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A class of signed joint probability measures for n arbitrary quantum observables is derived and studied based
on quasicharacteristic functions with symmetrized operator orderings of Margenau-Hill type. It is shown that
the Wigner distribution associated with these observables can be rigorously approximated by such measures.
These measures are given by affine combinations of Dirac delta distributions supported over the finite spectral
range of the quantum observables and give the correct probability marginals when coarse-grained along any
principal axis. We specialize to bivariate quasiprobability distributions for the spin measurements of spin-1/2
particles and derive their closed-form expressions. As a side result, we point out a connection between the
convergence of these particle approximations and the Mehler-Heine theorem. Finally, we interpret the supports

of these quasiprobability distributions in terms of repeated thought experiments.
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I. INTRODUCTION

In 1986, Cohen and Scully developed bivariate quasiprob-
ability distributions for the spin measurements of spin-1/2
particles [1]. Therein, two quasiprobability distributions
based on quasicharacteristic functions induced from sym-
metrized operator orderings were studied. The first, termed the
Margenau-Hill distribution, is given by the Fourier transform
of the quasicharacteristic function
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where p is a density matrix and S; and S, are the spin oper-
ators along two arbitrary directions in the Bloch sphere. The
second, termed the Wigner distribution, is given by the Fourier
transform of the quasicharacteristic function

fw(&r, &) = tr(pe1Sitiad),

and is the analog of the standard Wigner distribution for spin
observables §; and S,. In 1992, Chandler et al. derived the
trivariate counterparts, with spin observables along mutually
orthogonal directions [2]. Therein, it was shown that the com-
putation for the trivariate Wigner distribution is simpler than
its bivariate counterpart.

In 2020, Schwonnek and Werner studied the Wigner distri-
bution for an arbitrary tuple of bounded Hermitian operators
(A1, ...,A,) on a finite-dimensional Hilbert space [3], and
defined it as the Fourier transform of the quasicharacteristic
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function
fw(&) = tw(pes ),

where & - A = Y"|_, &Ay, & € R”. The distribution is termed
“Wigner” because it recovers the standard Wigner distribution
when specialized to the canonical pair A, = X and A, = P.
Many of its basic properties, such as the support, location of
singularities, positivity, and behavior under symmetry groups,
were studied and illustrated with examples.

In many aspects, the standard Wigner distribution, defined
by

pw : F(fw),

T @n)?
where F(-) is the Fourier transform, has lent itself as a con-
venient choice for the phase-space representation of quantum
states. This, in large part, is due to the Fourier duality of the
canonical pair and their continuous spectra. It is often repre-
sented by a bounded and continuous function that integrates
to 1 and is sign indefinite: a salient nonclassical feature. In
contrast, when the same definition is applied to an n-tuple of
noncommuting matrices such as in Refs. [1-3], the nonclas-
sicality becomes threefold. Not only is the distribution sign
indefinite, but it is no longer a measure to begin with, and
the support need not be discrete. The last two features are
nonclassical because the distribution is intended to be a joint
law on the outcomes of simultaneously measuring the discrete
observables. Indeed, when the observables do commute, py is
a classical discrete law. In general, however, it is a distribution
supported beyond its intended set, with a rich singularity
structure that is intimately related to the eigenvalues of the
associated observables [3]. For instance, while the Margenau-
Hill distribution studied in Ref. [1] is a discrete measure on the
set of spin measurement outcomes (+//2, +//2), the Wigner
distribution for the same operators is supported on a disk of
radius /i/2, with a complicated singularity near the boundary.
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FIG. 1. Gaussian-regularized (¢ = 0.01) bivariate quasiproba-
bility distributions for the spin-1/2 observables along the x and y
directions, at the state p = /2 (top)and p = 0.5[1 (1 — i)/\/i; 1+
i)/+/2 1] (bottom) represented in the S, eigenbasis. Left: Margenau-
Hill quasiprobability distribution pyy, consisting of four Dirac
delta distributions supported over the Cartesian product of spin-1/2
eigenvalues (+7/2) x (£/i/2). Right: Wigner quasiprobability dis-
tribution py supported on a Disk of radius /2 with a complicated
singularity near the boundary.

Gaussian-regularized' plots for both distributions are shown
in Fig. 1 and analogs for a spin-4 particle are shown in Fig. 2.

Although the Wigner distribution pw lacks basic classical
features, i.e., being a measure and having discrete support,
its most remarkable classical feature still stands. It is the
unique joint distribution for which the marginals of all linear
combinations of the observables coincide with their quantum
counterparts [3]. In contrast, the Margenau-Hill distribution
in Refs. [1,2] is a discrete measure that is supported over the
classical set of measurement outcomes of the observables,
but does not give the correct probability marginals for all
linear combinations like pw does. Thus, each distribution
possesses classical features expected from a joint probability
distribution as well as nonclassical features arising from the
noncommutativity of the observables. A study of these fea-
tures began in Ref. [3] for the Wigner distribution pw, and in
this work we examine the features of a class of Margenau-Hill
counterparts denoted by pyn,,, where m € N.

Specifically, we introduce, analyze, and interpret the
quasiprobability distributions

F(fvn,), meN,

1
PmH,, = Qr)
where fyn, are quasicharacteristic functions defined for an
arbitrary tuple of Hermitian matrices (4, ..., A,) and a quan-
tum state p; see Sec. III A, Eq. (3). It is shown that these
distributions are real-valued, signed, and discrete probabil-
ity measures given by affine combinations of Dirac delta

ISee the end of Sec. I for details.
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FIG. 2. Gaussian-regularized (¢ = 0.1) bivariate quasiprobabil-
ity distributions for the spin-4 observables along the x and y
directions, at the maximally mixed state (top) and the +4/7 eigenstate
along the y direction (bottom). Left: Margenau-Hill quasiprobability
distribution pyy, consisting of 81 Dirac delta distributions, each of
which is supported over a Cartesian product of spin eigenvalues,
namely (ki) x (£kyh), where ki, k; € {0, ..., 4}. Right: Wigner
quasiprobability distribution py supported on a disk of radius 4/
with singularities near concentric rings with radii k7, k =0, ..., 4.

distributions, and give the correct probability marginal when
coarse-grained along any principal axis.

We shall refer to pyp, as the Margenau-Hill quasiproba-
bility distribution of order m, and show that

lim pmu, = pw,
m—00

in a suitable topology that can be upgraded to that of uniform
convergence if the distributions are smeared with an appro-
priate Schwarz function. And so, while the general Wigner
distribution pw is not a quasiprobability measure for the asso-
ciated observables, it is not far from being one.

Lastly, we specialize to pairs of spin-1/2 observables along
orthogonal directions and derive closed-form expressions for
pwmH,, for any m € N. As a side result, we point out therein a
connection between the convergence of the particle approx-
imations pwmu, to pw and the Mehler-Heine theorem. We
conclude by proposing an interpretation for the supports of the
distributions pyy,, and pw in terms of repeated experiments.
We emphasize that the numerical and analytical tractability
showcased in the main results for general noncommuting ma-
trices (see Sec. III Proposition 3) as well as for spin matrices
in particular (see Sec. IV Proposition 12) exemplifies why it
may be much more desirable to work with these particle ap-
proximations rather than the Wigner distribution, especially in
high dimensions. Namely, the particle approximations pmm,,
are always signed probability measures, i.e., they can be used
to assign mass on Borel sets of the generalized phase plane,
and can be computed exactly and systematically. In contrast,
the Wigner distribution corresponding to the same observables
need not have a closed form expression, exhibits compli-
cated singularities, and is never a measure unless all operators
commute [4].
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II. PRELIMINARIES

In this section, we establish notation and survey rele-
vant facts related to the theory of distributions. Then, we
introduce the Wigner distribution and state some of its
properties. Finally, we introduce the Lie-Trotter product for-
mula and the Mehler-Heine theorem. Throughout, we fix
a tuple (Aj,...,A,) of self-adjoint operators on a finite-
dimensional Hilbert space of dimension d and define for
& =(&,...,&,) € R” the linear combination

E A = ZékA\k.
k=1

Lastly, we fix a quantum state to be given by a density operator
p,ie., pe C¥ withp =p" > 0andtr(p) = 1.

A. Distributions

Let CP(R") € S(R") € C*(R") denote the spaces of
compactly supported smooth functions, Schwarz functions,
and smooth functions on R”, respectively, and D'(R") D
S'(R™) 2 &'(R") the corresponding dual spaces of distri-
butions, tempered distributions, and compactly supported
distributions on R”, respectively. The support and singu-
lar support of p € D'(R") are denoted by supp(p) and
singsupp(p), respectively. The n-dimensional Fourier trans-
form

Hﬁ®=4jmfwm £ R,

is an automorphism on S(R”) and it induces naturally an
automorphism on the dual S'(R"). The inverse map is given
by Fourier’s inversion formula
1
Q)"

10 = o [ F©E e, xer.

]Rn
Next, we state one direction of the Paley-Wiener-Schwartz
theorem [5, Theorem 7.3.1], which relates the support prop-
erties of a function to analyticity properties of its Fourier
transform. To this end, recall that the supporting function of a
convex compact set K € R" is

Hg(x) = sup{x,y), xeR"

yek
Theorem (Paley-Wiener-Schwartz): Let K be a convex com-
pact set in R”. If f is analytic everywhere in C" and satisfies

If(2)] < CefkIm@) 7 e C,

where Im(z) denotes the imaginary part of z and C > 0, then
the restriction of f to R” is the Fourier transform of a distri-
bution p € £'(R") with

supp(p) € K.

This theorem will be used in Sec. III to study support
properties of the distributions pmy,,. A converse statement of
the theorem also holds, see [5, Theorem 7.3.1], but will not be
needed herein.

Finally, we say that a sequence of distributions p, con-
verges to p in D'(R") as n — oo, or simply, p, —> p €

D'(R") as n — oo, if for all ¢ € Cg°(R"),
lim (p,, ¢) = (p, ¢).
n— oo

The same definition applies for p,, p € S'(R") or &'(R")
with respect to test functions ¢ taken in S(R") or C*(R"),
respectively.

B. Wigner quasiprobability distribution pyw
The Wigner quasiprobability distribution pw associated
with the observables Ay, ..., A, and the quantum state p is
a real-valued distribution in &’(R") given by

Pw F(fw),

= Qr)"

where fy is the quasicharacteristic function

fw @) =t(pe), £eR"

It was shown in Ref. [3] that pw is compactly supported, i.e.,
pw € &'(R"), and moreover that

supp(pw) € R,

where the compact convex set R C R” is the joint numerical
range of the operators A Ly evns A,,. In other words, R is the set
of all vectors a € R"” with components a; = tr(cA;) for some
density operator o . Furthermore, it was shown in Ref. [3] that

singsupp(pw) < S,

where S is the closure of the set of all vectors a € R” with
components a; = tr(GAi) for a subset of density operators o,
namely, the ones that correspond to non-degenerate eigen-
states of & - A. The set S is semialgebraic (algebraic if n = 2)
and its convex hull is R.

C. Lie-Trotter product formula

Given any complex-valued matrices Ay, ..., A, then

n k
m (o) == o
i=1

The proof for the case of more than two matrices, i.e., n > 2,
follows verbatim the proof given in [6, Theorem 2.10] for
two matrices. The formula is also implied by the proof of
Lemma 1 in Appendix B.

The convergence properties of the Lie-Trotter product for-
mula are key to proving the convergence of the Margenau-Hill
quasiprobability distributions pmp,, to the Wigner distribution
pw as m — oo. These distributions will be defined and stud-
ied in detail in Sec. III.

D. Mehler-Heine theorem

The Mehler-Heine theorem describes the asymptotic be-
havior of the Jacobi polynomials as their degree tends to
infinity. These polynomials arise by trotterizing exponentials
of spin-1/2 operators along orthogonal directions; see Lemma
2 in Sec. IV. They will be used to elucidate the nature of
the convergence of the quasiprobability distributions pymy,, as
m — oo. In particular, we show that the convergence of the
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quasicharacteristic functions fyum, to fw is a special case of
the Mehler-Heine theorem; see Sec. IV.
We first define the Jacobi polynomials

1 < (n z—1 k
(a,8) — a.p
P (2) = 0 E (k)c’”‘( 5 ) , zeC, (2

T k=0

for o, B € R and an (n+o+ 8+ D®(a +k+ 10,
Then, the Mehler-Heine theorem [7] states that

lim n_“P,f“'ﬂ)<cos <E>> = (£> Ja(2),
n— 00 n 2

uniformly on compact subsets of C, where J,,(z) is the Bessel
function of the first kind of order «.

III. RESULTS

In this section, we define the Margenau-Hill quasiproba-
bility distributions pym,,, m € N, and study their properties.
These are discrete signed probability measures associated
with the observables Al, . ,An and the quantum state p.
Their marginals along the ith coordinate coincide with the one
induced by the spectral measure of A; and p, and therefore
give the correct probability law on the measurement outcomes
of the observable A;. Our main result is that pyy, — pw in
E'(R™) as m — o0, and that the convergence can be upgraded
to uniform convergence when the distributions are smeared
with an appropriate Schwarz function.

A. Margenau-Hill quasiprobability distributions pyn,,

We define the Margenau-Hill quasiprobability distribu-
tion PMH, of order m € N associated with the observables
Ay, .. A and the quantum state p to be

(2 ¥ ———F(fvm,),

where fun,, is the quasicharacteristic function

Svm, (§) = — tI‘ P Z <1_[ ez}L)Aw(k)) i 3)

weS, \k=1

Pw™H, =

and §, is the symmetric group. That is, S, is the set of all per-
mutations of n elements. The products inside the summation
are ordered from left to right, starting from the lowest index
k = 1. That is,

n
x(k) §n (1) 210)) (Vﬂ
| |e WA — ol TP A i P Ay L g A

k=1

The reason why the definition of fyy, includes a summation
over all possible permutations w € S, is to ensure that the
distributions pmpy, are real-valued for all m € N. For exam-

ple, when n =2 and m = 1, we recover the Margenau-Hill
quasicharacteristic function

eiS]A]eiS2A2 + ei&Az eiEIAl
Sun, (1, 6) =tr| o ,

2

studied in [1] for the spin-1/2 operators A =38, and 4, =
8,. In what follows, we state and prove properties of py,,,
starting with the most basic ones.

Proposition 1: The distributions pyy, are tempered and
real-valued; i.e., forall m € N, pyy, € S’'(R") and

(pMHmﬂ ¢> = (PMH,,,» ¢)7 V¢ € S(RH)

Proof: The functions fup, are continuous in § € R”, and

n m
k=1

uniformly bounded since
| fvn,, (6] <
1
=— ) wlph=t(p) =1, VmeN,

" wes,

1
; Z tI'(
Cmwes,

where |A| := v AAT. Thus, Vm € N, the maps

Um : $(&) > /Rn Jun, (§)9(E)dE,  ¢(§) € S(R™),

are continuous linear forms on S(R"). That is, the distribu-
tions u,, are tempered. Consequently, their images under the
Fourier transform, and therefore

F(um),
(2)n()

are also tempered. Finally, since

Jvn, (§) = fum, (=6),

PMH,, =

Vm e N,

we have

B —— l D p—
(PvH,» ¢) = W(umv -7:(¢)>

/ Jun, (=) F(9)(—§)dé

(PMH,,» @) =

(27-[ )n
= (pmH,» ?)>

which completes the proof. ]

As done for the Wigner distribution pw in Ref. [3], we
demonstrate next how the Paley-Wiener-Schwarz theorem can
be used to prove that the Margenau-Hill distributions pyy, are

m

compactly supported for all m € N. To this end, define the set

A:=0A) x o) x - x o),

where o (Ay) is the spectrum of A, k=1,...,n The set A
consists of all tuples of eigenvalues and is the classical sup-
port that is expected from a joint probability distribution for
the simultaneous measurement outcomes of the observables
Ay, ..., A,. The convex hull of A, denoted by conv(A), is the
free numerical range of the observables A Lo oo ,A,,, which is
the set of all vectors in R” with the ith component being equal
to tr(,o,-ff,-) for some density matrix p;. This set contains the
Jjoint numerical range R, which in turn contains the support of
the Wigner distribution py.

Proposition 2: For all m € N, the distributions pyy, are

m

compactly supported, i.e., pmy,, € £'(R"), and moreover

supp(pwmn,, ) S conv(A),

where conv(A) is the convex hull of A.
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Proof: The set K := conv(A) is a convex solid in R" with
vertex set

V(K) = {v € R"|vy € (Amin(Ar), Amax(Ar)}, VK,

where Apin and Ap,, denote the minimal and maximal eigen-
values. Thus, the supporting function of K is

Hyg(x) = max (v, x).
veV(K)

By Proposition 1, pyp, € S'(R") for all m € N. Then by

m

Fourier’s inversion formula, we have

F(pvm,) =

(27-[ )n ‘/—:(‘F(fMHm)) = gMH,,, 5

where guu,, (§) = fmn, (—&). Finally, observe that the func-
tion gmu,(z), z € C", is analytic everywhere in C”" and

satisfies the estimate
n . . m
p(l_[ei ”ZX(MA,,(M) D,
k=1

1
lgw, (2)] < — > tr(
eMXvev ) (v,Im(2))

TeS,
- _ ,Hx(Im(z))
< p D u(p)=e :

Tes,

for all m € N. Detailed steps for the last inequality are given
in Appendix A. By the Paley-Wiener-Schwarz theorem, this
completes the proof. |

J

The above is a powerful approach that can be extended
straightforwardly to bounded self-adjoint operators on an
infinite-dimensional Hilbert space. Therein, A need not be a
finite set. In the current finite-dimensional setting, however,
A is always a finite set. Because of this, Proposition 2 can
be significantly refined, and the support can be characterized
more precisely as follows.

Proposition 3: For all m € N, pyy,, is a finite affine com-
bination of Dirac delta distributions with

m

, 1
singsupp(pm, ) = supp(pam, ) € — 3 A,

i=1

where the summation is in the sense of Minkowski.

Proof: Let f*" := f x f x--- % f denote the convolution
of f with itself m times. Then, explicit formal computation
shows that, for allm € N, x € R”,

1 .
P, ) = 5 [ e
Qry Jn
P : —ixE
_ S p/ (He ,,m> . dg),
nl(2m) wes, ( " \k=1
where

n m n *m
(M) = ([ (1o )oee)
R \k=1 R \x—1

n *m
iy £ 4

H (/ elrflk’An(k)e—lek;Ezrmdsﬂ(k))

k=1 VR

n N *m n *m
N . _ Day N A A A
= (H Uﬂ(k)([l;e o G = )dEn(b)U;(k)) = (l_[ U”(“E”(k)U;(k)) ;
k=1 k=1

and Uﬂ(k)Dﬂ(k)ﬁ;(k) is the eigendecomposition of Aﬂ(k). The
diagonal matrix E,T(k), given by

N . Dk
En(k)zf gﬂémk)(xn(k)*T)d%-n(k)’
R

has in its ith diagonal entry the Dirac delta distribution

D i
27 -8()67,(]() - —[ n(k)] ),

m

where [ﬁn(k)],-,- is the ith diagonal entry of Dn(k). This implies
that

n
singsupp (H Un(k)‘@n(k)(j;(k))
k=1

= supp (1_[ Un(k)En(k)U;(k)> C A/m.

k=1

By performing the convolution m times, the resulting support
for pmm, is contained in the set A /m added to itself m times.

(

Thus, the distribution pmy,, is a linear combination of Dirac
delta distributions supported in (1/m) Y ", A. To show that
this linear combination is affine, i.e., that the coefficients of
the combination add up to 1, it is enough to note that

1
(pv, . 1) = Gny /R" Swmn, (§)F(1)d§
= fmn, (0) =1,

which completes the proof. ]

Thus, the Margenau-Hill distribution of any order is a
discrete signed probability measure associated with the ob-
servables Al, ...,A,, and the quantum state p. Finally, we
verify that the marginals of pyy,, along any principal axis give
the correct probability law on the measurement outcomes of
the corresponding observable.

Proposition 4: The jth marginal of pyy, is given by

m

d
/R ooy =) (A1 )80 — ().
s=1
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where dx\; :=dx;---dx;_;dxjiq---dx, and A;(s), |¥;(s))
are the corresponding eigenvalues and eigenvectors of A s
respectively, withs = 1,...,d.
Proof: Starting from the left-hand side of the above,
1

(2m)"

f F(fum, ) 2 dx
R £=0, Vi

— 1 —ixj§j Qg .
= E/RfMHm(E)e 51

=0, Yk

1 . g .
= — | (0t e Mg e
ZJT/R (peme 2

N 1 . A o
d

=D (Wi®)NplY; ()80 — 1;(s),
s=1

where A = U ijlj T is the eigendecomposition of A j» and
Aj(s), [(s)) as claimed. |

B. Convergence to the Wigner distribution pw

Herein, we prove that pyy, — pw in &'(R") as m — oo,
and that the convergence can be upgraded to uniform conver-
gence when the distributions are smeared with an appropriate
Schwarz function.

Proposition 5: The Margenau-Hill quasiprobability distri-
bution pmp, converges to the Wigner distribution pw in
E'(R")as m — oo.

Proof: By definition, we must show that

lim (pvm,,, @) = (pw. @), Vo € CTR").

m—00

To that end, let x € Cg°(R") be a cutoff function equal to 1 on
a neighborhood of K = conv(A) and let

¥ =x¢ € C°(R"),
for any ¢ € C*°(R"); then
(pmu,» @) = (pmn,. V)

1
= Gy (F(fvm,)s V)
1
= / Jvn,, (§)F (¥)(§)dE. “
Q)" Jre

By the Lie-Trotter product formula (1), we have the pointwise
convergence

Timfym, (§) = tr(pe) = fiv(§).

Thus, the integrand in Eq. (4) converges pointwise to
SwE)F@)E) and is bounded in absolute value by
[ F()(E)| € SR for all m € N. By the dominated conver-
gence theorem we get

lim {pmn,,, @)
m—0o0

1
= @y /R” JwE)F W) (E)ds
= o (F(fw)¥) = (pw. ¥) = (pw. $),
Q)

where the last equality follows from the fact that supp(pw) €
R CK. |

Thus, we have shown that, while the general Wigner dis-
tribution pw need not be a quasiprobability measure for the
associated observables, it is not far from being one. More
precisely, Proposition 5 implies that, for any € > 0 and ¢ €
C*>°(R"), there will exist a discrete signed quasiprobability
measure . such that

<pw,¢)—f ¢dM‘ <e,
R

with the measure p being a Margenau-Hill quasiprobability
distribution pypy,, for sufficiently large m.

Finally, the convergence result in Proposition 5 can be
upgraded to uniform convergence if the distributions are
smeared, i.e., convolved, with an appropriate Schwarz func-
tion. To prove this, the following lemma is needed.

Lemma 1: The Margenau-Hill quasicharacteristic function
Jmn,, converges to the Wigner quasicharacteristic function fyw
as m — oo uniformly on compact subsets of C".

Proof: The proof is given in Appendix B. |

Evidently, Lemma 1 refers to the analytic extensions of
Svn, and fw to all C”". In particular, the original functions
Jfmn,, converge to fw as m — oo uniformly on compact sub-
sets of R”.

Proposition 6: If ¢ € S(R") satisfies F () € Ci°(R"),
then v * pmu, — ¥ * pw uniformly as m — oo.

Proof: Recall that since v is smooth and the distributions
pmi, and pw are tempered, then ¥ * pvy,, and  * pw are
also smooth. Let supp(F(¥)) € K compact; then

| * pw — ¥ * pym,, | (x)

_ ‘ fR FAE -5 — o, (6] d

< /K F O | for (—8) — fuam, (—)[dE

< ( / |f(¢)<é)|ds> - sup | fiw (=€) — i, (=8|
K ek

. )

< ( / |f<w)<s)|ds> Csup [fw(®) — fum, &)
K fe—K

where the last integral is finite as F () € S(R") and therefore
integrable. By Lemma 1, fyn, — fw as m — oo uniformly
on compact subsets of R”. Thus,

sup | fw(€) — fum, ()] — 0,
te—K

as m — oo. Taking the supremum over all x € R” on both
sides of Eq. (5) implies that

sup | * pw — ¥ * pwm, | = 0,

xeRn
as m — 0o, which completes the proof. |

We illustrate in Figs. 3—7 the convergence of the Margenau-

Hill quasiprobability distributions pmy,, to the corresponding
Wigner distribution pw for pairs of spin operators along
the x and y directions and various quantum states. The fig-
ures display smoothed versions of the distributions obtained
by convolving with a Gaussian function. This is effected by
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FIG. 3. Gaussian-regularized (¢ = 0.01) bivariate quasiprobability distributions for the spin-1/2 observables along the x and y directions
and the maximally mixed state p = I /2. From left to right: pmu,, pmu;» PMHs» PMH,o» and pw. Each pym,, consists of (m + 1)? Dirac delta
distributions supported over the grid of points (1/m) Y| A.

iy el

FIG. 4. Gaussian-regularized (¢ = 0.01) bivariate quasiprobability distributions for the spin-1/2 observables along the x and y directions
for the —7i/2 eigenstate in the x direction. From left to right: pvu,, pmu,» Pmus» Pma,y> and pw. Each py,, consists of (m + 1)? Dirac delta
distributions supported over the grid of points (1/m) Y-, A.

FIG. 5. Gaussian-regularized (¢ = 0.01) bivariate quasiprobability distributions for the spin-3/2 observables along the x and y directions
and the maximally mixed state p = i /4. From left to right: pvu,, pmu;, Pmuy»> Pyi,s. and pw. Each pyg,, consists of (3m + 1)? Dirac delta
distributions supported over the grid of points (1/m) Y-, A.

FIG. 6. Gaussian-regularized (¢ = 0.1) bivariate quasiprobability distributions for the spin-4 observables along the x and y directions for
the +47 eigenstate along the y direction. From left to right: pyvu,, Pmu,> PMmu;» PmH,y» and pw. BEach pyy,, consists of (8m + 1)? Dirac delta
distributions supported over the grid of points (1/m) ", A.
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FIG. 7. Gaussian-regularized (¢ = 0.1) bivariate quasiprobability distributions for the spin-4 observables along the x and y directions
and the maximally mixed state p = I /9. From left to right: pumy,, Pmu,» PMmH;» PMis» and pw. Each pyy,, consists of (8m + 1)? Dirac delta

distributions supported over the grid of points (1/m) >, A.

multiplying the quasicharacteristic function f by the decaying
exponential e~ * where the regularizing parameter ¢ is tuned
for best visualization, as explained in Ref. [3]. Specifically,
when ¢ is too large, the features of the distribution p are
wiped out, and when ¢ is to small, singularities manifest
with exceedingly large values. An example of the effect of
the regularizing parameter ¢ on the resolution of the plots is
shown in Fig. 8.

IV. SPIN 1/2
In this section, we specialize to quasiprobability distribu-

tions for a pair of spin-1/2 observables by setting

A12311=S~ﬁ1, A22522=S~fl2,

where S is the spin-1/2 operator and #; and 7, are orthogonal
directions in the Bloch sphere. The directions are given by the

FIG. 8. Dependence of the resolution of the features of the
Gaussian-regularized Margenau-Hill distribution pyp, on the regu-
larizing parameter ¢, for the spin-3/2 observables along the x and
y directions for the maximally mixed state p = [/4. From top to
bottom: ¢ = 0.001, 0.005, 0.01, 0.02, 0.05. The distribution p;
consists of 16> Dirac delta distributions supported over the grid of
points 1/5 Zf:l A. They are best visualized for ¢ = 0.001.

unit vectors
f; = sin(6;) cos(¢;)x + sin(8;) sin(¢;)P + cos(9;)Z,

where 71, - i, = 0, for some 6;, ¢; € R, i € {1, 2}. First, we
recall some properties of §; and §, as well as their Wigner
distribution studied in Refs. [1,3]. Then we compute for
all m € N closed-form expressions for the Margenau-Hill
quasicharacteristic functions fyn, and quasiprobability dis-
tributions pmpy,. As a byproduct, we elucidate the nature of
the convergence of fup, to fw as m — oo by relating it to a

special case of the Mehler-Heine theorem. For simplicity of
exposition, we replace the spin-1/2 values £7/2 by +1.

A. Properties of Sy and S,

The operators S, and S,, represented in the S, :=S-2
eigenbasis, are given by

o cos(6;)
77 | €% sin(;)

and satisfy various properties summarized below.
Proposition 7: Let I denote the identity matrix. Then, for
all &), & e R, j, k € {1, 2}, the following properties hold:

§3 =1, det(8)) = —1, t(8;) =0,

{85, 8¢} = 2@, - )i,

sin(JI§ 1)
Ign -

where & = «/512 + 522. The symbol x denotes the cross
product, and [-, -] and {-, -} denote the commutator and an-
ticommutator brackets, respectively.
Proof: The proof is given in Appendix C. |
Next, recall that the quantum state p of a spin-1/2 particle
can be represented in the S, eigenbasis by

I1+z x—iy
Tolx+iy 1-z)|

where x := tr(pS‘X), Y= tr(pS‘y), and z:= tr(,oS'Z) are the

Bloch vector coordinates satisfying x> 4+ y> 4 z> < 1. Equiva-

lently, one can consider any system of coordinates induced by

the expectation values of three mutually orthogonal spin oper-

ators. In our case, one can take Sy, S», and S5 := 8§ - (i X 71p),
so that

e i sin(0;)
—cos(6;)

(95

], Jefl,2},

[S;, Sk] = 2iS - (7 x i),

FESHES) — cos(||E DT + i(£18) + £52)

st+s3+83< 1, (6)
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where s; 1= tr(pS’] ), $p = tr(,oS'z), and s3 := tr(,o$‘3) are the
expected values for the spin components of the particle along
the directions 711, /1, and 71; X 71, respectively.

B. Wigner distribution pw

We recall some properties of the Wigner distribution pyw
associated with the observables §; and S, and the quantum
state p studied in Refs. [1,3].

Proposition 8: The Wigner distribution pw associated
with the observables §; and S, and the quantum state p is
formally given by

pw(x1, x2) = (1 + 5161 4+ 53x02)p% (x1, X2),

where

——F(cos(|| - 1))(x1, x2)

Poy(xr, x) =

(2 )?
is the Wigner distribution for any state with Bloch vector
normal to the plane defined by 71; and #i,, and

F(cos(|| - N)x1, x2) = fR 2 cos(||& [|)e " stRR)dE, dE,.

Proof: By definition, the Wigner distribution pw is given by

pw(xi, x2) =

n )2/ fw(§):17éz)e—l(xl&-&-xzéz)d%- dé,,

where fy is given by

Fu(61,82) = tr(pe G505

= cos([I& 1) +i(si&1 + 2é‘;‘z)smll(fnﬁ”)

d
= (1 — Qs — 3, zS2¥> cos(lI&1)-

Performing integration by parts with respect to £; and &, yields

1
pw(xt, x2) = M}'( cos(|| -

) DCxr, x2).

o]

Z (—=D¥[Im(z1)S1 + Im(22)S,1*

k! (2k)!

k=0

Thus, we obtain the estimate

< V2l 3 @I

!
pre k!

= V2l pllpe! ™Dk = V2| p|pelo 1M,

| fw(z1, 22)]

By the Paley-Wiener-Schwarz theorem, supp(pw) € D as
desired. |

Remark: Since p, is radially symmetric, the Wigner dis-
tribution pw can be expressed in polar coordinates via the
change of variables x; = rcos(f) and x, = rsin(9), where
r= x|, as

pw(r,0) = [1 4 s;7cos(8) + sarsin(9)]1p%, ().

I mi(z 2 [ lmZS+|]“ZZSZF§

If a state p° corresponds to a Bloch vector normal to the plane
deﬁned by 71 and i, then the expectations s = tr(p°S)) and
= tr(p"$,) are zero, so that

Pt = s [ costlele 4 aedey
1
= Gy Ceosll - D 22)
which yields the desired result. B

Next, using the Paley-Wiener-Schwarz theorem, we prove
that pyw is always supported in the unit disk.

Proposition 9: The Wigner quasiprobability distribution
pw associated with the observables S; and §, and the quantum
state p satisfies

supp(pw) € D,

where D € R? is the closed unit disk.

Proof: Let ||A||g := /tr(AAT) denote the Frobenius norm.
By the Cauchy-Schwarz inequality, |tr(AB)| < ||Allg|IB]g.
Then, the function
i(21§1+zzs‘2))’

Sw(z1, z2) = tr(pe 7= (z1,2) € C?,

which is analytic everywhere in C?, satisfies the estimate

| fw(zi, 2] < llpllelle™@® 25|,

=|p ”F”e—ﬂm(m)§1+Tm(zz)§2] e

i (= DF[Im(z)S1 + Im(22)S,]°
k!

= lelr

k=0 F

By noting that [Im(z;)S; + Im(z2)8,]* = || Im(z)| 12, we can
split the above sum into even and odd parts to get

I Tm(2)|5*

o0
| Tm ()4
—= < V2 _—
— (2k+ 1) ‘/_g k!

(

Thus, the Wigner distribution for any state p can always be
written as the Wigner distribution p, corresponding to, for
instance, the maximally mixed state p = /2, multiplied by
the function

h(r,0) =1+ s;rcos(8) + sorsin(6).

Compare, for example, the two Wigner distributions for the
observables §; =S, and §, = S‘y shown in the two right
subplots of Fig. 1. Modulo the Gaussian regularization, the
bottom Wigner distribution can be obtained by multiplying
the top Wigner distribution by

h(r,0) = 1 4+ ——[cos(8) + sin(6)] = 1 + rsin (9 + 5).
V2 4
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That is because the Wigner distribution for the state

11 =
'O=§|:ﬂ \f:|,
72

corresponds to the Bloch vector coordinates x = 1/ V2, y =
1/+/2,and z = 0. Thus, s; = 5, = 1//2.

Lastly, notice that the function /4 is always non-negative in
D where py is supported. To see this, apply the reverse trian-
gle inequality, followed by the Cauchy-Schwarz inequality, to
get

h(r,0) > 1 — |syrcos(8) + s,rsin(0)|
z1—1r| S%+S§>0,

where the last inequality follows from Eq. (6). This implies
that the sign of the Wigner distribution for §; and $,, which
reflects the quantum nature of the representation, is indepen-
dent of the state p.

C. Margenau-Hill quasicharacteristic functions
Jfmn,, and the Mehler-Heine theorem

In what follows, we compute closed-form expressions
for the Margenau-Hill quasicharacteristic functions fyp, and
show that their convergence to fy, which is uniform on com-
pact subsets of C? by Lemma 1, is a special case of the
Mehler-Heine theorem. We start by proving the following
result.

Lemma 2: Letm € N and &, & € R. Then,

2

= T,(an) + imemfl(am)a

)
and
(ei%S,ei%SZ)m _ (e;%ﬁzei%ﬁ,)m

2

= m_l(am)sin (E_I> sin <€_2>§2§]7 (8)
m m
where

a, :=cos| — )cos| =)/,
m m

b,, := sin <§—1> CcoS <§—2>$‘1 ~+ cos <€—1> sin <$—2>$‘2,
m m m m

and T, (-) and U,,(-) are the mth degree Chebyshev polynomi-
als of the first and second kinds, respectively.
Proof: The proof is given in Appendix D. |
The resemblance of Eq. (7) with the mth power

"= Tm(a) + ibUmfl(a)v

of a complex number z = a + ib of modulus 1, a,b € R, is
inescapable. Then, Eqgs. (7) and (8) together may be seen
as a noncommutative version of de Moivre’s formula. Using
the above lemma, we can derive closed-form expressions for
the Margenau-Hill quasicharacteristic functions fyy,, for all
meN, as explained next.

Proposition 10: The Margenau-Hill quasicharacteristic
functions fmm,, (&1, &2) associated with the spin operators S,
S, and the state p are given by

] 9 &1 &
1 —isy— —iso,— |T,,| cos (—) cos (—) ,
3%‘1 3.‘;:2 m m
where T,,(-) is the mth degree Chebyshev polynomial of the

first kind, m € N.
Proof: Equation (7) implies that for all m € N,

fMHm (‘i:l s %.2) = tr[p(T;n(am) + imem—l (le))]

Since %Tm(x) = mU,,— (x), the right-hand side equals
S| A0 &1 &
tr|:p (1 — 1518_51 — 1S23_§2>Tm (cos (Z> cos (E>>:|
0 0
=\1—-isy— —is,— |T,,| cos ~’§_1 cos 5—2 ,
9&1 062 m m

which completes the proof. |

Remark: So far, we have seen that both the Wigner qua-
sicharacteristic function fw as well as the Margenau-Hill
quasicharacteristic functions fyy, can be derived by applying
the operator

N

I —is)— —is)—

98 95>
to the quasicharacteristic function corresponding to any state
po satisfying tr(p°8)) = tr(p°S,) = 0. Thus, knowledge of
the quasicharacteristic function for any such py is enough to
construct the quasicharacteristic function for any other state
p.
In light of Proposition 10, we conclude by noting the
connection between the Mehler-Heine theorem and the con-
vergence property of the Margenau-Hill quasicharacteristic

functions fum,, to fw.

Proposition 11: For the special case of spin observables
S, and §,, Lemma 1 follows directly from the Mehler-Heine
theorem.

Proof: The proof is given in Appendix E. |

It is unclear whether this connection between the Lie-
Trotter product formula and the Mehler-Heine theorem for
spin-1/2 observables is simply a mathematical coincidence or
the manifestation of a deeper fact.

D. Margenau-Hill quasiprobability distributions pyp,,

We now derive closed-form expressions for the Margenau-
Hill quasiprobability distributions pmp,, for all m € N. This
is done by taking the Fourier transform of the corresponding
expressions for fyp,, in Proposition 10.

Proposition 12: The Margenau-Hill quasiprobability dis-
tribution of order m € N associated with the spin observables
81, 8, and a quantum state p is given by

pvH, = (1 4+ s1x1 + Szxz)P(li/[Hm,
where s; = tr(pS)), i € {1,2},

T B DI (4 L,

n=0 p.g=0 P q
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and a,,, are the coefficients of the Chebyshev polynomial of
the first kind of order m, that is,

m
T, (x) = Z A X"
n=0

Proof: By Proposition 10, the Margenau-Hill quasicharacter-
istic function fum,, (€1, &2) is given by

.90 0 (&) (52)
1—is;— —isp— )T cos|{—)cos(=) ),
08 062 m m
for all m € N. It follows that

1
—— F(fwm,) = (1 + 5101 + 5252) Py, -

PMH,, = 1)

where

m

P, (1, 32) = ; %]—'(cos” (%) cos” (%)),
. Amn “ n n
a Z 4n Z (p) (q)(g(m—"rfp,xz—"mz")

n=0 p.q=0

The last equality follows from the fact that

Ao () -2 [0 52)|

p:
which completes the proof. |

V. REPEATED EXPERIMENTS

In this section, we discuss the Wigner distribution pw and
its particle approximations pmy, in the context of repeated
experiments.

Recall from Proposition 3 that the Margenau-Hill
quasiprobability distribution pyy,, of order m is supported on
the grid of points

1 iA_ A+A+---+A
m = N m ’

where the summation is in the sense of Minkowski, and
A:=0A) xo(A) x - xo(l,),

with a(/ik) the spectrum of Ak, k=1,...,n. The set A con-
sists of all tuples of eigenvalues and is the support that is
expected of a joint probability law on the classical measure-
ment outcomes of the observables Al, . ,An. For instance,
in the case of spin-1/2 observables S, and §, discussed in
Sec. IV, the set A is given by

A= (=1,+1) x (=1, +1),
={(=1, -1, (=1, +1), (+1, =1), (+1, +D},
= {(£1, £1), (1, F1)},

which is the support for the Margenau-Hill quasiprobability
distribution pyy,, of order m = 1.

Since the probability measures pyp, are sign-indefinite,
the underlying experiments are not realizable, and will hence
be referred to as thought experiments. For instance, the

thought experiment associated with the signed measure pm,
is the simultaneous measurement of the spin components of a
spin-1/2 particle in state p along the directions 71; and #i,; see
Ref. [8].

Likewise, the support for pyy,, which is

A+A  [(=1,+1D) x (=1, +D]+[(—=1, +1) x (=1, +1)]
2 2 ’
= {(£1, £1), (£1, F1), (£1, 0), (0, £1), (0, 0)},

suggests that the associated thought experiment for the case
m = 2 would be the instantaneous repetition of the thought
experiment in m = 1 twice, for the same p, with the average
of the two results recorded as the outcome. The simultaneous
measurements performed in these thought experiments are not
quantum measurements because 8, and $, do not commute.
As a consequence, the axiom of repetition need not apply, and
nine possible outcomes are present. For instance, the outcome
(0, +1) may arise as a result of (+1, +1) instantiating in the
first simultaneous measurement and (—1, 4+1) in the second.

In a similar manner, the support of pyp, for any N € N
becomes the set of outcomes obtained by instantaneously
repeating the thought experiment for m = 1, N times, and
recording the average. Thus, the Wigner quasiprobability dis-
tribution pw corresponds to this limiting thought experiment
that involves an infinite instantaneous repetition of the thought
experiment in m = 1.

Since this limit process averages out the results from theo-
retically sampling the system in state p infinitely many times,
the support of the Wigner distribution is still confined in the
unit square. See, for instance, Fig. 9, which displays the evo-
lution of the support of the Margenau-Hill distributions pmp,
for §; and $, as N — oo. The fact, however, that the support
is always inside the unit Disk, which is the joint numerical
range of §; and $,, suggests that with every run of this thought
experiment, the resulting average must correspond to the spin
components of the particle in some state o, as

tr(08))* + tr(08,)* < 1.

We believe that a time-resolved version of this thought ex-
periment could be linked to the continuous monitoring of
non-commuting observables [9]. Such an interpretation could
provide insight on certain features of pw, such as its regions of
positivity as well as its shape, from a physical perspective. The
above discussion is no different for a general tuple of opera-
tors Ay, ..., A,, and potential links to the theory of continuous
measurement are of great interest.

Finally, when all of the observables Ay, ..., A, commute,
all successive supports collapse to that of pyy, and the se-
quence of thought experiments, which are now realizable,
must lead to outcomes confined to the classical sample space
A. In the context of our proposed thought experiments, this
implies that making multiple repetitions of the same mea-
surement does not alter the average when the observables
commute; i.e., subsequent measurements are identical to the
outcomes obtained in the first measurement. This is consistent
with the axiom of repetition, which asserts that performing the
same measurement on a quantum system will not change the
resulting outcome.
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0 0.2 0.4

FIG. 9. Evolution of the support of the Margenau-Hill distribu-
tion pymy,, for the spin-1/2 observables along the x and y directions
and the maximally mixed state p = I /2. From top to bottom: (left)
PMH,> PMH,> PMHy» PMH,» (Tight) pymg, pvugs pvny,» pw. The distri-
bution pym,, consists of (m + 1)? Dirac delta distributions supported
over the grid of points (1/m) Y_" | A.

VI. CONCLUSION
In this work, a class of real-valued signed discrete proba-
bility measures given by

F(fum,),

Pwmh, = (2 )"
for n arbitrary quantum observables is derived and studied
based on quasicharacteristic functions fyy, with symmetrized
operator orderings of Margenau-Hill type. These measures
are given by affine combinations of Dirac delta distributions
supported over the finite spectral range of the quantum ob-
servables, and give the correct probability marginals when
coarse-grained along any principal axis. We showed that these
particle approximations converge weakly to their correspond-
ing Wigner distribution, and the convergence can be upgraded
if they are smeared with an appropriate Schwarz function.
Closed-form expressions in the case of bivariate quasiprob-
ability distributions for the spin measurements of spin-1/2
particles are provided. As a side result, the convergence of
the approximants in this case follows from the Mehler-Heine
theorem. Finally, we discussed the Wigner distribution and
its particle approximations in the context of repeated thought
experiments. Namely, the supports of pw and pmpy, point
towards thought experiments involving repeated simultaneous
measurements on the state p. When the operators mutually
commute, these supports reduce to the classical grid of eigen-
values, in agreement with the axiom of repetition.
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APPENDIX A: PROOF OF PROPOSITION 2

‘We provide herein details for the inequality

i

TES,

By definition,

n m
P <l_[ é o An(k))
k=1

< M ev) (v, Im(2) Z tr(p).

TEeS,

n m
Znk) A
P(l |e’ m()A”(k))
k=1

k=1

m./ n
=z ~
rrrn(k) A,,(;@) (1—[
k=1

(i

m
Za(n—k+1) 2
e’”(”m)Amk“)) 0.

Notice that the innermost pair of factors simplify and are bounded as follows:

()i

.z
= k+1)Aﬂ( k+l)> _ (He

n
k Mz () 2 Zr(n—k+1) 2
m( )An<k>> e (l | P )An(nm))
k=2

13 .z 1(+ ) vp Im(zg ()
(l_l e 7:n )Arr(k)> ( n(n A”(nk+l)>62m”(nl,
k=2

where the last inequality follows because the positive operator e
{Amin(Az(n))s Amax(Ar ()}, and applying a congruence transformation will not change this fact; e~ »

MG 2 vn I ) 7
2 I for some v, €

Arm s less than e?

5 inImGaem) p

!'is a scalar multiple of

the identity and can be moved to the right. Repeating this process for the subsequent pairs of innermost factors, we obtain the
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final estimate

n n
Ik A Zr(n—k+1) 3 max, e (k) (v,Im) »
(l | g'mAn<k>> (l | elmAn(uk+])> <l »

k=1
Thus,

m n m
g Zn(n—k+1) £ o
(l_[ P -r(k)) <l_[ el%An(nk+])> < 2 Maxuev () (v, Im@)

k=1

Multiplying from the left and right by p and recalling that the 1/~ function is operator monotone yields

(i)

Taking the trace on both sides and summing over all & € S, yields the desired inequality.

< \/peZmaxvev(K)(v,Im(z))fp — emaxt'GV(K)(UsIm(Z))p‘

APPENDIX B: PROOF OF LEMMA 1

Let K be any compact set in C" and let || - || denote the Frobenius norm

lA|lF := v tr(AA AeCix,

Recall that |tr(AB)| < ||Allg||B||r and that the functions fw and fyy, can be analytically extended to C” for all m € N. Then,

m

sup Av(£) = fun, (€)] = sup tr((0e4) - _tr 5 (l_[e A>

meS, \k=1

o ( (1))

m
ol Y
m 7 (k)
< " E sup ||e

n!
TEeS, §eK
n m
o g Sx(k)
- (l_[e A — Qasm — oo,
k=1

for all permutations 7 € §,. By symmetry, it is sufficient to consider the trivial permutation only. To that end, define

Z sup

rreS,, §eK

F

Thus, it is enough to show that

sup
EekK

F

C:=endand D := Hei%A*.
k=1
Then, applying the Cauchy product formula on D yields
A0 ) o (L GEADH | o 1 (1 A
D= = — | = —= — |-
l:[ MX_;) ]k ”2=:0 g mlk ]k‘ Z mm U !

where |j| := j; + - - - + j,. Thus, we get

— 1 GE-A & (i&Ar ) =1 (gAY GEA)
C—D|r= - = — —
I Ilr ‘j\2=:o mlil |]|' UX: mli] (l} Ji! ) ) |j\2=:2 m.z( ! ,D ! )
I o |G-V L~ (zskAkw 1 (e TANRDY & (& IA IR )
< — - <= . + -
1 AIABE 2 i
—_ Iél ”A”F_j’_ e “AHF’
e (,n IR ) e
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where €] - [|Allr == [&11IA1 ]Ik + - - - + & I|A, [lr. By noting that [|Cll, [ Dllr < 1, we get

m—1
2 .
Ic™ = D"lp = | > CHC — D)D" < m|C = Dl < elHAIF
m
k=0 F
Taking the supremum of both sides over £ € K and letting m — oo yields the desired result. |

APPENDIX C: PROOF OF PROPOSITION 6
(1) Proof that 8% = I:

| ©0s0)) e~ i sin(0;) cos(6;) e %isin(0;) |t o _;
77 etisin;)  —cos8;) ||e®sin6;)  —cos@®;) | [0 1|

(2) Proof that det(S;) = —1:

cos(6;) e %isin(0;)

det(SH) = 1|
) ¢%isin(0;)  —cos(9;)

= — cosz(é’j) — sin2(9_,~) = —1.

(3) Proof that tr(Sj) =0:
([0 ) ey
(4) Proof that [S;, 8] = 2iS - (7 x iy): If j = k, then
[8;.8;]1 =87 — 87 =0=2i§ - (A x f)).
If j # k, recall that the vector 7i; x 71 is given by

A A A

% 9 2
fij X iy = |sin(0;) cos(¢p;) sin(0;)sin(¢;) cos(6;)
sin(6y) cos(¢r)  sin(By) sin(¢py)  cos(6y)
= [sin(#;) sin(¢;) cos(dx) — cos(8;) sin(y) sin(Py)]X — [sin(6;) cos(¢h;) cos(Gy) — cos(8;) sin(6y) cos(¢y )19
+ (sin(¢x — ¢;) sin(0;) sin(6y))Z
= (ﬁj X g )X + (fl, X flk)y}’\i + (fl, X g );2.
Then,
187, Si1 = $;8, — 8iS;
| cos@) e i sin(6;) cos(6y) e~ sin(6;)
"~ |e®isin@d;)  —cos(0;) ||e®sin(6r)  —cos(6r)
cos(6y) e~ % sin(6;) cos(6;) e~ sin(0;)
€% sin(6y) —cos(6y) €% sin(6;) —cos(6,)
[ cos(8;)cos(6y) + P9 sin(0;) sin(6) e cos(6;) sin(B) — e~ sin(6;) cos(6;)
| e sin(0;) cos(f) — e® cos(9;)sin(fy)  cos(8;) cos(Fy) + € @i=%) sin(6;) sin(6y)
cos(6;) cos(6) + e %9 sin(0;) sin(Bx) e~ cos(6y) sin(0;) — e~ sin(6;) cos(6);)
| e sin(6;) cos(0;) — e cos()sin(0;)  cos(8;) cos(By) + e~ @1~ sin(6);) sin(6; )

e sin(¢x — ¢;) sin(6;) sin(6;) ie™"i sin(6;) cos(f) — ie” "% cos(6;) sin(6y)
I sin(6;) cos(fy) + ie'? cos(6;) sin() sin(¢; — ¢ ) sin(6;) sin(6)

= 2i(8: (i x Az + Sp(Aj x )y + 8.(A; x y)z) = 2i8 - (A x i),
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where

(5) Proof that {S;, 8§;} = 2(#; - i )I: If j # k, then
{87, 8k} =88 + 885 = 8,8 — 8,8 = 0 =2(n; - ).
If j = k, then
{85, 8,y =287 =2 = 2(3; - apl.

(6) Proof that /65155 = cos(IE 1)/ + (6181 + £28,) 2EL: Since

(E1S1 +68:) = 671+ £:6:{51, S} + &1 = €171,
Then,

8 1as o LiES + &)1 [iES) + &E5)1* | o LIS + £8)1*!
¢ Z r = Z 20! +2 2k + 1)

k=0 k=0
o CDAIEIPT . . (—DXE)*
= E + (&S] +ézSz)§ —
k=0 (2k)' k=0 (2k+ D!
> (= DFE) 1 (= DF|lg |+ A4 o sin(|I£])
- § B 7 S $)— § AN U 7 S S )
2 2! +i5S1 + & 2)”5” 2 2k + D) cos(lEINI +i(5151 + &257) €l

If either & or & is set to 0, we get the familiar identity ¢%/5 = cos(&;)I + i8; sin(&;), j € {1,2}.

APPENDIX D: PROOF OF LEMMA 2

Note first that Eq. (8) can be rewritten as
(ei%&elmsz) §1§2+( ”,Sze mS]) S2Sl @ )Sin <$1)Sln <$2> D1)
= Um—-1UUpm _
m

2 m

by simply multiplying Eq. (8) from the right by §,5,. We want to show that Egs. (7) and (D1) hold for all m € N. To that end,
the proof will proceed by induction on m. For m = 1, we have

ai = cos (&) cos (§)I, by = Sy sin (&) cos (&) + S5 sin (&) cos (£1).
Then, by recalling that
613165 = (cos(g)] + iS) sin(§)))(cos(§:)] + iS sin(&))
= aj + ib; — sin(&1) sin(£2)8,5,,

we find that Eqs. (7) and (D1) hold in this case, namely,

eiélsl eiézsz + ei§2§26i5131
2
ei51§1 eiézﬁzglgz + eifzszeiflgl 3'23‘1
2

Next, suppose that Egs. (7) and (D1) are true for some m € N, and define

g B a5 s —sin (B
"m0 2T m+ 1 b m+1) 2 m+1)
Then, by recalling that

sl Sle,msz = [cos (i)] + i8) sin (Sl)iH: <%)f+ i8, sin <%)i|
= [Cos (mil— 1)i+ i1 sin (mé:lL 1>] [COS (miz— l)ijL iSzsin <mi2‘ 1>}

= Qi1 + ibpy1 — 51525152,

=a; +iby = Ti(ay) + ibiUp(ay),

= Up(ay) sin(§1) sin(&).
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we find that
(g m+lS1 17S2)m+1 + (eA +lszelm<}>lsl)m+l
2
P

(g msle 252) %Slei%zsz + ( 2526, Nll Sl) 2S2€ ”5 5

N 2
o e A

(e ms,e zsz) + (ezfszelﬁs, m . (e ms,elﬁ%) 8.8, + (e 2 Sze:,,{sl) 5,8,

= (@mt1 + ibptr) — 5152
2 2
use Eq. (7) use Eq. (D1)

= [Tn(am+1) + ibmi1 Un—1(@m+ 1) @ms1 + ibmi1) — $182[Up—1(@m41)5152]
= a1 Tn(@ns1) = (Bppr + 5152) Un—1 @) + byt [ 1 Un—1 (@nie1) + T (@)
= 1 T(ait) = [ = (@1 W1 (@nst) + byt (a1 Un—1 @) + T (@)
= Tyt 1(ams1) + ibyi1 Up(amgr),
which proves Eq. (7) for m + 1. The last equality follows from the fact that the Chebyshev polynomials satisfy
To1(¥) = x5 (x) = (1 = x*)Up 1 (x) and Uy (x) = xUp—1(x) + Tu(x), Vx € R.

Likewise, we have

m+1la A

MM

& 1a A AN
(elnle]S e m+1s2)m+ S SZ —+ (elrLSZelmsl)
2

/

-i” mea & -iA 'iA 2 i mey 4
e mSle mSZ( Sle’ms2) 518, +e’mSZe’mS1( S2e’mSl) AP

2
A A o .5 o fa A A Eo o5 A
318, (e n 81615 %)"8,85 + 8,8 (¢l SZelﬁsl)’"stl _ (en51e55)"8,8, + (& 28200 Sl) 88
= =515 +(ams1 + ibpt1)
2 2
use Eq. (7) use Eq. (D1)

- SlSZ[Tm(am-H) - ibm+lUm—1 (am+l )] + (am-H + ibm+l )[Um—l (am+1)S152]
= SISZ[aerlUmfl(aerl) + Tm(am+1)] = SISZUm(am+1)7

which proves Eq. (D1) for m + 1. By induction, (7) and (D1) hold for all m € N.

A

APPENDIX E: ALTERNATE PROOF FOR LEMMA 1 WHEN A, = §; ANDA, = 3§,
Recall that the Mehler-Heine theorem (2) states that

lim m‘“P,;“’ﬂ’(cos (i)) = (5> Ju(2),
m— 00 m 2

uniformly on compact subsets of C. As pointed out in Ref. [10], Szeg&’s proof of the theorem establishes that
im m—ep@p Z -2y} = ()
i neepg (1= 55 o)) = () "
Next, since

cos(z—1>cos<z—2)=1 Zl+Z2-|- o(m™2),
m m 2m?

where the last equality follows by substituting each factor with its Maclaurin series, we get

lim m“"P,ﬁ,""ﬁ)<cos (Z—l) cos (Z—2>> lim m_“P,gf"ﬁ)<1 Zl +2 + o(m _2)>
m—o0 m m m— o0 2m?
Ja+a\ " —
=) J(fd+2)
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uniformly on compact subsets of C2. The analog of (E1) was established in Ref. [10] for a ratio of cosines, instead of a product.

Settinga = = —1/2,

2 2m)!
Jo1(2) =,/ - cos(2), P27y = _em! _, (2).

22m(m1)2 "

where 7,,,(-) denotes the m™ degree Chebyshev polynomial of the first kind. Then, Eq. (E1) becomes

m

lim MT,”(COS (Z

s 00 22m(m!)2

Stirling’s formula gives that

) cos (%)) = cos (\/z%Tz%) (E2)

lim vmm(2m)! _1

s 00 22m(m!)2 -

and hence Eq. (E2) reduces to

lim Tm<cos (Z—1> cos (
m—00 m

) =cos(5t+23).

Since the uniform convergence of a sequence of analytic functions f,, to f on compact subsets of C? implies the same type of

convergence for their derivatives to (% 1

0
lim —Tm(cos (Z—l) cos (
m—00 07; m

uniformly on compact subsets of C2, i € {1, 2}. Hence,

. .0 .0 21
Iim {1 —isy— —iss— )T, | cos (—) cos (
m—00 321 3Z2 m

)) = 3%1 cos (/27 +23).

.0 .0
)) = (1 s - lsza_z) cos (/21 +23),

uniformly on compact subsets of C2, which is exactly the statement in Lemma 1 for the spin operators §; and S,.
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