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Abstract—We examine the question of “how well large lan-
guage models (LLMs) can answer questions using temporal
tabular financial data by generating code?”. Leveraging advanced
language models, specifically GPT-4 and Llama 3, we aim to
scrutinize and compare their abilities to generate coherent and
effective code for Python, R, and SQL based on natural language
prompts. We design an experiment to assess the performance of
LLMs on natural language prompts on a large temporal financial
dataset. We created a set of queries with hand-crafted R code
answers. To investigate the strengths and weaknesses of LLMs,
each query was created with different factors that characterize
the financial meaning of the queries and their complexity. We
demonstrate how to create specific zero-shot prompts to generate
code to answer natural language queries about temporal financial
tabular data. We develop specific system prompts for each
language to ensure they correctly answer time-oriented questions.
We execute this experiment on two LLMs (GPT-4 and Llama 3),
assess if the outputs produced are executable and correct, and
assess the efficiency of the produced code for Python, SQL, and
R. We find that while LLMs have promising performance, their
performance varies greatly across the languages, models, and
experimental factors. GPT-4 performs best on Python (95.2%
correctness) but has significantly weaker performance on SQL
(87.6% correctness) and R (79.0% correctness). Llama 3 is less
successful at generating code overall, but it achieves its best re-
sults in R (71.4% correctness). A multi-factor statistical analysis
of the results with respect to the defined experimental factors
provides further insights into the specific areas of challenge in
code generation for each LLM. Our preliminary results on this
modest benchmark demonstrate a framework for developing
larger, comprehensive, unique benchmarks for both temporal
financial tabular data and R code generation. While Python and
SQL already have benchmarks, we are filling in the gaps for R.
Powerful AI agents for text-to-code generation, as demonstrated
in this work, provide a critical capability required for the
next-generation AI-based natural language financial intelligence
systems and chatbots, directly addressing the complex challenges
presented by querying temporal tabular financial data.

Index Terms—large language models, code generation, gpt-
4, llama3, financial data, tabular data, benchmarking, financial
industry, automation

I. INTRODUCTION

In the finance sector, tabular datasets such as time-stamped
transaction datasets are very common, and processing this data
is crucial for making important decisions such as assessing
risks of planning investments. This data can span a wide
range of sources and vary greatly in structure. It can include
details like market trends, transaction records, credit scores,
etc. Handling these large, complex datasets can be difficult and
slow since the exact information that needs to be extracted can
require complex queries and processing to properly massage
data into a usable form for the desired analyses. Fortunately,
recent large-scale language models (LLMs) such as OpenAI’s
GPT models [1], [2] and Meta’s LlaMA models [3] have
demonstrated impressive abilities to generate code for re-
quested tasks. Using LLMs, users can pose free-form questions
that are then translated into code snippets in languages such
as Python, SQL, or R and directly executed to extract the
appropriate data and perform the required calculations. LLM
agents that perform text-to-code translations for data retrieval,
preparation, and analysis will be a critical component of the
next-generation financial and business intelligence systems
and chatbots [4]. Numerous benchmarks have demonstrated
that LLMs can effectively generate Python and SQL [5].
However, how well LLMs can generate R code remains an
open question. Also, as we demonstrate in this paper, dealing
with queries about time requires special considerations to
achieve good performance.

This project is driven by the overarching objective of
meticulously examining and contrasting the code generation
prowess of LLMs on temporal tabular data. Specifically,
we evaluate the effectiveness of the state-of-the-art language
models in generating code for querying tabular financial data
in natural language using zero-shot prompting [6].If these
models can consistently generate code that is both syntactically
correct and generates the desired results, they would both
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help analysts that query and process these kinds of data and
achieve a necessary step in the process of developing AI-based
natural language financial intelligence systems and chatbots.
This work has the following contributions:

1) We demonstrate how to create zero-shot prompts for
Python, SQL, and R to solve natural language queries
about temporal financial tabular data. We see that special
prompts are needed to correctly answer time-oriented
questions.

2) We utilize experimental design to create a suite of
queries to assess the performance of LLMs on natural
language prompts on a large temporal financial dataset.
We created a test data set consisting of 105 different
queries with manually created R code answers. To
investigate the strengths and weaknesses of LLMs, each
query is created with different factors in mind that
characterize the financial meaning of the queries and
their complexity.

3) We execute this experiment on two LLMs and assess
if the systems produced are executable and correct, and
assess the efficiency of the produced code for Python,
SQL, and R. We find that while LLMs have promising
performance, challenges remain to achieve consistent
performance across all three languages.

4) We perform a multi-factor analysis of the results with
respect to the defined experimental factors to further
understand the types of queries that are challenging for
each LLM. This helps understand areas that must be
improved to develop a fully reliable code generation
system for temporal tabular transaction data.

5) We discuss the steps necessary to transform this promis-
ing preliminary work into full benchmarks of R code
generation and generation for financial tasks, as such
benchmarks currently do not exist to the best of our
knowledge.

.
In this paper, we explore the effectiveness of different

language models in generating code for performing queries
of varying complexities on tabular financial datasets. In Sec-
tion II, we describe our experiments for accomplishing this,
such as the language models tested, the datasets for which
queries were generated, the kinds of queries we sought to
produce, etc. Section III is where we present our main results,
showcasing the factors on which each model performs better
or worse. In Section IV, we discuss these results and their
importance. Then, we contextualize this work in Section V
with related work, and finally, we talk about the next steps
and conclusions in Section VI.

II. METHODS AND EXPERIMENTAL DESIGN

At the heart of this endeavor lies a comprehensive explo-
ration of how LLMs navigate the intricacies of coding syntax
and semantics to produce coherent and effective code. The
experimental design takes into account many key aspects. First
and foremost, we want to experiment with multiple state-of-
the-art language models to compare their capabilities. The

models tested are OpenAI’s GPT-4 [2] (specifically, gpt-4-
0613) and Meta’s Llama 3 [7] (specifically, Llama-3-70b-
instruct). We also tested these models’ abilities to generate
code in different programming languages. We chose to gener-
ate and test code in three of the most popular languages for
data processing: Python, R, and SQL, according to [8]. Having
decided upon these high-level design choices, we designed
a set of queries to be executed on financial datasets that
span a variety of factors in order to create a comprehensive
assessment of the performance of these models’ capabilities.
We describe the factors used in the query design and the
datasets on which the queries are executed in Section II-A.
Having designed our queries, we then evaluated the code
that the language models generated. Our evaluation includes
metrics such as the code complexity, syntactic correctness, and
output correctness of the generated code. These are described
in more detail in Section II-B.

A. Query and Prompt Design

1) Experimental Factors: The complexity present in finan-
cial datasets means that there is a large variety of opera-
tions and tasks that may need to be carried out in order
to properly answer a question about a dataset. These oper-
ations vary in complexity and difficulty and often need to
be strung together in order to reach the desired result. For
these reasons, we designed natural language queries that vary
across experimental factors designed to test the model’s code
generation capabilities in a wide variety of problems. These
factors serve as evaluative criteria, guiding our analysis and
comparison of code generation outcomes. Through systematic
factor assignment and analysis, we aim to elucidate the impact
of different query attributes on code generation performance.
The resulting queries cover a wide range of tasks, including
statistical analysis, data manipulation, transaction analysis,
alias/user identification, data cleaning, and time analysis.

Table I provides the six query experimental factors devel-
oped to date. The first four factors characterize the operations
involved in the code. These factors were created by human
annotation of the R code. ‘Filtering’ includes operations such
as filter, selection, and pull. ‘Grouping’ includes
operations such as group, summarize, and arrange.
‘Transformation’ includes operations such as creating tables,
transform, mutation, and conversion. ‘Statistical
analysis’ includes operations such as mean, maximum, and
minimum. ‘Time’ indicates that the query involves an analysis
with respect to time.

For this preliminary analysis, we generated a total of 105
different queries with manually-generated solutions written in
R. The factor ‘Manual complexity’ is the Halstead complex-
ity [9] of the manually generated R solution. Thus, in our
methodology, we used the Halstead complexity measurement
as a robust technique for assessing the complexity of generated
code snippets. These metrics are based solely on the counts
of operators and operands in the code, regardless of the pro-
gramming language used. By focusing solely on the counts of
operators and operands in the code, Halstead measures abstract
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away language-specific syntax and semantics, enabling fair
and objective comparisons. We also evaluated the complexity
of the manual solutions.

TABLE I
EXPERIMENTAL FACTORS CHARACTERIZING NATURAL LANGUAGE

QUERIES WITH PERCENTAGE IN QUERIES.

Factor Values (Percentage%)
Filtering True (62), False (38)
Grouping True (33), False (67)
Transformation True (62), False (38)
Statistics True (43), False (57)
Time True (24), False (76)
Manual
Complexity

Halstead Complexity of the R Solution

2) LLM System Prompts: System prompts were varied
across each language to ensure the code was written in the
correct format and with the desired language libraries. The
system prompts for each language are provided in Table II.
In each case, we ask the language models to output just
the code with no surrounding text so that we can more
easily execute the code automatically. For each language, we
specifically instruct the models on how to convert the UNIX
timestamps in the data into a more usable format. Without
specific instruction, performance on date-related queries is
much worse, as shown in Section III. Finally, in Python, we
instruct the models to assign the final answer to a variable
named “result” to extract the final answer from the returned
code consistently.

3) User Prompts: The user prompts vary for each query and
do not follow a structured template. Our intent was for this
evaluation to test natural-language prompts. For any desired
query, a user might word their query in many different ways.
This is why we tested five different wordings for each query.
For instance, one query was to find a list of users who have
never been involved in liquidation transactions. Two of the
ways this query was asked were ”Give me all the users who
have never liquidated or been liquidated” and ”I need to see
the list of users without any liquidation actions, neither active
nor passive.” In total, we tested 21 unique queries, each with
five distinct wordings. This gives us 105 total queries tested.
Once written, these queries are passed as user prompts with
no further modification. The full list of queries is available on
Github 1.

4) Temporal Tabular Financial Datasets: The underlying
data on which the generated code is tested comes from
Aave [10]. Aave is a decentralized lending protocol built on
various blockchains that uses smart contracts to allow users
to create “savings accounts” for their cryptocurrencies, earn
interest on their deposited assets, and take out loans using
these assets as collateral. For the purpose of this analysis, we
used Aave’s V2 [11] Mainnet deployment, which is on the
Ethereum blockchain [12]. The transactions are posted on the
Ethereum blockchain and represent real financial transactions.

1https://github.com/Large-Transaction-Models/Financial-Queries-Code-
Generation

TABLE II
SYSTEM PROMPTS FOR LANGUAGE MODELS BASED ON PROGRAMMING

LANGUAGE.

Language System Prompt
R You are an R programmer, following these rules: 1. When

I ask you a question, give me the code to do it, without
saying anything else. Do not put the code in an R chunk,
just give me the code. 2. Use dplyr when possible to
analyze data frames. Dplyr is already loaded, so do not
use library(dplyr). 3. Never use install.packages. Assume
every package you need is installed. 4. Always convert
timestamps with as datetime from the lubridate package
before using them.

SQL You are an SQL programmer, following these rules: 1.
When I ask you a question, give me the code to do
it, without saying anything else. Return the code as a
single line. Do not put quotes around the code. 2. Always
convert timestamps with the datetime(¡column¿, ‘unixe-
poch’) function before specifically using timestamps.

Python You are a Python programmer, following these rules: 1.
When I ask you a question, give me only the code to do
it, without saying anything else. 2. Use pandas to analyze
data frames. Pandas is imported as ‘pd’, and numpy is
imported as ‘np’. 3. Assign the answer to the question as
a variable named ‘result’. 4. Always convert timestamps
with pd.datetime(unit = ‘s’) before using them.

The data spans from January 1, 2021, through December 31,
2022, and includes 1,665,737 transactions made by 172,872
unique users. This dataset includes every transaction that was
made in Aave V2 Mainnet over that time period, including
deposits, withdrawals, borrows, repayments, liquidations, and
collateral swap transactions. For each transaction, features
such as the timestamp of the transaction, the user who made
the transaction, the currency involved, the amount of currency
involved, the adjusted USD value of the transaction, etc.,
are included. We also include queries for a secondary view
of this data that was originally created for a paper about
clustering user behaviors in Aave [13]. This view creates
quarterly summaries of each user’s behavior, including features
such as how many transactions they performed in a quarter,
the total USD value they borrowed in each quarter, the total
USD value they deposited in each quarter, etc. We use these
financial datasets and create natural language-based prompts
that request certain information from each.

5) LLM Hyperparameters: To elicit code responses from
the language models, we send the prompts in a structured
format to the models through an API. There is a specific
format and certain hyperparameters described in Table III that
are used for querying each language model. These parameters
include the model name for identification, minimum and
maximum token requirements for input sequences, top-k and
top-p values regulating token selection diversity and sampling
probability, respectively, temperature affecting randomness,
presence penalty penalizing specific token presence, and fre-
quency penalty discouraging token repetition.

B. Code Evaluation Methodology

To evaluate and compare the code generated in the three
languages, we use metrics capturing code complexity, code
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TABLE III
HYPERPARAMETERS FOR QUERYING LANGUAGE MODELS: DEFAULTS USED EXCEPT FOR LLAMA 3’S MAX TOKENS INCREASED TO 4096 TO MATCH

GPT-4.

Model Name Min Tokens Max Tokens Top k Top p Temperature Presence Penalty Frequency Penalty
gpt-4-0613 0 4096 NA 1 1 0 0

Llama-3-70b-Instruct 0 4096 50 0.9 0.6 1.15 0.2

TABLE IV
RATE OF CORRECT CODE RESPONSES BY LANGUAGE, WITH

STATISTICAL SIGNIFICANCE.

Model Python R SQL Total χ2 p-value
GPT-4-0613 0.952 0.790 0.876 0.873 0.002
Llama-3-70b-Instruct 0.581 0.714 0.657 0.651 0.127

correctness, and code execution. For every query, we manually
wrote code that produces the desired result, so we know
what the correct result should be. To determine correctness,
we manually checked if the code responses generated by the
language model returned the same information as the manually
written code. Execution means that the code is syntactically
correct, but does not necessarily mean that we get the correct
result. Code in Python and SQL was converted to R-code
for comparison with our hand-crafted benchmark. For Python,
the reticulate package facilitated code execution and
automatic conversion of outputs to R objects, while for SQL,
the sqldf package was employed for similar conversion
functionality.

III. RESULTS

A. Analysis by Language

The proportion of correct responses by model and language
is given in Table IV. For GPT-4, Python was the best-
performing language, followed by SQL and then R, while
for Llama 3, the ordering was reversed: R was the best,
followed by SQL and then Python. The column χ2-square p-
value indicates the p-value of a chi-square test for the rate of
correct answers being equal for each language. The languages
have significantly different correctness (p-value 0.002), but
any observed differences are not significant (p-value 0.127)
for Llama 3. GPT-4 performed better than Llama 3 for all
languages.

TABLE V
RATE OF EXECUTABLE CODE RESPONSES BY LANGUAGE, WITH

STATISTICAL SIGNIFICANCE.

Model Python R SQL Total χ2 p-value
GPT-4-0613 0.990 0.914 0.952 0.952 0.035
Llama-3-70b-Instruct 0.905 0.914 0.857 0.892 0.360

An analogous chart for comparing the rates at which the
generated code is executable based on the programming
language is shown in Table V and Figure 1. For GPT-4,
Python had the highest rate of executable code, followed by
SQL, then R. For Llama 3, R had the highest executable
rate, followed by Python, then SQL. The difference between

TABLE VI
CODE COMPLEXITIES OF MODEL RESPONSES BASED ON THE MODEL

AND LANGUAGE.

Language Mean GPT Mean Llama Std. GPT Std. Llama
Python 36.476 26.868 14.587 14.314
R 20.471 17.288 8.555 5.993
SQL 24.333 30.190 13.170 17.966

languages is significant with GPT-4 but not with Llama-3.
Figure 1 displays summary information for result correctness
and rates of executable code.

Figure 2 shows a density plot of response complexity while
Table VI shows summary statistics. R code tended to be the
least complex in both models. Python was, on average, less
complex than SQL when using Llama but more complex than
SQL when using GPT.

B. Impact of Factors

We use logistic regression (LR) to determine the signifi-
cance of the experimental factors in predicting the probability
of correctness and execution of responses for each model.
Table VII shows the results of an LR with the dependent vari-
able being task correctness and independent factors being the
prompt factors in Table I, and Table VIII shows the same with
the dependent variable being code execution. LanguageR and
LanguageSQL are dummy variables that are 1 if a response
is in their respective language and 0 otherwise. Therefore, their
coefficients are relative to the programming language Python.

The correctness of GPT-4 is negatively impacted by the
use of the R and SQL languages (as compared to Python).
GPT-4 shows a higher probability of correctness on prompts
relating to filtering, transformation, and time, significant under
a 5% level. In contrast, Llama 3 only shows a decrease in
the probability of correctness for grouping prompts. GPT
also shows decreased correctness probability for prompts
with higher manual complexity. The LR supports that GPT-4
achieves less correctness in R and SQL than in Python.

For execution, GPT is significantly more likely to return
executable code for prompts relating to filtering and trans-
formation, and the code it returns is less likely to execute
for higher manual complexities. Llama 3 once again shows a
lower probability of executing for grouping queries.

IV. DISCUSSION

Our preliminary evaluation indicates that LLM code genera-
tion for temporal financial transaction data has great potential,
but there is much room for improvement.

GPT-4 consistently outperforms Llama-3 in both correct-
ness and execution rates across all three languages. This is
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Fig. 1. Rate of Response Correctness and Execution.

TABLE VII
LOGISTIC REGRESSION FOR CORRECTNESS.

Dependent variable:
Correct

GPT-4-0613 Llama-3-70b-Instruct
LanguageR −1.879∗∗∗ 0.631∗∗

(0.546) (0.303)

LanguageSQL −1.138∗∗ 0.347
(0.569) (0.296)

Filtering 2.384∗∗∗ 0.481
(0.711) (0.387)

Grouping 0.909 −0.859∗∗
(0.632) (0.347)

Transformation 2.968∗∗∗ −0.038
(0.682) (0.316)

Statistics 1.565∗ −1.091∗
(0.910) (0.611)

Time 1.656∗∗ 0.805∗
(0.678) (0.415)

Manual Complexity −0.144∗∗∗ −0.025
(0.045) (0.026)

Intercept 2.159∗∗ 0.672
(0.935) (0.564)

Observations 315 315

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

TABLE VIII
LOGISTIC REGRESSION FOR EXECUTION.

Dependent variable:
Execution

GPT-4-0613 Llama-3-70b-Instruct
LanguageR −2.500∗∗ 0.124

(1.096) (0.497)

LanguageSQL −1.764 −0.498
(1.132) (0.452)

Filtering 2.949∗∗∗ −0.236
(1.033) (0.650)

Grouping 2.140∗ −1.866∗∗∗
(1.284) (0.559)

Transformation 2.792∗∗ −0.726
(1.350) (0.481)

Statistics 0.388 −1.052
(1.214) (1.193)

Time 1.661 −0.617
(1.113) (0.630)

Manual Complexity −0.283∗∗∗ 0.050
(0.092) (0.045)

Intercept 6.243∗∗∗ 3.038∗∗∗
(1.842) (0.905)

Observations 315 315

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Fig. 2. Density Plot of Complexity.

evident from the higher rates of correct answers and execution
for GPT-4 compared to Llama-3. By understanding which
language model performs better for specific programming
languages and tasks, developers can make informed decisions
when selecting a model for their projects. This can lead
to more accurate and efficient code generation, ultimately
improving the quality of software products and reducing de-
velopment time. GPT-4 exhibits significant language-specific
performance variations, with Python being the best-performing
language, followed by SQL and then R. In contrast, Llama-
3 shows a reverse pattern, with R being the best-performing
language, followed by SQL and then Python, but these
differences are not statistically significant. This discrepancy
suggests that the effectiveness of language models can vary
depending on the programming language being generated. The
discrepancy in performance across languages provides insights
into the underlying capabilities of language models. GPT-4 is
also better at generating executable code but still experiences
some failures. This suggests that language models may have
inherent biases or strengths that influence their effectiveness
in generating code for different programming languages. By
understanding these nuances, developers can better leverage
language models to meet the specific requirements of their
projects.

Financial data often has a temporal element to it, and this
can take many different forms. Data such as stock prices
may be recorded at regular intervals, e.g., daily, and recorded.
User transactions within a financial platform will occur very

irregularly and frequently and may be recorded to the nearest
second or millisecond. Other data may be calculated quarterly
or on some cycle. All of these methods of recording the
temporal aspect of data result in different handling of the
record of time. Through our testing, LLMs struggled severely
at generating meaningful or correct queries when tasked with
questions that forced them to deal with the time of the
transactions in some way. For this reason, we had to add
special instructions to the system prompt for each language
that provided some basic details on how to manipulate the time
variables in the code. Even with these special instructions, the
models were not perfect when performing tasks that dealt with
time.

The analysis of response complexity reveals interesting
insights. R code tends to be the least complex across both
models. Additionally, there’s a discrepancy in the complexity
of Python code between the two models. When using Llama-
3, Python code is less complex on average compared to SQL.
However, when employing GPT-4, Python code tends to be
more complex than SQL. This suggests that the complexity of
generated code can be influenced by both the language model
and the specific programming language. Complex code can
pose challenges for developers, increasing the time and effort
required to comprehend and modify code. By understanding
the factors that contribute to code complexity, developers can
optimize their workflows and tooling to mitigate complexity-
related issues, leading to improved productivity and faster
iteration cycles.

LR analysis provides further insights into the factors in-
fluencing correctness and execution probabilities. Notably,
GPT-4 shows a higher probability of correctness for prompts
related to filtering, transformation, and time, while Llama-3
exhibits decreased correctness probability only for grouping
prompts. Similarly, GPT-4 is more likely to return executing
code for filtering and transformation prompts, while Llama-3
shows a lower probability of executing grouping queries. This
highlights the models’ strengths and weaknesses in handling
different types of coding tasks. The significance levels rein-
force the reliability of the observed patterns and highlight the
practical implications of these findings for users of language
models in code generation tasks.

The experimental design framework developed in the study
is completely extensible and has the potential to be the basis
of new benchmarks. The fact that we observed such variation
in a relatively modest-sized test suite of prompts in terms
of models, language, and query factors is quite encouraging.
One limitation of the present study is its size. We are in
the process of generating more natural language queries for
all combinations of factors to provide a more comprehensive
analysis. The other limitation is that we have just scratched the
surface of possible financial queries. The framework can also
be extended by both expanding the set of experimental factors
that cover more aspects of financial transaction tasks and by
asking these questions in different ways. We have also been
examining adapting existing Python and SQL benchmarks to R
code generation. A final limitation of the present study is that
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we are currently evaluating correctness manually. We are in
the process of developing automated methods for LLM-based
agents to assess the correctness of the generated results. We
believe that these strong early results show these are worthy
endeavors.

V. RELATED WORK

Beginning with the introduction of FinBERT [14], there
has been a growing effort towards utilizing LLMs for various
financial data analyses. FinTral [15] is a specialized LLM for
the financial domain, integrating textual, numerical, tabular,
and visual data processing. BloombergGPT [16] presents a 50-
billion parameter model trained on extensive financial data,
showcasing its prowess in financial tasks while maintaining
robust performance in general LLM benchmarks. PIXIU [17]
introduced a comprehensive framework featuring a finan-
cial LLM fine-tuned with instruction data, thereby advanc-
ing the open-source development of financial AI. Instruct-
FinGPT [18] utilized instruction tuning to excel in scenarios
requiring deep numerical understanding and contextual com-
prehension, particularly in financial sentiment analysis.

LLMs are extensively used on financial text data. LLMs
have also been trained to deal specifically with financial
document understanding, which can be used for tasks such
as generating financial reports [19] and text summarization in
a financial context [20]. GPT-InvestAR [21] aimed to enhance
stock investment strategies by analyzing annual reports using
LLMs. This approach yielded promising results in outperform-
ing traditional market returns, highlighting the potential for
LLMs in investment strategies. InvestLM [22] showed strong
capabilities in understanding economic text and providing
practical investment advice. Retrieval-augmented LLMs [23]
addressed the challenges of applying LLMs directly to eco-
nomic sentiment analysis, achieving considerable performance
gains. [24] addressed the issue of hallucination in information
extraction from earning call transcripts, achieving enhanced
accuracy through the integration of retrieval-augmented gener-
ation techniques with metadata. FinLMEval [25] evaluated the
performance of LLMs in financial natural language processing
tasks, providing foundational assessments to guide ongoing
improvements in LLMs within the financial domain. DISC-
FinLLM [26] introduced a Chinese financial LLM using
a Multiple Experts Fine-tuning Framework, demonstrating
enhanced performance across various monetary scenarios com-
pared to baseline models.

Benchmarks exist for Python and SQL code generation, but
there is a notable lack of R benchmarks. For example, BIRD
(BIg Bench for large-scale Database Grounded text-to-SQL
Evaluation) [5] is a big benchmark for large-scale databases
grounded in text-to-SQL parsing. The BIRD benchmark pro-
vides a challenging testbed for assessing the performance of
SQL generation models in real-world scenarios. Recent thrust
in Python code generation models also led to the development
of several benchmark datasets. HumanEval [27] comprises 164
handwritten problems. The MBPP dataset [28] contains 974

entry-level problems. These benchmarks serve as standard-
ized evaluation frameworks for assessing the performance of
Python code generation models across a diverse range of tasks
and challenges.

VI. CONCLUSION AND FUTURE WORK

We have developed a preliminary framework for generating
code to query temporal financial tabular data. Our experi-
mental framework was used to evaluate the code generation
capabilities of two prominent LLMs, GPT-4 and Llama 3,
focusing on their efficiency and accuracy in handling complex
queries and processing tabular financial data using R, Python,
and SQL. Our findings indicate a clear superiority of GPT-4
in generating functionally correct and efficient code across all
tested programming languages. Notably, GPT-4’s performance
in Python code generation was the best, achieving over 95%
correctness on our testbed of prompts. We find that GPT-4
performance in R is considerably weaker at 79% correctness.
However, the performance of the more compact Llama model
on R at 71.4% is not far behind. For both models, the
performance of their generated SQL code was not as strong
as their strongest language (Python for GPT-4 and R for
Llama 3), but better than their weakest language. However,
for Llama 3, the generated SQL code was the least likely of
the three languages to compile correctly. We note that we only
employed zero-shot prompting using the same prompts for
both LLM models. Results could be improved by employing
few-shot prompting or fine-tuning and further developing the
system prompts specifics for each LLM.

The experimental framework introduced in this research in-
volved varying levels of complexity in the prompts, including
the necessity to filter, group, transform, and compute statistical
measures on temporal and non-temporal aspects of the data.
These variations were developed for the rigorous assessment
of the adaptability and accuracy of each model under diverse
and challenging scenarios of financial interest. The superior
performance of GPT-4 suggests that its training and underlying
model architecture are better suited for tasks that require a
deep understanding and manipulation of temporal tabular data,
which is a common requirement in the financial sector.

Building on the insights gained from this study, we have
several directions for future work. First, the total number and
variety of tasks we ask the LLMs to perform is low, and
the overall experiment would be improved by designing a
larger-scale suite of tasks for evaluation. Second, expanding
the scope of the experiments to include additional LLMs
and other programming languages could provide a broader
understanding of the general capabilities and limitations of
current language models in code generation tasks. Varying
the hyperparameters of each model beyond their defaults
would also be an interesting addition to the experiment. Third,
developing a standardized benchmark for evaluating LLM
code generation abilities could catalyze research in this area.
Such a benchmark should assess the correctness, efficiency,
and complexity of the output code and also assess the models’
performance on a wider variety of datasets. Such an expansion
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of this work should also move us away from manual verifica-
tion of the correctness of generated code and towards a more
objective and efficient method. We can also investigate the
usage of models that have been fine-tuned on finance-related
tasks to see whether additional domain knowledge can impact
the models’ abilities to write effective code for finance-related
data processing.

By pursuing these future directions, we aim to contribute
to the evolving field of LLM applications in programming,
particularly in enhancing their utility and reliability for pro-
fessional use in the financial industry. This work will hopefully
pave the way for more sophisticated, user-friendly, and robust
LLM-based systems that can assume a larger role in financial
data analysis and automation.
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