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and Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Luca V. Delacrétaz
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The approach to equilibrium in interacting classical and quantum systems is a challenging problem of

both theoretical and experimental interest. One useful organizing principle characterizing equilibration is

the dissipative universality class, the most prevalent one being diffusion. In this paper, we use the effective

field theory (EFT) of diffusion to systematically obtain universal power-law corrections to diffusion. We

then employ large-scale simulations of classical and quantum systems to explore their validity. In particular,

we find universal scaling functions for the corrections to the dynamical structure factor hnðx; tÞni, in the

presence of a single Uð1Þ or SUð2Þ charge in systems with and without particle-hole symmetry, and present

the framework to generalize the calculation to multiple charges. Classical simulations show remarkable

agreement with EFT predictions for subleading corrections, pushing precision tests of effective theories for

thermalizing systems to an unprecedented level. Moving to quantum systems, we perform large-scale

tensor-network simulations in unitary and noisy 1D Floquet systems with conserved magnetization. We

find a qualitative agreement with EFT, which becomes quantitative in the case of noisy systems.

Additionally, we show how the knowledge of EFT corrections allows for fitting methods, which can

improve the estimation of transport parameters at the intermediate times accessible by simulations and

experiments. Finally, we explore nonlinear response in quantum systems and find that EFT provides an

accurate prediction for its behavior. Our results provide a basis for a better understanding of the nonlinear

phenomena present in thermalizing systems.
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Statistical Physics

I. INTRODUCTION

One of the main pursuits of condensed matter physics
is the understanding of out-of-equilibrium phenomena in
many-body systems. Transport probing the slightly out-of-
equilibrium (linear response) regime is particularly acces-
sible experimentally. Therefore, it is crucial to understand
it theoretically to link experiments with insights into
the fundamental structure of correlated matter. The

experimental accessibility of linear response observables

has allowed us to establish some of the most puzzling

phenomenology in condensed matter physics, including the

T-linear resistivity [1] of high-Tc superconductors and

heavy fermion systems, anomalous Hall angles [2], and

magnetoresistance [3], which have largely eluded explan-

ations despite decades of activity. More recently, experi-

ments in synthetic quantum matter, such as cold atoms and

superconducting quantum circuits, have offered new tools

to explore quantum transport (e.g., Refs. [4–8]), further

emphasizing the need for a better theoretical understanding

of the landscape of transport phenomena in many-body

systems. The theoretical challenge lies in finding controlled

methods to study dynamics in strongly correlated systems.

Hydrodynamics—broadly understood as the emergent

dynamics of conserved densities in thermalizing systems—

offers particularly suitable tools in this regard, providing a
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framework to parametrize and understand near-equilibrium

dynamics at late times. In the hydrodynamic limit, the

dynamics typically follow a universal behavior, character-

ized by a dissipative universality class, the most prevalent

being diffusion. While deriving the hydrodynamics of

diffusion from microscopics is typically a challenging task,

experimental and numerical evidence strongly suggests that

it describes the leading-order linear response at late times of

thermalizing classical and quantum many-body systems,

across diverse scales and platforms. However, the dissipa-

tive universality classes provide information beyond the

leading late-time behavior of linear response: They also

include nonlinear response and universal scaling correc-

tions to observables. In particular, the leading late-time

behavior of simple observables such as the dynamic

structure factor hnðx; tÞni can be found from classical

hydrodynamic equations [9]. However, the understanding

of corrections to linear response and more complicated

observables requires a framework for hydrodynamic fluc-

tuations that systematically treats noise. Several proposals

for doing so exist, including generalizations of the Martin-

Siggia-Rose formalism [10] to allow for non-Gaussian

noise, Fokker-Planck equations for continuous fields (e.g.,

Ref. [11]), macroscopic fluctuation theory [12], and effec-

tive field theories on Schwinger-Keldysh contours [13]. It is

not clear which of these effective theories—if any—

describes thermalizing many-body systems beyond the

leading late-time behavior. Furthermore, the differences

between classical and quantum systems in terms of hydro-

dynamic fluctuations remain ambiguous, as does the

capacity of these effective theories to discern them.

Beyond identifying the correct theory of fluctuations,

understanding corrections to observables in thermalizing

systems has important experimental and numerical impli-

cations. Starting with numerics, a systematic theory of

scaling corrections is critical for quantum simulations,

which can typically access intermediate times, during

which the effects of corrections can be significant. These

corrections can lead to an inaccurate determination of

transport parameters or even in an incorrect value of the

dynamical exponent z, as illustrated in Fig. 1. Additionally,
diffusive dynamics are also present in nongeneric systems,

such as certain integrable systems [14–16] and noninter-

acting systems where diffusion is induced by noise. In these

cases, even if the leading late-time behavior is the same, the

scaling corrections are sensitive to the number and type of

conserved densities; therefore, they offer precision tests of

thermalization, unambiguously distinguishing various

apparently diffusive systems. In experiments, the presence

of these corrections has interesting consequences for the

understanding of thermalization in correlated materials.

Power-law corrections to late-time observables come with

timescales related to the local equilibration time—the

timescale at which regular hydrodynamics kicks in. This

timescale is parametrically large in weakly coupled or

nearly integrable systems but seemingly cannot be made

arbitrarily small at strong coupling; this finding has led to

the expectation that the local equilibration time is univer-

sally bounded by the “Planckian” time, ℏ=T [17–20]. We

will show that the leading power-law corrections are in fact

entirely fixed by derivatives of diffusivities with respect to

the equilibrium value of the transported density or asso-

ciated potential D0 ≡ dD=dn (e.g., temperature for heat

diffusion); hydrodynamics, therefore, universally ties non-

linear response, scaling corrections to linear response, and

dependence of transport coefficients on experimental tun-

ing parameters. Since the latter are readily available in

experiments and numerics, this provides a timescale that

must be exceeded to access the asymptotic regime.

In this paper, we use the effective field theory (EFT) of

diffusion [13] to systematically and quantitatively study the

corrections to observables in generic diffusive systems.

The EFT relies on two mild assumptions: (1) the locality of

the generator of the dynamics and (2) the thermalization

of the system; i.e., the only collective excitations that

survive at late times are conserved densities and associated

noise fields. Therefore, it is expected to apply to a broad

range of quantum and classical systems. We focus on the

FIG. 1. (a) Nonlinear fluctuations of conserved densities in

generic many-body systems, (b) leading to universal corrections to

hydrodynamics at late times. Panel (c) shows that, in the case of a

single diffusive density, the leading correction is positive and can

cause a diffusive system (with the autocorrelation function

illustrated in green) to appear superdiffusive (yellow, z ¼ 3=2 is

shown above) at intermediate times. The EFT of diffusion predicts

the coefficient of this correction, τ ¼ ðχ2D02=16πD4Þ, together
with a universal scaling function of x=

ffiffiffiffiffiffi

Dt
p

; see Eqs. (1) and (2).
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dynamic structure factor hnðx; tÞni in 1D lattice systems

(generalizations greater than 1D are shown in the

Appendix A), where nonlinear corrections are particularly

strong, but we also study the nonlinear response (in the

Appendix D), which offers a complementary verification of

the theory’s predictions. The potential significance of

scaling corrections to correlation functions in quantum

systems has been studied for some time [21,22]; however,

even the corrections to the considerably simpler autocor-

relation function, hnð0; tÞni, were only obtained analyti-

cally and observed numerically recently [23,24].

We start by sharpening these results and generalizing the

approach in several directions to ultimately construct a

theory of scaling corrections in thermalizing systems,

providing a framework to make quantitative predictions

systematically in an expansion at late times. We first show

that the coefficient of the leading correction is entirely fixed

in terms of transport parameters of the system and their

derivatives with respect to equilibrium densities, which

allows us to establish that the correction is non-negative

in the case of a single diffusing density, making generic

diffusive systems appear superdiffusive at intermediate

times (Fig. 1). Next, generalizing to the dynamic structure

factor hnðx; tÞni, we find the universal scaling function

of x=
ffiffiffiffiffiffi

Dt
p

accompanying this correction. We also compute

subleading corrections, which arise from higher-order

(two-loop) fluctuation effects, as well as higher-derivative

terms in the EFT. These corrections are particularly

important in systems with particle-hole symmetry, where

the leading, one-loop, correction is absent. These new

corrections come with their own universal scaling functions

of x=
ffiffiffiffiffiffi

Dt
p

, summarized in Table I. We also present the EFT

framework required to study corrections in the presence of

multiple diffusive charges and derive the corrections for the

case of chaotic spin chains with SUð2Þ symmetry.

We then quantitatively test these predictions in numerics.

We first consider classical lattice gases where DðnÞ is

known analytically, so the theory prediction can be com-

pared to simulations without requiring any fitting param-

eter. We find remarkable agreement for the entire scaling

function accompanying the correction to diffusion, shown

in Fig. 4, thereby providing a test of theories of fluctuating

hydrodynamics with an unprecedented level of precision.

We next show that the EFT corrections are also present

in the dynamics of interacting quantum spin chains. In this

case, the classical resources required to accurately capture

the dynamics grow rapidly with the simulation time, and

therefore, our simulations cannot always reach asymptotic

times. We demonstrate that incorporating the EFT correc-

tions into the fitting process leads to considerably more

accurate transport parameters, such as diffusivity.

Finally, we discuss nonlinear response. We show that the

EFTuniversally ties higher-point functions of densities [25]

to scaling corrections to linear response. These observables

can therefore be used to understand which timescale must

be exceeded to enter the asymptotic (late-time or low-

frequency) regime. As controlled experimental probes of

nonlinear response improve [26,27], this case offers a

quantitative correspondence between these observables

and thermalization. We expect these nonlinear observables,

as well as fluctuation corrections to linear response, to be

within reach of current experiments in cold atoms as

well [6,8,28]. Measuring higher-point functions in

numerics can also help unambiguously establish the dis-

sipative universality class with limited resources.

The paper is organized as follows. In Sec. II, we present

the leading corrections to the full dynamical structure factor

in 1D for systems with one Abelian local charge. Next, we

present the corrections for systems that additionally exhibit

particle-hole symmetry and therefore exhibit vanishing

leading corrections. These corrections originate from

both linear and nonlinear fluctuations. However, nonlinear

fluctuations are logarithmically stronger in 1D and are

expected to dominate at long times. In Sec. III, we

formulate the EFT formalism and present the main steps

towards the calculation of the corrections. In Sec. III A, we

derive the leading one-loop corrections, and in Sec. III B,

we outline the basic steps for the two-loop calculation

required to obtain the nonlinear corrections in systems with

particle-hole symmetry. Then, in Sec. III C, we discuss the

structure of linear corrections. Section III D extends our

results to systems with multiple densities. In particular, we

present the result for a single non-Abelian [SUð2Þ] charge.
We conclude by numerically verifying the leading-order

corrections for classical systems in Sec. III E. In Sec. IV,

we study the linear response regime of quantum systems

(coherent and incoherent) with magnetization conservation.

For incoherent systems, we quantitatively verify the pres-

ence of EFT predictions. Coherent dynamics are more

complex, and they display longer transient phenomena that

persist on all simulated timescales. Nevertheless, our results

qualitatively agree with EFT. In the conclusion, Sec. V,

we consolidate our findings, discuss the relevance of

these results for the field, and outline potential avenues

for future research. In Appendix D, we explore the non-

linear response through a simple three-point function,

which offers a complementary test for the validity of EFT.

TABLE I. Leading-order corrections to the dynamical structure

factor of chaotic diffusive systems from loop corrections (non-

linear) or higher-derivative corrections (linear); see Eqs. (1)

and (4). The leading-order nonlinear correction (one-loop)

vanishes in the presence of particle-hole symmetry, and therefore,

the subleading correction (two-loop) dominates. These nonlinear

corrections are the leading corrections in one dimension (d ¼ 1).

Leading order No particle hole Particle hole

Nonlinear 1

td=2
F1;0

1

td
ðF2;0 þ logðtÞF̃2;0Þ

Linear 1

t
F0;1

1

t
F0;1
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II. FULL SCALING FUNCTION—ANALYTICAL

PREDICTIONS

Whenever diffusion or any other hydrodynamic behavior

emerges in a many-body system, it is inevitably accom-

panied by scaling corrections that may be important at

intermediate times. These corrections arise from higher-

derivative corrections [29] as well as fluctuation (or “loop”)

corrections [30] in the hydrodynamic description. While

these corrections have been seen in the context of quantum

many-body systems for some time (see, e.g., Ref. [21]),

they are often ignored. Since accessing late times in

quantum simulations is fairly prohibitive, accounting for

these corrections to scaling is crucial even to correctly

capture the dissipative universality class of a given system.

One central result of this work is that these scaling

corrections come with entire universal scaling functions,

which can be obtained from the EFT [13]. For example,

the leading correction to diffusive correlation functions

in one dimension comes from a one-loop correction and

takes the form

hnðx; tÞni ¼ χ
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

�

F0;0ðyÞ þ
1
ffiffi

t
p F1;0ðyÞ þO

�

log t

t

��

;

ð1Þ

where F0;0 and F1;0 are scaling functions of the scaling

variable y≡ x=
ffiffiffiffiffiffi

Dt
p

. The leading scaling function

F0;0ðyÞ ¼ e−y
2=4 solves the linearized diffusion equation,

whereas the leading correction F1;0ðyÞ comes from a

one-loop contribution [23], which, as we show below,

takes the form

F1;0ðyÞ¼
χD02

D5=2
F̃1;0ðyÞ;

F̃1;0ðyÞ¼
4þy2

16
ffiffiffi

π
p e−y

2=2þyðy2−10Þ
32

e−y
2=4Erfðy=2Þ: ð2Þ

We have separated F1;0 into a universal dimensionless

function F̃1;0 and a nonuniversal factor that involves the

susceptibility χ and the diffusivityD (like the leading-order

correlator) but also the derivative of the diffusivity with

respect to the background value of the diffusing density

D0 ≡ dDðnÞ=dn. If this parameter is known, e.g., by

measuring the diffusivity at several densities, the entire

functional form of the 1=
ffiffi

t
p

correction to diffusion is fixed.

One interesting feature of this correction is that, for x ¼ 0,

it is non-negative, F1;0ð0Þ ¼ ðχD02=D5=2Þð1=4 ffiffiffi

π
p Þ ≥ 0,

which implies that the autocorrelation function approaches

its asymptotic diffusive form from above at late times:

hnð0;tÞni¼ χ
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

�

1þ χD02

4
ffiffiffi

π
p

D5=2

1
ffiffi

t
p þO

�

logt

t

��

: ð3Þ

Therefore, if a dynamic critical exponent z is extracted by

fitting the autocorrelation function as hnð0; tÞni ∼ 1=t1=z

at late times, a diffusive system will always naively

appear to be superdiffusive, z < 2. This is illustrated

in Fig. 1.

Eq. (1) includes the first two terms in a general

expansion in derivatives and fluctuations, whose structure

is shown in Eq. (A1). The correction to diffusion that

arises from l-loop contributions at nth order in the

derivative expansion in the EFT scales as 1=tnþld=2 in

d spatial dimensions and is encoded in a scaling function

Fl;nðyÞ, which is universal up to one (or a few) nonuni-

versal Wilsonian coefficients, similar to the functions

in Eq. (2).

Given that diffusivities generically depend on density,

the leading correction (2) is typically present. However,

D0 may vanish at special values of the density: for

example, if there is a particle-hole (or charge conjuga-

tion) symmetry, which commonly arises in lattice systems

at half filling. In this case, the leading correction to

diffusion takes the form

hnðx; tÞni ¼ χ
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

�

F0;0ðyÞ þ
1

t
ðF0;1ðyÞ þ F2;0ðyÞ

þ F0
2;0ðyÞ log tÞ þO

�

log t

t2

��

ð4Þ

and has a higher-derivative contribution F0;1ðyÞ and a

two-loop contribution F2;0ðyÞ þ F0
2;0ðyÞ log t. The former

can be shown to take the form

F0;1ðyÞ ¼ ½c1ðy2 − 2Þ þ c2y
2ðy2 − 6Þ�e−y2=4; ð5Þ

where c1, c2 are nonuniversal transport parameters while

the latter is obtained in this paper and is given by

F2;0þF0
2;0 log t¼

χ2D002

12
ffiffiffiffiffiffi

3π
p

D3
½F̃2;0þ F̃0

2;0 log t�

F̃2;0ðyÞ¼
Z

∞

0

ds

π
cosðsyÞs2

×

�

s2e−s
2

�

log
1

s2
þEi

�

2s2

3

��

−
3

2
e−s

2=3

�

F̃0
2;0ðyÞ¼

y4−12y2þ12

32
ffiffiffi

π
p e−y

2=4; ð6Þ

with EiðzÞ≡ −
R

∞
−zðdu=uÞe−u. In the first line, we again

separated the scaling function into a nonuniversal

factor, which now depends on D00 ≡ d2DðnÞ=dn2, and a

universal scaling function. Notice that a shift in the

logarithm log t → logðt=τÞ can be absorbed by the

higher-derivative corrections c1, c2 in Eq. (5). At
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asymptotically late times, the diffusive autocorrelation

function is again approached from above:

hnð0;tÞni¼ χ
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

�

1þ χ2D002

32
ffiffiffi

3
p

πD3

logt

t
þO

�

1

t

��

: ð7Þ

We note, however, that this correction only has a log t
enhancement compared to the non-sign-definite 1=t
corrections from Eq. (5). For the reader’s convenience,

the universal scaling functions found above are illustrated

in Fig. 6 in the Appendix A 5.

III. SCALING CORRECTIONS FROM THE EFT

The universal corrections to diffusion quoted in Eqs. (1)

and (4) can be obtained from the effective field theory

(EFT) of diffusion [13,23]. These corrections arise from

thermal fluctuations (loops) of the hydrodynamic densities

and noise fields. Several qualitative properties of these

loops were understood shortly after their discovery in

classical numerics [30], e.g., through mode-coupling

approximations or the Martin-Siggia-Rose approach [10],

which established first steps towards a general EFT for

fluctuating hydrodynamics. The modern EFT approach

completes these constructions by elevating them into a

systematic expansion in derivatives and fluctuations; there-

fore, we follow this approach here.

We are interested in studying transport in a system with

at least one conserved quantity, leading to a continuity

equation (in the continuum limit)

ṅþ∇ · j ¼ 0: ð8Þ

The density n could correspond to energy density, charge

density, magnetization density, etc. We first focus on the

situation where a single density is conserved and discuss

generalizations to multiple densities in Sec. III D.

A generating functional for correlation functions of

densities and currents in the thermal state ρβ can be written

Z½A1; A2� ¼ TrðU½A1�ρβU†½A2�Þ; ð9Þ

where A1, A2 are background gauge fields that couple to the

conserved current in the time-evolution operator

U½A�¼T exp

�

−i

Z

∞

−∞

dt

�

H−

Z

ddxjμAμðt;xÞ
��

; ð10Þ

where we have collectively denoted the charge and current

density by jμ ¼ ðn; jiÞ. Derivatives of logZ with respect to

A1, A2 can generate correlation functions of jμ with various
time orderings. If the system thermalizes, one expects the

partition function to have a representation in terms of a

local effective Lagrangian of the long-lived hydrodynamic

variables. It is local in space and time because there are no

other long-lived excitations in the thermal state—this is the

assumption of thermalization. In the approach of Ref. [13],

this effective Lagrangian is a function of the fluctuating

density n and a conjugate field ϕa:

Z½A1; A2� ≃
Z

DnDϕae
i
R

dtddxL
: ð11Þ

What is gained in universality is lost in exactness: While it

is not an exact representation of the microscopic partition

function (9), Eq. (11) provides a systematic expansion for

it when background fields A have slow variation in

time (and space) compared to the local equilibration time

of the system. We further motivate this construction in

Appendix A 2 and focus here on how it is used to obtain

universal corrections to diffusion. To leading order in

derivatives, the effective Lagrangian is found to be

L ¼ iσðnÞð∇ϕaÞ2 − ϕaðṅ −∇ðDðnÞ∇nÞÞ þ � � � : ð12Þ

Here, σðnÞ and DðnÞ are functions of the density that are

not fixed by the EFT: They correspond to the conductivity

and diffusivity of the system. These functions also play an

important role in macroscopic fluctuation theory [12].

In the present approach, they are just the leading terms

in a general expansion in derivatives (see, for example,

Ref. [31] for a discussion of certain terms in the EFT that

do not appear in constitutive relations).

As in most EFTs, it is typically impossible to derive

Eq. (11) from a microscopic model of interest. One

exception is in the context of strongly interacting holo-

graphic quantum field theories, where progress has been

made in deriving at least the quadratic part of the EFT from

microscopics [32–34] (see Refs. [35–38] for earlier work

in this direction); similar derivations may be possible for

lattice systems with large local Hilbert space dimension

(e.g., Refs. [39,40]) or noisy systems in the limit of strong

noise (e.g., Refs. [41,42]).

When studying linear response or more general corre-

lation functions, one expands these functions around the

background value of interest for the density n ¼ n̄þ δn,

DðnÞ ≃Dþ δnD0 þ 1

2
δn2D00 þ � � � ; ð13Þ

whereD;D0; D00, etc. on the right-hand side are evaluated at
the background density n̄. These parameters are Wilsonian

coefficients of the EFT: They are not fixed by the EFT (and,

in fact, are not universal), but the EFT instead predicts how

they enter in any late-time observable. Since the same

coefficients enter in a large number of observables, the

problem is highly overdetermined and the EFT has sub-

stantial predictive power.
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In the following subsections, we use the EFT in Eq. (12)

to compute one-loop and two-loop corrections to the

retarded Green’s function of the charge density

GRðω; qÞ ¼ σq2

−iωþDq2
þ δGRðω; qÞ: ð14Þ

Here, GR is simply related to the Fourier transform of the

dynamical structure factor through fluctuation-dissipation

relations, but it has a simpler analytic structure and is

therefore more convenient to work with. In the EFT, it can

be obtained from the mixed correlator (see Appendix A 2),

GRðω; qÞ ¼ iσq2hnϕaiðω; qÞ: ð15Þ

At tree level, it can be evaluated using the propagators of

the fields obtained from the Gaussian Lagrangian (12):

hnϕai0ðω; qÞ ¼
1

ωþ iDq2
;

hnni0ðω; qÞ ¼
2σq2

ω2 þD2q4
: ð16Þ

Using Eq. (15), one recovers the leading diffusive behavior

in Eq. (14). The second piece δGRðω; qÞ comes from loop

and higher-derivative corrections, which are studied below.

A. One-loop corrections

Loop corrections to Eq. (14) arise due to nonlinearities in

the EFT. For example, expanding DðnÞ as in Eq. (13) leads
to a cubic term,

Lð3Þ ¼ 1

2
D0∇2ϕan

2: ð17Þ

This term produces a cubic vertex that, working perturba-

tively in these interactions, will lead to loop corrections

to GR. Note that the perturbative expansion is always

controlled because nonlinearities are irrelevant. Indeed,

Eq. (16) implies that density fluctuations scale as

δnðt; xÞ ∼ qd=2; since the cubic nonlinearity is suppressed

by an extra power of δn, it gives small corrections at late

times or long distances, where ω ∼ q2 → 0. This finding is

in contrast to momentum-conserving systems in d ¼ 1,

where nonlinearities are relevant and lead to a breakdown

of diffusion that is replaced by the KPZ universality

class [43]. That the perturbative expansion is controlled

in the present situation is a derivation of the EFT rather than

an assumption.

The cubic action also contains a term proportional to σ0.
While this term leads to a nonlinear response [25], in

Appendix A 3, we show that it does not contribute to the

one-loop corrected two-point function; we therefore ignore

it here.

The cubic vertex (17) leads to a one-loop correction

to hnϕai shown in Fig. 2. Its evaluation, performed in

Ref. [23], is streamlined here. It is convenient to amputate

the external legs and parametrize the correction as

δDðω; qÞ, namely,

δhnϕai ¼ −iq2δDðω; qÞðhnϕai0Þ2: ð18Þ

The one-loop correction then takes the form

δDðω; qÞ ¼ −iD02
Z

p0
q02hnϕaiðp0Þhnniðp − p0Þ; ð19Þ

where we have used the short-hand notation p≡ fω; qg,
and

R

p ≡
R

½dωddq=ð2πÞdþ1�. The loop integrals can be

readily evaluated in any dimension (see Appendix A 3), and

they give

δDðω; qÞ ¼ χD02

D2
ð−iωÞαd

�

q2 −
2iω

D

�

; ð20Þ

where χ ≡ σ=D is the static susceptibility, with

αdðzÞ ¼
ð−zÞd2−1

ð16πÞd=2Γðd
2
Þ ·
�

iπ if d odd

log 1

z
if d even

: ð21Þ

The general scaling δD=D ∼ qd agrees with expectations:

The cubic interaction is suppressed by δn ∼ qd=2, and two

cubic vertices are necessary to produce a loop correction.

The detailed loop calculation is necessary to obtain the

overall coefficient, as well as the entire dependence on the

dimensionless ratio Dq2=ω. Nevertheless, several aspects
of the result could have been anticipated on general

grounds: (i) The fact that the correction vanishes in the

static limit limω→0 δDðω; qÞ ¼ 0 is required by the analy-

ticity of equilibrium thermal correlators due to the finite

thermal correlation length [44]; (ii) the existence of a

branch point at ω ¼ −ði=2ÞDq2 follows from a simple

cutting argument [23].

We are most interested in the case d ¼ 1:

δDðω; qÞ ¼ χD02

D2
ð−iωÞ 1

4

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − 2iω
D

q : ð22Þ

FIG. 2. Left diagram: one-loop correction to diffusion. Right

diagram: two-loop correction to diffusion at half filling.

The propagators hnni0ðω; qÞ and hnϕai0ðω; qÞ from Eq. (16)

correspond to the solid lines and half-solid half-dashed lines,

respectively.
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Fourier transforming this expression, or rather δGRðω; qÞ,
is straightforward, but it is presented in Appendix A 5 for

completeness; this process results in a correction to the

correlation function shown in Eq. (2).

B. Two-loop half-filling correction

WhenD0 ¼ 0, there is no one-loop correction to diffusion.

This situation naturally arises in particle-hole symmetric

systems at half filling because D0 ≡ ½dDðnÞ=dδn� is

odd under particle-hole (or charge conjugation) symmetry

δn → −δn and must therefore vanish. The leading fluc-

tuation corrections come instead from a two-loop diagram,

shown in Fig. 2, arising from the quartic vertex

Lð4Þ ¼ 1

6
D00∇2ϕan

3: ð23Þ

Because this interaction scales as Lð4Þ=Lð2Þ ∼ δn2 ∼ qd, and
since two such vertices will be necessary to give a nonana-

lytic correction to the two-point function, the two-loop

correction will scale as δGR=GR ∼ q2d ∼ ωd (up to loga-

rithms). In d ¼ 1, these corrections are as large as higher-

derivative corrections to diffusion, studied in the next

section, which scale as q2.
The two-loop correction to hnϕai, with external legs

amputated, is given by

δDðω;qÞ

¼−
i

2
D002

Z

p0;p00
q002hnϕaiðp00Þhnniðp0−p00Þhnniðp−p0Þ:

ð24Þ

The integrals are evaluated in Appendix A 4. One finds

δDðω; qÞ ¼ 1

2

ðχD00Þ2
D2

ð−iωÞβd
�

q2 −
3iω

D

�

; ð25Þ

with

βdðzÞ ¼
ð−zÞd−1 log 1

z

ð12
ffiffiffi

3
p

πÞdΓðdÞ
: ð26Þ

This result has the expected q2d scaling, vanishes in the

static limit limω→0 δDðω; qÞ ¼ 0, and features the expected

three-diffuson branch point at ω ¼ −ði=3ÞDq2 [45].

For d ¼ 1, this result becomes

δDðω; qÞ ¼ 1

24
ffiffiffi

3
p

π

ðχD00Þ2
D2

ð−iωÞ log 1

q2 − 3iω
D

; ð27Þ

leading to a correction to GRðω; qÞ whose Fourier trans-

form is computed in Eq. (A35) and shown in Eq. (6).

C. Higher-derivative corrections

Higher-derivative corrections are also captured by the

EFT for diffusion [Eq. (12)]. These corrections will

either involve extra time derivatives ∂t or two extra spatial

derivatives ∇2 (by reflection symmetry); therefore, they

give corrections to the leading behavior that are suppressed

by q2, or equivalently 1=t. One can write the most general

such higher-derivative corrections to the EFT (see

Ref. [13]). However, since we are interested in the two-

point function, we can instead directly write the most

general corrections to GR. The higher-derivative correc-

tions should be treated perturbatively, as quadratic

vertices; the final expression therefore contains at

most two powers of the diffusive propagator. The most

general Oðq2Þ correction to the retarded Green’s function

is therefore

GRðω; qÞ ¼ σq2

−iωþDq2

�

1þ c1ð−iωÞ þ c2
ð−iωÞ2

−iωþDq2

�

þ c̃1q
2 þ c̃2ð−iωÞ þOðq4Þ: ð28Þ

The two coefficients c̃1; c̃2 are contact terms and will not

affect the correlation function at separated points: c̃1 has the

interpretation of a q2 correction to the static susceptibility

χðqÞ ¼ χ þ c̃1q
2 þ � � �, and c̃2 is in fact forced to vanish

to guarantee GRðω; q → 0Þ ¼ 0. Fourier transforming

hnni ¼ ð2=1 − e−βωÞImGRðω; qÞ leads to Eq. (5) (we

have taken the liberty to redefine the nonuniversal coef-

ficients c1, c2).
Equation (28) can also be derived through more conven-

tional approaches to hydrodynamics [9,46]: One writes the

linearized constitutive relation for the current in terms of

the charge δn up to subleading order in derivatives,

jiðt; xÞ ¼ −D∂iδnþD2∇
2
∂iδnþ � � � : ð29Þ

We have omitted a term ∂t∂iδn, which would have the same

scaling as D2, because it can be absorbed in D2 using the

leading equations of motion ∂tδn ¼ D∇2δn. To obtain

response functions, one needs to know the constitutive

relation in the presence of a source δμðt; xÞ for charge

density. Assuming that the equilibrium response is given by

δnðqÞ ¼ χðqÞδμðqÞ, with χðqÞ ≃ χ þ χ2q
2 þ � � � the static

susceptibility, the current constitutive relation in the pres-

ence of sources must take the form (in momentum space)

jiðt; qÞ ¼ −iqiðDþD2q
2Þðδn − ðχ þ χ2q

2ÞδμÞ
þ γiqi∂tδμþ � � � ; ð30Þ

where the combination δn − χðqÞδμ in the first line is

required for the current to vanish in thermal equilibrium.

Note, however, that this argument allows for terms

CORRECTIONS TO DIFFUSION IN INTERACTING QUANTUM … PHYS. REV. X 14, 031020 (2024)

031020-7



involving the time derivative of the source, as in the second

line. Inserting the current in the continuity relation ∂tnþ
∂iji¼0 and solving for δn yields a retarded Green’s

function GRðω; qÞ≡ ½δnðω; qÞ=δμðω; qÞ� that matches

Eq. (28), with χ2 ¼ c̃1; D2 ¼ −D2c2; γ ¼ c̃1 þ ðc1 þ c2Þσ.

D. Multiple densities

Systems with multiple conserved densities can be

studied similarly by including all densities in the EFT.

The general scaling of loop corrections remains unchanged;

however, mixing of the densities allows for new scaling

functions with qualitatively different features. Indeed,

consider, for example, systems with conservation of both

charge ṅþ∇ · j ¼ 0 and energy (or heat), ε̇þ∇ · jε ¼ 0.

Nonlinearities can now involve both densities, e.g.,

ji ¼ � � � þ λδε∂iδnþ � � � : ð31Þ

The coefficient λ arises from a temperature-dependent

conductivity ∂Tσ (or, equivalently, a density-dependent

thermoelectric conductivity ∂μα). While it seems similar

to the single density nonlinearity D0 considered above,

this term is qualitatively different because it is not a

total derivative contribution to the current. It therefore

contributes to the q ¼ 0 optical conductivity σðωÞ∼
1þ λ2jωjd=2 þ � � �, as was already recognized in Ref. [21].

In order to obtain the universal scaling functions at finite

q, which are necessary to make predictions for the structure

function hnðt; xÞni, the EFT is generalized to systems with

multiple conservation laws in Appendix B. The scaling

functions are, in this case, complicated by the fact that there

are several diffusivities and therefore several natural scaling

variables y ¼ x=
ffiffiffiffiffiffi

Dt
p

. To illustrate the appearance of novel

scaling functions with multiple densities in a simple

context, we focus on the hydrodynamics of densities for

a non-Abelian internal symmetry, say, SUð2Þ. This sit-

uation is simpler because the SUð2Þ symmetry restricts the

susceptibilities to be diagonal, χAB ≡ ðdnA=dμBÞ ¼ χδAB,

leads to a single diffusivity D, and only allows for one

cubic nonlinearity in the EFT, which has a clear similarity

with Eq. (31):

jAi ¼ −D∂in
A þ λϵABCn

B∇nC þ � � � : ð32Þ

Here, A;B;C;… run over the three elements of the SUð2Þ
algebra. The hydrodynamic description of thermalizing

systems with non-Abelian internal symmetries has been

studied before [24,42,47–49], with the role of the non-

linearity λ particularly emphasized in Refs. [24,42]. In

Sec. III B, we show that the one-loop correction to the

density two-point function is, in one spatial dimension,

GR
nAnB

ðω; qÞ ¼ δABG
Rðω; qÞ;

GRðω; qÞ ¼ σq2

Dq2 − iω
þ λ2χ2

D
iωq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − 2iω
D

q

ðDq2 − iωÞ2 þ � � � :

ð33Þ

This correction produces a nonanalytic correction, at small

frequencies, to the optical conductivity

σðωÞ ¼ lim
q→0

−iω

q2
GRðω; qÞ

¼ σ −
λ2χ2

D3=2
ð1 − iÞ

ffiffiffiffi

ω
p

þ � � � : ð34Þ

The correction to the density two-point function in the

spacetime domain can be found by Fourier transforming

(see Sec. B). One finds a correction similar to Eq. (1), with

a different universal scaling function,

Fmult
1;0 ðyÞ ¼ χλ2

D5=2
F̃mult
1;0 ðyÞ;

F̃mult
1;0 ðyÞ ¼ 4 − y2

4
ffiffiffi

π
p e−y

2=2 þ yð2 − y2Þ
8

e−y
2=4Erfðy=2Þ: ð35Þ

E. Confirming the EFT with classical numerics

Before turning to quantum simulations, where the

limited accessible timescales make it crucial to account

for power-law corrections to diffusion, we confirm the EFT

predictions in classical thermalizing systems. We focus on

classical lattice gases satisfying the “gradient condition,”

namely, where the current density is a total derivative

microscopically. In these situations, the diffusivity DðnÞ is
known analytically [50], making it simple to perform

precision tests of EFT predictions [25]. Indeed, since the

loop corrections (1) and (4) only depend on the suscep-

tibility χ and derivatives of DðρÞ, they are entirely fixed

analytically and can be directly compared to numerics.

As a simple example of a lattice gas satisfying the

gradient condition with a nontrivial DðρÞ, we consider the
one-dimensional Katz-Lebowitz-Spohn model [51–53]

describing a collection of hard-core particles hopping

on a lattice with rates depending on the occupation of

neighbors:

0100 ⟶

rð1þδÞ
0010; ð36aÞ

1101 ⟶

rð1−δÞ
1011; ð36bÞ

1100 ⟶

rð1þϵÞ
1010; ð36cÞ

0101 ⟶

rð1−ϵÞ
0011; ð36dÞ
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with equal rates for the spatially reversed processes. Note

that δ and ϵ are two parameters of the model, whereas r
defines the unit for time and can be set to unity. We focus

on the model with ϵ ¼ 0, corresponding to infinite-

temperature dynamics, which allows us to use a random

initial state as a thermal state (taking ϵ ≠ 0 instead

requires prethermalizing the system, making numerics

more costly). In this situation, the susceptibility is χðρÞ ¼
ρð1 − ρÞ, and the diffusivityDðnÞ ¼ 1þ δð1 − 2ρÞ, so that
D0 ¼ −2δ. This fixes all parameters entering in the leading

correction to diffusion, Eqs. (1) and (2). Figure 3 shows

the excellent agreement between the EFT prediction and

numerics. We stress that the entire scaling function agrees

quantitatively with the one-loop prediction F1;0ðyÞ and

that no fitting parameter is involved in this comparison.

Analytical knowledge of the leading-order correction

allows for considerably improved predictions for diffusivity

when the available integration time is short, i.e., when

one-loop effects are strong. Both experiments and

simulations, especially in quantum systems, are usually

limited to relatively short timescales, and uncontrolled

extrapolations are therefore employed to obtain infinite-

time properties such as diffusivity. We propose a robust

method that takes into account one-loop effects by fitting

the three-dimensional data set hnðx; tÞniρ versus t, x, ρwith
Eq. (1). We compare this method to the fit using just

the leading-order term (equivalently, taking F1;0 ¼ 0). For

example, we aim to approximate Dðδ ¼ 0.9Þ ¼ 1.9 − 1.8ρ

around ρ ¼ 0.9. For that purpose, we simulate a sample of

densities ρ ¼ ð0.85; 0.86;…; 0.93Þ. The diffusivity is para-
metrized byDfit ¼ a − bρ since we know its analytic form.

In general, the parametrization may include additional

powers of density as the precise form of diffusivity is

not polynomial. We constrain the time window t ¼ 40 − T,
T ¼ 100 and find the deviations of the fit from the

exact diffusivity: ð1.9 − aÞ=1.9 ≈ ð0.135; 0.081Þ and

ð1.8 − bÞ=1.8 ≈ ð0.12; 0.084Þ, where the first and second

numbers in the parentheses denote the fit without and

with the one-loop correction. Our results show a

quantitative improvement, which increases as T
decreases and one-loop effects become stronger. In prin-

ciple, it is possible to perform time extrapolations to the

above fitting method by using time windows of vary-

ing size.

IV. QUANTUM TRANSPORT

To test and make use of the EFT predictions in a minimal

setting, we focus on quantum-coherent and incoherent

chaotic systems with a single conserved charge. We

estimate the dependence of diffusivity on the equilibrium

magnetization using various approaches, and we show that

the corrections to diffusion are in agreement with EFT.

Moreover, incorporating these corrections in the fitting

methods can significantly improve the diffusivity approxi-

mation at finite times.

A. Model and methods

The conserved charge is chosen to be magnetization,

N ¼
X

L

i¼1

σzi ; ð37Þ

where σz is the Pauli-z matrix and L is the system

size. Since magnetization is a sum of local operators,

the equilibrium ensemble is a product state, i.e.,

eμN ¼
Q

L
i¼1

eμσ
z
i . We did not consider systems with charges

such as energy density which have equilibrium states with a

finite correlation length because this adds an additional

layer of complexity to the simulations, even though the

EFT predictions are the same.

As a minimal chaotic model where magnetization is the

only conserved quantity, we choose the Floquet-XXZ chain

FIG. 3. (a) Profile of the dynamical structure factor for the

KLS model with parameters δ ¼ ρ ¼ 0.9; ϵ ¼ 0. Different

colored curves denote different times t∈ f200; 2000g,
with smaller times corresponding to darker colors. The red

dashed curve is the diffusive prediction ðχ=
ffiffiffiffiffiffiffiffiffi

4πD
p

ÞF0;0ðyÞ.
Inset: autocorrelation function (y ¼ 0). Diffusive predictions

with (black) and without (red) leading-order corrections

[Eq. (3)] are shown. (b) Comparison between the correction

to diffusion from simulation data Δn≡
ffiffi

t
p

½hnðx; tÞni −
ðχ=

ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

ÞF0;0ðyÞ� and the EFT prediction F1;0ðyÞ (black

dashed line), Eq. (1). Inset: absolute area between the

finite-time curves and the analytic expression,

F ¼
R

3

0
dyjΔnðtÞ − F1;0j=

R

3

0
dyjF1;0j.
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with a staggered field, whose stroboscopic dynamics are

generated by a Floquet operator,

U ¼ UeUo; Ue ¼
Y

L=2

i¼1

U2i;2i−1; Uo ¼
Y

L=2

i¼1

U2i−1;2i−2;

Ui;iþ1 ¼ exp
	

−iðhXXZi;iþ1
þVi;iþ1Þ




: ð38Þ

The evolution is performed by first evolving the odd bonds

and then the even bonds, with two-body gates generated by

the following operators,

hXXZi;iþ1
¼ Jðσþi σ−iþ1

þ H:c:Þ þ Δ

2
σziσ

z
iþ1

;

Vi;iþ1 ¼ gðð−1Þiσzi þ ð−1Þiþ1σziþ1
Þ: ð39Þ

In the absence of a staggered field V, the Floquet-XXZ

chain is integrable [54]. For our choice of parameters,

J ¼ π=4;Δ ¼ J − 0.2, the magnetization at V ¼ 0 displays

ballistic transport. Turning on the staggered field leads to

integrability breaking, the system becomes chaotic, and

therefore magnetization is expected to diffuse. To establish

our method, we alternatively perturb the XXZ chain with

Markovian noise (dephasing). Dephasing effectively sup-

presses the generation of operator entanglement in the

simulation, leading to very accurate numerical data. To

simulate the noise-averaged state, we define the dephasing

map by the action of the local channel on the state of a

single spin,

Di

�

ρ1;1 ρ1;0

ρ0;1 ρ0;0

�

¼
�

ρ1;1 e−γρ1;0

e−γρ0;1 ρ0;0

�

: ð40Þ

The global noise channel is a product of local channels and

is applied to the state following a period of coherent

evolution,

D ¼ ⊗
N

i¼1

Di; ρðtþ 1Þ ¼ DðUρðtÞU†Þ: ð41Þ

To study the linear response dynamics, we employ

the weak domain-wall initial state proposed by Ljubotina

et al. [55],

ρðμ; δ; t ¼ 0Þ ¼ 1

M
eμN

 

Y

L=2

i¼1

e−δσ
z
i ⊗

Y

L

i¼L
2
þ1

eδσ
z
i

!

; ð42Þ

where M ¼ trρ is the normalization constant and δ → 0

generates a weak domain-wall perturbation on top of the

equilibrium state characterized by the chemical potential μ.

The linear response regime is characterized by a quench

where the amount of injected magnetization is not exten-

sive. Inspired by the leading nonlinear correction, Eq. (1),

a natural condition for the linear response regime is

δ ≪ ðχD0=
ffiffiffiffiffiffiffiffi

tmax

p
DÞ, where tmax is the maximum simulation

time. We use δ ¼ 0.0005, which satisfies the condition and

is also numerically checked to be in the linear response

limit for all simulated times.

The Floquet evolution defined by Eq. (38) breaks

translation invariance since even and odd sites are not

equivalent. To simplify the analysis, we average over even

and odd sites. In addition, we shift the magnetization by its

equilibrium value, σ̄ ¼ trðσziρðμ; 0ÞÞ ¼ tanh μ, and normal-

ize its initial magnitude to 1=2,

sj ¼
trðσz

2j−1ρÞ þ trðσz
2jρÞ − 2σ̄

4jtrðσz
1
ρðt ¼ 0ÞÞj ; ð43Þ

where j∈ f1; 2;…; L̄g and L̄ ¼ L=2. In this normalization,

the initial-state profile is sj≤L̄=2 ¼ −0.5 and sj>L̄=2 ¼ 0.5

for all values of μ and δ. Since we doubled the

lattice spacing, diffusivity and static susceptibility,

χ ¼ ð1=LÞðhN2i − hNi2Þ ¼ ðcosh μÞ−2, are rescaled

accordingly, D → D=4, χ → χ=2. We will always present

the results of diffusivity computed using the original lattice

spacing. For clarity, we employ a continuum description of

the lattice variables sj → sðxÞ since the hydrodynamic

corrections are defined in continuum.

A simple relation between the domain-wall quench for

δ → 0 and the dynamical structure factor was originally

derived in Ref. [56]. In the continuum limit, and under

the conventions described in the previous paragraph, the

relation simply reads hσzðx; tÞσzic ¼ χðds=dxÞ, where the

subscript c stands for the connected part of the correlation

function and the average is performed over the equilibrium

state, ρðμ; δ ¼ 0Þ. The distance x is measured from the

position of the domain wall at L̄=2. While the two quenches

are formally equivalent, we prefer to transform (simple

integral in space) the EFT results to the domain-wall picture

because taking the spatial derivative (or directly calculating

the dynamical structure factor) of the numerical data

enhances the errors generated by the simulations.

Therefore, the magnetization profile in the domain-wall

quench takes the form

Sðx; tÞ ¼
X

m;n

1

tm=2þn
Fm;n;

Fm;n ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p

Z

x

0

dxFm;n; ð44Þ

where Fm;n are the functions described in Sec. II. The

leading-order diffusion is given by F0;0 ¼ 1

2
Erfðy=2Þ, and

the corrections are presented in Eq. (A37).

The diffusive corrections are numerically explored by

simulating the dynamics of large system sizes, using tensor

network techniques. We employ the matrix product density

operator (MPDO) [57,58] representation of the state and

evolve it with time-evolving block decimation (TEBD) [59]
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algorithm. The simulations are performed using the ITensor

library [60]. We simulate the dynamics from equilibrium

states with chemical potentials μ ¼ ð0; 0.01;…Þ. In our

simulations, we evolve up to a time T ¼ 400 and fix the

system size to L ¼ 2T in order to avoid finite-size effects.

The numerical results are shown to be convergent for the

bond dimensions employed.

To probe the strength of the nonlinear corrections, we

calculate the prefactor of F1;0 defined in Eq. (A37),

C1 ¼
χD02
ffiffiffiffiffiffiffiffiffiffiffi

4πD5
p ; ð45Þ

where D0 ¼ ðdD=dσ̄Þ and the magnetization profile after

subtracting the leading-order term is

ΔsðyÞ ¼ sðyÞ − F0;0: ð46Þ

The estimation of diffusivity Dðσ̄Þ is achieved by three

different fitting schemes, labeled I, II, and III. In the

following, we present a brief overview of each scheme

and further elaborate on the novel method II, which, for

reasons that will become clear later, is more accurate than

leading-order diffusion fitting and can be applied to any

diffusive system efficiently. Methods I and III are elabo-

rated in Appendix C. Method I is a scheme in which the

approximate diffusivity is extracted by fitting the dynami-

cal structure factor at the largest time with the leading-order

profile F0;0. Method II additionally takes into account

the EFT corrections F1;0;F0;1, and F2;0 that were explicitly

computed in Sec. III. Method III is based on the mini-

mization of the deviation of the total current of the system

from the expected generalized Fick’s 1st law. Many higher-

derivative and loop corrections cancel in method III and in

fact account for more corrections to leading-order diffusion

than method II, without having to compute them explicitly.

Namely, all zero-loop and one-loop higher-derivative

corrections F0;n and F1;n, as well as all l-loop zero-

derivative corrections Fl;0, cancel in method III; see

Appendix C 2. However, it is a more expensive method

as it requires measuring the full current, which is equivalent

to measuring the full structure factor. Method II, on the

other hand, can be equally efficient when a few points of

the structure factor are sampled. Additionally, method III is

less accurate than method II in systems with multiple

conserved charges, as explained in Appendix C.

We now further elaborate on method II, which is

a general fitting scheme for the estimation of Dðσ̄Þ.
Method II is inspired by our classical simulations (see

Sec. III E), where we found that diffusivity estimation by

finite-time simulations is more accurate when the correc-

tions to the leading-order diffusion are taken into account.

The fitting is performed as follows: We simulate the

dynamics for different equilibrium magnetizations and

store the local magnetization values for different sites at

different times, sðσ̄i; xj; tkÞ, where the subscripts i, j, k

denote different samples in the discretized data set. The

diffusivity is estimated by fitting the numerical data set with

the EFT function Eq. (44) using a simple least-squares

method,

minD;c⃗

X

i;j;k

jsðσ̄i; xj; tkÞ − Sðσ̄i; xj; tk; Dðσ̄Þ; c⃗ðσ̄ÞÞj2: ð47Þ

The functional minimization over Dðσ̄Þ is simplified

by employing a Taylor expansion around half filling,

Dðσ̄Þ ¼PM
i¼0

biðσ̄Þ2i, where M ¼ 3 is found to give

converged results for the parameter regimes studied in

this work. Only even powers are allowed in the expansion

due to the particle-hole symmetry in our system [Dðσ̄Þ ¼
Dð−σ̄Þ]. The parameters c⃗ ¼ ðc1; c2;…Þ are nonuniversal

parameters arising from linear fluctuations described in

Sec. III C. Since we only use leading- and subleading-order

corrections, we just require the two parameters c⃗ ¼ ðc1; c2Þ
defined by Eq. (5) and present in F0;1.

B. Results

Dephasing.—To establish the efficiency of the fitting

methods and the accuracy of EFT predictions, we switch

off the staggered-field perturbation (g ¼ 0) and simulate

the Floquet-XXZ chain, Eq. (41), in the presence of

dephasing with γ ¼ 0.1. Diffusive transport induced by

dephasing has two distinct features. First, the single-

particle limit (equivalently, the noninteracting limit Δ ¼ 0)

in the presence of dephasing remains diffusive, and there-

fore, diffusivity is finite for all magnetizations. This finding

is in contrast to purely interaction-induced diffusion

where the single-particle limit is ballistic (free particles).

Second, for increasing strengths of dephasing, magnetiza-

tion transport becomes less sensitive on the interactions in

the strong noise limit where, to leading order in 1=γ,

D ∝ J2=γ [41] is independent of magnetization density σ̄

and hence D0 ≡ ∂σ̄D ≃ 0.

In Fig. 4(a), we show the dependence of diffusivity on

magnetization, DIII ∼DII ≈ 5.35þ 3.03σ̄2 þ 0.54σ̄4. For

the fit II, we have employed the terms ðF0;0;F1;0;F0;1Þ.
In contrast to the noninteracting (Δ ¼ 0) limit, diffusivity

has a magnetization dependence due to the presence of

nonlinear corrections. However, the one-loop correction

F1;0 is small at timescales of order t ∼Oð100Þ since

C1 ∼Oð10−2Þ. Methods II and III converge to almost

the same curve (independently of bond dimension), which

is indicative of the fast convergence to the asymptotic

behavior. Method I slightly underestimates the asymptotic

value. The reason is that method I does not capture the

linear corrections F0;1, which dominate at these timescales

for all fillings, despite being suppressed by a factor of 1=
ffiffi

t
p

compared to the one-loop corrections [Fig. 4(c)]. The one-

loop effects only have a visible effect at the largest
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simulated times. In all cases, the corrections Δs are

accurately captured from our theory. Finally, we observe

that the correction profiles are almost time independent,

which is indicative that, besides one-loop corrections,

higher-order corrections are also suppressed.

Unitary dynamics.—Shifting to unitary dynamics, in

Fig. 4(c), we show that the staggered field generates a

strong dependence of diffusivity to magnetization,

independently of the fitting method used, C1 ∝ Oð1Þ.
Unsurprisingly, the fitted diffusivity is then considerably

affected by the method used, as shown by the d ¼ 256,

T ¼ 400 fits: DII ≈ 1.77þ 13.7σ̄2 þ 220σ̄4, DIII ≈ 1.73þ
27σ̄2 þ 190σ̄4. For fit II, we have employed the terms

ðF0;0;F1;0;F0;1Þ. This discrepancy is not due to truncations

in the dynamics; instead, we believe it arises from fitting

timescales that are not in the asymptotic diffusive regime,

which is reflected by the dependence of parameters yielded

by each method on the maximum timescale of the simu-

lation. The methods are affected according to the number of

corrections to diffusion they include in the approximation.

In that sense, method III is more converged than method II,

and method II is more converged than method I, which

employs no additional corrections to asymptotic diffusion.

As expected, when simulations are performed for longer

times, different methods tend to show better agreement.

Because of the discrepancy in the determination ofD, the

form of the corrections Δs depends on the fitting method.

Here, we have chosen to use the diffusivity estimated by

method II since, by construction, it fits these corrections

arising from nonlinearities and higher-derivative terms,

while in method III, such leading effects are absent. In

Appendix C, we show that the different methods result in

corrections with similar profiles. Figure 4(d) shows that, for

finite magnetization σ̄ ¼ 0.2, Δs scales as t−1=2 and has a

closely matching profile to that of the expected one-loop

correction F1;0. We again note that the one-loop profile is

completely determined by (D; ∂σ̄D), and no additional fitting

is involved. We observe that the correction profile shows a

significant time dependence, indicative of higher corrections

being still at work at these timescales. In contrast to finite

equilibrium magnetization, σ̄ ¼ 0 requires special attention.

First, the correction signal is weaker and requires a bond

dimension d ¼ 400 to be accurately captured. Additionally,

the strength of nonlinear corrections suggests that the leading

corrections, F2;0 and F0;1, will be of similar magnitude

at intermediate timescales. Eventually, F2;0 will dominate

due to its logarithmic divergence in time. For this reason,

we perform a different fit II around σ̄ ¼ 0, by including a

few points σ ∈ ð0; 0.01; 0.02; 0.03Þ and all terms ðF0;0;F1;0;

F0;1;F2;0Þ. Figure 4(d) indeed shows that both F2;0 and F0;1

are important at these timescales. However, the available

timescales are not sufficient to see the ultimate dominance of

the logarithmic part of F2;0, which would lead to a profile

with an opposite sign around y ¼ −0.2, 0.2.

Overall, we have shown that employing EFT corrections

to study quantum transport can significantly improve the

estimation of asymptotic transport parameters such as

diffusivity. In addition, these corrections help us understand

the different processes that drive a system towards equi-

librium. For example, dephasing, which is often used to

accelerate thermalization, achieves this goal at the cost of

flattening the diffusivity as a function of filling or mag-

netization. Moreover, we have found that even if noise

γ < Δ; J, the system’s behavior is similar to the strong

noise limit γ ≫ Δ; J, where the equation of motion for the

conserved charge can be perturbatively derived [41,42]. In

that case, the diffusivity has weak dependence on equilib-

rium magnetization σ̄, leading to smaller loop corrections

FIG. 4. Tensor network simulations of driven XXZ chain with (a), (b) decoherence, γ ¼ 0.1, and (c), (d) staggered field, g ¼ 0.4. (a),

(c) Diffusivity as a function of equilibrium magnetization. Top: different bond dimensions d. Bottom: different simulated times T, using
the same bond dimension d ¼ 256. Different colors denote fitting methods, which take into account an increasing amount of corrections

to leading-order diffusion, I → II → III [see Appendix (C 2)]. (b), (d) Corrections to diffusion for d ¼ 256, evaluated at different times

t ¼ ð40; 80;…; 400Þ, denoted by dark blue to yellow colors. The black dashed line denotes linear corrections, F0;1. The red dashed line

denotes F1;0 in panel (d), and F0;1 þ
ffiffiffiffi

T
p

F1;0 with T ¼ 400 in panel (b). The brown dashed line in panel (d) denotes the combined effect

of the two-loop correction and linear corrections F0;2 þ F1;0, where the logarithmic-in-time component of F0;2 is evaluated at T ¼ 400.
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and faster thermalization: Indeed, the leading-order non-

linear terms in the diffusivity only appear at third order,

OðΔ2J2=γ3Þ. In our situation, even if perturbation theory in
1=γ is not strictly valid, we observe the same behavior:

weak nonlinear corrections, F1;0, which are almost invisible

at the simulated timescales, and a fast approach to asymp-

totic times, which is driven by the subleading linear

corrections F0;1.

Staggered perturbations, on the other hand, induce

strong nonlinear effects, leading to a slower approach to

equilibrium. Additionally, the classical resources required

to simulate the system increase rapidly with the simulation

time, and therefore, the accessible timescales are limited.

We have shown that employing fitting methods that take

into account the EFT corrections to diffusion leads to a

significant improvement in the diffusivity estimation for

σ̄ > 0. At the same time, our numerical data strongly

suggest that the EFT corrections to the dynamical structure

factor are present in interacting quantum systems.

V. DISCUSSION

We have employed the EFT of diffusion to derive the

scaling functions of the leading power-law corrections to

diffusive transport for thermalizing systems with one or

more conserved local charges. We confirmed these pre-

dictions by numerical simulations in a classical model,

finding percent-level agreement of the entire scaling

function without any fitting parameter (see Fig. 3).

While testing subleading EFT predictions in quantum

simulations with this same level of precision is currently

beyond reach, due to the rapid growth of required classical

resources, these corrections are expected to be particularly

important there due to the shorter accessible timescales.

We showed that knowledge of these corrections allows

for more accurate extraction of transport parameters,

especially when the accessible timescales are very limited.

Furthermore, our results open a number of promising

directions for future research; we list these and other

applications below.

Precision tests of thermalization.—Our findings can also

be used to test possible deviations from standard diffusion

in numerics and experiments. For example, tracking the

density (or temperature) dependence of transport parame-

ters can help estimate power-law corrections to observ-

ables. Given that these corrections typically make diffusive

systems appear superdiffusive at intermediate times, it

would be interesting to study them quantitatively in the

context of 1D chains showing apparent anomalous diffu-

sion or superdiffusion [61–63] (see Ref. [24] for prelimi-

nary work in this direction, and Ref. [64] for related work),

as well systems featuring subdiffusion without dipole

conservation [65,66]. Higher-point functions of local oper-

ators offer useful information in this regard. Indeed, we

show in Appendix D that these are controlled by the same

EFT parameters (in particular,D0), which lead to power-law

corrections to linear response at intermediate times.

Measuring higher-point functions of density (or heat)

therefore provides a timescale that must be exceeded to

access the asymptotic dynamics. The EFT also points to

other observables, such as correlation functions in momen-

tum space hnðq; tÞni, which instead are not suitable for

precision tests of thermalization because they receive large

fluctuation corrections [45].

Beyond diffusion.—Our theoretical results can be

extended in various directions. We have assumed the

dissipative fixed point to be diffusive; however, one can

similarly study corrections to subdiffusive or superdiffusive

universality classes or even in generalized hydrodynamics

for integrable models (for the KPZ universality class, the

leading scaling correction was studied in Refs. [67–69]).

These corrections are also important to incorporate for

quantum simulations in higher dimensions d > 1, where

our ability to numerically study large systems and times is

limited. Our results for the one-loop and two-loop correc-

tions, Eqs. (20) and (24), hold in any dimension.

Connections to simulation complexity.—We believe that

EFT corrections present new hints towards understanding

the hardness of quantum simulations in the linear response

regime. We found that classical resources increase with

time faster when nonlinear corrections are stronger, in our

case, when σ̄ increases. This finding obstructed exploring

magnetizations beyond σ̄ ≈ 0.25 in the staggered-field

simulations. We lack a detailed theory behind this obser-

vation, but we believe that this is related to the strong

nonlinear corrections since they enhance multipoint corre-

lation functions such as the ones explored in Appendix D.

This idea implies that the accurate simulation of a system

with strong nonlinear contributions requires keeping

more information on multibody correlations in the density

matrix, which in turn increases the resources (bond

dimension) required by the tensor network simulations.

Benchmark for new methods.—Our results on universal

corrections to hydrodynamics are also useful to benchmark

theoretical and computational [42,70–73] approaches to

thermalization in many-body systems, as these will have to

reproduce not only the leading diffusive behavior but the

corrections as well. For example, Ref. [71] approximates

correlation functions based on extrapolations of Lanczos

coefficients, which, by design, produce a meromorphic

GRðω; qÞ that cannot capture the universal nonanalytic

corrections (22). Incorporating EFT results into such

constructions is a promising path to “bootstrapping” trans-

port in correlated quantum systems.

Distinguishing theories of fluctuating hydrodynamics.—

We have also shown that high-precision classical stochastic

simulations offer valuable precision tests for theories

of fluctuating hydrodynamics, in the present case confirm-

ing the leading and subleading corrections predicted

by the Schwinger-Keldysh EFT approach [13,23]. Other

approaches for fluctuating hydrodynamics exist, which
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treat the noise fields somewhat differently; it would be

interesting to further push these tests to possibly rule out

certain theories and identify the correct systematic frame-

work. One possible concrete target for the numerics in this

regard are effects arising from non-Gaussianities in noise

fields that do not enter in constitutive relations [44].
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APPENDIX A: EFT DETAILS

1. General structure of the corrections

The corrections to diffusion shown in Eqs. (1) and (4)

correspond to the first few terms arising from an expansion

in fluctuations and derivatives in the EFT. This expansion

takes the general form, in d spatial dimensions,

hnðx; tÞni ¼ χ

ð4πDtÞd=2
�

F0;0ðyÞ þ
1

t
F0;1ðyÞ þ

1

t2
F0;2ðyÞ þ � � � þ 1

td=2

�

F1;0ðyÞ þ
1

t
F1;1ðyÞ þ

1

t2
F1;2ðyÞ þ � � �

�

þ 1

td

�

F2;0ðyÞ þ
1

t
F2;1ðyÞ þ

1

t2
F2;2ðyÞ þ � � �

�

þ � � �
�

; ðA1Þ

where Fl;n are scaling functions of the scaling variable

y≡ x=
ffiffiffiffiffiffi

Dt
p

. The overall form of the expansion (A1) is

simple to justify on general grounds: Higher-derivative

corrections to diffusion come with two derivatives (assum-

ing reflection or rotation symmetry) and therefore give

corrections suppressed by ∇2 ∼ ð1=x2Þ ∼ ð1=tÞ at late

times. Loop corrections instead come from nonlinearities

in the dynamics of the densities: A single cubic nonlinearity

is suppressed by δn ∼ qd=2 ∼ 1=td=4 compared to the linear

(Gaussian) dynamics. The first loop correction requires two

insertions of a cubic nonlinearity and is hence 1=td=2

suppressed. Generalizing, an l-loop contributions at nth
order in the derivative expansion will give a correction to

correlation functions suppressed by 1=tnþld=2 (up to

logarithms); this correction comes with a dimensionless

scaling function Fl;n and is shown in the lth line and nth

column in Eq. (A1). This general structure of corrections to

hydrodynamics applies not only to density two-point

functions, but also to higher-point functions [25], as well

as to correlators of arbitrary microscopic operators that

have the same quantum numbers as (composites of)

densities [24,45].

While the simple scaling argument above predicts the

general expansion of correlation functions at late times

in diffusive systems, obtaining the dimensionless scaling

functions Fl;n in Eq. (A1) requires detailed use of the EFT.

The leading diffusive scaling function is well known,

F0;0ðyÞ ¼ e−y
2=4, and captures the density two-point func-

tion universally in any diffusive system. The subsequent

Fl;n capture scaling corrections to diffusion; they are also

universal, up to one or a few theory-dependent factors.

In this paper, we focus on the first few corrections and

explicitly evaluate F1;0 [Eq. (2)], F2;0 [Eq. (6)], and F0;1

[Eq. (5)]. Note that, in Eq. (A1), we have suppressed certain

factors of log t that can arise from loop corrections coming

with integer powers of 1=t; see Eq. (6) for an example.

2. Details of the EFT

In this section, we further motivate the EFT representa-

tion of the generating functional (11) and go over several

key steps in the construction of the EFT. Most of the

discussion in this section can be found elsewhere, e.g.,

Refs. [13,74], but we include it for completeness.

One of the guiding principles in constructing the

Schwinger-Keldysh EFT for hydrodynamics is to introduce

a minimal set of fluctuating degrees of freedom that will

ensure gauge invariance of the generating functional

Z½A1
μ þ ∂μλ

1; A2
μ þ ∂μλ

2� ¼ Z½A1
μ; A

2
μ�. ðA2Þ

This is achieved by introducing phases ϕ1;2 that always

enter in the combination Aμ þ ∂μϕ (sometimes called the

“Stückelberg trick”):

Z½A1
μ; A

2
μ� ¼

Z

Dϕ1Dϕ2e
i
R

dtddxL½A1
μþ∂μϕ

1;A2
μþ∂μϕ

2�
: ðA3Þ

This result now satisfies Eq. (A2) for any functional L

because a gauge transformation can be absorbed through a

redefinition of the dynamical fields ϕ1;2 that are being

integrated over. It is clear that the degrees of freedom we

have introduced are related to the continuous symmetry of

the system. If one had considered instead a system with N
separate continuity relations (8), 2N fields would have been

introduced. One can already notice a resemblance with

earlier approaches to fluctuating hydrodynamics, where

each continuity relation leads to 2 degrees of freedom:

a density and an associated noise field. The central
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assumption in the construction of the EFT is that L is a

local functional of the fields ϕ1;2. This assumption

implements the expectation of thermalization: The only

long-lived quantities are associated with symmetries, so

integrating out other degrees of freedom produces a local

EFT with a derivative expansion controlled by the scale at

which the system thermalizes (this scale acts as the UV

cutoff of the hydrodynamic EFT).

It is useful to define the symmetric and antisymmetric

combinations of fields [74],

ϕr ≡
ϕ1 þ ϕ2

2
; ϕa ≡ ϕ1 − ϕ2: ðA4Þ

One advantage of fields in this basis is that they satisfy

the “latest time” property: Correlators in which the latest

time is carried by a ϕa field vanish due to cyclicity of the

trace in Eq. (9),

hO1ðt1Þ � � �OnðtnÞϕaðtnþ1Þi ¼ 0; tnþ1 > ti; ðA5Þ

which will lead to simplifications in the diagrams below.

This construction bears a resemblance to EFTs for

spontaneously broken phases, where the long-lived degrees

of freedom are Goldstone bosons. In fact, constructing

the most general local Lagrangian L in Eq. (A3) leads

to an effective description of a thermalizing system in the

symmetry-broken phase (a dissipative superfluid). To

describe the normal phase, Ref. [13] proposed forbidding

the propagating sound mode by imposing an additional

symmetry:

ϕrðx; tÞ → ϕrðx; tÞ þ λðxÞ: ðA6Þ

See Refs. [32,33] for discussions on this symmetry in a

holographic context. Recently, Ref. [75] proposed a slightly

different approach that bypasses the need to impose this

somewhat artificial symmetry by viewing the density nr
rather than ϕr as the fundamental degree of freedom of the

EFT. We expect both of these approaches to be equivalent.

Otherwise, one simply constructs the most general local

functional of the gauge-invariant combinations of fields,

B1
μ ≡ A1

μ þ ∂μϕ
1; B2

μ ≡ A2
μ þ ∂μϕ

2; ðA7Þ

in an expansion in fields and derivatives. There are a

few additional constraints to impose, such as unitarity

Z½A1; A2�� ¼ Z½A2; A1� [which simply follows from the

definition (9)] and KMS symmetry; we refer the reader

to Ref. [13] for details. To leading order in derivatives, the

action can be expressed as [25]

L ¼ σðnÞBaiðiBai − βEriÞ þ Ba0n −DðnÞBai∂inþ � � � ;
ðA8Þ

where β is the inverse temperature, Eri ¼ ∂0Ari − ∂iAr0 is

the electric field, and Baμ ¼ Aaμ þ ∂μϕa. We have changed

variables from ϕr to the density n. The ellipses denote

higher-derivative terms (the most important of which are

discussed separately in Sec. III C), as well as nonlinear

terms that contain higher powers of ϕa, which are more

irrelevant than the nonlinearities considered here.

Setting the background fields to zero A1;2
→ 0 leads to

the action (12) used in the main text. The background fields

are, however, useful to generate various correlation func-

tions. For example, the retarded Green’s function of charge

density is

GRðt; xÞ≡ iθðtÞTrðρ½nðt; xÞ; n�Þ
¼ ihnrðt; xÞnai

¼ i
δ2 logZ

δðiAa0ðt; xÞÞδðiAr0ð0ÞÞ
¼ −ihnðt; xÞ∂iðσðnÞ∂iϕaÞi: ðA9Þ

In particular, when σðnÞ ¼ σ ¼ const, the retarded Green’s

function is simply related to the hnϕai propagator,

GRðω; qÞ ¼ iσq2hnϕaiðω; qÞ: ðA10Þ

The two-point function can be obtained from GR as usual

from a fluctuation-dissipation relation,

hnniðω; qÞ ¼ 2

1 − e−βω
ImGRðω; qÞ: ðA11Þ

3. One-loop calculation

The universal leading one-loop correction to diffusion

was computed in Ref. [23] (see also Refs. [31,44,76–79]

for further studies of loop effects in the EFT of diffusion).

We review the derivation here and discuss an interesting

cancellation between certain diagrams that simplifies the

calculation.

We focus on nonanalytic and UV finite corrections to

GRðω; qÞ. This correlator also receives UV-divergent cor-

rections, which can be absorbed with local counterterms in

the EFT, and renormalize existing transport parameters.

These findings can be interesting in their own right [80],

but they do not lead to power-law corrections to diffusive

behavior, which are the focus of this paper. We can therefore

omit diagrams such as the one shown in Fig. 5(a), which

cannot produce novel singular IR structure. One therefore

only needs the cubic vertices of the EFT:

Lð3Þ ¼ iσ0nð∇ϕaÞ2 þ
1

2
D0∇2ϕan

2: ðA12Þ

Diagrammatically, one expects these vertices will generate

one-loop corrections proportional to σ02, σ0D0, and D02.

CORRECTIONS TO DIFFUSION IN INTERACTING QUANTUM … PHYS. REV. X 14, 031020 (2024)

031020-15



The first is shown in Fig. 5(b) and can easily be seen to

vanish: Indeed, the only such diagram involves a loop where

all poles in frequency lie on the same half complex plane.

Alternatively, this diagram can be seen to vanish in

the time domain using the latest time condition (A5).

Indeed, the diagram involves the computation of a correlator

hðnϕaÞðt1ÞðnϕaÞðt2Þi—since a ϕa field appears at the latest

time (whether it is t1 or t2), the correlator must vanish. These

types of considerations were already well known to produce

diagrammatic simplifications in Schwinger-Keldysh EFTs;

see, e.g., Ref. [81]. There is in fact a more general argument,

showing that the EFT (12) with DðnÞ ¼ const but σðnÞ
arbitrary has no loop corrections to the two-point function;

acting with the diffusive kernel on the two-point function,

one has

ð∂t −D∇2Þhnðt; xÞni ¼ −2i∇hðσðnÞ∇ϕaÞt;xni; ðA13Þ

where we used the equation of motion δL=δϕa ¼ 0 [this

equation holds up to contact terms proportional to δðtÞδðxÞ].
The right-hand side vanishes because a ϕa field is at the

latest time (assuming, without loss of generality, that t > 0),

showing that the two-point function is unaffected by non-

linearities in this theory, and is equal to

hnðt; xÞni ¼ χ

ð4πDtÞd=2 e
−x2=ð4DtÞ: ðA14Þ

This result is known to occur in certain lattice gas models

[50]. Here, we have temporarily ignored higher-derivative

corrections, which will enter, as usual, through F0;n as

in Eq. (A1).

We have established that the σ02 contribution to

hnniðω; qÞ vanishes. One can in fact show that the σ0D0

contribution vanishes as well, although the argument is

slightly more subtle. Diagrammatically, the two diagrams

that give corrections to hnniðω; qÞ are shown in Fig. 5(c).

They can be shown to cancel by explicit calculation—

however, the cancellation only happens after performing

the integral over frequency and dropping a UV divergence

in the integral over momenta. Note that, after amputating

one external leg on the D0 vertex, the remaining object to

be computed is a two-point function between n and the

normal-ordered composite operator n2:

hnðt; xÞn2ð0; 0Þi: ðA15Þ

Crucially, this object is to be computed in the theory with σ0

as its only cubic interaction (since theD0 vertex has already
been used). By time-reversal symmetry, one can take t > 0.

Acting with the diffusive kernel and using the equation of

motion as in Eq. (A13), one again finds that the result

vanishes, which implies that this correlator must be propor-

tional to the diffusive two-point function

hnðt; xÞn2ð0; 0Þi ∝ 1

td=2
e−x

2=ð4DtÞ: ðA16Þ

Therefore, the diagram, at most, renormalizes χ or D,
without producing new nonanalytic structures.

We are left with the D02 contribution to the two-point

function, shown in Fig. 2. It is simplest to study the one-

loop correction to the retarded Green’s function GR, which

is simply related to hnϕaiðω; qÞ by Eq. (A10) [given that

we have shown that one can set σðnÞ ¼ σ ¼ const in

the action]. This method is used in Sec. III, where it is

shown that the loop can be expressed as a correction

D → Dþ δDðω; qÞ with Eq. (19),

δDðω; qÞ ¼ −iD02
Z

p0
q02hnϕaiðp0Þhnniðp − p0Þ

¼ −iχðD0Þ2
Z

ddq0

ð2πÞd
q02

ωþ iD½q02 þ ðq − q0Þ2� ;

ðA17Þ

where, in the second line, we inserted the propagators (16)

and evaluated the integral over frequencies
R

ðdω=2πÞ.
Here, χ ≡ σ=D. Changing integration variables to q0 → k≡

q0 − 1

2
q and defining

z≡ q2 −
2iω

D
; ðA18Þ

we obtain

δDðω; qÞ ¼ −
χD02

2D

Z

ddk

ð2πÞd − iω
χD02

D2

Z

ddk

ð2πÞd
1

zþ 4k2
:

ðA19Þ

(a) (b)

(c)

(d)

FIG. 5. Diagrams not contributing to transport corrections to

diffusion. (a) Diagrams where the external momentum does not

flow through a loop cannot produce new IR singularities; they

only renormalize tree-level transport parameters. (b) The one-

loop contribution proportional to σ02 vanishes due to the latest

time condition (A5). (c) The two one-loop contributions propor-

tional to σ0D0 cancel. (d) A similar cancellation happens at two

loops for the σ00D00 contribution.
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The term in the first line is a UV-divergent contribution

to the diffusivity and can be absorbed with a counterterm

D → Dþ δD in the EFT. The term in the second line

instead has interesting nonanalytic IR behavior. It is

entirely UV finite in d ¼ 1. In d ≥ 2, it produces additional

UV divergences that are analytic in z and can be absorbed

by higher-derivative counterterms in the EFT. The UV

finite part is given by

αdðzÞ≡
Z

ddk

ð2πÞd
1

zþ 4k2
− UV

¼ ð−zÞd2−1
ð16πÞd=2Γðd

2
Þ ·
�

iπ if d odd

log 1

z
if d even:

ðA20Þ

One therefore finds Eq. (20).

4. Two-loop calculation

In systems with charge conjugation symmetry, the EFT

must by invariant under

n → −n; ϕa → −ϕa: ðA21Þ

This case forbids cubic terms in the EFT: in particular,

D0; σ0 ¼ 0. The leading nonlinearities are instead quartic

and can be found again by expanding Eq. (12):

Lð4Þ ¼ i

2
σ00n2ð∇ϕaÞ2 þ

1

6
D00∇2ϕan

3: ðA22Þ

The leading fluctuation correction to transport then comes

from two-loop diagrams involving the two quartic vertices,

such as those in Figs. 2 and 5(d). These have not been

computed before—we evaluate them below. The contribu-

tion proportional to σ002 vanishes due to the latest time

condition (A5). The contributions proportional to σ00D00

can also be shown to vanish, following the same argument

as in the previous section: They involve computing

hnðt; xÞn3ð0; 0Þi in the theory with only the quartic inter-

action σ00. The only remaining contribution is the one

proportional to D002. It is studied in Sec. III and leads to a

correction [see Eq. (24)]

δDðω; qÞ ¼ −
i

2
D002

Z

p0;p00
q002hnϕaiðp00Þhnniðp0 − p00Þhnniðp − p0Þ

¼ χD002

2D2

Z

p0
ð−iω0Þαd

�

q02 −
2iω0

D

�

hnniðp − p0Þ

¼ ðχD00Þ2
2D2

Z

q0
ð−iωþDðq − q0Þ2Þαd

�

q02 þ 2ðq − q0Þ2 − 2iω

D

�

; ðA23Þ

where, in the third line, we used the result of the one-loop

calculation (A17) and, in the last one, we performed the ω0

integral using the residue theorem [note that αd½q02 −
ð2iω0=DÞ� is analytic in the upper-half ω0 plane]. Changing
integration variables to q0 → k≡ ð3=

ffiffiffi

2
p

Þðq0 − 2

3
qÞ leads to

δDðω; qÞ ¼ ðχD00Þ2
2D2

�

ffiffiffi

2
p

3

�d

×

Z

k

�

−iωþ 1

9
Dðq2 þ 2k2Þ

�

αd

�

2

3
ðk2 þ zÞ

�

;

ðA24Þ

where we defined

z≡ q2 −
3iω

D
: ðA25Þ

Let us first focus on d odd, where one can write

αdðzÞ ¼ adz
d
2
−1; ðA26Þ

with ad ¼ ½ð−1Þd−12 π�=½ð16πÞd=2Γðd=2Þ�. The corrections

then take the form

δDðω;qÞ¼ 3ðχD00Þ2
4D2

��

−iωþD

9
q2
�

Jd;0ðzÞþ
2D

9
Jd;2ðzÞ

�

;

ðA27Þ

with

Jd;nðzÞ ¼
�

ffiffiffi

2
p

3

�d

ad

Z

ddk

ð2πÞd k
nðk2 þ zÞd2−1: ðA28Þ

This final integral has several power-law UV divergences:

They are analytic in ω, q and can therefore be absorbed

with counterterms in higher-derivative corrections to hy-

drodynamics. We thus focus on the UV-finite (or UV log-

divergent) nonanalytic part. By dimensional analysis, it has

the form

Jd;nðzÞ ¼ zd−1þ
n
2

�

bd;n log
Λ
2

z
þ cd;n

�

þ UV: ðA29Þ
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Note that the cd;n contribution is always analytic, so it can

be ignored. The coefficients of interest are found to be

bd;0 ¼
1

ð12
ffiffiffi

3
p

πÞd
1

ΓðdÞ ; bd;2 ¼ −
1

2
bd;0: ðA30Þ

This second equality implies that the q2zd−1 logð1=zÞ
correction vanishes, so δDðω; qÞ is proportional to

ð−iωÞzd−1 logð1=zÞ, which guarantees that static correla-

tors ω → 0 are analytic, as expected [44]. We are then

left with

δDðω; qÞ ¼ 1

2
bd;0

ðχTD00Þ2
D2

ð−iωÞzd−1 log 1
z
: ðA31Þ

One can repeat this calculation in d even, where instead of

Eq. (A26), one has αdðzÞ ¼ ãdz
d
2
−1 logð1=zÞ. One finds the

same results as above, apart from a sign bd;n → −bd;n. The

result in general dimensions therefore takes the form (25).

5. Fourier transformation of corrections to diffusion

In this section, we detail the computation of the inverse

Fourier transform that produces the two-point function,

focusing on d ¼ 1, for simplicity,

hnðt; xÞni≡
Z

dωdq

ð2πÞ2 e
−iωtþiqxhnniðω; qÞ; ðA32Þ

where hnniðω; qÞ can be obtained from the retarded

Green’s function using Eq. (A11),

hnniðω; qÞ ≃ 2

ω
Im

σq2

−iωþ ðDþ δDðω; qÞÞq2

≃
2σq2

ω2 þD2q4
−
2

ω
Im

σq4δDðω; qÞ
ð−iωþDq2Þ2 ; ðA33Þ

where we have expanded to linear order in δD [given by

Eqs. (22) or (27)] because we are only interested in the

leading correction.

The Fourier transformation of the first term is straight-

forward, and it is given by

hnðt; xÞni0 ¼
χ
ffiffiffiffiffiffiffiffiffiffiffi

4πDt
p e−y

2=4; y≡
x
ffiffiffiffiffiffi

Dt
p : ðA34Þ

Let us now turn to the Fourier transform of the correction.

Introducing the dimensionless variables w ¼ ω=ðDq2Þ and
τ ¼ tDq2, one has

δhnniðt; qÞ ¼
Z

dω

2π
e−iωthnniðω; qÞ

¼ χq2
Z

dw

2π
e−iwτ

δD=ð−iωÞ
ð1 − iwÞ2 : ðA35Þ

We have taken t > 0, implying that one can disregard

nonanalyticities in the upper-half w plane. Inserting the

one-loop expression (22) leads to

δhnniðt; qÞ ¼ iχ2D02jqje−τ=2
4
ffiffiffi

2
p

D2

Z

0

−∞

dz

2π
Disc

ezτ
ffiffiffi

z
p ðzþ 1

2
Þ2 ;

where we defined z ¼ 1

2
− iw and deformed the contour to

pick up the discontinuity across the two-diffuson branch

cut, DiscfðzÞ ¼ fðzþ i0þÞ − fðz − i0þÞ. Evaluating the

integral gives

δhnniðt; qÞ ¼ χ2D02jqje−τ=2
4D2

×

"

e−τ=2ð1þ τÞErfi
� ffiffiffi

τ
p
ffiffiffi

2
p
�

−

ffiffiffiffiffi

2τ
p
ffiffiffi

π
p
#

; ðA36Þ

with ErfiðzÞ≡ ErfðizÞ=i. To perform the final Fourier

transform
R

ðdq=2πÞeiqx, one can express the integrand

as a product of two Fourier transforms and evaluate their

convolution. This process gives Eq. (1).

The two-loop contribution can be obtained similarly:

One inserts Eq. (27) into Eq. (A35) and evaluates the

discontinuity across the three-diffuson branch cut to obtain

δhnniðt;qÞ¼ χ3D002q2

24
ffiffiffi

3
p

πD2

�

τe−τ
�

log
1

q2
þEi

�

2τ

3

��

−
3

2
e−

τ
3

�

;

where EiðzÞ≡ −
R

∞
−zðdu=uÞe−u (ExpIntegralEi[z] in

Mathematica). We were not able to express the final

Fourier transform
R

ðdq=2πÞeiqx in terms of known special

functions—the resulting integral is shown in Eq. (6). The

one-loop and two-loop scaling functions are shown

in Fig. 6.

FIG. 6. Universal scaling functions describing nonlinear cor-

rections to the diffusive structure factor as a function of the

hydrodynamic variable y ¼ x=
ffiffiffiffiffiffi

Dt
p

. The leading-order Gaussian

spreading is F0;0 ¼ e−y
2=4, and the leading-order nonlinear

fluctuations are given by Eq. (2) for general systems and by

Eq. (6) in the presence of particle-hole symmetry.
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6. EFT predictions for the domain-wall quench

In this section, we present the EFT predictions for the

domain-wall initial condition, Eq. (42). As explained in the

main text, the conversion from the dynamical structure

factor to the domain-wall picture is a simple integration in

space, Eq. (44). Here, we present the equations employed in

the fitting processes,

F0;0 ¼
1

2
Erfðy=2Þ;

F1;0 ¼
χD02
ffiffiffiffiffiffiffiffiffiffiffi

4πD5
p

 

−
4e−

y2

2 y

8
ffiffiffi

π
p −

e−
y2

4 ð−6þ y2ÞErfðy=2Þ
16

!

;

F0;1 ¼ e−
y2

4 yðc1 þ c2y
2Þ;

F2;0 ¼
χ2D002

24π
ffiffiffi

3
p

D3
ðF̃2;0 þ F

0
2;0 log tÞ;

F̃2;0 ¼
Z

∞

0

ds

π
sinðsyÞs

×

�

s2e−s
2

�

log
1

s2
þ Ei

�

2s2

3

��

−
3

2
e−s

2=3

�

;

F
0
2;0 ¼ −

e−
y2

4 yðy2 − 6Þ
16

ffiffiffi

π
p : ðA37Þ

The parameters in the term F0;1 are defined in order to

absorb the numerical constant.

Equation (D2) follows from a simple manipulation of the

three-point function derived in Ref. [25],

fðx̄;x; tÞ
¼ hnðx1; tÞnðx2; tÞnð0;0Þi

¼ χ2D0

8πD2t
e−

y2
1
þy2

2

4

�

1−

ffiffiffi

π
p

y1

2
e
y2
2

4 ðErfðy2=2Þþ signðy1−y2ÞÞ
�

þy2 ↔ y1; ðA38Þ

where y1 ¼ x1=
ffiffiffiffiffiffi

Dt
p

, y2 ¼ x2=
ffiffiffiffiffiffi

Dt
p

, and x̄ ¼ ðx1 þ x2Þ=2,
x ¼ x1 − x2 correspond to the center-of-mass coordinates.

In the domain-wall initial state, the center of mass will be

summed over all positions, while the second operator is

fixed at x2 ¼ 0. This case corresponds to a spatial inte-

gration with respect to the center-of-mass coordinate,

s3;EFT ¼ 1

χ

Z

0

∞

fðx̄; x; tÞdx̄: ðA39Þ

APPENDIX B: EFT FOR MULTIPLE

DIFFUSING DENSITIES

1. General construction of the EFT

The EFT approach can be generalized to account for

multiple continuity relations giving rise to conserved

densities. Consider a thermalizing system with Abelian

Uð1ÞN symmetry, and couple it to background fields AA
μI ,

where I ¼ 1, 2 denotes the SK contour and the index

A ¼ 1;…; N. The action will be made up of the gauge-

invariant combinations

BA
μI ≡ AA

μI þ ∂μϕ
A
I : ðB1Þ

Imposing diagonal shift symmetry

BA
ir → BA

ir þ ∂iλ
Aðx⃗Þ; ðB2Þ

and KMS as before, the quadratic action to leading order in

derivatives is

Lð2Þ ¼ B0a · χ · B0r þ Bia · σ · ðiTBia − ḂirÞ; ðB3Þ

where χAB; σAB are matrices and dots denote matrix

multiplication. Both χ and σ have to be symmetric by

time-reversal symmetry (Onsager relation). The cubic

action to leading order in derivatives is

Lð3Þ ¼ 1

2
B0a · ∂Aχ · B0rB

A
0r þ Bia · ∂Aσ · ðiTBia − ḂirÞBA

0r:

ðB4Þ

The cubic interactions arise, as before, as dependence of

transport or thermodynamic parameters on potentials:

∂Aχ ≡ dχ=dμA; ∂Aσ ≡ dσ=dμA. One can change variables

to the density as before, ϕA
r → nA ≡ ðδL=δAA

a0Þ. In terms of

these variables, the full action up to cubic order is

Lð2Þ ¼B0a ·nþBia · σ · ðiTBia−F0i;rÞ−Bia ·D · ∂in;

Lð3Þ ¼−
1

2
Bia · ∂

AD · ∂iðnnAÞþBia · ∂
Aσ · ðiTBia−F0i;rÞnA

þ 1

2
Bia · ∂

Aσ · χ−1 · ðn∂inA − ∂innAÞ: ðB5Þ

The derivatives of transport parameters are now taken with

respect to densities, e.g.,

∂
Aσ ¼ d

dnA
σ ¼ ðχ−1ÞAB∂Bσ; ðB6Þ

and the diffusion matrix has been defined as

D · χ ¼ σ or DA
B ¼ σACðχ−1ÞCB: ðB7Þ

As the product of two symmetric positive matrices, D can

be diagonalized—its eigenvalues correspond to the location

of poles of the density two-point function ω ¼ −iDAq
2.

While the first two lines in Lð3Þ [Eq. (B5)] are analogous
to the N ¼ 1 case, the term in the third line is qualitatively

new. It is a contribution to jir ¼ δL=δAia, as expected
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[see Eq. (31)]. These terms lead to different corrections to

diffusion. We study them below, in the more constrained

situation of non-Abelian densities.

2. Non-Abelian densities

The EFT can also be straightforwardly generalized to

non-Abelian Lie groups [24,75]. We focus here on SUð2Þ
for concreteness. Since the densities nA transform linearly

(in the adjoint representation) under the group action, one

can implement the symmetry by making sure that they are

contracted with group covariant tensors [for SUð2Þ, these
are δAB; ϵABC]. The nonlinear transformation of ϕA

a requires

more attention: Instead of using Bμa ¼ ∂μϕa þ Aμa, one

should use the Maurer-Cartan form

iBμa ¼ e−iϕ
A
aTAð∂μ þ iAB

μTBÞeiϕ
C
aTC ; ðB8Þ

which also transforms in the adjoint of SUð2Þ. Here, TA are

the generators of the algebra. The cubic SUð2Þ-invariant
action is therefore

Lð2Þ ¼ B0a · nþ σBia · ðiTBia − F0i;rÞ −DBia · ∂in;

Lð3Þ ¼ λϵABCB
A
ian

BðχFC
0i þ ∂in

CÞ: ðB9Þ

The term in the last line of Eq. (B5) produces the cubic term

above; we have written its coefficient as ∂AσBC ≡ χλϵABC.

Note that there are also cubic terms in the first line, coming

from expanding Eq. (B8): However, one can show, using

the leading-order equation of motion, that they will not

contribute to the one-loop correction studied below.

3. One-loop correction

Let us study the one-loop correction to hnrnai. There
are two contributions: The first comes from the nonlinear

piece in

nAa ≡
∂L

∂A0r

¼ −σ∇2ϕA
a þ χλϵABC∂ið∂iϕB

an
CÞ þ � � � : ðB10Þ

Writing hnAr nBa i ¼ δABhnrnai, this leads to the following

correction to hnrnai:

2iχλ2hnϕiðpÞqiqj
Z

p0
½q0jð2q0 − qÞi�hnϕiðp0Þhnniðp − p0Þ:

ðB11Þ

The other contribution comes from two insertions of the

cubic interaction Sð3Þ:

2σλ2½hnϕiðpÞ�2q2qi

×

Z

p0
½q0jð2q0 − qÞið2q − q0Þj�hnniðp − p0Þhnϕaiðp0Þ:

ðB12Þ

Summing these two diagrams, one finds (in d ¼ 1

dimensions)

GR
nnðω;qÞ ¼ ihnrnaiðω;qÞ

≃
σq2

−iωþDq2
þ λ2Tχ2

D
q2ðiωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2− 2iω
D

q

ðDq2− iωÞ2þ �� � :

ðB13Þ

Like before, there are couple consistency checks that this

result satisfies: It vanishes when q → 0 (as it must by

current conservation) and when ω → 0 (as it must by

analyticity of static correlators). The two diagrams above

do not satisfy the latter check individually; only their sum

does. Our result slightly differs from the one obtained in a

strong noise expansion in Ref. [42]—because their result

does not become analytic in the static limit, we suspect

that they may have missed a contribution to the one-loop

correction.

4. Fourier transformation

We would like to compute the Fourier transform of

δhnniðω; qÞ ¼ 2T

ω
ImδGR

nnðω; qÞ

¼ λ2ðTχÞ2
D

q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − 2iω
D

q

ðDq2 − iωÞ2 þ c:c: ðB14Þ

Fourier transforming
R

ðdω=2πÞe−iωt by picking up the cut

as usual, one finds

δhnniðt; qÞ ¼ −
λ2ðTχÞ2
D2

2
ffiffiffi

π
p jqje−τ=2

×
h

−
ffiffiffiffiffiffiffi

τ=2
p

þ ðτ − 1ÞFð
ffiffiffiffiffiffiffi

τ=2
p

Þ
i

: ðB15Þ

The final Fourier transform
R

ðdq=2πÞeiqx can be per-

formed by convoluting the Fourier transforms of both

products above. The result is shown in Eq. (35).

APPENDIX C: DETAILS ON

QUANTUM TRANSPORT

In this appendix, we (1) identify the effects of the

truncation of the bond dimension in the DMPO dynamics

and (2) compare different fitting approaches for the

extraction of diffusivity. We find that, even when truncation

is only weakly affecting the simulation, the fact that the

system is not yet at the asymptotic regime can lead to

different fitting results depending on the method.

1. Effects of information truncation in the dynamics

The main source of error in tensor network approaches

to quantum dynamics is the truncation of information,
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e.g., operator entanglement in the case of density matrix

evolution [82]. Operator entanglement is generated by

quantum dynamics and is expected to increase linearly

with time, Sop ∝ t, corresponding to an exponential scaling

of the required classical resources (bond dimension of local

tensors) [83,84]. In practice, one sets a maximum dimen-

sion for the local tensors effectively bounding the amount

of operator entanglement in the state. The effect of this

truncation to the long-time dynamics in linear response

quenches is an active area of research [70,85]. Since there is

no theory for the effects of truncation to the dynamics, we

simply change the bond dimension and compare the results.

If there is agreement between bond dimensions, we assume

that the truncation is weak.

In the presence of dephasing γ in the system, coherences

are destroyed at a timescale tγ ∼ 1=γ. This result leads to a

saturation of Sop. Therefore, if the bond dimension is

enough to produce accurate results up to tγ, it will also be

accurate for t ≫ tγ. We confirm this finding for the results

shown in the main text (γ ¼ 0.1) by comparing bond

dimensions d ¼ 128, 256 (not shown).

Coherent simulations, on the other hand, are much more

demanding as the amount of resources increases exponen-

tially with time. In Fig. 7(a), we show that different bond

dimensions agree well at different times at the leading-

order level. For a better understanding of the accuracy, we

calculate the distribution differences between different

bond dimensions [Fig. 7(b)]. The values of these

differences will be employed to estimate the accuracy of

subleading effects. These results show that, as we deviate

from half filling, the simulations become more demanding,

leading to a decrease of accuracy for the same resources.

While we do not fully understand this phenomenon, it is

likely related to the increased strength of the nonlinear

corrections.

2. Fitting methods

Following the raw data comparison, we perform a

consistency check between different fitting approaches to

the simulation data. The classical numerics presented in

Sec. III E suggest that when dealing with limited resources,

making use of our knowledge of the general structure of

corrections to diffusion improves the precision in fitting

transport parameters. Consequently, we employ three

qualitatively different fitting methods that are designed

to take an increasing amount of corrections to diffusion into

account. The first two methods (I and II) perform fits on the

dynamical structure factor. The third method (III) is based

on Fick’s first law and the total current in the system.

Method I assumes knowledge of only the leading-order

diffusion,

SIðx; tÞ ¼ F0;0 ¼
1

2
Erfðx=

ffiffiffiffiffiffiffiffiffiffiffi

4ασ̄;tt
p

Þ; ðC1Þ

FIG. 7. Estimation of stability of corrections for different fillings μ ¼ 0, 0.2, 0.3 and bond dimensions d ¼ 256 (red), 400 (blue),

600 (green), for the staggered XXZ chain. (a) Profiles of magnetizations at three different times t ¼ 100, 200, 400 (three visibly different

sets of curves). The bond dimension d ¼ 600 is only shown for t ¼ 100; the maximum integrated time is t ¼ 150. A slight difference is

only visible for μ ¼ 0.3. (b) Difference between the profiles at times t ¼ 100, 200, 400, denoted by full, dashed, and dotted lines,

respectively. For μ ¼ 0.3, the difference is almost an order of magnitude larger than μ ¼ 0, 0.2, indicating the enhancement of simulation

error at larger fillings. (c) Predictions of diffusivity by employing fitting method I. At μ ¼ 0, diffusivity decreases with time, indicating

that the system is not yet at asymptotic diffusion. At larger μ, we observe a monotonic increase over time, compatible with the EFT

predictions. (d) Correction to diffusion, Δs ¼ s − F0;0, using method II and times up to T ¼ 150 for d ¼ 256, 600. At μ ¼ 0, the

difference between this plot and the main text is due to the smaller timescale used here in order to compare with d ¼ 600. For μ ¼ 0.2,

the profiles are more than 1 order of magnitude larger than the error estimated from panel (b), suggesting that the quantitative structure of

the correction is not considerably affected by errors. For μ ¼ 0.3, the profiles agree well; however, deviations in panel (b) become

significant for t ≥ 200, and therefore, we do not fit these data in the main text.
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where an explicit time dependence on diffusivity ασ̄;t is

assumed in order to encapsulate the finite-time corrections.

This method is simple to implement and commonly

used. However, it is entirely phenomenological and, strictly

speaking, incorrect—indeed, the scaling corrections dis-

cussed in Sec. III imply that the autocorrelation function

does not take the form Eq. (C1) at intermediate times. We

nevertheless study this method to compare it to other

methods that are consistent with EFT predictions. The fit

is performed for each time t and equilibrium magnetization

σ̄ on the spatial profile of magnetization sðxÞ defined by

Eq. (43). One can then estimate diffusivity from the longest

simulation time t ¼ T. However, the true diffusivity is

defined as D ¼ limt→∞ ασ̄;t. In principle, it is possible to

extrapolate diffusivity with some appropriate function of

inverse time. However, in simulations that have increasing

errors with time, such extrapolations can capture artifacts,

so we will not be performing them. Once diffusivityDðσ̄Þ is
extracted, the nonlinear corrections are either calculated by

discrete derivatives, or analytically, by first performing a

low-order polynomial fit,

Dðσ̄Þ ¼
X

M

i¼0

biðσ̄Þ2i; ðC2Þ

where only even powers appear due to the particle-hole

symmetry in the system. In Fig. 7(c), we show how this

method performs on the staggered-field simulations for

different bond dimensions. Compared to methods II and III,

method I gives a time-dependent illustration of the system’s

behavior by showing how the asymptotic limit is

approached.

Method II, which is explained in the main text, is based

on a full fit of the hypersurface sðσ̄; x; tÞ. This method is

performed by either employing the leading-order diffusion

or more elaborate assumptions for the fitting function,

Eq. (44), based on our knowledge of the leading corrections

to diffusion. We use the same trial function for diffusivity as

before, Eq. (C2), and similar trial functions for the linear

corrections, c1=2 ¼
P

M
i¼0

b
1=2
i ðσ̄Þ2i. We note that c1=2 are

taken to be constant in the coherent simulations since the

maximum reliable chemical potential is approximately 0.25

and the dependence of the constants with a chemical

potential is weak. Figure 7(d) shows the correction to the

leading-order diffusive profile at T ¼ 150. We observe that,

for sufficiently low μ ≤ 0.25, the correction is more than 1

order of magnitude stronger than the bond dimension

difference [Fig. 7(b)], indicative of a quantitatively accurate

result. For the incoherent simulation where we fit μ ¼ 0–1, it

is important to allow for the constants to depend on σ̄.

Method III studies the relaxation of the total current

J ¼
R

dx jðxÞ. On general grounds, the constitutive relation
for the current density is

j ¼ −DðnÞ∂xnþ higher derivatives: ðC3Þ

We ignore the higher-derivative terms for now and come

back to them below. The first term is responsible for all

higher-loop corrections to the dynamic structure factor at

leading order in gradients, Fl;0 (the first two l ¼ 1, 2,

coming from D0; D00, were computed in Sec. III). None of

these corrections contributes to correlators of the total

current: Defining CðnÞ such that C0ðnÞ ¼ DðnÞ and inte-

grating from x ¼ 1 to x ¼ L, we have

J ≃ CðnðLÞÞ − Cðnð1ÞÞ
≃Dðσ̄ÞðsðLÞ − sð1ÞÞ; ðC4Þ

where, in the second line, we expanded the density

around the equilibrium magnetization nðxÞ ¼ σ̄ þ sðxÞ,
and Dðσ̄Þ is approximated by Eq. (C2). It is justified to

drop higher-order terms in sðxÞ (which could otherwise

lead to fluctuating corrections) because the dynamics has

not affected the magnetization sufficiently far from the

FIG. 8. Subleading correction estimation for diffusivity fits

using different fitting methods for μ ¼ 0.2. Increasing diffusivity

faster results in suppressed edge corrections, while increasing

diffusivity more slowly leads to suppressed corrections around

y ¼ 0. The analytical result (red dashed line) denotes the EFT

result F1;0, which relies only on the fitted diffusivity Dðσ̄Þ.
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domain-wall position at any time. This case is true since,

for all times integrated, the Lieb-Robinson light cone

has not reached the system’s boundary, meaning that

sðLÞ ¼ −sð1Þ ≃ χðσ̄Þδ. Let us now turn to the higher-

derivative terms in Eq. (C3). Because of the argument

above, ∂
n
xsðxÞ ¼ 0 at the boundaries x ¼ 1; L, so other

contributions to the current that are total derivatives

vanish. This finding includes linear higher-derivative terms

j ⊃ ∂
2nþ1
x s, which otherwise would have led to corrections

of the form F0;n. This case also includes certain nonlinear

higher-derivative terms: For example, all terms involving

two diffusive fluctuations are total derivatives, s∂2nþ1
x s ¼

∂xð…Þ, so one-loop corrections with any number of

derivatives F1;n do not contribute. The first correction to

Eq. (C4) comes from the leading EFToperator that is parity

odd and not a total derivative. For the case of a single

diffusive density, this correction is j ⊃ s2∂3xs [21]. This

result will lead to a l ¼ 2 loop correction at order n ¼ 2

in derivatives (F2;2) to the current decay JðtÞ scaling as

1=tnþl=2 ¼ 1=t3 at late times. While a precise exponent is

difficult to extract from the numerics, we observe fast decay

of the total current, consistent with the observation that

many of the leading EFT corrections vanish in this

observable (fast polynomial decay due to high-order hydro-

dynamic tails is known to be difficult to observe quanti-

tatively [24]). Because the convergence to the late-time

value of the current limt→∞ JðtÞ is therefore fast, there is no
need to extrapolate in time to obtain accurate results. We

note that this method becomes less powerful in the presence

of multiple conserved charges since there is a larger number

of terms that are not total derivatives [see Eq. (31)]. In this

case, the decay of the current is due to a one-loop correction

F1;0, scaling as 1=tnþl=2 ¼ 1=
ffiffi

t
p

.

The diffusivity Dðσ̄Þ is therefore obtained from the

late-time current using Eq. (C4) and fit as a function of

magnetization using Eq. (C2), limiting ourselves toM ¼ 2.

The parameters b0, b1, b2 are estimated by minimizing the

distance between the measured currents at different fillings

and Eq. (C3). To avoid overparametrization, we fit a

number of equilibrium magnetizations much larger than

the number of free parameters (three in this case).

The subleading correction is qualitatively similar for

fitting methods II and III despite the small variations in

diffusivity (Fig. 8); however, method I clearly underesti-

mates diffusivity, leading to larger deviations in the

corrections.

APPENDIX D: NONLINEAR RESPONSE

In the previous appendixes, we explored the effects of

scaling corrections in the DSF, which is a two-point

correlation function. While the effect of fluctuations on

the DSF can be important, it is always subleading at long

times. Here, we go one step further and explore many-body

correlations that would vanish in the absence of

nonlinearities in hydrodynamics. In particular, we explore

the late-time behavior of the observable,

s3ðx; tÞ ¼
hσzðL=2; tÞσzðL=2þ x; tÞic

j2trðσz
1
ρðt ¼ 0ÞÞj ; ðD1Þ

where the average is performed on the domain-wall state

defined by Eq. (42). As we illustrate in Appendix A 6, this

observable is, up to a spatial integration, a special case of the

density three-point function. Higher-point functions general-

ize full counting statistics in that they allow for operator

insertions at multiple times and can be obtained from the

EFT of diffusion [25]. According to the EFT, the asymptotic

behavior of s3ðx; tÞ in diffusive systems with a single

conserved charge is given by a universal scaling function

s3;EFTðy; tÞ ¼
1
ffiffi

t
p D0χ

8

ffiffiffiffiffiffiffiffiffi

D3π
p ðe−y2=4 þ Erfðy=2Þ − 1Þ; ðD2Þ

where y ¼ x=
ffiffiffiffiffiffi

Dt
p

. As expected for multibody functions

in linear response, s3;EFTðy; tÞ vanishes as t → ∞. It also

vanishes in systems that are particle-hole symmetric

(D0 ¼ 0).

As shown in Fig. 9, for both dephasing and staggered

perturbations, s3 scales according to the EFT prediction,

1=
ffiffi

t
p

. In the presence of dephasing, we observe a precise

late-time agreement of the correction profile to s3;EFT,

which verifies the validity of the EFT prediction. No fitting

parameter was used in this test, as D and D0 were already
obtained from the linear response analysis. In the case of a

staggered field, we find that while the shape of the profile is

qualitatively similar, there is a quantitative deviation from

the EFT prediction (independent of the diffusivity fitting

method). The similarity between the EFT profile (D2)

and the numerical data can be illustrated by performing a

fit of s3;EFT for y > 1, with D and D0 now taken to be

independent fitting parameters. The result is illustrated

in the inset of Fig. 9(b), the two profiles agree well for

ðD ∼ 1.85DIII; D
0 ∼ 0.36D0

IIIÞ. This agreement suggests

that the staggered profile at y ≫ 1 has the same functional

form as the EFT prediction and features a Gaussian tail,

despite the apparent disagreement with the values of D and

D0 obtained from linear response.

While the discrepancy between the EFT prediction and

quantum dynamics in staggered-field simulations remains

unclear to us, we have verified that this disagreement is not

due to simulation errors. Additionally, the good conver-

gence with time suggests that subleading corrections are

not at play. Taking into account these observations leaves

us with several possibilities: (i) The diffusivity fits of the

previous section may not be accurate for the staggered-field

simulations. This possibility could be an artifact of the

short accessible timescale or of large diffusivity fluctua-

tions with magnetization. We have extensively checked for

these artifacts, and we did not find any evidence of them in
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the data. (ii) This system may simply have a very long local

equilibration time, τeq ≳ 200, so our numerics never probes

the truly asymptotic regime controlled by the EFT. This

possibility could, e.g., arise from the presence of additional

long-lived degrees of freedom protected by approximate

symmetries and could be related to the integrability of the

Floquet-XXZ chain or to other prethermalization mecha-

nisms [86]. (iii) Finally, the EFT may fail to capture even

the asymptotic dynamics of coherent many-body Floquet

systems. While we do not have a particular reason to

believe that the EFT should fail, there is no proof that it

must emerge, in general. We leave this interesting pos-

sibility, as well as further exploration of these phenomena,

for future work.
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