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Abstract

Prediction markets allow traders to bet on potential future outcomes. These markets exist for

weather, political, sports, and economic forecasting. Within this work we consider a decentral-

ized framework for prediction markets using automated market makers (AMMs). Specifically,

we construct a liquidity-based AMM structure for prediction markets that, under reasonable

axioms on the underlying utility function, satisfy meaningful financial properties on the cost of

betting and the resulting pricing oracle. Importantly, we study how liquidity can be pooled or

withdrawn from the AMM and the resulting implications to the market behavior. In considering

this decentralized framework, we additionally propose financially meaningful fees that can be

collected for trading to compensate the liquidity providers for their vital market function.

Keywords: Decentralized Finance, FinTech, Automated Market Makers, Prediction Market,

Sports Book.

1 Introduction

1.1 Motivation

Decentralized Finance (DeFi) – the novel paradigm utilizing blockchain for financial intermediation

– has the opportunity to democratize finance insofar as it opens the positions of financial inter-

mediaries to individual investors. Prior to the “crypto winter” in May 2022, the value of all DeFi

projects reached a high of $180B.1 Automated market makers (AMMs) offer a prominent example
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of a successful DeFi application; these entities create spot markets between digital assets by holding

liquidity pools in an equilibrium. As a decentralized market, these AMMs allow investors to pool

their own assets into the market in exchange for a fraction of the fees being collected from trading

with the pool.

Though AMMs are now regarded as a key component of DeFi, the idea of an automated market

maker was first proposed for use in prediction markets (see the literature review in Section 1.2

below or [37, Section 1.1]). However, in the context of prediction markets, such AMMs have been

written as centralized markets only. The goal of this paper is to revisit prediction market AMMs

with an emphasis on how to decentralize behaviors. In doing so, we seek to unify the concepts of

AMMs for spot markets and prediction markets. In particular, the decentralized paradigm requires

careful consideration for how to accommodate changing liquidity at the AMM (to permit investors

to pool or withdraw liquidity) between the opening of the market and prior to the revelation of the

realized event.

More specifically, once we define the notion of the prediction market, we want to consider the

properties of these AMMs, i.e., for the cost assessed to bettors and the quoted pricing measure.

Though many of these properties have been studied previously in the centralized market setting (see

the literature review in Section 1.2 below), all works the authors’ are aware of require a finite set

of possible outcomes and without any explicit consideration for the impact of liquidity on market

behavior. Herein, we generalize such markets to allow for bets to be placed on general probability

spaces with the explicit dependence on the cash re

Furthermore, due to the possibility of investing in the AMM, it is important to quantify the

fees charged to traders. As highlighted in, e.g., [7], naively defining transaction costs can lead to

unforeseen consequences to the profits of the AMM. Therefore, to avoid obvious mis-pricing, we

also investigate these issues within the setting of prediction markets; prior works avoid these issues

due to the centralized nature of the market.

Lastly, by introducing the mathematical construction for decentralized prediction markets, we

believe that new products can be introduced to allow for, e.g., decentralized sports books which

operate at a fraction of the cost of centralized sports books. Therefore, throughout this work we

keep an eye towards the practicality of implementation and costs for these operations.
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1.2 Literature review

Prediction markets seek to elicit probabilities of events through the aggregation of investor beliefs

[14]. If an investor has a different belief of the likelihood of an event he or she can transact to

capture that discrepancy which moves the quoted probabilities. These markets can be applied to

weather forecasting (e.g., [31]) or economic forecasting (e.g., [32]). However, even in a finite state

space, Bayesian updating of these probabilities can be analytically and computationally challenging

(see, e.g., [5, 20, 21]). One approach taken in practice is to use a scoring rule; repeated games with

the scoring rule will lead to a Nash equilibrium [25] and thus convergence to a common estimator

for the market participants [30, 22].

In practice, financial [26], sports [24] and election prediction markets perform well. However,

these markets can sometimes result in irrational prices, especially when market liquidity is low.

Choosing the correct market structure, i.e., a scoring rule with appropriate properties such as

the logarithmic scoring rule of [23] or a Bayesian framework of [16], can improve market perfor-

mance. Hanson’s logarithmic scoring rule has been implemented in a dynamic prediction market

and achieved good results [35]. It has been generalized, and characterized as utility functions, in [13].

Furthermore, that paper highlights an additional property for a market to have, i.e., bounded loss.

[34] emphasizes other desirable properties for prediction markets, e.g., liquidity sensitivity. We also

refer the reader to [39, 38] for a survey of literature on prediction markets.

These predictions market scoring rules form AMMs. More recently, AMMs have been used

prominently as decentralized markets for digital assets. These decentralized AMMs were described

in the early whitepapers of [41, 1]. Those whitepapers emphasize the key mathematical and algo-

rithmic components of AMMs. One such idea that provides an algorithm for an AMM to decide

on quantities to swap is the constant function, see e.g. [3, 27, 2, 15, 11, 9]. The structure for

many decentralized AMMs was provided in [40, 4]. These constructions were generalized and given

axiomatic foundations in [37, 7, 19].

Within this work, we do not attempt to compare the classical centralized structure of running

a prediction market with the currently proposed decentralized framework. We focus instead on

providing the key properties of such a market – the ability to provide a trusted counterparty

throughout the entire life of the market and collect fees for performing that service – while also
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allowing investors to pool resources and act as passive investors in the market.

1.3 Primary contributions

As the goal of this work is to construct decentralized prediction markets via AMMs, our primary

contributions are threefold.

• We generalize the classical prediction market AMM setting of [23] from a finite to a general

probability space. In particular, we follow the approach of [13, 34] to study these AMMs as

utility functions with an axiomatic construction. In doing so, we investigate the properties

of the cost function and pricing oracle of these AMMs. For instance, we demonstrate that

with our proposed structure, a pricing measure is guaranteed to exist between the bid and

ask pricing oracles.

• We formalize the decentralized liquidity provision for prediction market AMMs to demon-

strate that these markets can be made in a decentralized framework. We provide details on

how to add or withdraw liquidity both before the market opens (as is standard in the clas-

sical framework) and after some bets have already been placed. Additionally, we investigate

the impacts that these variations in liquidity have on market behavior. Notably, this added

liquidity is not deterministic but rather a bet itself. To the best of the authors’ knowledge,

no prior work on prediction markets has allowed for adding liquidity after the market opens.

• We define a novel fee structure to retain the important financial properties on the cost

function while allowing liquidity providers to collect a profit from their investments. Prior

works have considered fee structures for AMMs via, e.g., arbitrage opportunities or market

trading frequency/volatility [29, 28, 8]; however, these approaches are not well suited for a

prediction AMM. As far as the authors are aware, no prior work on prediction markets has

explicitly defined the fees to be collected.2

2Other works (e.g., [33]) consider an implicit bid-ask spread. The implicit construction differs from the explicit
fees as they do not guarantee that the market maker earns a riskless profit from transacting.
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1.4 Organization of this Paper

The organization of this paper is as follows. A summary and generalization of prior works on

prediction markets is provided within Section 2. This discussion is followed by our proposed

structure for a prediction market AMM in an axiomatic framework within Section 3.1. With that

discussion, we formulate meaningful mathematical and financial properties for the cost function and

pricing oracle in Section 3.2. For instance, we demonstrate that there natively exists bid and ask

pricing oracles with a pricing probability measure on the underlying measurable space sandwiched

between these prices. In Section 4, we study the problem of decentralized liquidity provision for

these prediction markets. In particular, we discuss how to provide liquidity so as to decrease price

slippage during trading. In Section 5, we present a discussion of how to explicitly collect fees on

bets in this market. Notably, due to the general construction utilized herein, these fees are assessed

in a non-trivial manner so as to retain the important financial properties of the AMM. Finally,

in Section 6, we consider two numerical case studies. First, we provide an empirical study of the

behavior of an AMM when applied to data on sports betting for the 2023 Super Bowl. Second,

we apply a prediction market AMMs for the purposes of quoting financial options prices. We

summarize and conclude in Section 7.

2 Generalized Structure for Automated Market Makers

Fundamentally, an AMM is a liquidity pool – made up of deposits from liquidity providers –

against which traders can execute transactions at prices based on mathematical algorithms without

requiring a human-in-the-loop. We take the view from DeFi that AMM algorithms are equivalent

to utility functions (see, e.g., [37, 7]); the relationship between AMMs and utility functions was

previously explored for prediction markets within [12]. The primary purpose of this manuscript is

to explain how prediction market AMMs can be constructed so as to explicitly consider the actions,

as well as the risks and rewards, of liquidity providers to guarantee there is liquidity available to

cover the costs of the winning bets. The AMM begins accepting bets once it has some amount

of liquidity and allows bettors to place bets up until some fixed time or event, at which time the
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winning bets are paid out.3 In Section 4, we consider how to allow for new liquidity provision (or

withdrawals of liquidity by liquidity providers) even after the market has already begun accepting

bets. However, since the payoffs of the winning bets come from the liquidity pool, liquidity provision

is an inherently risky position; because of this, liquidity providers need to be compensated with

fees (as disucssed in Section 5). While bettors have a payoff based on the specific bet placed, the

liquidity providers share the fees and any liquidity remaining after all bets are paid off.

We wish to begin our study of automated market makers for prediction markets by recalling

(a generalization of) Hanson’s market maker [23]. This construction follows the utility function

framework of [12] but with explicit consideration for the cash reserves available.

Definition 2.1. Consider a probability space (Ω,F ,P).4 Let L∞ denote the space of uniformly

bounded random variables and L∞
+ := {x ∈ L∞ | x ≥ 0 a.s.}. An automated market maker

(AMM) is a utility function U : L∞
+ ×R+ → R∪{−∞} that is non-increasing in its first (random-

valued) component and non-decreasing in its second (real-valued) component.

We can interpret an AMM U : L∞
+ ×R+ → R∪{−∞} as the utility U(π,L) of betting positions

π ∈ L∞
+ and cash reserves L ≥ 0. More specifically, π(ω) denotes the payout that would need to

be made by the market maker in the event that outcome ω ∈ Ω is realized; L ≥ 0 denotes the

capital held by the market maker that is available to be used for the eventual payouts when the

predicted event is realized. Bets with negative payouts, e.g., from selling a bet to the AMM, can

be accommodated by buying the complement and shifting the cash reserves accordingly as will be

made clear in (2.1) below.

The classical goal of a prediction market is to be able to give a price to a new incoming bet

x ∈ L∞. This, of course, depends on the current state of the market (π,L). As opposed to a

standard prediction market, where the cost function of the bet plays the key role, here we utilize

the utility indifference approach from DeFi ([37, 7]). In this way, the AMM must not be worse off

after a new bet is placed (and the cost of the bet was collected) than it was before this bet was

placed. This in turn allows us to define the cost function of any bet. We proceed as follows. That

3Herein, we do not explicitly consider the evolution of information as would happen, e.g., for in-game sports
betting.

4In this context, P represents a physical measure that is not used throughout our analysis, except in examples.
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is, to place a bet with a payout of x ∈ L∞, the bettor must make a payment of

C(x;π,L) = inf{c ∈ [ess inf x, ess supx] | U(π + x− ess inf x1, L+ c− ess inf x) ≥ U(π,L)}, (2.1)

with initial betting positions π ∈ L∞
+ and cash reserves L ≥ 0.5 Throughout this work we define

1 ∈ L∞ to be equal to 1 almost surely (a.s.). This is the minimal amount of additional cash

necessary to guarantee that the market maker has a nondecreasing utility. Explicitly, in this way,

we separate the random part of the bet (x− ess inf x1) from its direct impact on the cash reserves

(− ess inf x). In fact, this formulation encodes that a trader provides her own cash reserves to settle

the constant part (ess inf x1) of any bet. We wish to remark that the setting in which x ≥ 0 almost

surely corresponds to purchasing bets whereas P(x < 0) > 0 allows for the trader to sell a bet

to the AMM (i.e., receive a guaranteed payment today in exchange for paying if a specific event

occurs). Though we do not impose it here, it may be desirable for the AMM to impose a no-short

selling constraint on traders so that the AMM does not need to worry about counterparty risk in

the future.

Remark 1. The purchasing price C(x;π,L) for some bet x ∈ L∞ can be viewed as a utility

indifference price (see e.g. [10]). Specifically, assuming U is strictly increasing in its second (cash

reserves) input and sufficiently continuous, we can rewrite c = C(x;π,L) as the unique solution to

U(π+x− ess inf x1;L+ c− ess inf x) = u(π,L) provided it exists (i.e., the AMM has sufficient cash

reserves to trade the bet x). Herein, we choose to follow the optimization formulation of (2.1) as

existence and uniqueness of the cost are trivial for all (x;π,L) ∈ L∞ × L∞
+ × R+.

In addition to acting as a liquidity provider, the AMM can also provide pricing oracles P a, P b :

L∞ × L∞
+ × R+ → [0, 1] which give the marginal cost of placing positive and negative bets re-

spectively. More specifically, we define the ask and bid pricing oracles, respectively, as the cost of

placing positive and negative marginal sized bets:

P a(x;π,L) := lim
tց0

1

t
C(tx;π,L) and P b(x;π,L) := lim

tր0

1

t
C(tx;π,L),

5Prior works on prediction market AMMs, e.g. [12], formulate the cost via integration of infinitely small trans-
actions instead as they do not explicitly consider the available cash reserves L; it can readily be shown that these
formulations are equivalent. In doing so, prior works focus on proving there exists a bounded loss so that there is
some minimal liquidity that guarantees AMM solvency.
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for any bet x ∈ L∞, betting position π ∈ L∞
+ and cash reserves L ≥ 0. It is desirable that

P b(·, ;π,L) ≤ P a(·, ;π,L), and that there exists a probability measure Q such that the bid and ask

prices sandwich an expectation with respect to Q. In general, this sandwiched probability measure

Q will depend on the current state (π,L).

Assuming that the cost function has sufficient mathematical regularity to guarantee its differ-

entiability, the bid and ask spread disappears, and the (unique) price becomes

P (x;π,L) :=
∂

∂t
C(tx;π,L)|t=0.

This also selects the unique measure Q (for the fixed (π,L)), the expectation with respect to

which must then be equal to the pricing oracle P , i.e., Q(A) := P (IA;π,L) for any A ∈ F . As

such, we can view Q as a pricing measure, providing a ‘quoted price’ for x ∈ L∞ via EQ[x] under

market conditions (π,L). Notably, this quoted price differs from C(x;π,L) due to the price slippage

inherent in the form of C given in (2.1).

Example 2.2. Within this example we want to study the classical structure of Hanson’s AMM [23]

with logarithmic scoring rule. As provided in [12], this AMM can be formulated according to Def-

inition 2.1 as a utility function UH : L∞ × R+ → R ∪ {−∞} for any bet sizes π ∈ L∞
+ and cash

reserves L ≥ 0 as

UH(π,L) := log (E [1− exp(−γ(L1− π))])

for γ > 0 where, by convention, log(x) = −∞ for any x ≤ 0. By construction of this utility

function, the cost of purchasing a bet with payout of x ∈ L∞ is explicitly provided by:

CH(x;π,L) =
1

γ
log

(

E[exp(γ(π + x))]

E[exp(γπ)]

)

.

In this case dQ
dP = eγπ

E[eγπ ] is the pricing measure under market conditions (π,L); notably, while Q does

not depend on the existing reserves L, it does depend on the existing bets π. Recall from Remark 1

that the cost CH can be viewed as a utility indifference price. Specifically writing U(π,L) = u(L1−

π), and assuming u is strictly increasing, we can rewrite c = CH(x;π,L) as the unique solution to

u(L1+ c1− π − x) = u(L1− π).

Often, prediction markets are only considered with finite probability spaces [23]. Here, and in
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other examples below, we will utilize the finite probability space (ΩN , 2ΩN ,PN ) with PN (ω) = 1
N

for

every ω ∈ ΩN and card(ΩN ) = N , for some N ∈ N. Hanson’s AMM is more commonly written as

the integral of the marginal costs [6], i.e., for x ∈ R,

CH(xIω̄;π,L) =

∫ x

0

exp(γ(π(ω̄) + z))

exp(γ(π(ω̄) + z)) +
∑

ω 6=ω̄ exp(γπ(ω))
dz.

As is made clear from the cost function CH , Hanson’s AMM prices bets independent of the cash

reserves available. However, in practice, it is important that the market maker has sufficient cash

reserves to cover any bets that need to be paid out, i.e., L ≥ ess supπ at any realized bets π ∈ L∞
+

and cash reserves L > 0. Formally, we want L + CH(x;π,L) ≥ ess sup(π + x) for any x ∈ L∞,

π ∈ L∞
+ and L > ess supπ so that the cash reserves after a bet is placed is always sufficient to

cover the worst case payouts (and assuming such a property holds before x is traded). By bounding

the log-sum-exponential functions, it can be readily shown that L+ CH(x;π,L) > L− log(N)/γ −

ess supπ + ess sup(π + x). That is, sufficient cash reserves exist if L ≥ log(N)/γ + ess supπ or,

equivalently, the risk aversion γ ≥ log(N)/[L−ess sup π] is sufficiently large. Beginning from π = 0

and initial cash reserves L0 > 0, this gives an initial bound γ ≥ log(N)/L0; in fact, in this initial

time point, this bound is necessary and sufficient for the AMM to have the requisite cash reserves

for any bet. Furthermore, this inital bounding condition γ ≥ log(N)/L0 is sufficient for the AMM

to be liquid throughout its operation.6

The generalized structure of AMMs presented here is broad so as to encompass even structures

that may not have sufficient cash reserves to cover all possible bets (i.e., if L < ess supπ). For

instance, if γ < log(N)/L0 for Hanson’s AMM presented in Example 2.2 over a finite probability

space, then there exists some bet that creates a probability that the market maker will default

on (a fraction of) its obligations; notably this occurs once an infinite number of events needs to

be considered. Taking the inspiration from the form UH and following the structure of the utility

functions in [12], for the remainder of this work, we will focus on a special structure for AMMs

based on the remaining cash reserves for all outcomes, i.e., such that U(π,L) := u(L1 − π) for

some continuous and nondecreasing utility function u : L∞
+ → R ∪ {−∞}. As will be shown

in the subsequent sections, these cash reserves-based AMMs can readily guarantee sufficient cash

6This can be demonstrated due to the path independence property as introduced in Theorem 3.4(4) below.
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reserves will always exist (as well as other useful properties for a market); we refer the interested

reader to [12] which discusses the maximum loss for such an AMM under the finite probability

space (ΩN , 2ΩN ,PN ). Additionally, by specifically accounting for cash reserves in the structure of

an AMM, we allow for changes and dynamics in cash reserves to occur. In particular, we permit

investors to pool cash into the AMM (even after betting has started) to collect a portion of the

market proceeds; this notion of pooling is expanded upon in Section 4. This decentralization can

lead to more responsive liquidity provision as investors flock to volatile markets (to collect fees, see

Section 5). Due to monotonicity (and as will be formally proven below), this increased liquidity

has the ancillary benefit of reducing the price impacts from trading which ex-ante drives down the

volatility.

3 Liquidity-Based Automated Market Makers

As discussed above, within this section we wish to study those automated market makers of the

form U(π,L) := u(L1 − π) for some utility function u : L∞
+ → R ∪ {−∞}.7 As introduced in

Section 2, we again define a prediction market AMM by its utility function u rather than a cost

function of a bet C; we then derive the cost function using the utility indifference argument. Within

Section 3.1, we propose some basic axioms that any such liquidity-based automated market maker

should satisfy. The implications of these axioms on bets are investigated within Section 3.2. To

simplify notation, for the remainder of this work we will let Π := L1 − π denote the liquidity

remaining for each outcome (contingent on that outcome being realized); we will demonstrate in

Section 3.2 that we can always guarantee that ess inf Π > 0 under the desired axioms (provided

that L0 > 0 for the initial cash reserves of the market maker).

3.1 Construction

As expressed in the introduction of this section, our first goal is to characterize the liquidity-based

automated market makers as utility functions u : L∞
∗ := {x ∈ L∞

+ | ess inf x > 0} → R satisfying

useful mathematical properties.8 The following definition encodes the minimal set of axioms that

we utilize throughout this work.

7In the subsequent sections we will explicitly provide the domain domu := {x ∈ L∞
+ | u(x) > −∞} of u.

8We will set u(x) = −∞ for x ∈ L∞\L∞
∗ .
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Definition 3.1. A utility function u : L∞
∗ := {x ∈ L∞

+ | ess inf x > 0} → R is a liquidity-based

automated market maker [LBAMM] if:

1. u is upper semi-continuous on L∞
+ with respect to the weak* topology;9

2. u is strictly increasing;10 and

3. u is quasiconcave.11

Remark 2. Note that from Definition 3.1(1)-(2), it follows (see, e.g., [18, Theorem 4.31]) that u

is almost surely continuous from above, i.e., if xn ց x a.s. then u(xn) ց u(x).

Let Π ∈ L∞
∗ denote the liquidity remaining for each outcome. Then as described in (2.1) above,

the cost under an LBAMM of purchasing a payoff of x ∈ L∞ is defined such that

C(x; Π) := inf{c ∈ [ess inf x, ess supx] | u(Π− x+ c1) ≥ u(Π)}. (3.1)

To simplify notation, where clear from context, we will drop the explicit dependence of C on Π,

i.e., we will denote C(x) := C(x; Π).

Before continuing our study of the properties of LBAMMs, we provide a simple example of one

such AMM in a finite probability space. This construction is based on Uniswap V2 which is a

popular AMM in decentralized finance [1]. As we will see, this construction provides a closed form

representation for the cost of a bet in the 2 event setting. Notably, this AMM was first discussed

in [12] for prediction markets (in a finite probability space) before its use in decentralized finance.

Example 3.2. Consider the finite probability space (ΩN , 2ΩN ,PN ) as in Example 2.2 with PN(ω) =

1
N

for every ω ∈ ΩN := {ω1, . . . , ωN} with cardinality N . Consider the logarithmic utility function

u(Π) = E[log(Π)] = 1
N

∑N
i=1 log(Π(ωi)) if minΠ > 0 and u(Π) = −∞ otherwise. As discussed in,

e.g., [7], the constant product market maker of Uniswap V2 is equivalent to a logarithmic utility

indifference pricing; for this reason we consider this LBAMM to be the prediction market version

9For any x in the domain of u and any ǫ > 0, there exists a neighborhood of x in the weak* topology on L∞ such
that for all y in this neighborhood, u(y) ≤ u(x) + ǫ.

10For any x1, x2 ∈ L∞
∗ , if x1 ≥ x2 a.s. and P(x1 > x2) > 0, then u(x1) > u(x2).

11For all x1, x2 ∈ L∞
∗ and for all t ∈ [0, 1], u(tx1 + (1− t)x2) ≥ min{u(x1), u(x2)}.
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of Uniswap V2. Then, for any x ∈ L∞, the cost for the bettor

C(x; Π) = inf

{

c ∈ [minx,maxx] |
N
∏

i=1

(Π(ωi)− x(ωi) + c) ≥
N
∏

i=1

Π(ωi)

}

satisfies a constant product rule

N
∏

i=1

(Π(ωi)− x(ωi) + C(x; Π)) =
N
∏

i=1

Π(ωi).

In particular, for the setting with only N = 2 possible outcomes,

C(x; Π) =
−Π(ω1)−Π(ω2) + x(ω1) + x(ω2)

2

+

√

[

(Π(ω1)− x(ω1))− (Π(ω2)− x(ω2))
]2

+ 4Π(ω1)Π(ω2)

2

for any x ∈ L∞ and Π ∈ L∞
∗ . We implement this utility function within Section 6.1 as an empirical

case study.

We wish to note that the logarithmic utility of Example 3.2 in a general probability space does

not, necessarily, satisfy all conditions of an LBAMM. In the following example, which concludes

this discussion of the definition of LBAMMs, we introduce a modification which can be used to

extend the logarithmic utility to general probability spaces.

Example 3.3. Consider a general probability space (Ω,F ,P). Let u : L∞
+ → R∪{−∞} be a strictly

increasing, concave, and weak* upper semi-continuous function with domu ⊇ L∞
∗ . (For example,

one might choose the logarithmic utility function u(x) = E[log(x)] as seen in Example 3.2 or, more

generally, set u(x) = E[log(x)] + λ log(E[x]) for some λ ≥ 0 as taken in the Liquid StableSwap

of [7].) Fix ǫ ∈ (0, 1), and define ūǫ : L
∞
+ → R ∪ {−∞} such that for all x ∈ L∞

+ :

ūǫ(x) := (1− [ǫ− inf
A∈F+

P(A)]+)u(x) + [ǫ− inf
A∈F+

P(A)]+ log(ess inf x),

where F+ := {A ∈ F | P(A) > 0}. It is straightforward to verify that this utility function satisfies all

the required properties of an LBAMM as per Definition 3.1. Note that, under the finite probability

space (ΩN , 2ΩN ,PN ), if ǫ ≤ 1
N

then ūǫ ≡ u. This utility function structure is implemented within
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Section 6.2 to construct a simple financial derivatives market.12

3.2 Properties

Given the construction of an LBAMM in Definition 3.1, we can now consider the formal properties

of the cost functions C defined in (3.1).

Theorem 3.4. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ and associated

payment function C : L∞ → R.

1. No arbitrage: C(x) ∈ [ess inf x, ess supx] for x ∈ L∞ with attainment C(x) ∈ {ess inf x,

ess supx} if and only if x = c1 for some c ∈ R.

2. Liquidity-bounded loss: u(Π − x + C(x)1) = u(Π) and Π − x + C(x)1 ∈ L∞
∗ for any

x ∈ L∞.

3. Convex, monotone and lower semi-continuous: x 7→ C(x) is strictly increasing, convex

and lower semi-continuous (in the weak* topology).

4. Path independent: C(x + y; Π) = C(x; Π) + C(y; Π − x + C(x; Π)1) for x, y ∈ L∞. As a

direct consequence C(x+ c1; Π) = C(x; Π) + c for any x ∈ L∞ and c ∈ R.

Proof. 1. By construction of the cost function C, it easily follows that C(x) ∈ [ess inf x, ess supx].

If x = c1 for some c ∈ R, then trivially, C(x) = c = ess inf x = ess supx. Now, let’s

consider the case where C(x) = ess inf x (the case of C(x) = ess supx follows similarly). If

x ∈ L∞\{c1|c ∈ R}, then by the strict monotonicity of the utility function (and using the fact

that Π−x+C(x)1 ∈ L∞
∗ from Property 2), we have u(Π−x+C(x)1) = u(Π−[x−ess inf x1]) <

u(Π). This contradicts Property 2, which is proved below.

2. Note that the sequence
(

Π − x + (C(x) + 1
n
)1
)

ց Π − x + C(x)1 a.s. as n → ∞. Then,

by Remark 2, we have u(Π − x + C(x)1) = limn→∞ u
(

Π − x + (C(x) + 1
n
)1
)

≥ u(Π), as

implied by the construction of C. Consequently, ess inf(Π − x + C(x)1) > 0 which ensures

that Π − x + C(x)1 ∈ L∞
∗ for all x ∈ L∞. Furthermore, given that u(Π − x + c∗1) < u(Π)

12The gas fees for using a general utility function ūǫ can be controlled by utilizing modern blockchains such as
Avalanche and Skale which charge developers a monthly fee for gas-less transactions.
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for c∗ = max{ess inf(x),− ess inf(Π − x)}, the equality u(Π − x + C(x)1) = u(Π) must be

satisfied due to the property of continuity from above.

3. (a) Monotonicity: To prove the monotonicity of C, let’s consider an arbitrary x ∈ L∞ and

δ ∈ L∞
+ \{0}. Assume C(x+δ) ≤ C(x). By the strict monotonicity of the utility function

and Property (2), we arrive at a contradiction:

u(Π) = u(Π− [x+ δ] + C(x+ δ)1) < u(Π− x+ C(x)1) = u(Π).

(b) Convexity: To prove the convexity of C we will consider its epigraph. That is,

epiC = {(x, c) ∈ L∞ × R | C(x) ≤ c} = {(x, c) ∈ L∞ | u(Π− x+ c1) ≥ u(Π)}. (3.2)

Since u(Π) ∈ R is a constant, the epigraph of C is convex due to the quasiconcavity of

the utility function u.

(c) Lower semi-continuity: As seen in (3.2), the epigraph of C corresponds to the hypograph

for u. Therefore, by upper semi-continuity of u, the function C is lower semi-continuous.

4. Let x, y ∈ L∞. By (2), we can immediately conclude

u(Π− x+ C(x; Π)1− y + C(y; Π− x+ C(x; Π)1)1) = u(Π− x+ C(x; Π)1) = u(Π).

By construction of C(x+y; Π) and the strict monotonicity of u, it must hold that C(x+y; Π) =

C(x; Π) + C(y; Π − x + C(x; Π)1). The second property provided on the translativity of C,

i.e., C(x + c1; Π) = C(x; Π) + c for any c ∈ R is a direct consequence by recalling from

property (1) that C(c1; Π − x+ C(x; Π)1) = c.

Remark 3. 1. Theorem 3.4(2) directly connects the LBAMM pricing scheme to a utility in-

difference price (see, e.g., [10]) as previously discussed in Remark 1. Additionally, we can

interpret the LBAMM cost function C as a nonlinear expectation due to Theorem 3.4(1) and

(3).
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2. The second property of Theorem 3.4(2) implies there is infinite liquidity and infinite sized bets

can be placed. This guarantees that the AMM will never default because, under almost every

realized outcome ω ∈ Ω, there still remains Π(ω)− x(ω) + C(x) > 0 cash after paying off all

bets.

3. As a direct consequence of Theorem 3.4(1) and (4), a clear no round-trip arbitrage argument

follows. Specifically, for any x ∈ L∞ and c ∈ R,

c = C(c1; Π) = C(x; Π) + C(c1− x; Π− x+ C(x; Π)1).

That is, a guaranteed payoff of c can only be obtained at a cost of c. In particular, C(x; Π)+

C(−x; Π − x + C(x; Π)1) = 0 so that buying, and immediately selling, a bet results in no

profits (or losses) for the trader. This can be viewed as a version of the prior notion that the

LBAMM can never default as, if an arbitrage such as this existed, traders could exploit this

design flaw in order to guarantee profits at the expense of the LBAMM, which in the extreme

case can cause the LBAMM to default on payments.

Corollary 3.5. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ . The associated

payment function C : L∞ → R is Lipschitz continuous in the bet size with Lipschitz constant 1.

Proof. Let x, y ∈ L∞. By the monotonicity and translativity proven in Theorem 3.4:

C(x)− C(y) ≤ C(y + ‖x− y‖∞1)− C(y) = ‖x− y‖∞.

By symmetry between x and y, Lipschitz continuity follows.

Let Π ∈ L∞
∗ be fixed. We now wish to consider the ask and bid pricing oracles, P a, P b : L∞ → R,

associated with the liquidity-based AMMs. Specifically, as constructed for the general AMMs in

Section 2, we define the ask and bid pricing oracles, respectively, as the cost of placing a positive

and negative marginal sized bet. That is,

P a(x) := lim
tց0

1

t
C(tx) and P b(x) := lim

tր0

1

t
C(tx) = −P a(−x). (3.3)
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Theorem 3.6. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ . The associ-

ated pricing oracles P a, P b : L∞ → R, defined in (3.3), satisfy P a(x) ≥ P b(x) for all x ∈ L∞.

Furthermore, there exists a measure Q ∼ P such that P b(x) ≤ EQ[x] ≤ P a(x) for all x ∈ L∞.

Proof. Since C is convex by Theorem 3.4, it is straightforward to verify that P a, P b : L∞ → R

are well-defined and ρ(x) := P a(−x) is a lower semicontinuous coherent risk measure. In fact,

following the nomenclature of [17], ρ is also relevant as P a(IA) > 0 for every A ∈ F+ (i.e., A ∈ F

with P(A) > 0).13 By the dual representation of coherent risk measures (see, e.g., [18, Corollary

4.34]) , there exists a set of probability measuresQ 6= ∅ which are equivalent to P, i.e., Q ⊆ {Q ∼ P},

such that P a(x) = sup
{

EQ[x] | Q ∈ Q
}

. Moreover, by construction, P b(x) = inf
{

EQ[x] | Q ∈ Q
}

.

We thus conclude that P a(x) ≥ EQ[x] ≥ P b(x) for all x ∈ L∞ and all Q ∈ Q.

Remark 4. From Theorem 3.6, we note that:

1. Theorem 3.6 guarantees the existence of an equivalent pricing measure Q ∼ P that sits within

the bid-ask spread, i.e., P b(x) ≤ EQ[x] ≤ P a(x) for any x ∈ L∞. We remind the reader that

this equivalent pricing measure Q implicitly depends on the remaining liquidity Π ∈ L∞
∗ . We

regard any such measure as a pricing measure as it is consistent with the quoted (bid and ask)

prices in the market.

2. The pricing oracle P a is, in fact, the largest coherent risk measure that is dominated by the

cost function C. A similar statement can be given for the pricing oracle P b on the negative

of a bet.

3. If C is differentiable at 0, then there is no bid-ask spread, and P a(x) = P b(x) for every

x ∈ L∞. This differentiability follows if u is Fréchet differentiable; however, we note that the

construction in Example 3.3 is not Fréchet differentiable if ǫ > infA∈F+
P(A).

We conclude our discussion of the properties of the LBAMM by considering the outcome of a

bet from an infinitely liquid and risk-neutral bettor with beliefs Q ≪ P, i.e., who is solving

sup
x∈L∞

EQ[x− C(x; Π)1]. (3.4)

13Trivially P a(IA) = 1 − P b(IAc) > 0 for any A ∈ F+ as P b(IAc ) ≤ P a(IAc) ≤ C(IAc) < 1 by no arbitrage and
convexity (Theorem 3.4).
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Such a result serves as a converse to Theorem 3.6 as this bettor has a (finite) optimal bet x∗ ∈ L∞

if, and only if, P b(x; Π − x∗ + C(x∗; Π)1) ≤ EQ[x] ≤ P a(x; Π − x∗ + C(x∗; Π)1) for any x ∈ L∞

so that Q is sandwiched by P b, P a. Fundamentally, this sandwich property implies an LBAMM is

able to extract the subjective beliefs (i.e., Q) of any risk-neutral bettor. Such a property was first

considered within [23] in which the Hanson’s logarithmic scoring rule in a finite probability space

was proven to “extract the information implicit in the trades others make with it, in order to infer

new rational prices.”

Theorem 3.7. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ . Consider a risk-

neutral bettor with subjective measure Q ≪ P, optimizing (3.4). For any x∗ ∈ argmaxx∈L∞ EQ[x−

C(x; Π)1], it holds that

P b(x; Π− x∗ + C(x∗; Π)1) ≤ EQ[x] ≤ P a(x; Π− x∗ + C(x∗; Π)1).

Furthermore, if Q ∈ M∗ := {Q ≪ P | ess inf dQ
dP > 0} then argmaxx∈L∞ EQ[x− C(x; Π)1] 6= ∅.

Proof. By definition of the pricing oracles P a, P b as directional derivatives, the sandwich property

holds if dQ
dP

∈ ∂C(0; Π− x∗ +C(x∗; Π)1) for x∗ ∈ argmaxx∈L∞ EQ[x−C(x; Π)1] where ∂C denotes

the subdifferential of C. By construction of x∗ as a maximizer, EQ[x∗ − C(x∗; Π)1] ≥ EQ[x −

C(x; Π)1] for any x ∈ L∞. Rearranging terms, we recover C(x; Π) − C(x∗; Π) ≥ EQ[x − x∗] for

any x ∈ L∞, i.e., dQ
dP

∈ ∂C(x∗; Π). Utilizing path independence (Theorem 3.4(4)), it follows that

0 ∈ argmaxx∈L∞ EQ[x− C(x; Π− x∗ + C(x∗; Π)1)1], i.e., dQ
dP ∈ ∂C(0; Π− x∗ + C(x∗; Π)1).

It remains to show that argmaxx∈L∞ EQ[x − C(x; Π)1] 6= ∅ for Q ∈ M∗. Let A := {z ∈

L∞ | u(z) ≥ u(Π)} ⊆ L∞
+ be the superlevel set at u(Π). By quasiconcavity and upper-semicontinuity,

A is a weak* closed and convex set. Fix y ∈ L1
+, then

sup
x∈L∞

E[y(x− C(x; Π)1)] = sup
x∈L∞

{E[yx] | u(Π− x) = u(Π)} = sup
x∈L∞

{E[yx] | u(Π− x) ≥ u(Π)}

= sup
x∈L∞

{E[yx] | Π− x ∈ A} = E[yΠ]− inf
x∈A

E[yx].

By A ⊆ L∞
+ , it follows that infx∈A E[yx] ≥ infx∈L∞

+
E[yx] = 0. As a direct consequence, we

also have that supx∈L∞ E[y(x − C(x; Π)1)] < ∞ for any y ∈ L1
+. For ease of notation, define

B := {x ∈ L∞ | Π − x ∈ A} is weak* closed and convex. Further, we can define the associated
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indicator function δ(x) :=















0 if x ∈ B

∞ if x 6∈ B

(proper, weak* lower semicontinuous, and convex) and

support function δ∗(y) := supx∈B E[yx] (proper, weak* lower semicontinuous, and convex) for

y ∈ L1. By the prior finiteness of the supremum result, dom δ∗ ⊇ L1
+ and, in particular, int dom δ∗ ⊇

L1
∗ := {y ∈ L1

+ | ess inf y > 0}. Therefore ∂δ∗(dQ
dP

) 6= ∅ since dQ
dP

∈ int dom δ∗. By the Fenchel-

Young inequality, any subdifferential x∗ ∈ ∂δ∗(dQ
dP ) is a maximizer of supx∈L∞ EQ[x−C(x; Π)1] and

the result follows.

4 Decentralized liquidity pooling

Thus far within this work we have formally introduced the AMMs for prediction markets. Such

structures as previously studied (in, e.g., [13, 36, 34]) are considered with fixed available liquidity

with a central operator running the AMM. Herein we wish to explore aspects of a decentralized

AMM for prediction markets. Specifically, we consider an AMM to be decentralized if the liquidity

pool is comprised of investments by diverse individuals and entities; furthermore, these investors

can both add or remove liquidity at any time prior to the realization of the random event ω, even

after some bets have already been placed.

First, we wish to note that investing as a liquidity provider is “simple” prior to the opening

of the market to trades. Specifically, if an investor provides ℓ > 0 of liquidity to the market, then

they receive a payout at the conclusion of the market equal to a fraction ℓ/L (where L > 0 is the

total initial market liquidity) of Π(ω). That is, liquidity provision is a bet with payoff dependent

on the state of the market.

Second, if an investor wishes to either add or remove liquidity after the market has opened

to trades then we take the idea that these are special kinds of bets that adjust dynamically with

the state of the market. We will focus our discussion on the liquidity provision case as selling a

liquidity position acts similarly. Key to the construction of this special trade is that providing

liquidity to the market should reduce the cost of trading for any counterparty. As such, we follow

the idea from, e.g., [7] that pooling must be taken so that the pricing oracles are unaffected. We

will, however, consider this trade in a generic manner first and then propose the specific structure

for the constancy of the pricing oracles.
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Briefly, let ℓ ∈ L∞
+ \{0} be a position that the liquidity provider is willing to sell in exchange for

a fraction α > 0 of the liquidity remaining Π. In particular, the investor wishes to guarantee that

this fraction of liquidity remaining is accurate after she places her own bet, i.e., x = α(Π− x+ ℓ)

for some α > 0; recall that Π− x+ ℓ is the liquidity that remains in the AMM after the liquidity

provision ℓ is added, but after the bet x is placed, where the prior liquidity position is Π. Solving

for x = α
1+α

(Π + ℓ), we solve the inverse problem to determine the fraction of the liquidity that is

being purchased, i.e., 0 = C
(

α
1+α

(Π + ℓ)− ℓ; Π
)

. In other words, prior to the market opening, the

payoff for investors who provide funding to the AMM was simply the proportion of reserves that

they provided. In contrast, after the market opens and bets have been placed, this is no longer

as straightforward. Liquidity providers are still entitled to some portion of the terminal wealth

that remains at the AMM (i.e., a proportion of Π), but that portion may no longer be a simple

proportion ℓ/Π as this may no longer even be deterministic. Instead, the aforementioned calculation

determines the deterministic proportion α that will be assigned to the liquidity provider. As will

be discussed in greater detail below, the payout from this liquidity position will dynamically adjust

along with the liquidity of the AMM as new bets are made; the payoff of this bet is the α fraction

of the final liquidity Π̄ ∈ L∞
∗ after all bets are placed. It is this dynamic adjustment of the payout

which makes this bet a liquidity provision, i.e., the dynamic adjustment takes the opposite position

to any new incoming bet thereby decreasing price impacts and increasing market liquidity.

Proposition 4.1. Fix the pool size Π ∈ L∞
∗ and new liquidity provision ℓ ∈ L∞

+ \{0}. There exists

a unique fraction of the pool size purchased α∗(Π, ℓ) > 0 such that

0 = C̄(α∗(Π, ℓ)) := C

(

α∗(Π, ℓ)

1 + α∗(Π, ℓ)
Π−

1

1 + α∗(Π, ℓ)
ℓ; Π

)

. (4.1)

Similarly, there exists a unique fraction of the pool size sold at α∗(Π, ℓ) ∈ (−1, 0) satisfying (4.1)

for ℓ ∈ L∞
− \{0} with Π+ ℓ ∈ L∞

∗ .

Proof. Let Π ∈ L∞
∗ and assume that ℓ ∈ L∞

+ \{0}; as the proof for ℓ ∈ L∞
− \{0} with Π + ℓ ∈

L∞
∗ is similar, we omit it here. By (strong) continuity of C (see Corollary 3.5), it immediately

follows that C̄ is continuous on α ∈ (−1,∞). We also have that C̄(0) = C(−ℓ; Π) < 0 and

lim
α→∞

C̄(α) = lim
α→∞

C(Π;Π) > 0. The existence of α∗(Π, ℓ) > 0 now follows. Using the fact that

∂
∂α

(

α
1+α

Π− 1
1+α

ℓ
)

= 1
(1+α)2 (Π + ℓ) ∈ L∞

∗ , and therefore α 7→ α
1+α

Π − 1
1+α

ℓ is strictly increasing,
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and the fact that C(·) is also strictly increasing (see Theorem 3.4(3)), we get that C̄(·) is strictly

increasing as well. Thus we get the desired uniqueness.

Notably, and as briefly mentioned above, the bet α∗(Π,ℓ)
1+α∗(Π,ℓ)(Π + ℓ) is made in such a way that

it will always rebalance to maintain a payout of α∗(Π, ℓ) fraction of the remaining liquidity as new

bets are made. Let Π∗ := 1
1+α∗(Π,ℓ)(Π + ℓ) be the effective liquidity after pooling the liquidity.

When the next trade occurs, the liquidity provider (through, e.g., a smart contract) needs to

simultaneously update their position. That is, when a new bet x ∈ L∞ is made, the trader will

be charged C(x + y − αΠ∗; Π∗) where y ∈ L∞
∗ is the new holdings for the liquidity provider, i.e.,

y = α∗(Π, ℓ)(Π∗ −x− (y−α∗(Π, ℓ)Π∗)+C(x+ y−α∗(Π, ℓ)Π∗; Π∗)1) so that the liquidity provider

maintains the α∗(Π, ℓ) fraction of remaining liquidity after the bet occurs.

Proposition 4.2. Fix the pool size Π∗ ∈ L∞
∗ after a liquidity provision (or withdrawal) of α∗ > −1

was made. The cost of trading is provided by the mapping x ∈ L∞ 7→ (1 + α∗)C( 1
1+α∗x; Π

∗).

Proof. The cost of trading x with the liquidity provision that rebalances to stay in line with the

market is given by C̃ := C(x + y − α∗Π∗; Π∗) where y ∈ L∞ is the rebalancing required for the

liquidity provider. That is, y satisfies the equilibrium y = α∗(Π∗ − x − (y − α∗Π∗) + C(x + y −

α∗Π∗; Π∗)1). Fixing C̃ ∈ R, this implies y = α∗Π∗ − α∗

1+α∗x+
α∗

1+α∗ C̃1. Therefore the result follows

from translativity of the cost fuction (see Theorem 3.4(4))

C̃ = C

(

x+

(

α∗Π∗ −
α∗

1 + α∗
x+

α∗

1 + α∗
C̃1

)

− α∗Π∗; Π∗

)

= C

(

1

1 + α∗
x; Π∗

)

+
α∗

1 + α∗
C̃.

With this foundation for the interaction of the liquidity provision and trades, we now want to

specify ℓ ∈ L∞
+ \{0} so that the pricing oracles are kept constant, i.e., P b(·; Π) = P b

(

·; 1
1+α∗(Π,ℓ)(Π+

ℓ)
)

and P a(·; Π) = P a
(

·; 1
1+α∗(Π,ℓ)(Π + ℓ)

)

. Providing liquidity in this way means that pooling

does not influence the pricing measure quoted by the market.

Corollary 4.3. Fix t > −1 and let the liquidity provided (or withdrawn) be given by ℓ = tΠ. The

fraction of the pool provided (or withdrawn) is given by α∗(Π, tΠ) = t and the pricing oracles P b, P a

are invariant to the liquidity provision (t > 0) or withdrawal (t ∈ (−1, 0)).
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Proof. Recall α∗(Π, ℓ) is the unique root of C̄(α) as defined in (4.1). It trivially follows from that

construction that α∗(Π, tΠ) = t is a root of C̄. Furthermore, and as a direct consequence, the pricing

oracles after the liquidity provision or withdrawal are provided by P b
(

·; 1
1+α∗(Π,tΠ)(Π + tΠ)

)

=

P b(·; Π) and similarly for P a.

This swap is a fraction of the current pool for that same fraction of the final pool (along with any

collected fees). If no trades occur, then the investor will get their initial investment back exactly.

Remark 5. Note that before the first trade is made, the liquidity pool is Π := L1 for initial liquidity

L > 0. Therefore, adding fixed liquidity ℓ > 0 adheres to the proportional rule of Corollary 4.3.

It remains to prove that providing liquidity reduces the costs for counterparties to buy or sell

bets. Fundamentally, this is what liquidity provision is intended to accomplish as it decreases the

price impacts experienced by any bettor. This is proven in the following lemma by noting that

Π∗ = Π under the proportional liquidity provision ℓ = tΠ.

Lemma 4.4. Fix the bet x ∈ L∞. The cost of purchasing this bet is nonincreasing in the liquidity

provision α, i.e., α ∈ (−1,∞) 7→ (1 + α)C( 1
1+α

x) is nonincreasing.

Proof. We use the convexity of C from Theorem 3.4(3) to demonstrate that the function α ∈

(−1,∞) 7→ (1 + α)C( x
1+α

) is nonincreasing. Let −1 < α1 < α2, and define λ := 1+α1

1+α2
∈ (0, 1).

From the convexity of C and C(0) = 0, the desired result follows from

(1 + α2)C

(

x

1 + α2

)

= (1 + α2)C

(

λ(
x

1 + α1
)

)

≤ λ(1 + α2)C

(

x

1 + α1

)

= (1 + α1)C

(

x

1 + α1

)

.

Remark 6. Before concluding this section, we want to briefly discuss the provision of fixed liquidity,

i.e., ℓ = ℓ̄1 for some ℓ̄ > 0. Though tempting, as this is an injection of (a fixed quantity of) cash

to the market, this provision will (generally) alter the pricing oracles. In modifying the pricing

oracles, it can be that a bet x ∈ L∞ becomes more expensive after the deposit of ℓ̄ > 0 than before.

This is counter to the notion of a liquidity provision; we further note that cryptocurrency AMM

markets explicitly accept liquidity only so that the pricing oracles are kept invariant to the change

in pool sizes [7].
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5 Fee structure

Throughout this work we have considered the market making problem without any explicit fees

that are being collected by the market maker.14 In this section we aim to define a manner in which

the AMM can collect fees while retaining the meaningful properties of the no-fee setting as encoded

in Section 3.2 above.

Conceptually, due to the translativity of the cost function C, the AMM is indifferent to any

almost sure bet. As such, we propose that fees are only collected on the (positive) random portion

x − ess inf x1 of the bet x ∈ L∞. That is, for the fixed fee level γ ≥ 0, the cost of purchasing

x ∈ L∞ in the pool Π ∈ L∞
∗ is given by

Cγ(x; Π) := (1 + γ)C(x− ess inf x1; Π) + ess inf x = (1 + γ)C(x; Π)− γ ess inf x. (5.1)

In this way, the AMM collects γC(x−ess inf x1; Π) in cash to be paid out to the liquidity providers.

This surplus is collected by the AMM poolers in compensation for the liquidity they provide. The

no-fee setting corresponds exactly to γ = 0; as will be discussed below, for a well-functioning

market, we will want to cap the fees at γ ≤ 1 (see Remark 10). We recall from the original setup in

(2.1) that the cost function is only applied to the random part of a bet with the essential infimum

being accounted for in the liquidity; as such this fee structure matches the logic applied to AMMs

generally. Note that the fees γ introduced here are not endogenous to the model, but rather are

arbitrarily set. Within the numerical case study of Section 6.1.2, we consider how varying γ may

alter market dynamics and, therefore also, the total collected fees.

Remark 7. The fee structure (5.1) corresponds with that of cryptocurrency AMMs as encoded in,

e.g., [3, 27] in which the trader pays (a fixed fraction of) the assets they sell; herein the bettor is

“selling” cash in exchange for the random payoff. We note that the notation utilized here differs

as, traditionally for cryptocurrency AMMs, the inverse C−1(y; Π) is considered as the primitive

instead.

We further wish to note that collecting fees as a fraction of the purchased bet results in random

fees rather than a deterministic amount. Due to this, we opt solely to investigate the assessment

14Previously we have only considered implicit fees through the bid-ask spread (as in [33]).
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of fees on the cost C rather than the size of the bet x ∈ L∞.

Remark 8. By defining the fees on the (positive) random portion x− ess inf x1 of the bet x ∈ L∞,

we eliminate a possible violation of the law of one price. Specifically, the cost of buying x ∈ L∞
+ is

identical to the cost of buying the fixed payout of ess supx1 and selling ess supx1 − x. Neglecting

counterparty risks, the payoff of these bets are functionally identical and, in assessing fees only on

the random portion of a bet, so are their costs.

Proposition 5.1. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ and associated

payment function C : L∞ → R. For any fixed bet x ∈ L∞\{c1 | c ∈ R}, the mapping γ ∈ R+ 7→

Cγ(x; Π) is strictly increasing in fee level. Furthermore, Cγ(c1; Π) = c for any c ∈ R and γ ≥ 0.

Proof. Assume x ∈ L∞. By construction, ∂
∂γ

Cγ(x; Π) = C(x− ess inf x1; Π). By Theorem 3.4(1),

this is strictly positive so long as x 6∈ {c1 | c ∈ R}. Furthermore, Cγ(c1; Π) = c for any c ∈ R by

construction for any γ ≥ 0.

Herein, we assume that the collected fees γC(x− ess inf x1; Π) ≥ 0 are immediately distributed

to the liquidity providers. As such, when a bet is placed, the pool still updates from Π ∈ L∞
∗ to

Π− x+ C(x; Π)1 ∈ L∞
∗ as in the no-fee setting. By collecting and disbursing fees in this manner,

the impact on our discussion of liquidity pooling in Section 4 remains unaffected.

Corollary 5.2. Let u : L∞
∗ → R be an LBAMM with remaining liquidity Π ∈ L∞

∗ and associated

payment function C : L∞ → R. Fix the fee level γ ≥ 0 and define Cγ : L∞ → R as in (5.1). It

then satisfies the following properties:

1. No arbitrage: Cγ(x) ∈ [ess inf x, (1 + γ) ess supx− γ ess inf x];

2. Increasing utility: u(Π − x + Cγ(x)1) > u(Π) for γ > 0 and x ∈ L∞\{c1 | c ∈ R} with

strict inequality becoming an equality if γ = 0 or x = c1 for some c ∈ R;

3. Convex and monotone: (z, c) ∈ {(z, c) ∈ L∞
+ × R | ess inf z = 0} 7→ Cγ(z + c1) is convex

and strictly increasing;15

15We interpret (z, c) ∈ L∞
+ × R with ess inf z = 0 as the random portion z and the constant portion c of a bet.

Notably L∞ = {z + c1 | z ∈ L∞, c ∈ R, ess inf z = 0} so that this domain does not restrict the space of bets under
consideration.
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4. (Lower semi-)Continuous: x 7→ Cγ(x) is lower semi-continuous in the weak* topology

and Lipschitz continuous with Lipschitz constant 1; and

5. Path independent: Cγ(x+ y; Π) = Cγ(x; Π) +Cγ(y; Π− x+C(x; Π)1) for x, y ∈ L∞ such

that ess inf[x+y] = ess inf x+ess inf y. As a direct consequence, this path independence applies

to splitting a trade x = λx + (1 − λ)x for any λ ∈ [0, 1] and translativity Cγ(x + c1; Π) =

Cγ(x; Π) + c for any x ∈ L∞ and c ∈ R.

Proof. First, recall the definition of Cγ from (5.1).

1. The bounds follow directly from Theorem 3.4(1) applied to the bet x− ess inf x1.

2. By monotonicity of u and Theorem 3.4(2), it follows for any x ∈ L∞\{c1 | c ∈ R} and γ > 0

that

u(Π− x+ Cγ(x)1) > u(Π− x+ C(x)1) = u(Π).

3. Note that Cγ(z + c1) = (1 + γ)C(z) + c for any (z, c) ∈ L∞ ×R. In particular, this holds for

z ∈ L∞
+ such that ess inf z = 0.

(a) Let (z, c) 
 (z̃, c̃). Then, by Theorem 3.4(3), C(z) ≥ C(z̃) and c ≥ c̃ with at least one

of the inequalities strict, i.e., Cγ has the desired strict monotonicity property.

(b) Convexity follows directly from the construction of Cγ(z + c1) and convexity of C (see

Theorem 3.4(3)).

4. Weak* lower semi-continuity follows directly from Theorem 3.4(3) as the essential infimum

is weak* upper semi-continuous. Lipschitz continuity follows following the same logic as in

Corollary 3.5 (using the subsequent result on path independence to guarantee translativity).

5. Path independence follows directly from Theorem 3.4(4) applied to the definition of Cγ under

the assumption that ess inf[x + y] = ess inf x + ess inf y. The two consequences follow since

ess inf x = ess inf λx + ess inf(1 − λ)x and ess inf[x + c1] = ess inf x + c for any x ∈ L∞ and

c ∈ R.
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Remark 9. • Note that the monotonicity of Cγ with fees γ > 0 is more delicate than in the

no-fee setting. This is due to the way in which fees are collected on the random portion of the

bet only. Therefore, the monotonicity of costs need to be assessed separately on the random

portion z ∈ L∞
+ (with ess inf z = 0) and the constant shift c ∈ R. In fact, as observed by the

upper bound on Cγ(x), it is possible that there exists some bet x ∈ L∞ so that Cγ(x) > ess supx

which would violate the naive attempt at monotonicity of x 7→ Cγ(x). For instance, consider

the LBAMM from Example 3.2 with N = 2; if x(ω1) = 0, x(ω2) = 1, Π(ω1) > 0, Π(ω2) ∈

(0, γΠ(ω1) +
γ

1+γ
) then Cγ(x; Π) > 1 = ess supx. In fact, setting Π(ω2) = γΠ(ω1) in that

same example guarantees that Cγ(x; Π) is (strictly) decreasing as x(ω1) ∈ [0, 1) increases.

• Though convexity of Cγ in Corollary 5.2 was only stated on the domain {z+ c1 | z ∈ L∞, c ∈

R, ess inf z = 0}, this can readily be shown to be equivalent to convexity of x ∈ L∞ 7→ Cγ(x).

• Note that path independence is now only defined for trades with additive essential infima.

The general case for path independence, which holds in the no-fee setting as encoded in The-

orem 3.4(4), is not desirable when fees are assessed. This becomes clear when considering a

round trip trade when x ∈ L∞
+ is bought and then subsequently sold; path independence would

imply such a trade nets $0 for the liquidity providers which would violate the collection of any

fees on the purchase or liquidation of the position.

We wish to conclude our discussion of fees by considering how these fees will be quoted to users

through the bid and ask prices, i.e., the modifications to the pricing oracles. Specifically, we define

the bid and ask prices, respectively, as (see (3.3))

P a
γ (x; Π) := lim

tց0

1

t
Cγ(tx; Π) = (1 + γ)P a(x; Π)− γ ess inf x,

P b
γ (x; Π) := lim

tր0

1

t
Cγ(tx; Π) = (1 + γ)P b(x; Π) − γ ess supx

for any Π ∈ L∞
∗ . That is, buying a marginal unit of a bet with payoff x will have a per unit cost of

P a
γ (x; Π) = P a(x; Π) + γ(P a(x; Π) − ess inf x) which is increasing in γ. Further, selling a marginal

unit of that bet will recover P b
γ (x; Π) = P b(x; Π) − γ(ess supx − P b(x; Π)) which decreases as γ

increases. As expected, P b
γ (x; Π) ≤ P b(x; Π) ≤ P a(x; Π) ≤ P a

γ (x; Π) for every x ∈ L∞ and pool size

Π ∈ L∞
∗ . However, as encoded here, the fees may not apply equally on both sides of the market,
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i.e., often P a
γ (x; Π) − P a(x; Π) 6= P b(x; Π)− P b

γ (x; Π).

Remark 10. Noting that a bettor will never elect to buy a bet costing more than its (essential)

supremum nor sell to recover less than its (essential) infimum, the pricing oracles have the effective

bounds of P a(x) ≤ ess supx+γ ess inf x
1+γ

and P b(x) ≥ γ ess supx+ess inf x
1+γ

for any x ∈ L∞ and γ ≥ 0. In

this way the ask price (including fees when γ > 0) is bounded from above by the essential supremum

and the bid price is bounded from below by the essential infimum (i.e., P a
γ (x) ≤ ess supx and

P b
γ (x) ≥ ess inf x). Implicitly to this construction, and necessary to be assumed in practice, the fees

must therefore be bounded γ ∈ [0, 1] so that the bid and ask prices are ordered properly to follow

financial logic.

6 Case Studies

Within this section, we wish to explore two case studies to explore the versatility and applicability

of the AMMs constructed within this work. First, we will replicate a two outcome sports book

with data collected for Super Bowl LVII. With this empirical case study, we explore the potential

profits and losses accrued by the liquidity providers. In the other case study, we explore the use of

an AMM for financial derivatives by simulating a system with a continuous probability space; in

doing so, we prove the viability of our system to adjust the quoted distribution to investor actions.

6.1 Super Bowl LVII

Sports betting on the Super Bowl is big business, with $16 billion wagered in 2023 on Super Bowl

LVII alone.16 One popular way to bet on a single game is with the money line. As opposed to the

probabilities quoted within this work, the money line quotes the profits that would be gained from

a winning bet of $100 (if the underdog) (i.e. if the money line is m > 0, then betting 100, will get

m+100 in case the bid wins), or how much needs to be bet to win $100 (if the favorite) (i.e. if the

money line is m < 0, betting −m will obtain −m+ 100 in case the bid wins). Therefore, it is easy

to reformulate the money line as probabilities. Specifically, if m is the quoted money line for one

team to win, then the ask probability is P a =
−mI{m<0}+100I{m≥0}

|m|+100 .

16https://www.espn.com/chalk/story/_/id/35607249/survey-record-504-million-adults-bet-16b-super-bowl
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Consider the possible outcomes for Super Bowl LVII played between the Kansas City Chiefs

(KC) and the Philadelphia Eagles (PHI), i.e., Ω = {KC,PHI} where we denote the events based

on the eventual winner. In the 2 weeks leading off to the start of the game (i.e., once the two final

teams are determined), bets are accepted at numerous sports books on this two-event sample space.

For the purposes of this data, we collected money line data from Bookmaker.17 The time series of

quoted (implied) bid and ask probabilities for KC are displayed within Figure 1a. (Note that the

bid and ask probabilities for PHI are such that P b(IPHI) = 1−P a(IKC) and P a(IPHI) = 1−P b(IKC)

respectively.)

6.1.1 Deterministic Backtesting

Using this bid-ask spread, we were able to determine the (implied) mid-price by normalizing the

ask prices to sum to 1. This price oracle, P (IKC) as displayed in Figure 1a, drives our back-

testing system. Within this construction we consider 2 utility functions: (i) the expected loga-

rithm utility function as discussed in Example 3.2 and (ii) the Liquid StableSwap utility function

(u(x) = E[log(x)] + λ log(E[x]) with λ = 2) introduced in [7]. With these LBAMMs, we deduce

the trades necessary to exactly replicate the mid-price at Bookmaker (without fees). In doing so,

we make no assumptions on trader’s behavior but rather assume that the quoted mid-price would,

fundamentally, be reflected in any constructed market. Assuming L > 0 cash reserves was initially

available to the AMM, the liquidity available at any time can be determined via

Π(KC) = L
√

P (IPHI)/P (IKC) and Π(PHI) = L
√

P (IKC)/P (IPHI)

for the logarithmic utility and numerically for Liquid StableSwap. Notably, for both of these

LBAMMs, the liquidity available Π scales linearly with the initial cash reserves L; for this reason

we quote all profits and losses as a percentage of the initial cash reserves rather than as an absolute

value. The liquidity remaining, as a percentage of the initial cash reserves, is shown as a time series

in Figure 1d. By computing the liquidity remaining at all times, it is also possible to determine

the bets that are actualized. In this way, we can determine profits gained from fees on trades over

time as well as the gains or losses based on the final outcome of the event.

17Made available from https://pregame.com/game-center/193165/odds-archive
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Consider, first, the logarithmic utility function. In Figure 1b we see how these profits accumulate

until the game outcome (KC) is realized with γ = 1%.18 The quoted bid-ask spread over time with

this 1% fee is shown in Figure 1a. Notably, in Figure 1b and Figure 1c, we see that the final

profits for the liquidity providers can depend significantly on the realized outcome of the game

with approximately 2.3% return just prior to the start of the game. Due to the victory of KC,

this would jump to nearly 5.4% return; in the counterfactual scenario of a PHI win, the liquidity

providers would, instead, be subject to a nearly 0.7% loss. If the fees were increased to only 1.3%

(an increase of just 30bps), then a liquidity provider would break even if PHI was realized and have

over 6% return from the KC victory.

In contrast, by selecting the Liquid StableSwap utility function, we are able to increase the

fees collected from trading substantially. In Figure 1e we see how these profits accumulate until

the game outcome (KC) is realized with γ = 1%.19 From the fees alone, liquidity providers would

experience almost a 6.5% return prior to the start of the game. Due to the victory of KC, this would

jump to nearly 15.7% return; in the counterfactual scenario of a PHI win, the liquidity providers

would, instead, be subject to a 2.5% loss. With these greater potential losses, the fees would need

to increase to 1.38% (an increase of just 38bps) to guarantee a liquidity provider breaks even when

PHI was realized (and over 18.1% return from the KC victory).

6.1.2 Stochastic Backtesting

We now aim to introduce a stochastic backtesting framework to the Bookmaker money line data we

have collected. In contrast to the deterministic backtest of Section 6.1.1 in which the AMM’s price

oracle exactly follows the mid-price of the external sports book, here we assume that the underlying

market price follows a Brownian motion, starting from the initial mid-price of the external market.

We constrain the price process to remain within Bookmaker’s bid-ask spread through a reflection

principle. However, rather than assuming the AMM perfectly tracks this price process, we assume

trades occur only to capture arbitrage opportunities between the true (stochastic) price process

and the price oracle when accounting for the fees γ. In this way, as in Section 6.1.1, we make

18Bookmaker adjusts the money line less frequently than our LBAMM would, thus the profits quoted herein are
a lower bound to those that would be collected in practice due to the accumulation of many small trades which
introduce additional volatility.

19As we fixed the prices based on the data, this bid-ask spread is identical to that found with the logarithmic utility
function.
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Figure 1: Section 6.1.1: Visualization of LBAMMs when applied to Super Bowl LVII.

no assumptions on bettor behavior but rather utilize the available betting line data to construct

simple price processes in order to find (potential) arbitrage opportunities.

Due to the profits exhibited in the prior backtest, we focus exclusively on a dynamic version of

the Liquid StableSwap AMM herein with ut(x) = EPt[log(x)]+λ log(EPt [x]) with λ = 2 and Pt(KC)

is determined by the (implied) mid-price of Bookmaker money line data at time t. The choice of

dynamic probability measure is such that the stable region of the AMM tracks the mid-price of the

external market and is intended to maximize the fees collected. As far as the authors are aware,

such a dynamic AMM has not previously been proposed in either prediction or cryptocurrency

markets.

Figure 2 displays the expected profits, assuming the terminal mid-price of the external data

is the true probability of a KC victory, under varying fee levels γ ∈ {0%, 0.5%, 1%, ..., 5%} and

(annual) volatilities of the Brownian motion σ ∈ {5%, 25%, 50%}. To complete these computations

we consider Monte Carlo simulations with 500 price paths (with a time step of 1 minute); both

the average and the 95% confidence interval are plotted in Figure 2. The common pattern in these
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profits across different volatilities σ is due to the competing elements insofar as the number of trades

decreases as the fees γ increase as there are fewer arbitrage opportunities to exploit. Thus there is

a tradeoff between the number of transactions and the fees collected per transaction. Notably, at

the extremes, no fees are collected when γ = 0 and no trades occur when γ = 5%, as this fee level

marginally exceeds the bid-ask spread of Bookmaker.

Consider now the optimal fee levels for the liquidity provider. Considering Figure 2, though

subtle, it can be seen that the optimal fee level γ is decreasing in volatility. That is, as volatility

increases, the greater number of transactions dominates the aforementioned tradeoff. Intuitively,

higher volatility increases the probability that the AMM’s price sufficiently deviates from the Brow-

nian price path to create arbitrage opportunities. In opposition, and as already noted, higher fees

reduce the trading activity by widening the no-arbitrage range. Therefore, when volatility is higher,

increased potential betting activity around the Brownian price path dominates the reduction in fees

collected from each individual transaction. Furthermore, these optimal fee levels (roughly around

γ ≈ 1%) – which result in significant expected profits of between 1% and 6% return in a 2 week

period – come at a much lower bid-ask spread than that quoted by Bookmaker. Consequently,

the introduction of the AMM creates a win-win situation: liquidity providers can optimize their

expected profits and liquidity takers find a more efficient market in which to transact. By the same

arguments, the optimal fees are monotonic with respect to Bookmaker’s bid-ask spread but are

always dominated by those external fees. In this way, the optimal AMM fee construction must

always increases market efficiency.

6.2 Financial Derivatives

In this final case study, we explore the use of an LBAMM for pricing European options with a

fixed expiry. Notably, for this construction, we want to consider a general probability space rather

than the finite probability space considered in the prior case study. In doing so, we consider the

LBAMM based on the scaled and shifted logarithmic utility function as is considered in Example 3.3

with ǫ = 10−6 chosen arbitrarily. This AMM is constructed with initial cash reserves of L = 100

distributed so as to create an initial lognormal distribution for the price at the maturity time.

Herein we consider a derivatives payoff as a bet on a market outcome. The LBAMM then

represents a type of utility indifference pricing, see, e.g., [10]. In our case, an LBAMM is indifferent
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Figure 2: Section 6.1.2: Expected profits (average and 95% confidence interval) for dynamic liq-
uidity stableswap utility on simulated betting data calibrated to Super Bowl LVII.

between two scenarios – one in which no bet is placed, and the other in which a bet is placed with

the liquidity increased by the bet’s price. However, in contrast to a typical derivatives market, we

do not consider the market for the underlying asset(s), i.e., it is not possible to hedge using the

underlying securities. Instead, the initial liquidity is used to compensate for the fact that there

is no hedge possible for the market makers; this initial liquidity is used to guarantee that the

LBAMM can pay off the sold derivatives at maturity. That is, within this framework without the

underlying market for hedging, options and other derivatives can be viewed as classical bets on

market outcomes.

In order to avoid this derivatives market from converging to a Dirac measure, we assume that

market trading ends a fixed amount of time prior to expiry. Due to the liquidity-bounded loss for

the LBAMM, this market is able to trade any measurable payoff structure x ∈ L∞. In Figure 3,

the price density is plotted under three circumstances: (i) the initial lognormal distribution; (ii)

after 50 put options with strike at $1 have been purchased (at an average cost of $0.1103 per

contract); and (iii) after 100 put options with strike at $1 have been purchased (at an average cost

of $0.1166). It can clearly be seen that these derivative purchases appropriately shift the mass of

probability leftward and increase its peakedness. In addition, though subtle, there is a kink in the

distribution at $1 to match up with the strike price used. Finally, we would like to point out that
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Figure 3: Section 6.2: Impact of purchasing put options on the quoted pdf for market prices at
maturity.

in the lognormal setup used for this case study, we can compare these per-contract costs to the

Black-Scholes price of $0.0997. This price corresponds to the cost of a hedge under a risk-neutral

measure. This should be compared to the price we obtained earlier, which represents the utility

indifference price in a scenario where no hedging is allowed.

While put options naturally have uniformly bounded payoffs, that is not true for all options. For

instance, call options have unbounded payoff and, thus, do not fit into the L∞ framework proposed

within this work. However, much as in the risk measurement literature (see, e.g., [17]), call options

and other derivatives with unbounded payouts can be adapted to this framework by imposing a cap

to the bet, e.g., the adapted call option would take value xT := min{(S −K)+ , T} for underlying

price S, strike price K, and some cap T > 0 sufficiently large. Figure 4a displays the cost of 100

at-the-money call options with stirke $1 assuming an initial lognormal distribution; notably, if T

is set too high, e.g., so that T > ess supΠ, then the cost of these options will be proportional to

T to guarantee the positivity of the resulting position Π− xT + C(xT ; Π)1 ∈ L∞
∗ . However, if we

scale the initial liquidity with the cap T then, due to the low probability of high payouts, the cost

of these 100 call options begins to fall for T (and therefore liquidity) large enough; this is displayed

in Figure 4b.

Remark 11. For both of our numerical experiments with puts and call options, we have only
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Figure 4: Section 6.2: Impact of placing a cap on the cost of 100 at-the-money call options with
strike $1.

considered the case with a fixed strike price. We note that LBAMMs are designed to permit user

to select any desired strike price. In such a way, even when considering digital puts and calls (to

guarantee boundedness and eliminate the need for a cap, as was done for our European call option

example above), we utilize a general probability space to allow users to freely set the strike price.

7 Conclusion

To summarize, in this manuscript, we have presented a general utility framework for a prediction

market maker over general probability spaces. The novelty of this framework is that it considers

the liquidity separately and in a decentralized way, which in turn allows for additional liquidity to

be provided or withdrawn after the market opened and bets have already been received. We have

also investigated the resulting properties of the pricing oracles. Additionally, we have proposed a

novel way to charge fees on the random part of the bet that does not create an arbitrage.

Future research in decentralized prediction markets should more rigorously address the problem

of optimizing fees so as to maximize (risk-adjusted) profits gained by the liquidity providers. Doing

so will require dynamic models of betting so as to accurately study risks and returns. Additionally,

in the proposed setup, we ignore the role of information on prediction markets; if an event becomes

a certainty prior to the maturity of the bet, the liquidity providers would be arbitraged until no cash

reserves remain. To avoid such a fate, we recommend a dynamic fee schedule which can counteract
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the informational gains of bettors. Such a system, especially to optimize this fee schedule, would

be of great import for practical implementations.
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