2024 6th International Conference on Blockchain Computing and Applications (BCCA) | 979-8-3503-5153-8/24/$31.00 ©2024 1EEE | DOI: 10.1109/BCCA62388.2024.10844477

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

The Feasibility of a Smart Contract “Kill Switch”

Oshani Seneviratne
Computer Science Department, Renssealer Polytechnic Institute
Troy, New York, USA
senevo@rpi.edu

Abstract—The advent of blockchain technology and its adop-
tion across various sectors have raised critical discussions about
the need for regulatory mechanisms to ensure consumer protec-
tion, maintain financial stability, and address privacy concerns
without compromising the foundational principles of decentral-
ization and immutability inherent in blockchain platforms. We
examine the existing mechanisms for smart contract termination
across several major blockchain platforms, including Ethereum,
BNB Smart Chain, Cardano, Solana, Hyperledger Fabric, Corda,
IOTA, Apotos, and Sui. We assess the compatibility of these
mechanisms with the requirements of the EU Data Act, focusing
on aspects such as consumer protection, error correction, and
regulatory compliance. Our analysis reveals a diverse landscape
of approaches, from immutable smart contracts with built-in
termination conditions to upgradable smart contracts that allow
for post-deployment modifications. We discuss the challenges
associated with implementing the so-called smart contract “kill
switches,” such as the balance between enabling regulatory
compliance and preserving the decentralized ethos, the technical
feasibility of such mechanisms, and the implications for security
and trust in the ecosystem.

Index Terms—Smart Contract Design, Smart Contract Termi-
nation, Technology Regulation, EU Data Act

I. INTRODUCTION

Blockchain technology offers unprecedented opportunities
for innovation, efficiency, and trust. At the heart of this trans-
formation are smart contracts — autonomous, self-executing
agreements embedded in code, which have the potential to
redefine interactions within various sectors, from finance and
healthcare to supply chain management and beyond. How-
ever, integrating these technologies into the fabric of societal
systems raises complex regulatory, ethical, and operational
challenges. Among these is the necessity to reconcile the
inherently decentralized and immutable nature of blockchains
with the evolving landscape of global regulations to ensure
consumer protection, privacy, and the stability of financial
systems.

Chen et al. [1] noted that many smart contracts deployed
on blockchains have security, availability, performance, main-
tainability, and reusability problems. According to Perez et
al. [2], there are as many as 23,327 vulnerable contracts on
the Ethereum platform alone, putting millions of dollars worth
of cryptocurrencies owned by unsuspecting users in jeopardy.
Therefore, it is unsurprising that smart contract “kill switch”
requirements from regulatory bodies have emerged.

The European Union’s Data Act, specifically Article 30 [3],
proposes the concept of a “’kill switch” to empower authorities
and possibly participants within blockchain ecosystems to

intervene directly in the operation of smart contracts — a
concept that, at first glance, seems at odds with the principles
of decentralization and immutability that define blockchain
technology. However, although the EU Data Act presents
an important vision for enhancing smart contracts, we must
critically assess its practicality and desirability. Implementing
robust smart contract termination or interruption may have
several logistical challenges, as smart contracts are fixed in
content and operation at the time of deployment and essentially
follow the “Code is Law” ethos [4]. In this paper, we explore
various pathways for developing smart contract standards for
“kill switches” that can accommodate regulatory expectations
without compromising the unique advantages of blockchains.

The remainder of this paper is organized as follows: Sec-
tion II provides background information on the regulatory
framework, arguments for and against smart contract regula-
tion, potential applications of smart contract “kill switches”
across different domains, and a review of related work.
Section III examines existing blockchain solutions and their
suitability for implementing smart contract “kill switches.”
Section IV discusses the effects on current ecosystems. Finally,
Section V concludes the paper and suggests future research
directions.

II. BACKGROUND

The smart contract “kill switch” concept has garnered
significant attention in academic literature and industry dis-
cussions. This attention stems from the increasing realization
of the potential risks and challenges associated with deploying
immutable and autonomous smart contracts, especially in crit-
ical financial, legal, and social applications. Article 30 of the
Data Act [3] focuses specifically on requirements concerning
smart contracts used in a data spaces context. The proposal
sets out four requirements for smart contracts to make data
available: (1) robustness, (2) safe termination and interruption,
(3) data archiving and continuity, and (4) access control.
According to the Act, platform providers and individuals de-
ploying smart contracts for data-sharing purposes must ensure
that the smart contract is robust against errors or malicious
attacks, protected via rigorous access control mechanisms, and
can be terminated or interrupted. The smart contact data, logic,
and code can be archived to facilitate auditing if terminated.

A. Problem Addressed with Smart Contract “Kill Switches”

Smart contracts represent a significant advancement in
blockchain technologies and are still part of an emerging

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

979-8-3503-5153-8/24/$31.00 ©2024 IEEE

473

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

field. Once the smart contracts are executed, they cannot be
unilaterally intercepted or modified, even if the underlying
contract is deemed void or unenforceable. As summarized in
Table III, there is a general lack of flexibility, dependence on
oracles, vulnerability to bugs and architectural changes (such
as the infamous Ethereum DAO hack and the aftermath [5]),
immutability and privacy concerns, and enforcement issues.
There are also complexities with smart contracts when they
diverge from their legal intentions, emphasizing the challenge
of unwinding or terminating them when needed [6]. It is
crucial to establish a clear distinction between a smart con-
tract as a technical tool and the legal contract it represents.
This distinction highlights the difficulties in aligning the pro-
grammed actions of smart contracts with the mutable and often
subjective nature of legal interpretations and expectations.

In the broader context of the current work, which discusses
“kill switches” as a regulatory and safety mechanism in smart
contracts, it is imperative for smart contracts to incorporate
mechanisms that allow for legal intervention and adjustments.
This is crucial for legal compliance without compromising the
decentralized and automated nature of blockchains.

Implementing such mechanisms involves weighing various
benefits and potential drawbacks. There are several pros and
cons of terminating a smart contract based on an external
trigger, as outlined in Table I.

TABLE I: Pros and Cons of “Kill Switches”

Aspect Pros Cons

Security Enhances protection | Potential target for mali-
against vulnerabilities and | cious actors if not securely
bugs. managed.

Compliance Facilitates compliance | May conflict with the prin-
with regulations like the | ciple of immutability in
EU Data Act. blockchains.

Governance Can be designed to in- | Might introduce elements
volve community consen- | of central control.
sus.

User Trust Increases confidence in | Users may fear misuse or
safety mechanisms. overreach.

B. Potential Applications

Smart contract “kill switches” have a wide array of potential
applications across various industries, offering a valuable tool
for enhancing security, compliance, and operational flexibil-
ity. Figure 1 outlines the various components involved in
managing the lifecycle and compliance of smart contracts
in an idealistic environment, highlighting the interconnected
roles of governance, technology, and monitoring that might
be necessary for implementing such a “kill switch” mandated
by regulation.

Domain-specific applications may emerge around the utility
of “kill switches” in various industries beyond the legislative
interest. Table II outlines current and potential applications
with some support for pausing and terminating the application.

C. Related Work

Table III outlines the key contributions of several related
that address smart contract termination solutions. In con-

Smart Contracts

Enables Updates To

Deploy. Uses

I Blockchain Network

I Upgrade Mechanisms |

Enforces

Consensus Mechanisms Uses

Integration Monitored by

Influences

Decision Making [Access Control

Monitoring Tools I

Restricts Access To Detects Anomalies

Kill Switch

Activates

Policy Updates |Termination/lnterruption Processes |

Ensures Compliance

Regulatory Compliance

Feedback To

Policy Management

Fig. 1: Relational Graph for a Smart Contract “Kill Switch”
Implementation

TABLE II: Potential Applications of “Kill Switches”

Domain Application Purpose

Finance Decentralized ~ Finance | Freezes transactions or ad-
(DeFi) platforms | justs parameters during mar-
involving stablecoins | ket crashes, suspicious activ-
and other financial | ities, or security breaches [7].
instruments.

Healthcare Smart contracts manag- | Protects privacy by termi-
ing sensitive patient data | nating contracts in case of
or automated drug deliv- | data breaches in compliance
ery systems such as the | with regulations like HIPAA,
BlockloT system [8], [9]. | possibly utilizing standards-

based ontological concepts
for any unexpected situations
warranting a pause [10].

Supply Contracts for tracking | Halts operations in response

Chain payloads with robotic | to detected anomalies in the

Manage- agents managed with | operating environment [12].

ment smart contracts [11].

trast to these works, we provide a comparative analysis of
smart contract termination mechanisms across several major
blockchain platforms in Section III. We specifically address the
implementation challenges, governance models, and impact
on decentralization, which these previous studies have not
covered comprehensively.

III. EXISTING SOLUTIONS

We outline approaches for smart contract termination al-
ready available in several prominent blockchains and how
they could support the EU Data Act mandate for smart
contract “kill switch” in Table IV. We compiled this table upon
the examination of some of the prominent blockchains that

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

474

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

TABLE III: Related Work Comparison

Study Key Contributions Gaps
Casolari Examine the role of smart con- | Specific mechanisms
et al. [13] | tracts in the architecture of the | for smart contract
EU’s Data Act, identifying key | termination in various
challenges and proposing recom- | blockchains are
mendations to address those is- | lacking.
sues.
Olivieri Analysis of EU Data Act re- | Specific mechanisms
and quirements for smart contracts, for smart contract
Pasetto focusing on interoperability, ro- | termination in various
[14] bustness, and safe termination. blockchains are
lacking.
Le et al. | Method for proving conditional | Limitations in
[15] termination of smart contracts | automatically inferring
utilizing the F* programming | termination proofs for
language. Before execution, the | complex programs,
system checks those conditions | necessitating manual
against the current state and in- | intervention for
puts to decide whether the con- | complex cases.
tract can safely run without lead-
ing to non-termination scenarios.
Genet et | Formal and mechanized proof of | Comparative analysis
al. [16] termination based on measures | of termination
of EVM call stacks for intrinsic | mechanisms across
system-wide safeguards (gas and | different blockchains
call stack limits). is lacking.
Liu et al. | Strengthening Hyperledger Fab- | Only applicable to
[17] ric Chaincode smart contracts | private-permissioned
to handle unexpected situations, | blockchains, and the
which is unlocked through a | sandbox environment
novel voting algorithm. for voting may not be
practical.
Zhu et al. | Recovering any “lost” crypto to- | Generalizability of the
[18]) kens after a voting round empir- | proposed method to
ically shown to be resilient in | other smart contract
the face of any Sybil attacks and | termination scenarios
adversarial collusion. is questionable, and the
sandbox environment
for voting may not be
practical.
Mohsinet | Utilizing community-accepted | Ontology as a
al. [19] off-chain ontologies as a guiding | decision-support
framework for action in case of | mechanism requires
anomalies or errors in deployed | strong governance and
contracts. trust guarantees.
Marino et | Legal frameworks for altering | Solution through
al. [20] and undoing smart contracts. pure legal means may
impact decentralization
and user trust.

support smart contracts along several dimensions, including

the following:

5) Regulation Support: Discusses the potential or existing
support for compliance with regulatory frameworks,
specifically the European Union Data Act.

A. Ethereum

In Ethereum [21], smart contract termination and interrup-
tion are primarily handled through the built-in functionalities
of the smart contracts themselves. Ethereum does not provide
an external “kill switch” or mechanism for forcibly terminating
or interrupting smart contracts from outside the contract’s
code. Instead, the implementation of such features is left to the
developers who write the smart contracts, typically managed
through the following mechanisms:

« Self-Destruct Function: This function (originally called
SUICIDE) allows a contract to be terminated, removing
its code and storage from the blockchain [30]. When a
contract is self-destructed, it sends the remaining Ether
stored to a designated address and removes the code
from the blockchain, making it inoperable. However,
the contract’s code and past transactions are immutable
and still part of the blockchain history. This function is
typically used to remove contracts that are no longer
needed or recover funds in an emergency. It must be
explicitly included in the smart contract code. It can
only be triggered by a function call within the contract,
often restricted to the contract owner or other authorized
entities. There is a recent proposal on removing this func-
tion [31], as it is the only opcode that breaks important
invariants, which causes an unbounded number of state
objects to be altered in a single block. Therefore, the
long-term availability of this functionality is uncertain.

o Pause and Emergency Stop Patterns: For interruption
rather than complete termination, EVM-based smart con-
tracts can be designed with pause or emergency stop
functionalities [32]. These patterns allow certain contract
functions to be turned off temporarily without removing
the contract from the blockchain, which can be useful
when a bug is discovered and the contract needs to be
paused to prevent further damage while a fix is being
developed. The pause pattern typically involves setting a
boolean variable that controls the execution of sensitive
functions. By changing this variable’s state, the contract’s
critical operations can be enabled or disabled. The emer-

1) Strategy: The methods and strategies used by the
blockchain platform to implement “kill switches” in
smart contracts, which could include built-in functions,
design patterns, or other relevant features.

2) Strengths: The inherent strengths of the platform for
smart contract termination.

3) Weaknesses: The inherent weaknesses of the platform
for smart contract termination.

4) Governance: (Abbreviated to Gov. in Table IV) Cap-
tures whether any governance mechanisms or protocols
within the blockchain allow network participants to
intervene or make decisions regarding the termination
or pausing of smart contracts.

gency stop pattern is more comprehensive, allowing for a
phased approach to pausing and resuming contract func-
tionalities, often with different levels of access control
and conditions for triggering and reversing the pause
state [33].

Upgradeable Contracts: Another approach to managing
smart contract behavior over time, including termination
and interruption, is through upgradeable contracts [34].
This design pattern involves deploying a proxy contract
that delegates calls to an implementation contract contain-
ing the logic. If the implementation needs to be changed,
updated, or fixed, a new implementation contract can be
deployed, and the proxy contract is updated to delegate

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

475

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

TABLE IV: Comparison of Smart Contract “Kill Switch” Approaches in Various Blockchain Implementations

Blockchain Strategies Strengths Weaknesses Gov. Regulation Support

Ethereum [21] Self-destruct function included in | Provides built-in functions | No external mechanism; Po- | No Yes, through custom

& BNB Smart | the Solidity language; Pause and | for contract termination; | tential security risks; Pos- implementations us-

Chain [22] emergency stop design patterns; | Compatible with the | sible removal of the self- ing the Solidity fea-
Upgradeable contracts. widespread tools and | destruct function raises con- tures.

infrastructure. cerns about long-term viabil-
1ty.

Cardano [23] Design-specific conditions within | Uses a robust functional | No external mechanism; | Yes Yes, through design-
smart contracts built into Plutus; | programming language | Complex implementation specific conditions.
Stateful smart contracts; Seamless | (Haskell) for Plutus; and limited adoption
interaction with off-chain code. Strong on-chain governance | compared to Ethereum.

mechanisms.

Solana [24] Upgradable programs; State man- | High throughput and low la- | No external mechanism; Im- | No Yes, through upgrad-

agement. tency with upgradable pro- | maturity of the ecosystem able programs.
grams. and less community support
for governance models.

Hyperledger Chaincode lifecycle management; | Permissioned blockchain | Centralized nature might not | Yes Yes, through

Fabric [25] Endorsement policies; Private data | with strong lifecycle | align with decentralization administrative
collection; Administrative control. management and | principles. control and

administrative controls. governance
mechanisms.

Corda [26] Built-in contract upgrade; Explicit | Focus on privacy and | Limited use cases outside of | Yes Yes, through explicit
termination conditions; Administra- | business transactions with | enterprise applications. contract conditions.
tive control. upgradable contracts.

I0TA [27] State management built into the | Scalable with no transaction | Still evolving with ongoing | Yes Yes, through
ISCP; Ability to respond to external | fees suitable for IoT. updates to smart contract ca- decentralized control
inputs or triggers that could include pabilities. mechanisms.
termination signals.

Aptos [28] & | Move language flexibility for con- | Strong type system for for- | Newer ecosystems with less | Yes Yes, through explicit

Sui [29] tract updates; Expressive smart con- | mal verification and secu- | mature tooling and support. contract conditions.
tract implementations tracking and | rity; Supports more complex
managing assets. governance and transaction

models.

calls to the new contract. This approach allows bugs to be
fixed and functionalities to be updated without terminat-
ing the contract. However, it may introduce complexity
and potential security considerations.

Other popular public permissionless blockchains, such as
BNB Smart Chain (BSC) [22], formerly known as Binance
Smart Chain, is a blockchain platform that runs parallel
with Binance Chain. It offers smart contract functionality
and compatibility with Ethereum’s existing infrastructure, such
as the Ethereum Virtual Machine (EVM). This compatibility
allows it to support Ethereum tools and DApps, making
it a popular choice for developers looking to leverage the
scalability and performance benefits of BSC while maintaining
access to Ethereum’s rich ecosystem. Handling smart contract
termination and interruption in BNB Smart Chain is similar
to Ethereum, primarily because of its EVM compatibility.

B. Cardano

Cardano [23] is a blockchain platform that employs a lay-
ered architecture. It separates the settlement layer, which han-
dles transactions, from the computational layer, where smart
contracts run. Cardano uses a unique proof-of-stake consen-
sus algorithm called Ouroboros and supports smart contracts
through its native programming language, Plutus [35]. Plutus
is designed to enable the creation, execution, and management
of smart contracts on the Cardano blockchain. Plutus contracts
are written in Haskell, a functional programming language
known for its high fault tolerance and security features. The

use of Haskell influences how smart contracts, including their
termination and interruption, are handled in Cardano.

o Termination by Design: In Cardano, the termination or
interruption of a smart contract is primarily a matter of
the contract’s design. Because Plutus allows for creating
highly deterministic and secure contracts, developers can
incorporate specific conditions under which a contract
may terminate or pause its operations. These conditions
are encoded directly into the contract’s logic and can be
triggered by predefined events or states.

o Stateful Smart Contracts: Cardano’s smart contracts
can manage the state through the blockchain ledger, but
how the state is handled is distinct from other platforms.
Termination or modification of a contract could involve
creating transactions that update or end the contract’s
state according to the logic defined in the contract it-
self, which ensures that the contract’s behavior remains
predictable and tamper-proof.

o Off-chain Code: Cardano also supports off-chain code
execution through its application framework, which al-
lows for complex interactions with on-chain smart con-
tracts. Interruptions or terminations initiated by off-chain
components can be designed to interact with the on-chain
contracts, offering another layer of control for managing
contract lifecycles. This off-chain logic can facilitate
scenarios where user interaction or external data triggers
the pause or stop conditions in the smart contract.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

476

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

o Governance and Updates: Cardano’s governance model
can play a role in contracts that require the ability to
evolve or might need to incorporate mechanisms for
interruption or termination post-deployment. Through on-
chain governance mechanisms, stakeholders can propose
and vote on updates or changes to smart contracts, as-
suming the contract is designed to be upgradable, and the
governance model supports such actions. This approach
allows the community or stakeholders to have a say in
the contract’s lifecycle management.

C. Solana

Solana [24] is a high-performance blockchain platform
designed to support scalable, decentralized applications and
cryptocurrencies. It uses a unique consensus mechanism called
Proof of History (PoH), combined with the underlying Proof
of Stake (PoS) consensus, to achieve high throughput and
low latency. Unlike Ethereum and other blockchains, where
smart contract termination and interruption mechanisms are
more explicitly discussed and implemented, Solana’s approach
to smart contract management, including termination and
interruption, is somewhat different due to its architecture and
programming model. In Solana, smart contracts are referred
to as “programs.” These programs are written in Rust or
C, compiled to Berkeley Packet Filter (BPF) bytecode, and
deployed to the Solana blockchain. Once deployed, a program
can be interacted with by sending transactions from Solana
accounts, but it is immutable, which means there is no built-in
“kill switch” or termination mechanism for a Solana program
once it is live on the network, but termination-like behavior
can be achieved through the following:

o Upgradable Programs: Solana has a mechanism for
program upgradability through the use of a “Program
Upgradeable Loader” [36], which allows developers to
deploy a new version of a program to replace the old one.
The process involves deploying the new program version
as a separate entity and then “switching” the program
authority to point to the new program. This method does
not terminate the old program but effectively redirects
interactions to the new, upgraded program version.

o State Management: Termination or interruption of a
program’s operation in the traditional sense may not
directly apply to Solana’s model. However, programs can
manage their state through accounts that hold data. By
modifying the state held in these accounts, a program can
implement mechanisms to halt or modify its operations
based on specific conditions, essentially allowing for a
form of “interruption” of its functions.

D. Hyperledger Fabric

Hyperledger Fabric [25] uses a permissioned blockchain
platform designed primarily for enterprise use. Hyperledger
Fabric refers to smart contracts as “chaincode.” The smart
contract termination and interruption approach in HyperLedger
Fabric is characterized by its lifecycle management features,
endorsement policies, and the control mechanisms provided by

its permissioned network structure. Collectively, these features
offer a structured and governed way to manage chaincode op-
erations, including their update, interruption, and termination,
in line with the needs and policies of the enterprise blockchain
network.

« Chaincode Lifecycle Management: Hyperledger Fabric
introduces sophisticated lifecycle management for chain-
codes [37], allowing organizations to agree on chaincode
parameters before deployment to the network. This life-
cycle management process enables more granular con-
trol over the deployment, upgrade, and management of
chaincode, including their termination and interruption.
Hyperledger Fabric also allows upgrading the chaincode
contract to a new version by deploying the new contract
on the network and performing an upgrade transaction.
The upgrade can introduce new logic, fix issues, or mod-
ify the chaincode’s behavior. This process is controlled
and requires consensus from the participating organi-
zations, ensuring that changes are agreed upon before
implementation.

o Chaincode Endorsement Policies: Hyperledger Fabric
employs endorsement policies [38] define the rules under
which a transaction is considered valid. These rules could
include those that might terminate or interrupt chaincode
operations. Chaincode can require that transactions be
endorsed by a specific number of peers from certain
organizations within the network, offering a high level of
control and security over chaincode execution, including
any operations that could stop or alter the chaincode’s
function.

o Private Data Collections: Hyperledger Fabric supports
private data collections [39], which allow a subset of the
network to transact privately, maintaining confidentiality.
If such a chaincode contract is updated or removed, the
data governed by the policies of the private data collection
remains, ensuring that sensitive information is handled
according to the requirements, even if the chaincode’s
operation is interrupted or terminated.

o Administrative Operations: Due to the permissioned
nature of Hyperledger Fabric, network administrators
have more control over the chaincode contracts, including
their deployment, operation, and termination. Therefore,
if necessary, chaincode contracts can be administratively
stopped or removed by parties with the appropriate
permissions, according to the governance model of the
specific Hyperledger Fabric network.

E. Corda

Corda’s architecture and operational model offer unique
mechanisms for managing the lifecycle of ‘Corda Con-
tracts” [26]. Corda’s design emphasizes privacy and finality
in transactions, influencing how contract termination and in-
terruptions are perceived and managed. Transactions in Corda
are only shared with parties directly involved or who need to
validate them. Once a transaction is finalized, it is considered

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

477

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

immutable and authoritative, aligning with business needs for
certainty and finality in agreements.

Corda handles smart contract termination and interruption
through its contract upgradeability features, contract con-
straints governing state evolution, and explicitly modeling
termination logic within contract code. Its architecture sup-
ports the management of the contract lifecycle in a way that
aligns with the platform’s focus on direct, private, and final
transactions among business entities.

o Upgradability: Corda provides a built-in mechanism for
contract upgradability, which allows the network partic-
ipants to evolve their contracts over time as business
needs change or in response to discovering issues with the
original contract. Upgrading a contract in Corda involves
transitioning the states governed by an old version of
the contract to a new version under the agreement of
all relevant parties.

e Contract Constraints: Corda uses a concept called
“contract constraints” to govern which contract codes can
constrain the evolution of ledger states. These constraints
ensure that once states are created under a specific
contract, future transactions that consume and evolve
these states are validated by the same contract code or
an agreed-upon upgraded version, providing a form of
governance over contract changes.

« Explicit Termination and State Evolution: Contracts
can be designed to include termination logic or conditions
within their clauses. Since contracts in Corda govern
the transition of states, a contract can explicitly define
conditions under which a state is considered final or can
no longer be evolved, effectively terminating the con-
tract’s applicability to that state. Additionally, business
processes can be modeled to include explicit termination
transactions that move states to a final, consumed status,
where they cannot be used in future transactions.

¢ Flow Framework: Corda’s Flow Framework [40], which
facilitates the automation of transactions between nodes,
can be used to manage the execution of contract termi-
nation or state evolution logic. Through flows, partici-
pants can coordinate complex processes, including those
involving contract or state termination, under the rules
defined by their Corda contracts.

o Administrative Intervention: In a permissioned network
like Corda, network operators have administrative control
over the network, including the ability to intervene in
the operation of contracts and nodes in accordance with
the network’s governance policies. This process includes
managing membership and potentially coordinating con-
tract upgrades or the resolution of disputes related to
contract execution.

F 10TA

IOTA [27] is a blockchain designed primarily for the
Internet of Things (IoT) environment, focusing on scalability,
speed, and the elimination of transaction fees. Unlike pub-
lic permissionless networks like Ethereum or permissioned

networks like Hyperledger Fabric, IOTA utilizes a unique
data structure called the Tangle [41], which is a form of
Directed Acyclic Graph (DAG) that facilitates different op-
erational characteristics and advantages, particularly in terms
of scalability and transaction fees. IOTA introduced smart
contracts as part of its ecosystem to provide more complex and
conditional transaction capabilities through the IOTA Smart
Contracts Protocol (ISCP). ISCP operates on the second layer
on top of the IOTA Tangle, providing the flexibility needed
for complex computations and smart contracts that wouldn’t
be feasible directly on the Tangle due to its structure aimed
at handling transactions efficiently. This adaptability ensures
that ISCP can handle a wide range of smart contract scenarios,
providing reassurance to developers and users alike. In ISCP,
smart contracts run on their separate chains, known as “chain
accounts,” which are independent but anchored to the main
IOTA Tangle. This design allows for greater scalability, as
each smart contract can operate on its own chain without
overwhelming the main network. Smart contracts in IOTA
can define their validators (known as committee nodes), who
are responsible for executing the contract and reaching a
consensus on its state. This design allows contract creators to
tailor the security and consensus mechanisms to their needs,
balancing decentralization, security, and efficiency. With ISCP,
developers can program smart contracts in Rust, a language
known for its safety and performance. This choice underlines
the focus on creating secure and efficient smart contracts
capable of supporting various applications, from DeFi to IoT.
It is worth noting that the IOTA project has undergone
significant updates and expansions to its technology stack,
aiming to address various challenges and expand its use
cases beyond the IoT. These updates include enhancements
to smart contract functionalities, interoperability features, and
scalability solutions, which may influence how smart contract
termination and interruption are handled in future iterations.

G. Aptos and Sui

More recent entries into the field of blockchains that utilize
DAG:s, such as Aptos [28] and Sui [29], are making notable ad-
vancements by adopting the Move programming language [42]
for their smart contract functionality. The move language,
designed with safety and security as its core principles, caters
directly to the needs of financial applications and services by
enabling a precise definition of custom resource types. These
resources are linear types that cannot be copied or implicitly
discarded, ensuring assets are tracked and managed securely
throughout their lifecycle. Move’s ability to define resource
types aligns well with the transactional requirements of these
DAG-based blockchains, allowing for more expressive and
flexible smart contract implementations compared to tradi-
tional scripting languages. This design choice not only reduces
the likelihood of bugs that lead to significant vulnerabilities
(such as reentrancy attacks) but also opens up possibilities
for implementing more complex governance and transaction
models that can adapt over time while maintaining rigorous
security and integrity standards.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

478

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

IV. DISCUSSION

As illustrated in Section III, platforms like Ethereum and
BNB Smart Chain utilize smart contract-level features such
as self-destruct functions and pause patterns, while others,
like Hyperledger Fabric and Corda, rely more heavily on
governance and administrative controls to manage contract
lifecycle and termination. Platforms like Cardano and Corda
stand out for their emphasis on design-specific conditions
and explicit contract terms built into their corresponding
smart contract languages. This approach, which is a blend
of technical foresight and governance oversight, provides a
robust framework for smart contract development. Therefore,
it is evident that integrating smart contract*kill switch” mech-
anisms is influenced by both program-defined measures and
governance-based solutions.

The type of blockchain (public, private, or consortium)
and the consensus mechanisms also play crucial roles in
determining the feasibility and implementation style of smart
contract “kill switches.” Public blockchains require broader
consensus for changes, which can complicate the rapid de-
ployment of robust smart contract termination mechanisms.
However, private and consortium blockchains can implement
these features more straightforwardly due to their centralized
governance structures.

Integrating “kill switches” into smart contracts has broad
implications for the blockchain ecosystem. These mecha-
nisms, designed to intervene in unforeseen circumstances or
malfunctions, raise debates concerning decentralization, asset
management, and security. Some of these implications are as
follows:

o Concerns Regarding True Decentralization: One of
the foundational principles of blockchain technology is
decentralization — the idea that any single entity does
not control operations and governance. Introducing “kill
switches” into smart contracts presents a paradox; while
they can provide necessary safety nets for users, they also
introduce a vector for centralized control. Critics argue
that this undermines the very essence of decentraliza-
tion [43]. However, it’s essential to recognize that many
blockchains already incorporate mechanisms for updates
and upgrades (as noted in Section III), some of which
require centralized decision-making or a coordinated con-
sensus among stakeholders.

o Loss of Assets: Activating a smart contract “kill switch”
could potentially lead to scenarios where users lose access
to their assets temporarily or permanently. This risk is
particularly acute in financial applications where smart
contracts govern the custody and transfer of significant
value. Therefore, any “kill switch” implementation must
include safeguards to prevent unintentional or unjustified
wiping out of value. Such safeguards could involve
mechanisms for restoring operations and assets post-
intervention, transparent and fair criteria for activation,
and perhaps insurance mechanisms to cover losses in the
worst-case scenarios.

o Security Issues: Implementing smart contract “kill
switches” introduces specific security considerations, par-
ticularly regarding the key management or permissions
required to activate or deactivate the switch. If not man-
aged securely, these could become targets for malicious
actors looking to disrupt operations and exploit the assets
secured by the smart contract. It’s suggested that separate
keys or permissions be used for the activation (pausing)
and deactivation (unpausing) processes to minimize risks.
Furthermore, these keys should be rotated or changed
once used to prevent reuse attacks.

V. CONCLUSION

We explored the feasibility and implications of implement-
ing a smart contract “kill switch” mechanism within the
framework of blockchains in light of the European Union’s
Data Act legislation [3]. Our findings contribute to the ongoing
debate on regulating blockchain technology, providing insights
into how current blockchain platforms can adapt to meet
legislative requirements without stifling innovation and be
accessible and understandable by non-technical users. The
discourse around smart contract “kill switches” is multifaceted,
reflecting a cross-section of academic, legislative, and industry
perspectives.

The challenge lies in designing “kill switch” mechanisms
that align with the ethos of decentralization as much as
possible, perhaps through decentralized governance models
or community consensus mechanisms. We believe a hybrid
model where decentralized platforms can interact with regu-
latory frameworks without compromising their decentralized
nature is necessary for a smart contract “kill switch” to take
effect successfully. Adopting “kill switches” in smart contracts
within the blockchain ecosystem demands careful considera-
tion of their impacts on decentralization, asset security, and
the broader trust in blockchain technologies. By addressing
these concerns thoughtfully, it’s possible to design systems
that retain the benefits of decentralization while providing
mechanisms to protect users and the integrity of the network.
This process involves a delicate balance between control and
freedom, requiring ongoing dialogue and innovation within the
community to navigate these complex issues effectively.

Future studies could explore the design, implementation,
and effectiveness of decentralized governance models specif-
ically tailored to manage smart contracts “kill switch” mech-
anisms. Investigating automated mechanisms within smart
contracts that dynamically adjust to changing regulatory re-
quirements without manual intervention could be a significant
area for exploration, particularly for already deployed smart
contracts. It may be necessary to include protocol updates
through hard forks or the governance models of various
blockchain projects that allow for changes to be made to
operational parameters. A deeper analysis of how “kill switch”
mechanisms affect the security, trust, and overall perception
of blockchain networks among users before and after imple-
menting “kill switches” and security vulnerability assessments
related to their deployment would provide insights into the

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

479

2024 6th International Conference on Blockchain Computing and Applications (BCCA)

long-term feasibility of smart contract termination solutions.
Additionally, with the increasing diversity of blockchain plat-
forms, there is a need to focus on developing cross-chain so-
lutions and interoperability standards that facilitate regulatory
compliance across different blockchains. Future research is
likely to dig deeper into these discussions, proposing frame-
works, models, and real-world trials that balance the autonomy
of smart contracts with the safety, security, and compliance
requirements of the broader ecosystem.

Acknowledgments: The author acknowledges the support
from NSF IUCRC CRAFT center research grant (CRAFT
Grant #22018) for this research. The opinions expressed in
this publication do not necessarily represent the views of NSF
IUCRC CRAFT. The author would also like to thank Sabrina
Kirrane for her valuable initial input that contributed to the
development of this paper.

[1]

[2]

[3]

[4

=

[5]

[6]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

REFERENCES

J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum,” IEEE Transactions on Software
Engineering, vol. 48, no. 1, pp. 327-345, 2020.

D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnera-
ble does not imply exploited,” in 30th USENIX Security Symposium
(USENIX Security 21), pp. 1325-1341, 2021.

European Parliament and Council of the European Union, “Regulation
(EU) 2023/2854 of the European Parliament and of the Council of 5
October 2023 on harmonised rules on fair access to and use of data (Data
Act).” https://eur-lex.europa.eu/eli/reg/2023/2854/0j, 2023. Accessed:
Mar 04, 2024.

P. De Filippi and S. Hassan, “Blockchain technology as a regula-
tory technology: From code is law to law is code,” arXiv preprint
arXiv:1801.02507, 2018.

V. Dhillon, D. Metcalf, M. Hooper, V. Dhillon, D. Metcalf, and
M. Hooper, “The dao hacked,” blockchain enabled applications: Un-
derstand the blockchain Ecosystem and How to Make it work for you,
pp. 67-78, 2017.

O. Meyer, “Stopping the unstoppable: Termination and unwinding of
smart contracts,” J. Eur. Consumer & Mkt. L., vol. 9, p. 17, 2020.

D. Li, D. Han, T.-H. Weng, Z. Zheng, H. Li, and K.-C. Li, “On
stablecoin: Ecosystem, architecture, mechanism and applicability as
payment method,” Computer Standards & Interfaces, vol. 87, p. 103747,
2024.

M. Shukla, J. Lin, and O. Seneviratne, “BlockIoT: Blockchain-based
health data integration using IoT devices,” in AMIA Annual Symposium
Proceedings, vol. 2021, p. 1119, American Medical Informatics Asso-
ciation, 2021.

M. Shukla, J. Lin, and O. Seneviratne, ‘“Blockiot-retel: Blockchain
and iot based read-execute-transact-erase-loop environment for integrat-
ing personal health data,” in 2021 IEEE International Conference on
Blockchain (Blockchain), pp. 237-243, 1EEE, 2021.

M. Li, L. Xia, and O. Seneviratne, “Leveraging standards based ontologi-
cal concepts in distributed ledgers: a healthcare smart contract example,”
in 2019 IEEE International Conference on Decentralized Applications
and Infrastructures (DAPPCON), pp. 152-157, IEEE, 2019.

J. Grey, I. Godage, and O. Seneviratne, “Swarm contracts: Smart
contracts in robotic swarms with varying agent behavior,” in 2020
IEEE International Conference on Blockchain (Blockchain), pp. 265—
272, IEEE, 2020.

S. Mallikarachchi, C. Dai, O. Seneviratne, and 1. Godage, “Managing
collaborative tasks within heterogeneous robotic swarms using swarm
contracts,” in 2022 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPS), pp. 48-55, IEEE, 2022.

F. Casolari, M. Taddeo, A. Turillazzi, and L. Floridi, “How to improve
smart contracts in the european union data act,” Digital Society, vol. 2,
no. 1, p. 9, 2023.

L. Olivieri, L. Pasetto, et al., “Towards compliance of smart contracts
with the european union data act,” in CEUR WORKSHOP PROCEED-
INGS, vol. 3629, pp. 7-11, CEUR-WS, 2023.

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]
[29]

(30]

[31]

(32]

[33]
[34]
[35]

[36]

(37]
[38]
[39]
[40]
[41]

[42]

[43]

T. C. Le, L. Xu, L. Chen, and W. Shi, “Proving conditional termination
for smart contracts,” in Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, pp. 57-59, 2018.

T. Genet, T. Jensen, and J. Sauvage, Termination of Ethereum’s smart
contracts. PhD thesis, Univ Rennes, Inria, CNRS, IRISA, 2020.

S. Liu, F. Mohsin, L. Xia, and O. Seneviratne, “Strengthening Smart
Contracts To Handle Unexpected Situations,” in 2019 IEEE International
Conference on Decentralized Applications and Infrastructures (DAPP-
CON), pp. 182-187, IEEE, 2019.

Y. Zhu, L. Xia, and O. Seneviratne, “A Proposal for Account Recovery
in Decentralized Applications,” in 2019 IEEE International Conference
on Blockchain (Blockchain), pp. 148155, 1EEE, 2019.

F. Mohsin, X. Zhao, Z. Hong, G. de Mel, L. Xia, and O. Seneviratne,
“Ontology aided smart contract execution for unexpected situations,” in
BlockSW/CKG@ ISWC, 2019.

B. Marino and A. Juels, “Setting standards for altering and undoing
smart contracts,” in Rule Technologies. Research, Tools, and Applica-
tions: 10th International Symposium, RuleML 2016, Stony Brook, NY,
USA, July 6-9, 2016. Proceedings 10, pp. 151-166, Springer, 2016.

V. Buterin et al., “Ethereum white paper,” GitHub repository, vol. 1,
pp. 22-23, 2013.

Binance, “Bnb chain whitepaper.” https://github.com/bnb-chain/
whitepaper/blob/master/WHITEPAPER.md, 2022.

C. Hoskinson, “Why we are building Cardano? A subjective approach.”
https://whitepaper.io/document/58 1/cardano- whitepaper, 2017.

A. Yakovenko, “Solana: A new architecture for a high performance
blockchain v0. 8.13,” Whitepaper, 2018.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference,
pp.- 1-15, 2018.

R. G. Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: an introduc-
tion,” R3 CEV, August, vol. 1, no. 15, p. 14, 2016.

O. Saa, A. Cullen, and L. Vigneri, “IOTA 2.0 Incentives and Tokenomics
Whitepaper,” 2023.

Aptos Foundation, “Aptos blockchain whitepaper.”
/laptosfoundation.org/whitepaper/aptos- whitepaper_en.pdf, 2022.
Mysten Labs, “Sui: Simplifying blockchain for a multiverse future.”
https://docs.sui.io/paper/sui.pdf, 2023.

J. Chen, X. Xia, D. Lo, and J. Grundy, “Why do smart contracts self-
destruct? investigating the selfdestruct function on ethereum,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 2, pp. 1-37, 2021.

V. Buterin, “A note on selfdestruct.” https://hackmd.io/@vbuterin/
selfdestruct, 2024.

“Pausing smart contracts.” https://ethereum-blockchain-developer.com/
022-pausing-destroying-smart-contracts/03-pausing-smart-contracts/,
2024.

Fravoll, “Emergency stop.” https://fravoll.github.io/solidity-patterns/
emergency_stop.html, 2021.

M. Salehi, J. Clark, and M. Mannan, “Not so immutable: Upgradeability
of smart contracts on ethereum,” arXiv preprint arXiv:2206.00716, 2022.
Cardano, “Plutus.” https://developers.cardano.org/docs/smart-contracts/
plutus, 2023.

Solana, “Module solana program bpf loader upgradeable.”
https://docs.rs/solana-program/latest/solana_program/bpf_loader_
upgradeable/index.html, 2023.

H. Fabric, “Fabric chaincode lifecycle.” https://hyperledger-fabric.
readthedocs.io/en/release-2.2/chaincode_lifecycle.html, 2024.

H. Fabric, “Fabric Endorsement Policies.” https://hyperledger-fabric.
readthedocs.io/en/release-2.2/endorsement-policies.html, 2024.

H. Fabric, “Fabric Private Data Collections.” https://hyperledger-fabric.
readthedocs.io/en/latest/private-data/private-data.html, 2024.

Corda, “Flows.” https://docs.r3.com/en/platform/corda/4.9/enterprise/
cordapps/api-flows.html, 2024.

S. Popov, “The tangle,” White paper, vol. 1, no. 3, p. 30, 2018.

S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki,
A. Pott, S. Qadeer, D. R. Rain, S. Sezer, et al., “Move: A language with
programmable resources,” Libra Assoc, p. 1, 2019.

F. Rodrigues, “Blockchain devs expect complications from EU smart
contract kill switch,” Nov 2023. Accessed: Mar 4, 2024.

https:

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 16,2025 at 12:04:36 UTC from IEEE Xplore. Restrictions apply.

480

