑ

eigenbasis, are given by

Ŝ j =
[

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

]

, j ∈ {1, 2},

and satisfy various properties summarized below.

Proposition 7: Let Î denote the identity matrix. Then, for

all ξ1, ξ2 ∈ R, j, k ∈ {1, 2}, the following properties hold:

Ŝ2
j = Î, det(Ŝ j ) = −1, tr(Ŝ j ) = 0,

[Ŝ j, Ŝk] = 2iŜ · (n̂ j × n̂k ), {Ŝ j, Ŝk} = 2(n̂ j · n̂k )Î,

ei(ξ1Ŝ1+ξ2 Ŝ2 ) = cos(‖ξ‖)Î + i(ξ1Ŝ1 + ξ2Ŝ2)
sin(‖ξ‖)

‖ξ‖
,

where ‖ξ‖ =
√

ξ 2
1 + ξ 2

2 . The symbol × denotes the cross

product, and [·, ·] and {·, ·} denote the commutator and an-

ticommutator brackets, respectively.

Proof: The proof is given in Appendix C. �

Next, recall that the quantum state ρ of a spin-1/2 particle

can be represented in the Ŝz eigenbasis by

ρ =
1

2

[

1 + z x − iy

x + iy 1 − z

]

,

where x := tr(ρŜx ), y := tr(ρŜy), and z := tr(ρŜz ) are the

Bloch vector coordinates satisfying x2 + y2 + z2 � 1. Equiva-

lently, one can consider any system of coordinates induced by

the expectation values of three mutually orthogonal spin oper-

ators. In our case, one can take Ŝ1, Ŝ2, and Ŝ3 := Ŝ · (n̂1 × n̂2),

so that

s2
1 + s2

2 + s2
3 � 1, (6)
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where s1 := tr(ρŜ1), s2 := tr(ρŜ2), and s3 := tr(ρŜ3) are the

expected values for the spin components of the particle along

the directions n̂1, n̂2, and n̂1 × n̂2, respectively.

B. Wigner distribution pW

We recall some properties of the Wigner distribution pW

associated with the observables Ŝ1 and Ŝ2 and the quantum

state ρ studied in Refs. [1,3].

Proposition 8: The Wigner distribution pW associated

with the observables Ŝ1 and Ŝ2 and the quantum state ρ is

formally given by

pW(x1, x2) = (1 + s1x1 + s2x2)p0
W(x1, x2),

where

p0
W(x1, x2) =

1

(2π )2
F ( cos(‖ · ‖))(x1, x2)

is the Wigner distribution for any state with Bloch vector

normal to the plane defined by n̂1 and n̂2, and

F ( cos(‖ · ‖))(x1, x2) =
∫

R2

cos(‖ξ‖)e−i(x1ξ1+x2ξ2 )dξ1dξ2.

Proof: By definition, the Wigner distribution pW is given by

pW(x1, x2) =
1

(2π )2

∫

R2

fW(ξ1, ξ2)e−i(x1ξ1+x2ξ2 )dξ1dξ2,

where fW is given by

fW(ξ1, ξ2) = tr(ρei(ξ1Ŝ1+ξ2 Ŝ2 ))

= cos(‖ξ‖) + i(s1ξ1 + s2ξ2)
sin(‖ξ‖)

‖ξ‖

=
(

1 − is1

∂

∂ξ1

− is2

∂

∂ξ2

)

cos(‖ξ‖).

Performing integration by parts with respect to ξ1 and ξ2 yields

pW(x1, x2) =
(1 + s1x1 + s2x2)

(2π )2
F ( cos(‖ · ‖))(x1, x2).

If a state ρ0 corresponds to a Bloch vector normal to the plane

defined by n̂1 and n̂2, then the expectations s0
1 = tr(ρ0Ŝ1) and

s0
2 = tr(ρ0Ŝ2) are zero, so that

p0
W(x1, x2) =

1

(2π )2

∫

R2

cos(‖ξ‖)e−i(x1ξ1+x2ξ2 )dξ1dξ2

=
1

(2π )2
F ( cos(‖ · ‖))(x1, x2),

which yields the desired result. �.

Next, using the Paley-Wiener-Schwarz theorem, we prove

that pW is always supported in the unit disk.

Proposition 9: The Wigner quasiprobability distribution

pW associated with the observables Ŝ1 and Ŝ2 and the quantum

state ρ satisfies

supp(pW) ⊆ D,

where D ⊆ R
2 is the closed unit disk.

Proof: Let ‖A‖F :=
√

tr(AA†) denote the Frobenius norm.

By the Cauchy-Schwarz inequality, |tr(AB)| � ‖A‖F‖B‖F.

Then, the function

fW(z1, z2) = tr(ρei(z1Ŝ1+z2 Ŝ2 )), z := (z1, z2) ∈ C
2,

which is analytic everywhere in C
2, satisfies the estimate

| fW(z1, z2)| � ‖ρ‖F‖ei(z1Ŝ1+z2 Ŝ2 )‖F

= ‖ρ‖F‖e−[Im(z1 )Ŝ1+Im(z2 )Ŝ2]‖F

= ‖ρ‖F

∥
∥
∥
∥
∥

∞
∑

k=0

(−1)k[Im(z1)Ŝ1 + Im(z2)Ŝ2]k

k!

∥
∥
∥
∥
∥

F

.

By noting that [Im(z1)Ŝ1 + Im(z2)Ŝ2]2 = ‖ Im(z)‖2
2 Î , we can

split the above sum into even and odd parts to get

∥
∥
∥
∥
∥

∞
∑

k=0

(−1)k[Im(z1)Ŝ1 + Im(z2)Ŝ2]k

k!

∥
∥
∥
∥
∥

F

�

∞
∑

k=0

‖ Im(z)‖2k
2

(2k)!
‖Î‖F + ‖ Im(z1)Ŝ1 + Im(z2)Ŝ2‖F

∞
∑

k=0

‖ Im(z)‖2k
2

(2k + 1)!
�

√
2

∞
∑

k=0

‖ Im(z)‖k
2

k!
.

Thus, we obtain the estimate

| fW(z1, z2)| �
√

2‖ρ‖F

∞
∑

k=0

‖ Im(z)‖k
2

k!

=
√

2‖ρ‖Fe‖ Im(z)‖2 =
√

2‖ρ‖FeHD ( Im(z)).

By the Paley-Wiener-Schwarz theorem, supp(pW) ⊆ D as

desired. �

Remark: Since p0
W is radially symmetric, the Wigner dis-

tribution pW can be expressed in polar coordinates via the

change of variables x1 = r cos(θ ) and x2 = r sin(θ ), where

r = ‖x‖, as

pW(r, θ ) = [1 + s1r cos(θ ) + s2r sin(θ )]p0
W(r).

Thus, the Wigner distribution for any state ρ can always be

written as the Wigner distribution p0
W corresponding to, for

instance, the maximally mixed state ρ = I/2, multiplied by

the function

h(r, θ ) = 1 + s1r cos(θ ) + s2r sin(θ ).

Compare, for example, the two Wigner distributions for the

observables Ŝ1 = Ŝx and Ŝ2 = Ŝy shown in the two right

subplots of Fig. 1. Modulo the Gaussian regularization, the

bottom Wigner distribution can be obtained by multiplying

the top Wigner distribution by

h(r, θ ) = 1 +
r

√
2

[cos(θ ) + sin(θ )] = 1 + r sin
(

θ +
π

4

)

.

013102-9



RALPH SABBAGH et al. PHYSICAL REVIEW RESEARCH 7, 013102 (2025)

That is because the Wigner distribution for the state

ρ =
1

2

[

1 1−i√
2

1+i√
2

1

]

,

corresponds to the Bloch vector coordinates x = 1/
√

2, y =
1/

√
2, and z = 0. Thus, s1 = s2 = 1/

√
2.

Lastly, notice that the function h is always non-negative in

D where pW is supported. To see this, apply the reverse trian-

gle inequality, followed by the Cauchy-Schwarz inequality, to

get

h(r, θ ) � 1 − |s1r cos(θ ) + s2r sin(θ )|

� 1 − |r|
√

s2
1 + s2

2 � 0,

where the last inequality follows from Eq. (6). This implies

that the sign of the Wigner distribution for Ŝ1 and Ŝ2, which

reflects the quantum nature of the representation, is indepen-

dent of the state ρ.

C. Margenau-Hill quasicharacteristic functions

fMHm and the Mehler-Heine theorem

In what follows, we compute closed-form expressions

for the Margenau-Hill quasicharacteristic functions fMHm
and

show that their convergence to fW, which is uniform on com-

pact subsets of C
2 by Lemma 1, is a special case of the

Mehler-Heine theorem. We start by proving the following

result.

Lemma 2: Let m ∈ N and ξ1, ξ2 ∈ R. Then,

(

ei
ξ1
m

Ŝ1 ei
ξ2
m

Ŝ2
)m +

(

ei
ξ2
m

Ŝ2 ei
ξ1
m

Ŝ1
)m

2
= Tm(am) + ibmUm−1(am),

(7)

and
(

ei
ξ1
m

Ŝ1 ei
ξ2
m

Ŝ2
)m −

(

ei
ξ2
m

Ŝ2 ei
ξ1
m

Ŝ1
)m

2

= Um−1(am) sin

(
ξ1

m

)

sin

(
ξ2

m

)

Ŝ2Ŝ1, (8)

where

am := cos

(
ξ1

m

)

cos

(
ξ2

m

)

Î,

bm := sin

(
ξ1

m

)

cos

(
ξ2

m

)

Ŝ1 + cos

(
ξ1

m

)

sin

(
ξ2

m

)

Ŝ2,

and Tm(·) and Um(·) are the mth degree Chebyshev polynomi-

als of the first and second kinds, respectively.

Proof: The proof is given in Appendix D. �

The resemblance of Eq. (7) with the mth power

zm = Tm(a) + ibUm−1(a),

of a complex number z = a + ib of modulus 1, a, b ∈ R, is

inescapable. Then, Eqs. (7) and (8) together may be seen

as a noncommutative version of de Moivre’s formula. Using

the above lemma, we can derive closed-form expressions for

the Margenau-Hill quasicharacteristic functions fMHm
for all

m∈N, as explained next.

Proposition 10: The Margenau-Hill quasicharacteristic

functions fMHm
(ξ1, ξ2) associated with the spin operators Ŝ1,

Ŝ2 and the state ρ are given by
(

1 − is1

∂

∂ξ1

− is2

∂

∂ξ2

)

Tm

(

cos
(ξ1

m

)

cos
(ξ2

m

)
)

,

where Tm(·) is the mth degree Chebyshev polynomial of the

first kind, m ∈ N.

Proof: Equation (7) implies that for all m ∈ N,

fMHm
(ξ1, ξ2) = tr[ρ(Tm(am) + ibmUm−1(am))].

Since d
dx

Tm(x) = mUm−1(x), the right-hand side equals

tr

[

ρ

(

Î − iŜ1

∂

∂ξ1

− iŜ2

∂

∂ξ2

)

Tm

(

cos
(ξ1

m

)

cos
(ξ2

m

)
)]

=
(

1 − is1

∂

∂ξ1

− is2

∂

∂ξ2

)

Tm

(

cos

(
ξ1

m

)

cos

(
ξ2

m

))

,

which completes the proof. �

Remark: So far, we have seen that both the Wigner qua-

sicharacteristic function fW as well as the Margenau-Hill

quasicharacteristic functions fMHm
can be derived by applying

the operator

1 − is1

∂

∂ξ1

− is2

∂

∂ξ2

to the quasicharacteristic function corresponding to any state

ρ0 satisfying tr(ρ0Ŝ1) = tr(ρ0Ŝ2) = 0. Thus, knowledge of

the quasicharacteristic function for any such ρ0 is enough to

construct the quasicharacteristic function for any other state

ρ.

In light of Proposition 10, we conclude by noting the

connection between the Mehler-Heine theorem and the con-

vergence property of the Margenau-Hill quasicharacteristic

functions fMHm
to fW.

Proposition 11: For the special case of spin observables

Ŝ1 and Ŝ2, Lemma 1 follows directly from the Mehler-Heine

theorem.

Proof: The proof is given in Appendix E. �

It is unclear whether this connection between the Lie-

Trotter product formula and the Mehler-Heine theorem for

spin-1/2 observables is simply a mathematical coincidence or

the manifestation of a deeper fact.

D. Margenau-Hill quasiprobability distributions pMHm

We now derive closed-form expressions for the Margenau-

Hill quasiprobability distributions pMHm
for all m ∈ N. This

is done by taking the Fourier transform of the corresponding

expressions for fMHm
in Proposition 10.

Proposition 12: The Margenau-Hill quasiprobability dis-

tribution of order m ∈ N associated with the spin observables

Ŝ1, Ŝ2 and a quantum state ρ is given by

pMHm
= (1 + s1x1 + s2x2)p0

MHm
,

where si = tr(ρŜi ), i ∈ {1, 2},

p0
MHm

=
m
∑

n=0

amn

4n

⎡

£

n
∑

p,q=0

(
n

p

)(
n

q

)

δ(x1− n−2p

m
,x2− n−2q

m )

¤

⎦,
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and amn are the coefficients of the Chebyshev polynomial of

the first kind of order m, that is,

Tm(x) =
m
∑

n=0

amnxn.

Proof: By Proposition 10, the Margenau-Hill quasicharacter-

istic function fMHm
(ξ1, ξ2) is given by

(

1 − is1

∂

∂ξ1

− is2

∂

∂ξ2

)

Tm

(

cos
(ξ1

m

)

cos
(ξ2

m

)
)

,

for all m ∈ N. It follows that

pMHm
=

1

(2π )2
F ( fMHm

) = (1 + s1x1 + s2x2)p0
MHm

,

where

p0
MHm

(x1, x2) =
m
∑

n=0

amn

(2π )2
F

(

cosn
(x1

m

)

cosn
(x2

m

)
)

,

=
m
∑

n=0

amn

4n

⎡

£

n
∑

p,q=0

(
n

p

)(
n

q

)

δ(x1− n−2p

m
,x2− n−2q

m )

¤

⎦.

The last equality follows from the fact that

F

(

cosn
( ·

m

)
)

=
2π

2n

⎡

£

n
∑

p=0

(
n

p

)

δ

(

· −
n − 2p

m

)
¤

⎦,

which completes the proof. �

V. REPEATED EXPERIMENTS

In this section, we discuss the Wigner distribution pW and

its particle approximations pMHm
in the context of repeated

experiments.

Recall from Proposition 3 that the Margenau-Hill

quasiprobability distribution pMHm
of order m is supported on

the grid of points

1

m

m
∑

i=1


 =

 + 
 + · · · + 


m
,

where the summation is in the sense of Minkowski, and


 := σ (Â1) × σ (Â2) × · · · × σ (Ân),

with σ (Âk ) the spectrum of Âk , k = 1, . . . , n. The set 
 con-

sists of all tuples of eigenvalues and is the support that is

expected of a joint probability law on the classical measure-

ment outcomes of the observables Â1, . . . , Ân. For instance,

in the case of spin-1/2 observables Ŝ1 and Ŝ2 discussed in

Sec. IV, the set 
 is given by


 = (−1,+1) × (−1,+1),

= {(−1,−1), (−1,+1), (+1,−1), (+1,+1)},
= {(±1,±1), (±1,∓1)},

which is the support for the Margenau-Hill quasiprobability

distribution pMHm
of order m = 1.

Since the probability measures pMHm
are sign-indefinite,

the underlying experiments are not realizable, and will hence

be referred to as thought experiments. For instance, the

thought experiment associated with the signed measure pMH1

is the simultaneous measurement of the spin components of a

spin-1/2 particle in state ρ along the directions n̂1 and n̂2; see

Ref. [8].

Likewise, the support for pMH2
, which is


+ 


2
=

[(−1,+1) × (−1,+1)] + [(−1,+1) × (−1,+1)]

2
,

= {(±1,±1), (±1,∓1), (±1, 0), (0,±1), (0, 0)},

suggests that the associated thought experiment for the case

m = 2 would be the instantaneous repetition of the thought

experiment in m = 1 twice, for the same ρ, with the average

of the two results recorded as the outcome. The simultaneous

measurements performed in these thought experiments are not

quantum measurements because Ŝ1 and Ŝ2 do not commute.

As a consequence, the axiom of repetition need not apply, and

nine possible outcomes are present. For instance, the outcome

(0,+1) may arise as a result of (+1,+1) instantiating in the

first simultaneous measurement and (−1,+1) in the second.

In a similar manner, the support of pMHN
for any N ∈ N

becomes the set of outcomes obtained by instantaneously

repeating the thought experiment for m = 1, N times, and

recording the average. Thus, the Wigner quasiprobability dis-

tribution pW corresponds to this limiting thought experiment

that involves an infinite instantaneous repetition of the thought

experiment in m = 1.

Since this limit process averages out the results from theo-

retically sampling the system in state ρ infinitely many times,

the support of the Wigner distribution is still confined in the

unit square. See, for instance, Fig. 9, which displays the evo-

lution of the support of the Margenau-Hill distributions pMHN

for Ŝ1 and Ŝ2 as N → ∞. The fact, however, that the support

is always inside the unit Disk, which is the joint numerical

range of Ŝ1 and Ŝ2, suggests that with every run of this thought

experiment, the resulting average must correspond to the spin

components of the particle in some state σ , as

tr(σ Ŝ1)2 + tr(σ Ŝ2)2
� 1.

We believe that a time-resolved version of this thought ex-

periment could be linked to the continuous monitoring of

non-commuting observables [9]. Such an interpretation could

provide insight on certain features of pW, such as its regions of

positivity as well as its shape, from a physical perspective. The

above discussion is no different for a general tuple of opera-

tors Â1, . . . , Ân, and potential links to the theory of continuous

measurement are of great interest.

Finally, when all of the observables Â1, . . . , Ân commute,

all successive supports collapse to that of pMH1
and the se-

quence of thought experiments, which are now realizable,

must lead to outcomes confined to the classical sample space


. In the context of our proposed thought experiments, this

implies that making multiple repetitions of the same mea-

surement does not alter the average when the observables

commute; i.e., subsequent measurements are identical to the

outcomes obtained in the first measurement. This is consistent

with the axiom of repetition, which asserts that performing the

same measurement on a quantum system will not change the

resulting outcome.
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FIG. 9. Evolution of the support of the Margenau-Hill distribu-

tion pMHm
for the spin-1/2 observables along the x and y directions

and the maximally mixed state ρ = Î/2. From top to bottom: (left)

pMH1
, pMH2

, pMH3
, pMH4

, (right) pMH6
, pMH8

, pMH11
, pW. The distri-

bution pMHm
consists of (m + 1)2 Dirac delta distributions supported

over the grid of points (1/m)
∑m

i=1 
.

VI. CONCLUSION

In this work, a class of real-valued signed discrete proba-

bility measures given by

pMHm
=

1

(2π )n
F ( fMHm

),

for n arbitrary quantum observables is derived and studied

based on quasicharacteristic functions fMHm
with symmetrized

operator orderings of Margenau-Hill type. These measures

are given by affine combinations of Dirac delta distributions

supported over the finite spectral range of the quantum ob-

servables, and give the correct probability marginals when

coarse-grained along any principal axis. We showed that these

particle approximations converge weakly to their correspond-

ing Wigner distribution, and the convergence can be upgraded

if they are smeared with an appropriate Schwarz function.

Closed-form expressions in the case of bivariate quasiprob-

ability distributions for the spin measurements of spin-1/2

particles are provided. As a side result, the convergence of

the approximants in this case follows from the Mehler-Heine

theorem. Finally, we discussed the Wigner distribution and

its particle approximations in the context of repeated thought

experiments. Namely, the supports of pW and pMHm
point

towards thought experiments involving repeated simultaneous

measurements on the state ρ. When the operators mutually

commute, these supports reduce to the classical grid of eigen-

values, in agreement with the axiom of repetition.
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APPENDIX A: PROOF OF PROPOSITION 2

We provide herein details for the inequality

∑

π∈Sn

tr

(∣
∣
∣
∣
∣
ρ

(
n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m∣
∣
∣
∣
∣

)

� emaxv∈V (K )〈v,Im(z)〉
∑

π∈Sn

tr(ρ).

By definition,

∣
∣
∣
∣
∣
ρ

(
n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m∣
∣
∣
∣
∣
=

√
√
√
√ρ

(
n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m( n
∏

k=1

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)m

ρ.

Notice that the innermost pair of factors simplify and are bounded as follows:

(
n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)(
n
∏

k=1

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)

=

(
n−1
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)

e−2
Im(zπ (n) )

m
Âπ (n)

(
n
∏

k=2

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)

�

(
n−1
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)(
n
∏

k=2

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)

e2
vn Im(zπ (n) )

m
Î ,

where the last inequality follows because the positive operator e−2
Im(zπ (n) )

m
Âπ (n) is less than e2

vn Im(zπ (n) )

m
Î for some vn ∈

{λmin(Âπ (n)), λmax(Âπ (n))}, and applying a congruence transformation will not change this fact; e2
vn Im(zπ (n) )

m
Î is a scalar multiple of

the identity and can be moved to the right. Repeating this process for the subsequent pairs of innermost factors, we obtain the
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final estimate
(

n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)(
n
∏

k=1

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)

� e2
max

v∈V (K )〈v,Im(z)〉
m

Î .

Thus,
(

n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m( n
∏

k=1

ei
z̄π (n−k+1)

m
Âπ (n−k+1)

)m

� e2 maxv∈V (K )〈v,Im(z)〉Î .

Multiplying from the left and right by ρ and recalling that the
√

· function is operator monotone yields
∣
∣
∣
∣
∣
ρ

(
n
∏

k=1

ei
−zπ (k)

m
Âπ (k)

)m∣
∣
∣
∣
∣
�

√

ρe2 maxv∈V (K )〈v,Im(z)〉Îρ = emaxv∈V (K )〈v,Im(z)〉ρ.

Taking the trace on both sides and summing over all π ∈ Sn yields the desired inequality.

APPENDIX B: PROOF OF LEMMA 1

Let K be any compact set in C
n and let ‖ · ‖F denote the Frobenius norm

‖A‖F :=
√

tr(AA†), A ∈ C
d×d .

Recall that |tr(AB)| � ‖A‖F‖B‖F and that the functions fW and fMHm
can be analytically extended to C

n for all m ∈ N. Then,

sup
ξ∈K

| fW(ξ ) − fMHm
(ξ )| = sup

ξ∈K

∣
∣
∣
∣
∣
∣

tr
(

ρeiξ ·Â
)

−
1

n!
tr

⎛

¿ρ
∑

π∈Sn

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m
À

⎠

∣
∣
∣
∣
∣
∣

�
1

n!

∑

π∈Sn

sup
ξ∈K

∣
∣
∣
∣
∣
tr

[

ρ

(

eiξ ·Â −

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m)]∣
∣
∣
∣
∣

�
‖ρ‖F

n!

∑

π∈Sn

sup
ξ∈K

∥
∥
∥
∥
∥

eiξ ·Â −

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m∥
∥
∥
∥
∥

F

.

Thus, it is enough to show that

sup
ξ∈K

∥
∥
∥
∥
∥

eiξ ·Â −

(
n
∏

k=1

ei
ξπ (k)

m
Âπ (k)

)m∥
∥
∥
∥
∥

F

→ 0 as m → ∞,

for all permutations π ∈ Sn. By symmetry, it is sufficient to consider the trivial permutation only. To that end, define

C := ei
ξ

m
·Â and D :=

n
∏

k=1

ei
ξk
m

Âk .

Then, applying the Cauchy product formula on D yields

D =
n
∏

k=1

⎛

¿

∞
∑

jk=0

(i ξk

m
Âk ) jk

jk!

À

⎠ =
∞
∑

| j|=0

(
n
∏

k=1

1

m jk

(iξkÂk ) jk

jk!

)

=
∞
∑

| j|=0

1

m| j|

(
n
∏

k=1

(iξkÂk ) jk

jk!

)

,

where | j| := j1 + · · · + jn. Thus, we get

‖C − D‖F =

∥
∥
∥
∥
∥
∥

∞
∑

| j|=0

1

m| j|
(iξ · Â)| j|

| j|!
−

∞
∑

| j|=0

1

m| j|

(
n
∏

k=1

(iξkÂk ) jk

jk!

)
∥
∥
∥
∥
∥
∥

F

=

∥
∥
∥
∥
∥
∥

∞
∑

| j|=2

1

m| j|

(

(iξ · Â)| j|

| j|!
−

n
∏

k=1

(iξkÂk ) jk

jk!

)
∥
∥
∥
∥
∥
∥

F

�
1

m2

∞
∑

| j|=0

∥
∥
∥
∥
∥

(iξ · Â)| j|

| j|!
−

n
∏

k=1

(iξkÂk ) jk

jk!

∥
∥
∥
∥
∥

F

�
1

m2

∞
∑

| j|=0

(

(|ξ | · ‖Â‖F)| j|

| j|!
+

n
∏

k=1

(|ξk|‖Âk‖F) jk

jk!

)

=
1

m2

⎛

¿e|ξ |·‖Â‖F +
∞
∑

| j|=0

(
n
∏

k=1

(|ξk|‖Âk‖F) jk

jk!

)
À

⎠ =
2

m2
e|ξ |·‖Â‖F ,
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where |ξ | · ‖Â‖F := |ξ1|‖Â1‖F + · · · + |ξn|‖Ân‖F. By noting that ‖C‖F, ‖D‖F � 1, we get

‖Cm − Dm‖F =

∥
∥
∥
∥
∥

m−1
∑

k=0

Ck (C − D)Dm−k−1

∥
∥
∥
∥
∥

F

� m‖C − D‖F �
2

m
e|ξ |·‖Â‖F .

Taking the supremum of both sides over ξ ∈ K and letting m → ∞ yields the desired result. �

APPENDIX C: PROOF OF PROPOSITION 6

(1) Proof that Ŝ2
j = Î:

Ŝ2
j =

[

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

][

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

]

=

[

1 0

0 1

]

= Î.

(2) Proof that det(Ŝ j ) = −1:

det(Ŝ j ) =

∣
∣
∣
∣
∣

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

∣
∣
∣
∣
∣
= − cos2(θ j ) − sin2(θ j ) = −1.

(3) Proof that tr(Ŝ j ) = 0:

tr(Ŝ j ) = tr

([

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

])

= cos(θ j ) − cos(θ j ) = 0.

(4) Proof that [Ŝ j, Ŝk] = 2iŜ · (n̂ j × n̂k ): If j = k, then

[Ŝ j, Ŝ j] = Ŝ2
j − Ŝ2

j = 0 = 2iŜ · (n̂ j × n̂ j ).

If j �= k, recall that the vector n̂ j × n̂k is given by

n̂ j × n̂k =

∣
∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ

sin(θ j ) cos(φ j ) sin(θ j ) sin(φ j ) cos(θ j )

sin(θk ) cos(φk ) sin(θk ) sin(φk ) cos(θk )

∣
∣
∣
∣
∣
∣
∣

= [sin(θ j ) sin(φ j ) cos(θk ) − cos(θ j ) sin(θk ) sin(φk )]x̂ − [sin(θ j ) cos(φ j ) cos(θk ) − cos(θ j ) sin(θk ) cos(φk )]ŷ

+ (sin(φk − φ j ) sin(θ j ) sin(θk ))ẑ

:= (n̂ j × n̂k )x x̂ + (n̂ j × n̂k )yŷ + (n̂ j × n̂k )z ẑ.

Then,

[Ŝ j, Ŝk] = Ŝ j Ŝk − Ŝk Ŝ j

=

[

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

][

cos(θk ) e−iφk sin(θk )

eiφk sin(θk ) − cos(θk )

]

−

[

cos(θk ) e−iφk sin(θk )

eiφk sin(θk ) − cos(θk )

][

cos(θ j ) e−iφ j sin(θ j )

eiφ j sin(θ j ) − cos(θ j )

]

=

[

cos(θ j ) cos(θk ) + ei(φk−φ j ) sin(θ j ) sin(θk ) e−iφk cos(θ j ) sin(θk ) − e−iφ j sin(θ j ) cos(θk )

eiφ j sin(θ j ) cos(θk ) − eiφk cos(θ j ) sin(θk ) cos(θ j ) cos(θk ) + ei(φ j−φk ) sin(θ j ) sin(θk )

]

−

[

cos(θ j ) cos(θk ) + e−i(φk−φ j ) sin(θ j ) sin(θk ) e−iφ j cos(θk ) sin(θ j ) − e−iφk sin(θk ) cos(θ j )

eiφk sin(θk ) cos(θ j ) − eiφ j cos(θk ) sin(θ j ) cos(θ j ) cos(θk ) + e−i(φ j−φk ) sin(θ j ) sin(θk )

]

= 2i

[

sin(φk − φ j ) sin(θ j ) sin(θk ) ie−iφ j sin(θ j ) cos(θk ) − ie−iφk cos(θ j ) sin(θk )

−ieiφ j sin(θ j ) cos(θk ) + ieiφk cos(θ j ) sin(θk ) sin(φ j − φk ) sin(θ j ) sin(θk )

]

= 2i(Ŝx̂(n̂ j × n̂k )x̂ + Ŝŷ(n̂ j × n̂k )ŷ + Ŝz(n̂ j × n̂k )ẑ ) = 2iŜ · (n̂ j × n̂k ),
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where

Ŝx̂ =

[

0 1

1 0

]

, Ŝŷ =

[

0 −i

i 0

]

, Ŝẑ =

[

1 0

0 −1

]

.

(5) Proof that {Ŝ j, Ŝk} = 2(n̂ j · n̂k )Î: If j �= k, then

{Ŝ j, Ŝk} = Ŝ j Ŝk + Ŝk Ŝ j = Ŝ j Ŝk − Ŝ j Ŝk = 0 = 2(n̂ j · n̂k )Î.

If j = k, then

{Ŝ j, Ŝ j} = 2Ŝ2
j = 2Î = 2(n̂ j · n̂ j )Î.

(6) Proof that ei(ξ1Ŝ1+ξ2 Ŝ2 ) = cos(‖ξ‖)Î + i(ξ1Ŝ1 + ξ2Ŝ2) sin(‖ξ‖)

‖ξ‖ : Since

(ξ1Ŝ1 + ξ2Ŝ2)2 = ξ 2
1 Î + ξ1ξ2{Ŝ1, Ŝ2} + ξ 2

2 Î = ‖ξ‖2 Î,

Then,

ei(ξ1Ŝ1+ξ2 Ŝ2 ) =
∞
∑

k=0

[i(ξ1Ŝ1 + ξ2Ŝ2)]k

k!
=

∞
∑

k=0

[i(ξ1Ŝ1 + ξ2Ŝ2)]2k

(2k)!
+

∞
∑

k=0

[i(ξ1Ŝ1 + ξ2Ŝ2)]2k+1

(2k + 1)!

=
∞
∑

k=0

(−1)k‖ξ‖2k Î

(2k)!
+ i(ξ1Ŝ1 + ξ2Ŝ2)

∞
∑

k=0

(−1)k‖ξ‖2k

(2k + 1)!

=
∞
∑

k=0

(−1)k‖ξ‖2k

(2k)!
Î + i(ξ1Ŝ1 + ξ2Ŝ2)

1

‖ξ‖

∞
∑

k=0

(−1)k‖ξ‖2k+1

(2k + 1)!
= cos(‖ξ‖)Î + i(ξ1Ŝ1 + ξ2Ŝ2)

sin(‖ξ‖)

‖ξ‖
.

If either ξ1 or ξ2 is set to 0, we get the familiar identity eiξ j Ŝ j = cos(ξ j )Î + iŜ j sin(ξ j ), j ∈ {1, 2}.

APPENDIX D: PROOF OF LEMMA 2

Note first that Eq. (8) can be rewritten as
(

ei
ξ1
m

Ŝ1 ei
ξ2
m

Ŝ2
)m

Ŝ1Ŝ2 +
(

ei
ξ2
m

Ŝ2 ei
ξ1
m

Ŝ1
)m

Ŝ2Ŝ1

2
= Um−1(am) sin

(
ξ1

m

)

sin

(
ξ2

m

)

, (D1)

by simply multiplying Eq. (8) from the right by Ŝ1Ŝ2. We want to show that Eqs. (7) and (D1) hold for all m ∈ N. To that end,

the proof will proceed by induction on m. For m = 1, we have

a1 = cos (ξ1) cos (ξ2)Î, b1 = Ŝ1 sin (ξ1) cos (ξ2) + Ŝ2 sin (ξ2) cos (ξ1).

Then, by recalling that

eiξ1Ŝ1 eiξ2 Ŝ2 = (cos(ξ1)Î + iŜ1 sin(ξ1))(cos(ξ2)Î + iŜ2 sin(ξ2))

= a1 + ib1 − sin(ξ1) sin(ξ2)Ŝ1Ŝ2,

we find that Eqs. (7) and (D1) hold in this case, namely,

eiξ1Ŝ1 eiξ2 Ŝ2 + eiξ2 Ŝ2 eiξ1Ŝ1

2
= a1 + ib1 = T1(a1) + ib1U0(a1),

eiξ1Ŝ1 eiξ2 Ŝ2 Ŝ1Ŝ2 + eiξ2 Ŝ2 eiξ1Ŝ1 Ŝ2Ŝ1

2
= U0(a1) sin(ξ1) sin(ξ2).

Next, suppose that Eqs. (7) and (D1) are true for some m ∈ N, and define

ξ ′
1 :=

ξ1m

m + 1
, ξ ′

2 :=
ξ2m

m + 1
, s1 := sin

(
ξ1

m + 1

)

, s2 := sin

(
ξ2

m + 1

)

.

Then, by recalling that

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2 =

[

cos

(
ξ ′

1

m

)

Î + iŜ1 sin

(
ξ ′

1

m

)][

cos

(
ξ ′

2

m

)

Î + iŜ2 sin

(
ξ ′

2

m

)]

=
[

cos

(
ξ1

m + 1

)

Î + iŜ1 sin

(
ξ1

m + 1

)][

cos

(
ξ2

m + 1

)

Î + iŜ2 sin

(
ξ2

m + 1

)]

= am+1 + ibm+1 − s1s2Ŝ1Ŝ2,
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we find that

(

ei
ξ1

m+1
Ŝ1 ei

ξ2
m+1

Ŝ2
)m+1 +

(

ei
ξ2

m+1
Ŝ2 ei

ξ1
m+1

Ŝ1
)m+1

2

=
(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2 +

(

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
)m

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1

2

=
(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m +

(

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
)m

2
︸ ︷︷ ︸

use Eq. (7)

(am+1 + ibm+1) − s1s2

(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m

Ŝ1Ŝ2 +
(

ei
ξ ′
2
n

Ŝ2 ei
ξ ′
1

m
Ŝ1
)m

Ŝ2Ŝ1

2
︸ ︷︷ ︸

use Eq. (D1)

= [Tm(am+1) + ibm+1Um−1(am+1)](am+1 + ibm+1) − s1s2[Um−1(am+1)s1s2]

= am+1Tm(am+1) −
(

b2
m+1 + s2

1s2
2

)

Um−1(am+1) + ibm+1[am+1Um−1(am+1) + Tm(am+1)]

= am+1Tm(am+1) − [Î − (am+1)2]Um−1(am+1) + ibm+1[am+1Um−1(am+1) + Tm(am+1)]

= Tm+1(am+1) + ibm+1Um(am+1),

which proves Eq. (7) for m + 1. The last equality follows from the fact that the Chebyshev polynomials satisfy

Tm+1(x) = xTm(x) − (1 − x2)Um−1(x) and Um(x) = xUm−1(x) + Tm(x), ∀x ∈ R.

Likewise, we have

(

ei
ξ1

m+1
Ŝ1 ei

ξ2
m+1

Ŝ2
)m+1

Ŝ1Ŝ2 +
(

ei
ξ2

m+1
Ŝ2 ei

ξ1
m+1

Ŝ1
)m+1

Ŝ2Ŝ1

2

=
ei

ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m

Ŝ1Ŝ2 + ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
(

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
)m

Ŝ2Ŝ1

2

= −s1s2

Ŝ1Ŝ2

(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m

Ŝ1Ŝ2 + Ŝ2Ŝ1

(

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
)m

Ŝ2Ŝ1

2
︸ ︷︷ ︸

use Eq. (7)

+(am+1 + ibm+1)

(

ei
ξ ′
1

m
Ŝ1 ei

ξ ′
2

m
Ŝ2
)m

Ŝ1Ŝ2 +
(

ei
ξ ′
2

m
Ŝ2 ei

ξ ′
1

m
Ŝ1
)m

Ŝ2Ŝ1

2
︸ ︷︷ ︸

use Eq. (D1)

= s1s2[Tm(am+1) − ibm+1Um−1(am+1)] + (am+1 + ibm+1)[Um−1(am+1)s1s2]

= s1s2[am+1Um−1(am+1) + Tm(am+1)] = s1s2Um(am+1),

which proves Eq. (D1) for m + 1. By induction, (7) and (D1) hold for all m ∈ N.

APPENDIX E: ALTERNATE PROOF FOR LEMMA 1 WHEN Â1 = Ŝ1 AND Â2 = Ŝ2

Recall that the Mehler-Heine theorem (2) states that

lim
m→∞

m−³P(³,´ )
m

(

cos

(
z

m

))

=
(

z

2

)−³

J³ (z),

uniformly on compact subsets of C. As pointed out in Ref. [10], Szegő’s proof of the theorem establishes that

lim
m→∞

m−³P(³,´ )
m

(

1 −
z2

2m2
+ o(m−2)

)

=
( z

2

)−³

J³ (z).

Next, since

cos
( z1

m

)

cos
( z2

m

)

= 1 −
z2

1 + z2
2

2m2
+ o(m−2),

where the last equality follows by substituting each factor with its Maclaurin series, we get

lim
m→∞

m−³P(³,´ )
m

(

cos
( z1

m

)

cos
( z2

m

)
)

= lim
m→∞

m−³P(³,´ )
m

(

1 −
z2

1 + z2
2

2m2
+ o(m−2)

)

=

(
√

z2
1 + z2

2

2

)−³

J³

(
√

z2
1 + z2

2

)

, (E1)
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uniformly on compact subsets of C
2. The analog of (E1) was established in Ref. [10] for a ratio of cosines, instead of a product.

Setting ³ = ´ = −1/2,

J−1/2(z) =
√

2

πz
cos(z), P(−1/2,−1/2)

m (z) =
(2m)!

22m(m!)2
Tm(z),

where Tm(·) denotes the mth degree Chebyshev polynomial of the first kind. Then, Eq. (E1) becomes

lim
m→∞

√
mπ (2m)!

22m(m!)2
Tm

(

cos
( z1

m

)

cos
( z2

m

)
)

= cos
(
√

z2
1 + z2

2

)

. (E2)

Stirling’s formula gives that

lim
m→∞

√
mπ (2m)!

22m(m!)2
= 1,

and hence Eq. (E2) reduces to

lim
m→∞

Tm

(

cos
( z1

m

)

cos
( z2

m

)
)

= cos
(
√

z2
1 + z2

2

)

,

Since the uniform convergence of a sequence of analytic functions fm to f on compact subsets of C
2 implies the same type of

convergence for their derivatives to ∂
∂z

f ,

lim
m→∞

∂

∂zi

Tm

(

cos
( z1

m

)

cos
( z2

m

)
)

=
∂

∂zi

cos
(
√

z2
1 + z2

2

)

,

uniformly on compact subsets of C
2, i ∈ {1, 2}. Hence,

lim
m→∞

(

1 − is1

∂

∂z1

− is2

∂

∂z2

)

Tm

(

cos
( z1

m

)

cos
( z2

m

)
)

=
(

1 − is1

∂

∂z1

− is2

∂

∂z2

)

cos
(
√

z2
1 + z2

2

)

,

uniformly on compact subsets of C
2, which is exactly the statement in Lemma 1 for the spin operators Ŝ1 and Ŝ2.
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