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Abstract—The advent of blockchain technology and its adop-
tion across various sectors have raised critical discussions about
the need for regulatory mechanisms to ensure consumer protec-
tion, maintain financial stability, and address privacy concerns
without compromising the foundational principles of decentral-
ization and immutability inherent in blockchain platforms. We
examine the existing mechanisms for smart contract termination
across several major blockchain platforms, including Ethereum,
BNB Smart Chain, Cardano, Solana, Hyperledger Fabric, Corda,
IOTA, Apotos, and Sui. We assess the compatibility of these
mechanisms with the requirements of the EU Data Act, focusing
on aspects such as consumer protection, error correction, and
regulatory compliance. Our analysis reveals a diverse landscape
of approaches, from immutable smart contracts with built-in
termination conditions to upgradable smart contracts that allow
for post-deployment modifications. We discuss the challenges
associated with implementing the so-called smart contract “kill
switches,” such as the balance between enabling regulatory
compliance and preserving the decentralized ethos, the technical
feasibility of such mechanisms, and the implications for security
and trust in the ecosystem.

Index Terms—Smart Contract Design, Smart Contract Termi-
nation, Technology Regulation, EU Data Act

I. INTRODUCTION

Blockchain technology offers unprecedented opportunities

for innovation, efficiency, and trust. At the heart of this trans-

formation are smart contracts — autonomous, self-executing

agreements embedded in code, which have the potential to

redefine interactions within various sectors, from finance and

healthcare to supply chain management and beyond. How-

ever, integrating these technologies into the fabric of societal

systems raises complex regulatory, ethical, and operational

challenges. Among these is the necessity to reconcile the

inherently decentralized and immutable nature of blockchains

with the evolving landscape of global regulations to ensure

consumer protection, privacy, and the stability of financial

systems.

Chen et al. [1] noted that many smart contracts deployed

on blockchains have security, availability, performance, main-

tainability, and reusability problems. According to Perez et

al. [2], there are as many as 23,327 vulnerable contracts on

the Ethereum platform alone, putting millions of dollars worth

of cryptocurrencies owned by unsuspecting users in jeopardy.

Therefore, it is unsurprising that smart contract “kill switch”

requirements from regulatory bodies have emerged.

The European Union’s Data Act, specifically Article 30 [3],

proposes the concept of a “kill switch” to empower authorities

and possibly participants within blockchain ecosystems to

intervene directly in the operation of smart contracts — a

concept that, at first glance, seems at odds with the principles

of decentralization and immutability that define blockchain

technology. However, although the EU Data Act presents

an important vision for enhancing smart contracts, we must

critically assess its practicality and desirability. Implementing

robust smart contract termination or interruption may have

several logistical challenges, as smart contracts are fixed in

content and operation at the time of deployment and essentially

follow the “Code is Law” ethos [4]. In this paper, we explore

various pathways for developing smart contract standards for

“kill switches” that can accommodate regulatory expectations

without compromising the unique advantages of blockchains.

The remainder of this paper is organized as follows: Sec-

tion II provides background information on the regulatory

framework, arguments for and against smart contract regula-

tion, potential applications of smart contract “kill switches”

across different domains, and a review of related work.

Section III examines existing blockchain solutions and their

suitability for implementing smart contract “kill switches.”

Section IV discusses the effects on current ecosystems. Finally,

Section V concludes the paper and suggests future research

directions.

II. BACKGROUND

The smart contract “kill switch” concept has garnered

significant attention in academic literature and industry dis-

cussions. This attention stems from the increasing realization

of the potential risks and challenges associated with deploying

immutable and autonomous smart contracts, especially in crit-

ical financial, legal, and social applications. Article 30 of the

Data Act [3] focuses specifically on requirements concerning

smart contracts used in a data spaces context. The proposal

sets out four requirements for smart contracts to make data

available: (1) robustness, (2) safe termination and interruption,

(3) data archiving and continuity, and (4) access control.

According to the Act, platform providers and individuals de-

ploying smart contracts for data-sharing purposes must ensure

that the smart contract is robust against errors or malicious

attacks, protected via rigorous access control mechanisms, and

can be terminated or interrupted. The smart contact data, logic,

and code can be archived to facilitate auditing if terminated.

A. Problem Addressed with Smart Contract “Kill Switches”

Smart contracts represent a significant advancement in

blockchain technologies and are still part of an emerging
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field. Once the smart contracts are executed, they cannot be

unilaterally intercepted or modified, even if the underlying

contract is deemed void or unenforceable. As summarized in

Table III, there is a general lack of flexibility, dependence on

oracles, vulnerability to bugs and architectural changes (such

as the infamous Ethereum DAO hack and the aftermath [5]),

immutability and privacy concerns, and enforcement issues.

There are also complexities with smart contracts when they

diverge from their legal intentions, emphasizing the challenge

of unwinding or terminating them when needed [6]. It is

crucial to establish a clear distinction between a smart con-

tract as a technical tool and the legal contract it represents.

This distinction highlights the difficulties in aligning the pro-

grammed actions of smart contracts with the mutable and often

subjective nature of legal interpretations and expectations.

In the broader context of the current work, which discusses

“kill switches” as a regulatory and safety mechanism in smart

contracts, it is imperative for smart contracts to incorporate

mechanisms that allow for legal intervention and adjustments.

This is crucial for legal compliance without compromising the

decentralized and automated nature of blockchains.

Implementing such mechanisms involves weighing various

benefits and potential drawbacks. There are several pros and

cons of terminating a smart contract based on an external

trigger, as outlined in Table I.

TABLE I: Pros and Cons of “Kill Switches”

Aspect Pros Cons

Security Enhances protection
against vulnerabilities and
bugs.

Potential target for mali-
cious actors if not securely
managed.

Compliance Facilitates compliance
with regulations like the
EU Data Act.

May conflict with the prin-
ciple of immutability in
blockchains.

Governance Can be designed to in-
volve community consen-
sus.

Might introduce elements
of central control.

User Trust Increases confidence in
safety mechanisms.

Users may fear misuse or
overreach.

B. Potential Applications

Smart contract “kill switches” have a wide array of potential

applications across various industries, offering a valuable tool

for enhancing security, compliance, and operational flexibil-

ity. Figure 1 outlines the various components involved in

managing the lifecycle and compliance of smart contracts

in an idealistic environment, highlighting the interconnected

roles of governance, technology, and monitoring that might

be necessary for implementing such a “kill switch” mandated

by regulation.

Domain-specific applications may emerge around the utility

of “kill switches” in various industries beyond the legislative

interest. Table II outlines current and potential applications

with some support for pausing and terminating the application.

C. Related Work

Table III outlines the key contributions of several related

that address smart contract termination solutions. In con-

Fig. 1: Relational Graph for a Smart Contract “Kill Switch”

Implementation

TABLE II: Potential Applications of “Kill Switches”

Domain Application Purpose

Finance Decentralized Finance
(DeFi) platforms
involving stablecoins
and other financial
instruments.

Freezes transactions or ad-
justs parameters during mar-
ket crashes, suspicious activ-
ities, or security breaches [7].

Healthcare Smart contracts manag-
ing sensitive patient data
or automated drug deliv-
ery systems such as the
BlockIoT system [8], [9].

Protects privacy by termi-
nating contracts in case of
data breaches in compliance
with regulations like HIPAA,
possibly utilizing standards-
based ontological concepts
for any unexpected situations
warranting a pause [10].

Supply
Chain
Manage-
ment

Contracts for tracking
payloads with robotic
agents managed with
smart contracts [11].

Halts operations in response
to detected anomalies in the
operating environment [12].

trast to these works, we provide a comparative analysis of

smart contract termination mechanisms across several major

blockchain platforms in Section III. We specifically address the

implementation challenges, governance models, and impact

on decentralization, which these previous studies have not

covered comprehensively.

III. EXISTING SOLUTIONS

We outline approaches for smart contract termination al-

ready available in several prominent blockchains and how

they could support the EU Data Act mandate for smart

contract “kill switch” in Table IV. We compiled this table upon

the examination of some of the prominent blockchains that
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TABLE III: Related Work Comparison

Study Key Contributions Gaps

Casolari
et al. [13]

Examine the role of smart con-
tracts in the architecture of the
EU’s Data Act, identifying key
challenges and proposing recom-
mendations to address those is-
sues.

Specific mechanisms
for smart contract
termination in various
blockchains are
lacking.

Olivieri
and
Pasetto
[14]

Analysis of EU Data Act re-
quirements for smart contracts,
focusing on interoperability, ro-
bustness, and safe termination.

Specific mechanisms
for smart contract
termination in various
blockchains are
lacking.

Le et al.
[15]

Method for proving conditional
termination of smart contracts
utilizing the F* programming
language. Before execution, the
system checks those conditions
against the current state and in-
puts to decide whether the con-
tract can safely run without lead-
ing to non-termination scenarios.

Limitations in
automatically inferring
termination proofs for
complex programs,
necessitating manual
intervention for
complex cases.

Genet et
al. [16]

Formal and mechanized proof of
termination based on measures
of EVM call stacks for intrinsic
system-wide safeguards (gas and
call stack limits).

Comparative analysis
of termination
mechanisms across
different blockchains
is lacking.

Liu et al.
[17]

Strengthening Hyperledger Fab-
ric Chaincode smart contracts
to handle unexpected situations,
which is unlocked through a
novel voting algorithm.

Only applicable to
private-permissioned
blockchains, and the
sandbox environment
for voting may not be
practical.

Zhu et al.
[18])

Recovering any “lost” crypto to-
kens after a voting round empir-
ically shown to be resilient in
the face of any Sybil attacks and
adversarial collusion.

Generalizability of the
proposed method to
other smart contract
termination scenarios
is questionable, and the
sandbox environment
for voting may not be
practical.

Mohsin et
al. [19]

Utilizing community-accepted
off-chain ontologies as a guiding
framework for action in case of
anomalies or errors in deployed
contracts.

Ontology as a
decision-support
mechanism requires
strong governance and
trust guarantees.

Marino et
al. [20]

Legal frameworks for altering
and undoing smart contracts.

Solution through
pure legal means may
impact decentralization
and user trust.

support smart contracts along several dimensions, including

the following:

1) Strategy: The methods and strategies used by the

blockchain platform to implement “kill switches” in

smart contracts, which could include built-in functions,

design patterns, or other relevant features.

2) Strengths: The inherent strengths of the platform for

smart contract termination.

3) Weaknesses: The inherent weaknesses of the platform

for smart contract termination.

4) Governance: (Abbreviated to Gov. in Table IV) Cap-

tures whether any governance mechanisms or protocols

within the blockchain allow network participants to

intervene or make decisions regarding the termination

or pausing of smart contracts.

5) Regulation Support: Discusses the potential or existing

support for compliance with regulatory frameworks,

specifically the European Union Data Act.

A. Ethereum

In Ethereum [21], smart contract termination and interrup-

tion are primarily handled through the built-in functionalities

of the smart contracts themselves. Ethereum does not provide

an external “kill switch” or mechanism for forcibly terminating

or interrupting smart contracts from outside the contract’s

code. Instead, the implementation of such features is left to the

developers who write the smart contracts, typically managed

through the following mechanisms:

• Self-Destruct Function: This function (originally called

SUICIDE) allows a contract to be terminated, removing

its code and storage from the blockchain [30]. When a

contract is self-destructed, it sends the remaining Ether

stored to a designated address and removes the code

from the blockchain, making it inoperable. However,

the contract’s code and past transactions are immutable

and still part of the blockchain history. This function is

typically used to remove contracts that are no longer

needed or recover funds in an emergency. It must be

explicitly included in the smart contract code. It can

only be triggered by a function call within the contract,

often restricted to the contract owner or other authorized

entities. There is a recent proposal on removing this func-

tion [31], as it is the only opcode that breaks important

invariants, which causes an unbounded number of state

objects to be altered in a single block. Therefore, the

long-term availability of this functionality is uncertain.

• Pause and Emergency Stop Patterns: For interruption

rather than complete termination, EVM-based smart con-

tracts can be designed with pause or emergency stop

functionalities [32]. These patterns allow certain contract

functions to be turned off temporarily without removing

the contract from the blockchain, which can be useful

when a bug is discovered and the contract needs to be

paused to prevent further damage while a fix is being

developed. The pause pattern typically involves setting a

boolean variable that controls the execution of sensitive

functions. By changing this variable’s state, the contract’s

critical operations can be enabled or disabled. The emer-

gency stop pattern is more comprehensive, allowing for a

phased approach to pausing and resuming contract func-

tionalities, often with different levels of access control

and conditions for triggering and reversing the pause

state [33].

• Upgradeable Contracts: Another approach to managing

smart contract behavior over time, including termination

and interruption, is through upgradeable contracts [34].

This design pattern involves deploying a proxy contract

that delegates calls to an implementation contract contain-

ing the logic. If the implementation needs to be changed,

updated, or fixed, a new implementation contract can be

deployed, and the proxy contract is updated to delegate
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TABLE IV: Comparison of Smart Contract “Kill Switch” Approaches in Various Blockchain Implementations

Blockchain Strategies Strengths Weaknesses Gov. Regulation Support

Ethereum [21]
& BNB Smart
Chain [22]

Self-destruct function included in
the Solidity language; Pause and
emergency stop design patterns;
Upgradeable contracts.

Provides built-in functions
for contract termination;
Compatible with the
widespread tools and
infrastructure.

No external mechanism; Po-
tential security risks; Pos-
sible removal of the self-
destruct function raises con-
cerns about long-term viabil-
ity.

No Yes, through custom
implementations us-
ing the Solidity fea-
tures.

Cardano [23] Design-specific conditions within
smart contracts built into Plutus;
Stateful smart contracts; Seamless
interaction with off-chain code.

Uses a robust functional
programming language
(Haskell) for Plutus;
Strong on-chain governance
mechanisms.

No external mechanism;
Complex implementation
and limited adoption
compared to Ethereum.

Yes Yes, through design-
specific conditions.

Solana [24] Upgradable programs; State man-
agement.

High throughput and low la-
tency with upgradable pro-
grams.

No external mechanism; Im-
maturity of the ecosystem
and less community support
for governance models.

No Yes, through upgrad-
able programs.

Hyperledger
Fabric [25]

Chaincode lifecycle management;
Endorsement policies; Private data
collection; Administrative control.

Permissioned blockchain
with strong lifecycle
management and
administrative controls.

Centralized nature might not
align with decentralization
principles.

Yes Yes, through
administrative
control and
governance
mechanisms.

Corda [26] Built-in contract upgrade; Explicit
termination conditions; Administra-
tive control.

Focus on privacy and
business transactions with
upgradable contracts.

Limited use cases outside of
enterprise applications.

Yes Yes, through explicit
contract conditions.

IOTA [27] State management built into the
ISCP; Ability to respond to external
inputs or triggers that could include
termination signals.

Scalable with no transaction
fees suitable for IoT.

Still evolving with ongoing
updates to smart contract ca-
pabilities.

Yes Yes, through
decentralized control
mechanisms.

Aptos [28] &
Sui [29]

Move language flexibility for con-
tract updates; Expressive smart con-
tract implementations tracking and
managing assets.

Strong type system for for-
mal verification and secu-
rity; Supports more complex
governance and transaction
models.

Newer ecosystems with less
mature tooling and support.

Yes Yes, through explicit
contract conditions.

calls to the new contract. This approach allows bugs to be

fixed and functionalities to be updated without terminat-

ing the contract. However, it may introduce complexity

and potential security considerations.

Other popular public permissionless blockchains, such as

BNB Smart Chain (BSC) [22], formerly known as Binance

Smart Chain, is a blockchain platform that runs parallel

with Binance Chain. It offers smart contract functionality

and compatibility with Ethereum’s existing infrastructure, such

as the Ethereum Virtual Machine (EVM). This compatibility

allows it to support Ethereum tools and DApps, making

it a popular choice for developers looking to leverage the

scalability and performance benefits of BSC while maintaining

access to Ethereum’s rich ecosystem. Handling smart contract

termination and interruption in BNB Smart Chain is similar

to Ethereum, primarily because of its EVM compatibility.

B. Cardano

Cardano [23] is a blockchain platform that employs a lay-

ered architecture. It separates the settlement layer, which han-

dles transactions, from the computational layer, where smart

contracts run. Cardano uses a unique proof-of-stake consen-

sus algorithm called Ouroboros and supports smart contracts

through its native programming language, Plutus [35]. Plutus

is designed to enable the creation, execution, and management

of smart contracts on the Cardano blockchain. Plutus contracts

are written in Haskell, a functional programming language

known for its high fault tolerance and security features. The

use of Haskell influences how smart contracts, including their

termination and interruption, are handled in Cardano.

• Termination by Design: In Cardano, the termination or

interruption of a smart contract is primarily a matter of

the contract’s design. Because Plutus allows for creating

highly deterministic and secure contracts, developers can

incorporate specific conditions under which a contract

may terminate or pause its operations. These conditions

are encoded directly into the contract’s logic and can be

triggered by predefined events or states.

• Stateful Smart Contracts: Cardano’s smart contracts

can manage the state through the blockchain ledger, but

how the state is handled is distinct from other platforms.

Termination or modification of a contract could involve

creating transactions that update or end the contract’s

state according to the logic defined in the contract it-

self, which ensures that the contract’s behavior remains

predictable and tamper-proof.

• Off-chain Code: Cardano also supports off-chain code

execution through its application framework, which al-

lows for complex interactions with on-chain smart con-

tracts. Interruptions or terminations initiated by off-chain

components can be designed to interact with the on-chain

contracts, offering another layer of control for managing

contract lifecycles. This off-chain logic can facilitate

scenarios where user interaction or external data triggers

the pause or stop conditions in the smart contract.
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• Governance and Updates: Cardano’s governance model

can play a role in contracts that require the ability to

evolve or might need to incorporate mechanisms for

interruption or termination post-deployment. Through on-

chain governance mechanisms, stakeholders can propose

and vote on updates or changes to smart contracts, as-

suming the contract is designed to be upgradable, and the

governance model supports such actions. This approach

allows the community or stakeholders to have a say in

the contract’s lifecycle management.

C. Solana

Solana [24] is a high-performance blockchain platform

designed to support scalable, decentralized applications and

cryptocurrencies. It uses a unique consensus mechanism called

Proof of History (PoH), combined with the underlying Proof

of Stake (PoS) consensus, to achieve high throughput and

low latency. Unlike Ethereum and other blockchains, where

smart contract termination and interruption mechanisms are

more explicitly discussed and implemented, Solana’s approach

to smart contract management, including termination and

interruption, is somewhat different due to its architecture and

programming model. In Solana, smart contracts are referred

to as “programs.” These programs are written in Rust or

C, compiled to Berkeley Packet Filter (BPF) bytecode, and

deployed to the Solana blockchain. Once deployed, a program

can be interacted with by sending transactions from Solana

accounts, but it is immutable, which means there is no built-in

“kill switch” or termination mechanism for a Solana program

once it is live on the network, but termination-like behavior

can be achieved through the following:

• Upgradable Programs: Solana has a mechanism for

program upgradability through the use of a “Program

Upgradeable Loader” [36], which allows developers to

deploy a new version of a program to replace the old one.

The process involves deploying the new program version

as a separate entity and then “switching” the program

authority to point to the new program. This method does

not terminate the old program but effectively redirects

interactions to the new, upgraded program version.

• State Management: Termination or interruption of a

program’s operation in the traditional sense may not

directly apply to Solana’s model. However, programs can

manage their state through accounts that hold data. By

modifying the state held in these accounts, a program can

implement mechanisms to halt or modify its operations

based on specific conditions, essentially allowing for a

form of “interruption” of its functions.

D. Hyperledger Fabric

Hyperledger Fabric [25] uses a permissioned blockchain

platform designed primarily for enterprise use. Hyperledger

Fabric refers to smart contracts as “chaincode.” The smart

contract termination and interruption approach in HyperLedger

Fabric is characterized by its lifecycle management features,

endorsement policies, and the control mechanisms provided by

its permissioned network structure. Collectively, these features

offer a structured and governed way to manage chaincode op-

erations, including their update, interruption, and termination,

in line with the needs and policies of the enterprise blockchain

network.

• Chaincode Lifecycle Management: Hyperledger Fabric

introduces sophisticated lifecycle management for chain-

codes [37], allowing organizations to agree on chaincode

parameters before deployment to the network. This life-

cycle management process enables more granular con-

trol over the deployment, upgrade, and management of

chaincode, including their termination and interruption.

Hyperledger Fabric also allows upgrading the chaincode

contract to a new version by deploying the new contract

on the network and performing an upgrade transaction.

The upgrade can introduce new logic, fix issues, or mod-

ify the chaincode’s behavior. This process is controlled

and requires consensus from the participating organi-

zations, ensuring that changes are agreed upon before

implementation.

• Chaincode Endorsement Policies: Hyperledger Fabric

employs endorsement policies [38] define the rules under

which a transaction is considered valid. These rules could

include those that might terminate or interrupt chaincode

operations. Chaincode can require that transactions be

endorsed by a specific number of peers from certain

organizations within the network, offering a high level of

control and security over chaincode execution, including

any operations that could stop or alter the chaincode’s

function.

• Private Data Collections: Hyperledger Fabric supports

private data collections [39], which allow a subset of the

network to transact privately, maintaining confidentiality.

If such a chaincode contract is updated or removed, the

data governed by the policies of the private data collection

remains, ensuring that sensitive information is handled

according to the requirements, even if the chaincode’s

operation is interrupted or terminated.

• Administrative Operations: Due to the permissioned

nature of Hyperledger Fabric, network administrators

have more control over the chaincode contracts, including

their deployment, operation, and termination. Therefore,

if necessary, chaincode contracts can be administratively

stopped or removed by parties with the appropriate

permissions, according to the governance model of the

specific Hyperledger Fabric network.

E. Corda

Corda’s architecture and operational model offer unique

mechanisms for managing the lifecycle of ‘Corda Con-

tracts” [26]. Corda’s design emphasizes privacy and finality

in transactions, influencing how contract termination and in-

terruptions are perceived and managed. Transactions in Corda

are only shared with parties directly involved or who need to

validate them. Once a transaction is finalized, it is considered
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immutable and authoritative, aligning with business needs for

certainty and finality in agreements.

Corda handles smart contract termination and interruption

through its contract upgradeability features, contract con-

straints governing state evolution, and explicitly modeling

termination logic within contract code. Its architecture sup-

ports the management of the contract lifecycle in a way that

aligns with the platform’s focus on direct, private, and final

transactions among business entities.

• Upgradability: Corda provides a built-in mechanism for

contract upgradability, which allows the network partic-

ipants to evolve their contracts over time as business

needs change or in response to discovering issues with the

original contract. Upgrading a contract in Corda involves

transitioning the states governed by an old version of

the contract to a new version under the agreement of

all relevant parties.

• Contract Constraints: Corda uses a concept called

“contract constraints” to govern which contract codes can

constrain the evolution of ledger states. These constraints

ensure that once states are created under a specific

contract, future transactions that consume and evolve

these states are validated by the same contract code or

an agreed-upon upgraded version, providing a form of

governance over contract changes.

• Explicit Termination and State Evolution: Contracts

can be designed to include termination logic or conditions

within their clauses. Since contracts in Corda govern

the transition of states, a contract can explicitly define

conditions under which a state is considered final or can

no longer be evolved, effectively terminating the con-

tract’s applicability to that state. Additionally, business

processes can be modeled to include explicit termination

transactions that move states to a final, consumed status,

where they cannot be used in future transactions.

• Flow Framework: Corda’s Flow Framework [40], which

facilitates the automation of transactions between nodes,

can be used to manage the execution of contract termi-

nation or state evolution logic. Through flows, partici-

pants can coordinate complex processes, including those

involving contract or state termination, under the rules

defined by their Corda contracts.

• Administrative Intervention: In a permissioned network

like Corda, network operators have administrative control

over the network, including the ability to intervene in

the operation of contracts and nodes in accordance with

the network’s governance policies. This process includes

managing membership and potentially coordinating con-

tract upgrades or the resolution of disputes related to

contract execution.

F. IOTA

IOTA [27] is a blockchain designed primarily for the

Internet of Things (IoT) environment, focusing on scalability,

speed, and the elimination of transaction fees. Unlike pub-

lic permissionless networks like Ethereum or permissioned

networks like Hyperledger Fabric, IOTA utilizes a unique

data structure called the Tangle [41], which is a form of

Directed Acyclic Graph (DAG) that facilitates different op-

erational characteristics and advantages, particularly in terms

of scalability and transaction fees. IOTA introduced smart

contracts as part of its ecosystem to provide more complex and

conditional transaction capabilities through the IOTA Smart

Contracts Protocol (ISCP). ISCP operates on the second layer

on top of the IOTA Tangle, providing the flexibility needed

for complex computations and smart contracts that wouldn’t

be feasible directly on the Tangle due to its structure aimed

at handling transactions efficiently. This adaptability ensures

that ISCP can handle a wide range of smart contract scenarios,

providing reassurance to developers and users alike. In ISCP,

smart contracts run on their separate chains, known as “chain

accounts,” which are independent but anchored to the main

IOTA Tangle. This design allows for greater scalability, as

each smart contract can operate on its own chain without

overwhelming the main network. Smart contracts in IOTA

can define their validators (known as committee nodes), who

are responsible for executing the contract and reaching a

consensus on its state. This design allows contract creators to

tailor the security and consensus mechanisms to their needs,

balancing decentralization, security, and efficiency. With ISCP,

developers can program smart contracts in Rust, a language

known for its safety and performance. This choice underlines

the focus on creating secure and efficient smart contracts

capable of supporting various applications, from DeFi to IoT.

It is worth noting that the IOTA project has undergone

significant updates and expansions to its technology stack,

aiming to address various challenges and expand its use

cases beyond the IoT. These updates include enhancements

to smart contract functionalities, interoperability features, and

scalability solutions, which may influence how smart contract

termination and interruption are handled in future iterations.

G. Aptos and Sui

More recent entries into the field of blockchains that utilize

DAGs, such as Aptos [28] and Sui [29], are making notable ad-

vancements by adopting the Move programming language [42]

for their smart contract functionality. The move language,

designed with safety and security as its core principles, caters

directly to the needs of financial applications and services by

enabling a precise definition of custom resource types. These

resources are linear types that cannot be copied or implicitly

discarded, ensuring assets are tracked and managed securely

throughout their lifecycle. Move’s ability to define resource

types aligns well with the transactional requirements of these

DAG-based blockchains, allowing for more expressive and

flexible smart contract implementations compared to tradi-

tional scripting languages. This design choice not only reduces

the likelihood of bugs that lead to significant vulnerabilities

(such as reentrancy attacks) but also opens up possibilities

for implementing more complex governance and transaction

models that can adapt over time while maintaining rigorous

security and integrity standards.
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IV. DISCUSSION

As illustrated in Section III, platforms like Ethereum and

BNB Smart Chain utilize smart contract-level features such

as self-destruct functions and pause patterns, while others,

like Hyperledger Fabric and Corda, rely more heavily on

governance and administrative controls to manage contract

lifecycle and termination. Platforms like Cardano and Corda

stand out for their emphasis on design-specific conditions

and explicit contract terms built into their corresponding

smart contract languages. This approach, which is a blend

of technical foresight and governance oversight, provides a

robust framework for smart contract development. Therefore,

it is evident that integrating smart contract“kill switch” mech-

anisms is influenced by both program-defined measures and

governance-based solutions.

The type of blockchain (public, private, or consortium)

and the consensus mechanisms also play crucial roles in

determining the feasibility and implementation style of smart

contract “kill switches.” Public blockchains require broader

consensus for changes, which can complicate the rapid de-

ployment of robust smart contract termination mechanisms.

However, private and consortium blockchains can implement

these features more straightforwardly due to their centralized

governance structures.

Integrating “kill switches” into smart contracts has broad

implications for the blockchain ecosystem. These mecha-

nisms, designed to intervene in unforeseen circumstances or

malfunctions, raise debates concerning decentralization, asset

management, and security. Some of these implications are as

follows:

• Concerns Regarding True Decentralization: One of

the foundational principles of blockchain technology is

decentralization — the idea that any single entity does

not control operations and governance. Introducing “kill

switches” into smart contracts presents a paradox; while

they can provide necessary safety nets for users, they also

introduce a vector for centralized control. Critics argue

that this undermines the very essence of decentraliza-

tion [43]. However, it’s essential to recognize that many

blockchains already incorporate mechanisms for updates

and upgrades (as noted in Section III), some of which

require centralized decision-making or a coordinated con-

sensus among stakeholders.

• Loss of Assets: Activating a smart contract “kill switch”

could potentially lead to scenarios where users lose access

to their assets temporarily or permanently. This risk is

particularly acute in financial applications where smart

contracts govern the custody and transfer of significant

value. Therefore, any “kill switch” implementation must

include safeguards to prevent unintentional or unjustified

wiping out of value. Such safeguards could involve

mechanisms for restoring operations and assets post-

intervention, transparent and fair criteria for activation,

and perhaps insurance mechanisms to cover losses in the

worst-case scenarios.

• Security Issues: Implementing smart contract “kill

switches” introduces specific security considerations, par-

ticularly regarding the key management or permissions

required to activate or deactivate the switch. If not man-

aged securely, these could become targets for malicious

actors looking to disrupt operations and exploit the assets

secured by the smart contract. It’s suggested that separate

keys or permissions be used for the activation (pausing)

and deactivation (unpausing) processes to minimize risks.

Furthermore, these keys should be rotated or changed

once used to prevent reuse attacks.

V. CONCLUSION

We explored the feasibility and implications of implement-

ing a smart contract “kill switch” mechanism within the

framework of blockchains in light of the European Union’s

Data Act legislation [3]. Our findings contribute to the ongoing

debate on regulating blockchain technology, providing insights

into how current blockchain platforms can adapt to meet

legislative requirements without stifling innovation and be

accessible and understandable by non-technical users. The

discourse around smart contract “kill switches” is multifaceted,

reflecting a cross-section of academic, legislative, and industry

perspectives.

The challenge lies in designing “kill switch” mechanisms

that align with the ethos of decentralization as much as

possible, perhaps through decentralized governance models

or community consensus mechanisms. We believe a hybrid

model where decentralized platforms can interact with regu-

latory frameworks without compromising their decentralized

nature is necessary for a smart contract “kill switch” to take

effect successfully. Adopting “kill switches” in smart contracts

within the blockchain ecosystem demands careful considera-

tion of their impacts on decentralization, asset security, and

the broader trust in blockchain technologies. By addressing

these concerns thoughtfully, it’s possible to design systems

that retain the benefits of decentralization while providing

mechanisms to protect users and the integrity of the network.

This process involves a delicate balance between control and

freedom, requiring ongoing dialogue and innovation within the

community to navigate these complex issues effectively.

Future studies could explore the design, implementation,

and effectiveness of decentralized governance models specif-

ically tailored to manage smart contracts “kill switch” mech-

anisms. Investigating automated mechanisms within smart

contracts that dynamically adjust to changing regulatory re-

quirements without manual intervention could be a significant

area for exploration, particularly for already deployed smart

contracts. It may be necessary to include protocol updates

through hard forks or the governance models of various

blockchain projects that allow for changes to be made to

operational parameters. A deeper analysis of how “kill switch”

mechanisms affect the security, trust, and overall perception

of blockchain networks among users before and after imple-

menting “kill switches” and security vulnerability assessments

related to their deployment would provide insights into the
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long-term feasibility of smart contract termination solutions.

Additionally, with the increasing diversity of blockchain plat-

forms, there is a need to focus on developing cross-chain so-

lutions and interoperability standards that facilitate regulatory

compliance across different blockchains. Future research is

likely to dig deeper into these discussions, proposing frame-

works, models, and real-world trials that balance the autonomy

of smart contracts with the safety, security, and compliance

requirements of the broader ecosystem.
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