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Abstract

We identify the universal mechanism behind the thermalization of (1+1)d QFTs at high
and low temperatures. Viewing these theories as CFTs perturbed by relevant or irrelevant
deformations, we show that conformal perturbation theory in the thermal state breaks
down at late times allowing for the emergence of hydrodynamics. This breakdown oc-
curs universally due to the unsuppressed exchange of stress tensors near the lightcone.
Furthermore, for theories with central charge ¢ — o0 we solve for the emergent hy-
drodynamic theory to all orders in the gradient expansion by arguing that all transport
parameters appearing in two-point functions have universal expressions in terms of the
scaling dimension A of the perturbation. The radius of convergence of the hydrodynamic
dispersion relations provides an early time cutoff for hydrodynamics, which agrees with
the time scale at which conformal perturbation theory breaks down.
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1 Introduction and summary

Interacting systems thermalize, leading to the emergence of hydrodynamics at late times.
While the structure of hydrodynamics is universal, how a system thermalizes, how long it
takes, and the details of the hydrodynamics that emerges, are not. Under certain conditions,
these features of quantum field theories (QFTs) may be studied using tools like kinetic theory
(at weak coupling) or holography (for a large number of degrees of freedom). In this paper, we
will show that low dimensionality offers a complementary way to gain the theoretical control
needed to answer these questions.

Thermal correlators in (1+1)d conformal field theory (CFT) are entirely fixed by symmetry,
forbidding the emergence of dissipative hydrodynamics. This suggests that (1+1)d QFTs at
high and low temperatures thermalize very slowly. In these limits, QFTs can be described as
CFTs deformed by a relevant or irrelevant operator O of dimension A:

S=SCFT+'\/Elfd2x0. (1)

The coupling in units of temperature A = AT2~2 < 1 then provides a dimensionless control
parameter for conformal perturbation theory (CPT). The anticipated slow thermalization sug-
gests that the real time thermalization dynamics may be analytically tractable in this limit.
This is analogous to how kinetic theory captures the slow thermalization of QFTs at weak cou-
pling, or how weakly perturbed integrable systems thermalize slowly (see, e.g., [1]), but here
without any restriction on the nature of the underlying CFT: we expect slow thermalization
even when it is strongly coupled and non-integrable.

In this paper, we identify the universal mechanism for the thermalization of (14+1)d QFTs
at high and low temperatures. For thermalization to occur the effects of the perturbation in (1)
must become large. This is because stress tensor correlators have support only near the light
front in a CFT, and only near the sound-front in hydrodynamics, and at late times these fronts
are far apart. In other words thermalization requires that CPT breaks down at late enough
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(b)

Figure 1: In (1+1)d CFT, the thermal two-point function of the stress tensor T, is
concentrated along the light-front. (a) Its first O(A%) CPT correction can be viewed
as two T__ propagators convoluted with a O propagator, cf. Eq. (24). This allows
the two-point function to become appreciable within a width 8 of the light-front.
(b) General structure of leading CPT corrections, which allow for the emergence of
hydrodynamics at late times t >> 1/(A%T). Pairs of O’s (red) fuse into T__ and other
Virasoro descendants of the identity which propagate along null lines (blue).

times in the thermal state, even when A < 1. We demonstrate that the exchange of stress

tensors near the lightcone causes exactly such a CPT breakdown at times t { T.q, where

(2

Teq ~ ? B
and § = 1/T. Physically, the deformation (1) couples the left and right-moving sectors of the
CFT, allowing for chiral operators to slow down and form a hydrodynamic sound-front. This
process is illustrated in Fig. 1. Interestingly, the timescale (2) corresponds parametrically to
the fastest thermalization timescale allowed by causality in a (1+1)d QFT [2].

The breakdown of CPT should coincide with the emergence of hydrodynamics at the lo-
cal equilibration (or thermalization) time 7.q. In the second half of our paper we specialize
to cases where the CFT has a large central charge c, giving additional theoretical control. In
these cases we argue that it is possible to calculate all hydrodynamic transport parameters that
appear in the two-point functions i.e. to calculate the coefficients of all of the corresponding
higher gradient terms in the late-time hydrodynamic effective field theory. The expressions for
these are universal: they depend only on the values of A and T. From this we reconstruct the
hydrodynamic stress tensor two-point functions and the dispersion relations of the hydrody-
namic sound waves w-{k) to all orders in k. This suggests that, at least at large ¢, the apparent
breakdown of CPT at late times can be tamed by resumming a specific tower of corrections.

Specifically, in momentum space the hydrodynamic retarded Green’s function of the trace
of the stress tensor is

(e+P)1— cs2 —iww, k?)) — ﬁ(wz — k)x(w, k?)

t = (w2 2
GRrace(w, k)=(w*—k*) w? —c2k? —iwk2Q(w, k2) s

(3

where ¢, P and c, are the energy density, pressure and speed of sound, and Q(w,k?) and
x(w, k?) are analytic functions around w, k = 0, whose Taylor coefficients define the transport
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parameters of the theory. We argue that — to leading order in A — each of these parameters is
fixed by the thermal retarded Green’s function of the scalar O in the CFT

(2rT)* +k2)(1— cs2 —iwQ(w, k%)) — (w? —k?) (K(w, k%) — 1)

G Gy (0, 0)) , 4

=12n2%(2—A)? (GggFT(w, k)—
where the right hand side should be considered as a series in small w and k which can be
easily calculated from the explicit expression for GggFT(co, k) given in Eq. (56) below.

This complete knowledge of the hydrodynamic theory allows us to determine when, and
why, it breaks down. The hydrodynamic dispersion relations w, (k) are analytic functions
with a universal radius of convergence k,,,, = AnT. At this wavenumber the hydrodynamic
poles of momentum space Green’s functions collide with poles corresponding to thermal CFT
excitations of 0. In other words, hydrodynamics breaks down at short scales as it does not
account for these excitations. Upon translating back from momentum space to real space, this
leads to an early-time cutoff on hydrodynamics that agrees with the time scale (2) at which
CPT breaks down.

Taken together, our results provide a universal description of thermalization of (1+1)d
QFTs at high and low temperatures, from the perspective of both the early-time and late-time
effective theories. After reviewing some useful results in Sec. 2, the CPT perspective on ther-
malization is described in Sec. 3 and the hydrodynamic perspective in Sec. 4. In Sec. 5 we
close with some discussion, including some remarks on the prospects of deriving hydrody-
namics from CPT.

2 Thermodynamics and Ward identities

We study dynamics at finite temperature of (1 + 1)-dimensional quantum field theories that
are close to conformal fixed points. To do this, we consider the action

S=SCFT+ﬁAJd2xO, (5)

where Scpr is the action of a conformal field theory with central charge ¢, and O is a scalar
primary operator of this CFT with scaling dimension A. We normalize O such that its vacuum
two-point function in the CFT is |x — x’| 24,

We are interested in the limit where the effects of the deformation to the CFT are expected
to be small. When Sy is a UV fixed point, we take 0 < A < 2 and consider the high temper-
ature limit A < T272. For field theories that arise by deforming a CFT with multiple relevant
scalar operators, the most dominant corrections to CFT physics at higher temperatures will
be due to the least relevant deforming operator. By choosing A to be the dimension of this
operator, the simple action (5) captures these dominant effects.

The situation is more subtle when Scpy is an IR fixed point. In this case we consider the
low temperature limit A < T272 where the effects of deformations by irrelevant operators
with 2 < A will be small. RG flow will typically generate deformations by all such operators
and provided the least irrelevant has 2 < A < 3, the simple action (5) captures the dominant
corrections to CFT physics at low temperatures. The reason for the upper bound on A is that
the effects of the TT deformation dominate over those of a scalar primary with A > 3. This is
because the enhanced effects of the T T operator, which is a descendant of the identity and so
has a non-zero expectation value in the thermal state [2]. We treat these special cases, namely
the low-temperature dynamics of QFTs that flow to IR CFTs with no operator of dimension
2 < A <3, in Sec. 3.3.
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2.1 Thermodynamics

Thermal expectation values of a CFT on the infinite line can be obtained by mapping Euclidean
expectation values from the plane to the cylinder. The corrections due to the dimensionful
coupling A can be calculated in conformal perturbation theory and we will parameterize these
by the dimensionless coupling

A= ATA 2, (6)

which will be small in both limits described above.
The energy density € and pressure P of the thermal state are [2]

e, o 2A —
8=€T 1+

3 - TIC
AZ+...), P=—T2(1+
1—A %2 6

1_AOLAZZ+...), (7)

where Ay
r2—A)r(3)
r(A)r(1-35)
and the entropy density iss = (¢ +P)/T. The factor of 4/c in the action (5) was chosen so that

a coupling A ~ 1 has a qualitatively important effect on the equation of state.
Defining the speed of sound c, by cs2 = ‘(11—1: gives

ap = 3(2%)2(A_1)

©))

1—c,=(Q2—A)a A% +... 9)

Causality requires that this quantity is non-negative and it is straightforward to verify that this
is the case provided 0 < A < 3.

2.2 Ward identities

To understand thermalization we will study the two-point functions of the stress tensor T*”
and the primary operator O that deforms the action. These are strongly constrained by Ward
identities. In fact, in (1+1) dimensions there is only one independent two-point function of
this set of operators.

To obtain the relations between two-point functions, we first promote the constant coupling
A in the action to a spacetime dependent coupling J(x) and the flat metric to g,,(x). The
expectation values in Euclidean signature are then given by

ow 1 ow
V(T () =2——, V8O)X)=—F777=, (10
: Ggmx)’ V8 /e 5I()
where W[g,,,,J] = —logZ[g,,,J] is the generator of Euclidean connected correlators (see,

e.g., [3,4]). These expectation values obey the Ward identities’
V(TH) = Ve(O)VYT,  (TH) = e(2—A)I(O) + 24%73. 11

The term involving R - the Ricci scalar of g, — is the Weyl anomaly of the conformal theory.
For specific values of A, including A = 1 and A = 2, the trace Ward identity has additional
anomalies [5]. We will mostly focus on the generic case given in Eq. (11).

We define the connected Euclidean two-point functions by

oo n_ 5(1/§<TW>(X)) 00 ~n_ 1 5(«/§O(X))
K I O R
60 yy— LOWET)  couy i, 8(VEIO))

B0 sy 0 TR T g (k)

!We are assuming that the gravitational anomaly vanishes.
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These are symmetric under the exchange of the two operators. Taking functional variations
of the three Ward identities (11) with respect to J and g,,, gives relations between two-point
functions. Upon restricting to the flat metric and constant coupling A, and then performing a
Fourier decomposition

oo
dk _; N /
Gp(t—1/,x—x") = TZJ — el G (6 k), w,=2nTn, (13)
oo 2T

nez

these become algebraic relations, where we are now using x to denote only the spatial coordi-
nate. From solving the relations from the first Ward identity in (11) we find that there is only
one independent stress tensor two-point function, which we take to be the two-point function
of the trace. This is a consequence of the dimensionality. The second Ward identity relates
the two-point function of the trace to that of the operator O that explicitly breaks conformal
symmetry. See App. A for more details on these relations.

As thermalization is a real time phenomenon it will be important to work with real time
correlators. These can be defined as the analytic continuation of Euclidean time correlators on
the thermal cylinder, with different ie prescriptions leading to different operator orderings [6].
A particularly useful real time correlator is the retarded Green’s function, e.g.:

GLO(t,x) =i0(t){[O(t,x),0]). (14)

Its Fourier transform can be shown to analytically continue to the Euclidean Green’s function:?

Gp(wy,, k) = Gr(iw,, k). Conversely, Gg(w, k) is the only analytic continuation of Gz(w,, k)
that is analytic in the upper half plane and does not grow exponentially at large cw, by Carlson’s
theorem. Following the discussion above, all of the retarded Green’s functions of the stress
tensor can be expressed in terms of GI? ©. For example, the two-point function of the trace of
the stress tensor is (see App. A)

@)
G (g, k) = —ﬁ(oﬂ —k2)+cA%(2—A)? (G}?O(w, k)— G _AA) ﬁqa) . (15)
The first term on the right hand side is due to the Weyl anomaly and is the full result in the
conformal theory. Indeed, when A = 0, the Ward identities of the CFT fix completely all stress
tensor two-point functions. The second term is a consequence of conformal symmetry breaking
and is exact in A. In general Gg © and Oeq = (O) - the expectation value of O in the thermal
state — are functions of A.

3 Breakdown of conformal perturbation theory

Thermal correlators in (14+1) dimensional CFTs are fixed by symmetry. Breaking of conformal
invariance is therefore necessary for a non-trivial hydrodynamic regime to emerge. Even in a
QFT obtained by deforming a UV CFT with a relevant operator as in Eq. (5), the early time
behavior should be described by the CFT in the thermal state, with small corrections accounted
for by conformal perturbation theory (CPT). For new physics to emerge at late times, CPT must
break down.

CPT was already used to obtain the approximate equation of state at high temperature in
(7). In these expressions, one expects CPT to fail when A = 1. However, even when A < 1,
in which case the equation of state is well captured by CPT, we expect CPT to break down for

2Note that we defined the Euclidean Green’s function as the second derivative of the generating functional
W. This differs from the Euclidean two point function o< [ D1 T,,,T,,e (%] by thermal contact terms [7]. The
analytic continuation will therefore differ from Gy by the corresponding contact terms.

6
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real time correlation functions at late times t = Teq- We will show in this Section that the time
scale corresponding to the breakdown of CPT for real time thermal correlators is

11

Teq ~ ? E . (1 6)
This implies that (1+1) dimensional QFTs at high temperature thermalize as fast as causality
allows [2] (this is also true at low temperatures, up to one condition, as will be discussed in
Sec. 3.3). For asymptotically free QFTs, this timescale simply corresponds to the mean-free
time of particles with cross-section o o< A2. However, Eq. (16) holds for any (1+1)d QFT that
is UV completed by a CFT. In this more general context, one can think of it as the time scale
before which holomorphic factorization, i.e. decoupling of left- and right-moving modes, still
effectively holds.

Establishing Toq ~ 1/ A2 from diagramatics in weakly coupled relativistic theories is diffi-
cult, and involves resumming ladder diagrams [8,9]. The rest of this Section is devoted to the
similar task of establishing 7., ~ 1/ A2 in general (1+1)d QFTs that are close to CFTs, where
‘diagramatics’ is replaced by real time CPT and the operator product expansion.® We will focus
for concreteness on the right-moving component of the stress tensor
T x = (e £0) 17
., 7 ,
whose thermal two-point function is peaked at the right-moving lightcone x = t in the CFT.
As the QFT thermalizes, we expect CPT corrections to become large at late times. We will
evaluate CPT corrections to the expected sound-front x = c,t:

Gy (t,x = c,t), (18)

and find that they indeed become large for times larger than 7., = 1/(T A2).

3.1 Leading CPT correction to stress tensor two-point function

Computing CPT corrections in Eq. (18) requires integrating higher-point functions of a CFT
over the thermal cylinder. This is challenging even for the leading correction, which requires
integrating the CFT four-point function (T__(t,x)T__(0,0)O0) twice over the thermal cylin-
der, once for each O insertion. However, this leading correction is actually already captured
by the dilation Ward identity, Eq. (15). We will first look into this leading correction in detail,
before going on to study the general structure of CPT corrections. While evaluating the leading
correction does not allow to establish the breakdown of CPT, this calculation will already re-
veal the general pattern that arises at higher orders. It will also illustrate that CPT corrections
can become large at late times, even though the dimensionless coupling is small A < 1.

The two-point function of T__ is related to the trace two-point function given in Eq. (15)
by a diffeomorphism Ward identity (see Eq. (A.4))

k)? k
—:("; * k))z G (0, k)= (e + P2 (19)

T__T__

GR (w,k)=

Keeping only O(A?) terms in the trace correlator (15) means that G}(? © should be evaluated in
the CFT, and

aa 202

Oeq 1 T
==02P(T,M)lp—o+...= =
A ( )lA—O 31—A

JeA ¢

3See Refs. [10-14] for other uses of CPT in a real time context.

+..., (20)
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where we used the leading correction to the equation of state (7). So the retarded Green’s
function of the right-moving component of the stress tensor is

1 77 1 (a)+k)3 T 29 2w+k
-G, T (w k) =—— 2 — (1 —aA?) T2 — 21
c R (,k) 481 w—k 3( as?) w—k 1)
= +k)?[(2—A)? (2—A)Aa, © .
jer2 (@ GO0 (w,k)— ——=220a T4 o(33).
* (w—k)2| 41262 rorr(@ k) -~ 127 (%)

The first line contains the O(A°) CFT correlator, whereas the O(A?) corrections are in the
second line and last term of the first line. We will take the inverse Fourier transform of these
expressions to study corrections in real time. Note that Gy is analytic in the upper half complex
w plane, and poles should be resolved by setting «w — w + i0*. The first line of (21) is
straightforward and becomes

[—ia“’(x )+ 21— AT (e — t)} 0(t). 22)
6mn 3

The first term is the vacuum CFT retarded Green’s function %G}Z“ T“(t, x), and the second term
is the thermal CFT contribution (together with one simple CPT correction). We are assuming
t > 0 throughout, and are ignoring contact terms o< §(t) and its derivatives. Both terms
above are concentrated on the light front. The only term in (21) whose Fourier transform has
support in the interior of the lightcone is the term involving a product of G}? O(w, k) and the

2
factor f2(w, k) = Eztgz

dwdk _ipetiks
F(t,x)= J Tl X £2 (0, )G (e, k) . (23)

There are several ways to evaluate this contribution. The simplest is to use the fact that the
Fourier transform of this product is equal to the convolution of Fourier transforms

F(t,x) = J d%x1 G g (oc# = x) £2(xt, (24)
where fA2 is the Fourier transform of f2?(w,k) = % Here, we will follow a slightly less

direct approach to computing (23), that will already reflect the general structure of CPT cor-
rections. We will instead view the integrand as a product of three factors (f, f, and G}? 9, so
that its Fourier transform can be written as two convolutions:

F(t,x)= J d*x1d?x, f (6})GR G (xy — x))f (e = x3), (25)

with f(t, x) =06(t)6(x)—23,6(x—1t)8(t) the inverse Fourier transform of f (w, k) = w_“,’;’fm .

This has the interpretation of a right-moving stress tensor T__ propagating* from the origin to
x’f , followed by the O operator propagating from xi‘ to x’; , and finally a stress tensor propa-

gating from xg to x*. This is illustrated in Fig. 1a. While the f factors are concentrated along

. . . , . [0)6) _20(0)0(t>—x?)sin(nA)
right-moving light-fronts, the scalar Green’s function GR’CFT(t,x) = [0 /w2 sinh E sinh L I8

lows to move within ~ 3 away from the light-front, as illustrated in red in Fig. 1a.

The largest contribution to (25) will come from the long-range &'(x — t) piece in both f
factors. We focus on this contribution here and study the remaining ones, which give sublead-
ing corrections at late times, in App. B. After integrating by parts, this contribution to (25)
is

al-

t t
F(t,x)= 48x2J dt1J dty GRap(ta —ty,x —t+ty—t1) +... (26)
0 t

wtk
w—k*

“Indeed, notice that the thermal piece of the stress tensor two-point function in the CFT in (21) is o<

8
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Changing variables to t,, = %(tl +t,) and ty; = ty — t1, We see that the integrand does not
depend on the average location t,, of the pair of operators O. This integral therefore simply
produces a factor of t — t,;, the size of the range of the t,, integral. This factor of ~ t is
key to the breakdown of CPT at late times (large t). We will see in the next Section that
while further CPT corrections are suppressed by A2, they come with additional factors of t:
the dimensionless number accompanying corrections is tA>/f3, which leads to the breakdown
of CPT at times t 2 3/A2.
Let us finish evaluating (26). Inserting the scalar Green’s function, one obtains

8 Sin(TEA) 2 1 ! t— t21
F(t,x)= (B/m)2 ax (Sinh x )A Jt__x dto; (Sinh 2ty )A +... 27)
B/n 2 B/

This integral can be evaluated in terms of hypergeometric functions. However, it is more
illuminating to approximate it in the kinematic region of interest, the forward lightcone at
late times t > 3. One can then replace the upper limit of integration by t — ©co up to
exponentially small terms ~ e~*/# . This gives, to leading order in t > f3,

r(152)r(3)sin(ma) 1
F(t,x)= 02— 28
O T R T ey .

Returning to (21), one finds that the final result for the retarded Greens function in the interior
of the forward lightcone t > x is:

%Gg__T__(t,x):iZL(Z—A)ZF(%)F(%)sin(TEA)[t+x_ /2 ]32 1

2 4/Tr22A B/m  tanZR x(sinhg‘T’;)A (29)
+0(e Py +0(23).

We have included subleading terms (the second term in square brackets) and are now precise
about the error terms: this expression holds up to exponentially suppressed corrections at late
times t > f, and up to higher orders in CPT (see App. B for details).

As anticipated, this leading CPT correction allows G;”T”(t, x) to have support away from
the strict light-front, at a distance 3 2 t —x > 0 (Fig. 1a). Beyond this qualitative effect, one
can also compare more quantitatively this correction to the Wightman function of T__, which
has support in the interior of the lightcone even in the CFT

4
N Y N
(T__(t,X)T__)cpr = o2 sinh(%(t —x)) B (30)

where in the last step we evaluated at t —x ~ 3. The correction (29) in this regime scales as
(A%t/B) x /% at late times t > f3. It therefore becomes comparable to the leading term when
t approaches Ty = f8/ A2. This shows that CPT corrections have the potential to become large
at late times, even when the coupling is small A < 1.

3.2 General scaling of CPT corrections

We will now try to understand the general structure of CPT corrections in the hydrodynamic
regime. We are interested in A < 1, where CPT provides a controlled expansion for the equa-
tion of state. In particular, the speed of sound ¢, = 1—0(A?) is given by (9). In hydrodynam-
ics, one therefore expects a fairly large correlator along the sound-front x = ¢,t, decaying only

9
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polynomially at asymptotically late times (see Eq. (39) later). This is clearly not the behavior
of the CFT two-point function (30), nor of the leading CPT correction to it (29): while these
decay polynomially on the sound-front for f < t < f8/A2, they decay exponentially at later
times. The emergence of hydrodynamics in (1+1)d QFTs is therefore only visible at higher
order in CPT.

We will argue here that there is a proliferation of CPT corrections at times t = /A2, which
allows for the emergence of hydrodynamics. The CPT correction to the correlation function
(18) at O(A") is found by evaluating Euclidean integrals of the form

(T_(x)T__(0)O(x1) - - O(xp)) g crr > (3D

x’f,,..,xﬁfes}j xR

following by analytically continuing to real times. In general, this is very difficult and we have
not done it explicitly beyond the case n = 2 studied in the previous subsection. However, it is
fairly simple to identify the dominant channels that will contribute at late times. In order to do
this, it is more helpful to directly study CPT in Lorentzian signature. In Lorentzian two-point
functions, the dominant CPT corrections correspond to the deformation AQ integrated over
the causal diamond between the two points (the shaded region in Fig. 1b). See App. B.2 for
more details on this.

To identify the dominant channels, first notice that the thermal O two-point function in
the CFT is very ‘short-lived’: it is exponentially suppressed unless x < 8 and t < B (see,
for example, equation (B.5)). Therefore we only expect there to be appreciable corrections
from configurations where scalars are inserted in spacetime pairs. Furthermore, for such a
configuration to produce an appreciable correction to a connected correlator at late times
t > f near the right-moving sound-front, each pair must be located close to this front and
fuse into an operator which is long-lived along it. The only such operators (barring an extended
current algebra in the CFT) are those in the Virasoro multiplet of the identity, including the
stress tensor T__ and other chiral descendants. Indeed, the CFT two-point function of T__
(30) shows that T__ is fairly long-lived along the sound-front x = ¢,;t = t(1 —O0(A?)): it is
only polynomially decaying for t S 8/A2. To produce a contribution to the correlator (18) that
is not exponentially small at late times t >> /A2, one can consider a O(A2") CPT correction,
with n ~ tA%/B, where n pairs of O’s fuse into T__ (or other Virasoro descendants of the
identity) that propagate for a fraction ~ 1/n of the total segment. This is illustrated in Fig. 1b.

How do these higher order CPT corrections scale? Adding a pair of operators O is sup-
pressed by an additional A?; however, while the two operators must be close to each other
(Ax, At < B), there is freedom in where the pair is positioned along the light front. Integrat-
ing that coordinate over the causal diamond produces a factor of t. This is exactly what was
observed when evaluating the leading correction in the previous Section, below (26): while
the t,; integral was dominated by the region t,; < f3, the integral over the average time t,,
of the pair of operators O produced a factor of t. We therefore find that higher order CPT
corrections to (18) are only suppressed by the dimensionless number

A2t/B. (32)

This identifies the time scale Ty ~ 3/ A2 at which the CPT corrections that we have described
above blow up.

Note that a pair of scalars O could also fuse into a left-mover T, , (or descendant), which
could give a large correction deeper inside the lightcone. However, in the kinematics consid-
ered here (x =~ c,t), these types of corrections are subleading to the ones identified in Fig. 1b.
Indeed, the “left turn” can be placed at any time t and so comes with a factor A%t/f, but
the “right turn” must fit in the causal diamond in Fig. 1 and therefore does not have such an

10
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(a) (b) (©

Figure 2: Witten diagrams can help identify the large-c scaling of OPE channels, even
if the CFT does not have a bulk dual. The figures above show several channels that
contribute at O(A*) to the T__ two-point function. Blue lines denote T__ (and its
global descendants), or “gravitons”. (a) Both pairs of O’s fuse into T__, which then
fuse with the external T__ into another T__. (b) Both pairs of O’s instead fuse into
(T__)2 or other double-twist operators built out of T__. (c) Pairs of O’s fusing into
higher-twist operator such as (T__)3 have 1/c suppression, as is clear in the diagram

which must contain a “graviton loop”.

enhancement: it comes with a factor A? x A%t/ 8, where the first term is from inserting the Os
and the second is from integration over the causal diamond.

Large c scaling

While an explicit computation and resummation of CPT in the hydrodynamic regime seems
out of reach, the expansion may be more tractable at large ¢ where conformal blocks simplify
[15-17]. From the EFT perspective, the fact that hydrodynamics with ¢ — oo (discussed in
Sec. 4) is considerably simpler than hydrodynamics with ¢ < oo makes it seem plausible that
one could derive the emergence of hydrodynamics from microscopics, for any (1+1)d QFT
close to a CFT. We will make here a first step in this direction, by identifying the dominant
channels in the general CPT corrections depicted in Fig. 1.

The contribution of the identity multiplet to the OPE of two scalars takes the schematic
form

1 1 1
OO ~ 1+ =T__ 4+ =(T__ )Y+ =(T__)*+... (33)
c c2 c3

We are focusing on the holomorphic factors of O = O; O, since the left-moving or antiholo-
morphic ones will simply fuse into the identity in the leading contributions depicted in Fig. 1b.
Contributions of other Virasoro multiplets to the OPE lead to CPT corrections that are further
suppressed, since these operators would not have zero twist. The stress tensor has a similar
OPE, up to an overall factor of ¢, and with one exception:

T_T_ ~c(11+1T__+1(T__)2+ lB(T__)3+...). (34)
c c c

Notice the enhancement of the (T__)? term, which enters with coefficient 1 in the T__T__
OPE. These OPEs allow us to identify which channels give the leading in ¢ contributions to
the correlators (31) that provide the CPT corrections. By analyzing different OPE contractions
of the operators in (31), and using the large-c scalings in (33) and (34), one sees that the
leading contributions at large—c come from those whose Witten diagrams contain no loops.
An example of this at O(1%) is shown in Fig. 2. As a consequence, one finds that at leading
order in ¢, pairs of O must fuse into T__ or a double-twist (or double-trace) operator built out

11
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of T__, but not any higher-twist operator. The dominant channels at large ¢ therefore seem to
consist entirely in products of stress tensor two-point functions.
Let us now compare this to the expected hydrodynamic behavior, obtained in Sec. 4. For

w—k=0(A?) and k < T, we will find (using Egs. (52) and (57))

o+ k K2 A22—A)Yglk, k) — p=(w? =k +...
=C

o=k o—k okt 22N ek k)+...

Gy (w,k)+sT : (35)

where the ... in the numerator and denominator are both O(1%), and
_ 00 A oo
g(wa k) = GR (CO, k)_ﬂGR (0’ 0)

Further expanding this expression in A? agrees with the leading order CPT correction found
in Eq. (21). The higher order terms in A appear as a geometric series of scalar propagators
near the lightcone g(k, k), times T__ propagators ~ ﬁ This structure is similar to the one
sketched in Fig. 1b, especially at large ¢ where only T__ propagators enter. The higher order
Witten diagrams (Fig. 2) that form a similar geometric series are the ones that are expected to
have a enhancement factor o< t for every O? insertion. Resumming these requires accounting
for the exchanged double-twist operators using large-c conformal blocks — we leave this de-
tailed investigation for future work. Another aspect of this discussion that should be improved
is that we have used the OPE outside of its strict radius of convergence, in particular when

fusing chiral operators along lightrays. It would be interesting to justify this step.
3.3 Low temperatures

The equilibrium and out-of-equilibrium dynamics of QFTs at low temperature can also be de-
scribed by CPT. We will assume that the IR is not gapped, otherwise the thermodynamics is
Boltzmann suppressed and thermalization takes an exponentially long time. The IR is then
described by a CFT, with an infinite series of irrelevant corrections

1 _
S :SCFTIR'FZ\/EAiJ d2X Ol+z)(,T7'~J dZX TT. (36)
i

This can also describe 1+1d lattice systems near a quantum critical point or phase.® A notable
application in this context is the thermalization of non-linear Luttinger liquids [18].

Among the irrelevant deformations O;, we have singled out the operator TT =:T__T,, :
which can play an important role in the low temperature dynamics of QFTs [2]. The reason is
that it is the lightest scalar global primary that is a Virasoro descendant of the identity, so that
it can acquire a thermal expectation value (T T) = (rc/(682))?. It then already contributes
at linear order in CPT o< A+, giving a correction to thermodynamics that is more important
than that of operators of dimension A; > 3. The dynamics is then qualitatively different if the
dimension of the lightest scalar A = min; A; is greater or lesser than 3. We treat both cases
separately below.

First case: 2< A <3

When the lightest irrelevant operator has dimension less than 3, it controls the leading correc-
tion to the equation of state and dynamics of the theory at low temperatures A = AT~ 2 < 1.
The analysis so far then essentially goes through without changes. Of course, at very
early times correlators are not controlled by the IR CFT, but are sensitive to the UV: these
effects can be ignored if t? — x? > A%*(A=2)_ Away from the lightcone, this requires

5To fully capture situations where Lorentz invariance is only emergent, one should allow for irrelevant operators
in Eq. (36) with any Lorentz spin.
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t > AV(A=2) = g31/(A=2); however along the sound-front x = cst = t(1—0(A?)), this leads
to the stronger condition t > ﬂi%. The irrelevant corrections to the CFT are not irrelevant
from the perspective of the finite temperature dynamics: they again lead to a breakdown of
CPT at later times t 2 3/ A? as described in Sec. 3.2, allowing for the QFT to thermalize and
hydrodynamics to emerge. These regimes are summarized as follows:

uv IR CFT . Hydrodynamics
|
I I t/p

1 1/22

3—

>

A

[
¢!

Figure 3: Regimes of validity for effective theories when 2 < A < 3.

The second and third regimes are captured by our approaches.

Second case: 3 < A

When the least irrelevant correction to the IR CFT has dimension A > 3, the leading correction
to the equation of state is due to the T T operator [2]. The speed of sound at low temperatures
is given by [19] N
TATT
Cszl—EF—F... (37)
Subluminality of sound then constrains the coefficient of the T T operator to be positive A7 >0
(this constraint of course does not apply to lattice UV completions).®
The dynamics in this situation is also more subtle. If the irrelevant corrections beyond
TT are fine-tuned to preserve integrability (the “TTbar” deformation) [19, 21-24], regular
hydrodynamics does not emerge. Instead the dynamics is expected to be described by gen-
eralized hydrodynamics (GHD) [25-28], the hydrodynamics of systems with a macroscopic
number of conserved quantities (see Ref. [29] for a review on GHD). Now even if the higher
irrelevant corrections are not fine-tuned to preserve integrability, GHD will describe the dy-
namics in an intermediate time window before the system ultimately thermalizes and regular
hydrodynamics emerges. Let us estimate the time scales where these various regimes describe
dynamical correlators such as (18) along the sound-front x = c,t, with now ¢, given by (37).
First, as before the expansion in irrelevant operators (36) is only controlled at times satis-
fying t2 — x2 > A;7. Along the sound-front, this requires t > f. The correlator is then
described by the (thermal) IR CFT (30), and has width ~ 8 around the lightcone x = t. The
TTbar-deformed dynamical correlators have to our knowledge not been computed yet, but
we expect them to predict instead a correlator with width ~ 3 around the corrected speed of
sound (37); this differs significantly from the IR CFT prediction along the sound-front at times
t 2 1/(A;7T3). Finally, integrability is broken by further irrelevant operators which ultimately
allows for hydrodynamics to emerge at times t 2 1/(A2T3 x T2(A73)) (this is indeed the latest
time scale if A > 3 — recall that we are assuming T is smaller than all scales entering in the
action (36)). These regimes are summarized below:
uv

IR CFT GHD Hydrodynamics

% % ] t/B
1 1/(ArrT?) 1/

Figure 4: Regimes of validity for effective theories when 3 < A.

6See also Ref. [20] for CPT calculations similar to those done in Sec. 3.1, but with @ = TT.
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4 Hydrodynamics at large central charge

We have seen how the onset of thermalization is reflected in the breakdown of the CPT that
captures the early time dynamics of the system. We are now going to study this phenomenon
from the opposite, late time, perspective: by examining how the emergent theory of hydrody-
namics breaks down at early times as the effects of thermal CFT excitations become important.

Hydrodynamics in (1+1) dimensions is typically qualitatively different than in higher di-
mensions as interactions between hydrodynamic modes are more relevant than conventional
viscous effects. From now on we will consider the limit of large-c where these interactions
are suppressed and the excitations that are relevant at late times are the viscous sound waves
familiar from higher dimensions.

Hydrodynamics is an effective theory that — in principle — completely determines the form
of the retarded two-point functions of the stress tensor at late times and large distances in terms
of transport coefficients. Transport coefficients are the analogue of the Wilson coefficients of
an effective field theory. Their values are an input to the theory: they must be determined by
some other means and typically depend on details of the specific system.

Specifically, the retarded two-point functions of the stress tensor at late times are peaked
around the trajectories of the sound waves x(t) = %c,t, with width

|x| —c,t ~ vV Dt, D:i, (38)
sT
where the speed of sound c;, the viscosity { and the entropy density s are examples of transport

coefficients. Along these trajectories at late times, we will find

G (t,x) o<

(Jx|—=c; )
eXp| —"2p¢ 21y D
: 1+(1+ D +...], (39)

2
c2t

where 1; — the finite lifetime of pressure perturbations — is another transport coefficient, and
we have suppressed unimportant O(1) coefficients for simplicity.

The result (39) arises from including only the transport coefficients that are most relevant
at late times, but there are infinitely many coefficients providing early-time corrections to this.
At a sufficiently early time, we expect that the expansion in (39) will become uncontrolled.
We identify this timescale as the local equilibration time 7.4, beyond which the system has
thermalized and hydrodynamics has emerged. The value of 7., can vary widely between
different systems since it is determined by the transport coefficients.

Itis worth remarking further on our choice to define 7, in this way. Firstly, as advocated for
in [30], this 7, is a property of the hydrodynamic theory itself, and can be defined independent
of any microscopic details. This is in contrast to the 7.4 computed in Sec. 3, which was defined
by the late-time breakdown of a specific UV theory. It is the former that is more universal. In
the theories we consider we will see that these two timescales agree, signifying that in these
cases the breakdown of CPT coincides with the emergence of hydrodynamics (i.e. there is no
intermediate regime governed by a different effective theory — one exception is discussed in
Sec. 3.3). See Ref. [2] for an argument that hydrodynamics emerges at T, ~ A2/T even
outside the large-c limit.”

Secondly, in defining 7., we are singling out corrections along a specific trajectory — the
sound front. One can argue that this is the only sensible definition for 7., (in the absence of
additional hydrodynamic modes): the stress tensor two-point function along other rays x = vt,

"There are of course other possible definitions of thermalization. For example, the weaker condition of re-
laxation of correlation functions to their equilibrium value is satisfied by 2d CFTs, including free and integrable
models. Our definition distinguishes integrable, weakly coupled, and strongly coupled systems.
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v # ¢, is exponentially suppressed at late times, and highly sensitive to higher gradient terms
in hydrodynamics. It is interesting that the timescale 7., thus defined, i.e. the time scale at
which the leading corrections in (39) along the sound front become large, is not related in a
straightforward way to the transport coefficient 7.

In this Section we are going to show that there is a surprisingly dramatic simplification near
large-c conformal fixed points in (14+1) dimensions. Firstly, we will give a simple classification
of all transport coefficients that appear in the stress tensor two-point functions. We will then
argue that at small A the value of every such transport coefficient is universal — i.e. determined
only by the temperature and the values of ¢ and A — and propose a simple generating function
from which they can all be easily computed. Armed with this, we will study the breakdown
of hydrodynamics at early times by examining momentum space Green’s functions. We will
establish the local equilibration time ¢y ~ A2/T, and identify that the breakdown is due to
the importance of thermal CFT excitations at sufficiently early times.

4.1 Hydrodynamics to all orders

In a system that has thermalized, the excitations that are relevant at late times are those that
transport the densities of conserved charges and so are protected from decay by symmetries.
In our case, these densities are the energy and momentum densities that obey the local con-
servation law

v,(T*) =0, (40)

where we allow the spacetime metric to be non-trivial for now. Hydrodynamics is the effective
theory governing the dynamics of these densities — see [31] for a pedagogical introduction.
The assumption of local equilibration means that the expectation values of all other oper-
ators can be expressed in a derivative expansion in the conserved densities and the spacetime
metric. To do this while making Lorentz invariance manifest, it is convenient to reparame-
terize the stress tensor in terms of auxiliary hydrodynamic variables: a local energy density
€(x) and a local velocity u"(x) where u,u" = —1. More precisely, we use the Landau frame
condition
u, T"” = —eu®, (41)

and then express the stress tensor in terms of the hydrodynamic variables via the constitutive
relation
T =euu” + PA*” + 1", APV = g"” +utu”. (42)

The first two terms in T*” in Eq. (42) comprise ideal hydrodynamics, and P — the pressure —
is a function of € that varies between systems and must be input accordingly. The remaining
term IT*” is determined order-by-order in an expansion of derivatives of the hydrodynamic
variables and the metric. Every term with the appropriate symmetries is included in this ex-
pansion, multiplied by its own transport coefficient (a function of the energy density € that
varies between systems).

Once IT*” has been specified, the local conservation equations (40) and the constitutive
relations (42) are a closed set of equations that can be solved for the stress tensor on a given
spacetime. In practice, IT*” is typically only calculated to a low order in the derivative ex-
pansion as the number of terms proliferates rapidly [32-35]. We are going to show that in
(1+1) dimensions, and restricting to small amplitude perturbations around the static equilib-
rium state, it is possible to compute the constitutive relation to all orders in derivatives. The
restriction to small amplitudes will allow us to compute all two-point functions of the stress
tensor, but not higher-point functions.

The first simplifications are due to the dimensionality. [T*” is a symmetric tensor satisfying
u,I1*” = 0. In (1+1) dimensions such a tensor has only a single independent component.
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Therefore the constitutive relation is specified by a single scalar function

M = AP, (43)

where II(V¥, g,,,,u,,€,R;,05) and R, is the Riemann tensor. In (1+1) dimensions the
only independent component of the Riemann tensor is the Ricci scalar R and so this simplifies
to TI(V¥, g, Uy, €, R).

The second simplifications are achieved by a change of hydrodynamic variable from local
energy density e(x) to log(s(x)), the logarithm of the local entropy density. In these variables,
the conservation equations are

Dlog(s) ==V, -u+..., DuM = —cfv‘i log(s)+..., 44)
where we have decomposed V* = V’i —u"D into the longitudinal and transverse derivatives
pD=utv,, V| =a"v,, (45)

and where ... denote higher-derivative corrections to ideal hydrodynamics [33]. The equa-
tions (44) can be used to eliminate longitudinal derivatives of log(s) and u,, at any order in
the derivative expansion [34]. Therefore we only have to consider terms constructed from the
transverse derivatives of these hydrodynamic variables.

With these simplifications, the remaining task is to classify all scalars that can be con-
structed from (g,,,,u,; V‘i, u,,log(s); V,,, R). The third simplification comes from considering
only small amplitude perturbations around an equilibrium state: a metric of the form

guv(t’x):n,uv'i'(sg,uv(t:x): (46)
and hydrodynamic fields of the form
e(t,x)=¢e+be(t,x), ut(t,x) =84 + sut(t,x), 47)

where ¢ is the uniform energy density of the thermal state and sT = € + P. The number of
allowed scalars is greatly reduced by restricting to only those that are non-zero at linear order
in the perturbation amplitude.

We can now classify the allowed terms in I1. At any order n > 1 in the derivative expansion,
we can construct the allowed scalars by left-multiplying the building blocks V , - --V 1, 10g(s),
Vi Vi Uy and V, -V, R by appropriate factors of g"” and u" and contracting the
indices. This is because terms with extra factors of the hydrodynamic fields or Ricci scalar
inserted between any derivatives will differ from these only by terms that are products of
derivatives and so are non-linear in the perturbation amplitude. Furthermore, in each building
block the derivatives can be commuted at the expense of introducing only non-linear terms
(this is proven in App. C).

We consider first the log(s) building block. Since uuv’i = 0 identically, non-zero scalars
can only be constructed by contracting all indices of the transverse derivatives with metric
tensors. This is only possible when n is even. And since the transverse derivative operators
commute to linear order in perturbation amplitude, there is only one such scalar: V'] log(s).

Now we turn to the u, building block. Again, since uuv’i = 0 we must contract all indices
of the transverse derivatives with metric tensors. Since the transverse derivatives commute
to linear order in perturbation amplitude, for odd n the only possible independent scalar is
Vi_l(VL -u) and for even n the only one is u”V' u,. In fact, as u”V,,u, = 0, this latter
possibility is non-linear in the perturbation amplitude and so can be discarded.

Finally we turn to the Ricci scalar building block. In general we can contract this with m
copies of the metric tensor and n—2—2m copies of the velocity. This produces terms that have
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the structure of m copies of V2 and n—2—2m copies of D acting on R. Since R is already linear
in the perturbation amplitude, we can replace V2 and D by the partial derivatives SXZ — af and
J; at the cost of only non-linear corrections. As a consequence, the independent scalars are
VimD"*72MR for all non-negative integer m < (n —2)/2.

We have now obtained the set of all independent scalars that can appear in I1. Before
proceeding, it is convenient to reorganize the terms that appear at even n. Using the hydro-
dynamic Eq. (44), we show in App. C that

V' log(s) = —C;ZVTZD (V,-u)+ cs_zv’sz +..., (48)

where the ... denote higher derivative or non-linear terms. Therefore for even n we can replace
V'l log(s) by VTZD (V| -u)in our set of independent scalars, since we already include VTZR
in this set.

We now write the constitutive relation for I1 to all orders in the derivative expansion as the
sum of all independent scalars outlined above, each multiplied by an independent transport
coefficient. This organizes neatly into two independent terms

IT= (e + P)(D, V2 ) (V, -u) + 24%&(13, V2)R, (49)

where 2 and & are the differential operators

Q(D,V3) =0 + D+ Vi +QViD+QsV +QViD +...,

#(D,V%) =Ky +K30D D? v?2 D3 V2D GO
>V 1)=Kap K3’0 + K4)0 + K4’1 L + K5,O + K5’1 n +...

Q, and x,, ,, are transport coefficients, with n labelling the corresponding order of the deriva-
tive expansion and m labelling the number of Vzl operators. To linear order in the small
amplitude expansion, we can replace the derivatives D — &, and VzL - 8xz and take each
transport coefficient to be a function of the equilibrium temperature. The prefactors of the
differential operators in the constitutive relation (49) are simply a convenient choice of nor-
malization where ¢ will later be the CFT central charge. Our transport coefficients are related
to the viscosity ¢ and relaxation time 7y; in (39) and [33] by

T
S
e+P e+ P

Q=

(51

The result (49) for IT completely specifies the stress tensor and taking derivatives with
respect to 8g,,, gives the stress tensor two-point functions. This is most easily done in mo-
mentum space where, for example, the hydrodynamic two-point function of the trace of the
stress tensor is

(e +P)(1—c—iw(w, k?) — 5= (0 —k*)x(w, k?)

w? —c2k? —iwk2Q(w, k?) ’

G (w, k) = (w?—k?) (52)

where Q(w, k?) = Q(—iw, —k?) and x(w, k?) = R(—iw,—k?). As explained in Sec. 2, in (1+1)
dimensions all other stress tensor two-point functions can be reconstructed from this using
the Ward identity (40). The dispersion relations of the hydrodynamic excitations wpygr,(k)
are given by the poles of Eq. (52): these are independent of the x, ,, transport coefficients.

4.2 Universal generating function for transport coefficients

The hydrodynamic theory described above applies in general in (1+1) dimensions, provided
hydrodynamic fluctuations can be neglected. We are now going to specialize to systems with
approximate conformal symmetry, i.e. those described by the action (5) with A < 1.
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Firstly, when the theory is exactly conformal, P(€) = € and a comparison of the constitutive
relation (42) with the trace Ward identity (11) gives the exact result IT = (¢/247)R. We can
therefore think of a CFT stress tensor as formally governed by a theory of hydrodynamics with
cs2 =1, k30 =1 and all other transport coefficients vanishing. This is formal in the sense that
the Green’s function is in this case entirely fixed by symmetries, which are one of the inputs of
hydrodynamics. The other hydrodynamic input, the assumption that all operators at late time
can be expressed in terms of the two conserved densities (or € and u"), is vacuous for (1+1)d
CFTs.

When the conformal symmetry is weakly broken A < 1, we expect a non-trivial hydrody-
namic regime to emerge. We will argue below that in this limit, all hydrodynamic transport
parameters can be derived. This will rely on one key assumption, that we describe and motivate
below, but were not able to prove.

Our starting point is the momentum space relation (15) between the two-point function of
the trace and that of the scalar operator that breaks conformal symmetry. In the hydrodynamic
limit, the former can be expressed in terms of transport coefficients as

(e+P+ 5=kP)(1—c? —iwQ) — 5= (w? —k?) (k — 1)

1+ Ko (1-c2—iwQ)

Ggace(w, k) + ﬁ(wz _ kz) — , (53)

where, for conciseness, we have suppressed the arguments of Q(w, k?) and x(w, k?). Since
hydrodynamics is an effective theory, this expression should be understood to be valid in an
expansion at small w, k. We subsequently expand this as A — 0 and keep only the leading
term to obtain

c c .
G;race(w, k)+ m(a)z—kz) — Ton ((47‘52T2 +k)(1— cs2 —iw) —(w?—k?) (k — 1)) , (54)

where on the right hand side we mean the leading small A? contribution to each transport
coefficient. More precisely, this latter expansion corresponds to the limit kA%/(ew £ k) — 0,
i.e. far away from the hydrodynamic poles. In real space this schematically corresponds to the
part of the hydrodynamic regime that is far from both lightcones.

We are now going to evaluate this quantity in the opposite order of limits. Expanding
A — 0in Eq. (15) yields

c 00 A oo
G}t{ace(a), k) + E(Cz)z - kz) 4 CAZ(Z - A)z (GR,CFT(w’ k) - mGR,CFT(O’ O)) B (55)

at leading order, where we have assumed that the two-point function of O approaches the
thermal CFT result [36]

A i(wtk) A i(w—k)

-+nl-4 F(E_ 4T)F(7_ 4T)

G}?,gFT(w’k) = 7T(27TT)2(A 1 ( ) - T o 56)
2

r(A) r(l———“ﬁ[;rm)r(l—%—i(%k))’

in this limit. The right hand side of (55) is then expanded in the hydrodynamic limit of small
w and k where it gives a series compatible with (54).

The key step is now to assume that the two different orders of limits we have taken com-
mute, giving

(4T + k) (1 — 2 —iwQ(w, k?)) — (w? — k?) (k(w,k*) — 1)

A
= 121232 — A)? (Ggé?”(w, k)— G=a) G (0, 0)) . (57)
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The right hand side is the generating function — it should be understood as an expansion in
w and k, and gives expressions for all transport coefficients, i.e. £, and «,, ,, identified in
Eq. (50), to leading order in A < 1.8

The assumption that there is a limit in which the hydrodynamic and conformal expres-
sions for the momentum space two-point function agree seems to contradict our conclusion
in Sec. 3 that even a small breaking of conformal symmetry is important at late times. We
reconcile this apparent contradiction by recalling that the large late time corrections of Sec. 3
are found close to the soundcone, while the regime in which we equate the hydrodynamic
and conformal expressions above corresponds schematically to late times but parametrically
far from the lightcone (and soundcone).

In other words, we are assuming that far from the lightcone the scalar two-point function
in the weakly deformed theory looks like that of a CFT. We use this to extract expressions for
the transport coefficients at small A. Note that it is important to properly keep track of analytic
terms in momentum space (contact terms) to make this identification in (57). The transport
parameters can then be input to the theory of hydrodynamics to tell us what is happening
everywhere in the hydrodynamic regime, including near the lightcone.

Explicitly, the generating function gives the following correction to the conformal value for
the speed of sound

1—c,=2—A)aA%+..., (58)

in agreement with (9). Expressing the first order transport coefficient Q2; as a viscosity ¢ using
(51), the generating function gives

_mc (2—A)? m 2,
(= c T—(l—A) aAcot( 5 ))\ (59)

This is never negative provided A > 0. It is interesting to consider the following ratio of
transport parameters, which has a finite limit as A — 0

¢ 1 _1(2-4) A )
51—(:2 = a0= A) t( )+O(A) (60)

This ratio of transport parameters has been discussed in holographic models in d > 1 spatial
dimensions (with the replacements 1 — c2 - é - c2 and s — 4mn with 7) the shear viscosity),

where it was first conjectured to be bounded below by before violations were found [37-
41]. Our results, which do not rely on a holographic constructlon, show that this ratio is
bounded from below in the high temperature limit of any (1+1)d QFT that is UV completed
by a CFT: in this case, 0 < A < 2 and this ratio is bounded from below by its value at A = 2,
namely i. Instead, at low temperatures Eq. (60) implies that this ratio is bounded from

above by this same value, f T 1c2 < 2 —. Indeed, if 2 < A < 3, then (60) can take on any value

between ﬁ and 0. For A > 3, we still expect Eq. (59) to be valid as we do not expect the
TTbar deformation to generate viscous effects at large c.® With this assumption, for A > 3 the
ratio on the left hand side of Eq. (60) vanishes as T2(A=3) at low temperatures, because 1 —cs2
is parametrically larger than {, see Eq. (37). Fig. 5 shows a sketch of the qualitative behavior
of the bulk viscosity at high and low temperatures.

8Although there are two undetermined functions of (w, k) appearing on the left hand side, their Taylor expan-
sions are not those of generic functions — recall equation (50). This is why all transport coefficients can be fixed
by the Taylor expansion of the one function on the right hand side.

°In Ref. [26] the viscosity of a TTbar-deformed CFT was computed using similar methods to here. Upon nor-
malizing operators such that the large-c limit exists, it was found to vanish at O(c).
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T
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Figure 5: Sketch of the possible behavior of the bulk viscosity in a (1+1)d QFT.

The leading CPT calculation shows that the ratio él_lcz is larger than —ﬂ at high

temperatures, and smaller than % at low temperatures. This ratio is not necessarily
monotonic in T; see Fig. 8 for examples in holographic theories.

The generating function also gives higher order transport coefficients. For example, the
second order transport coefficients are

. _(@-ay 0 o o[ TAY | 4(1-4)):,
1 KZ’O_—Z(l—A) (w ( ) zcosec(2)+—(2_A))7L+

tan ) W m? 2(1-A))\1
= (‘/)( )- —+m)?+~-’

where 1)((z) is the polygamma function of order 1, and we have expressed the second order
transport coefficient €2, in terms of the timescale 7; using (51). It is straightforward in princi-
ple to continue this procedure to higher orders, but the explicit expressions are not particularly
illuminating. One interesting note is that all of these transport coefficients are continuous as
A — 1. So although the trace Ward identity is modified for this specific case, it nevertheless
seems likely that a more careful calculation would yield the corresponding limit of the answers
above.

Our proposal for the simple generating function for transport coefficients (57) is really
quite remarkable. Even under helpful conditions (e.g. weak coupling or large N) the compu-
tation of just a single transport coefficient of a QFT is typically difficult and the result sensitive
to details of the specific QFT. In contrast, our proposal gives expressions for every transport
coefficient that are universal: they depend only on ¢, T and A, and are independent of any
other details of the theory.

While our proposal is self-consistent, it is obviously important to test it further. We expect
the small k and A limits to commute in equilibrium correlation functions due to the finite
thermal mass. However, outside of equilibrium it is less clear and so it would be valuable
to compare its predictions to explicit computations in specific QFTs close to a fixed point. In
App. D we take a first step in this direction by showing that the viscosity of large-c theories with
a holographic dual are indeed given by the expression (59). It is clear that our proposal will
not be valid outside the large-c limit. At finite ¢, hydrodynamic interactions generate terms in
the trace two-point function that are non-analytic in w and k and so the expressions on either
side of the equality in (57) are no longer compatible.'®

(61)

19For example, the low frequency bulk viscosity of a (1+1)d QFT is {(w)/s o< [i»gT/(czco)]l/3 [2], showing that
the limits w — 0 and A — 0 do not commute.
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4.3 Resummed dispersion relations

At large c, the regime of validity of hydrodynamics can be neatly parameterized by the radius
of convergence of the dispersion relations of the hydrodynamic excitations [42-45]. We can
compute this to leading order in A using the generating function.

The excitations of hydrodynamics are sound waves, with dispersion relations given by the
poles of Eq. (52). It is convenient to represent this as

w (k) =+k(1+TI.(k)), (62)

such that I, (k) gives the deviation frorr} the dispersion relations of the thermal CFT. We are
interested in I’y (k) at leading order in A2, where it is related to the hydrodynamic transport
coefficients by

(k)= —% (1—c? FikQ(Ek, k?)) + O(23). (63)

This particular combination of transport coefficients can be isolated in the generating function
(57) by evaluating it at w = *k. Therefore, at leading order in A2, the correction to the
dispersion relation is controlled by the thermal two-point function of the scalar operator in
the CFT

67TA>

L =—Gmre e

A
(2—A)? (G{gg?FT(ik, k) — mcggT(o, 0)) +0(2%). (64

The relaxation of the modes is captured by their imaginary part. This is governed by the
thermal spectral density of O in the CFT at w = £k:

3(2—A)? k
( - ) —ImGy
1+ (z77)

A
T

2
Im(w (k) =F (:l:k,k)( ) +0(A%). (65)

Equation (65) looks temptingly similar to relaxation rates computed in other systems using the
memory function formalism [46,47] and it would be interesting to see if it could be obtained
more directly using this approach.

Using the expression (56) for the thermal CFT two-point function of a scalar operator gives
the explicit dispersion relation

282—A4)  aa r(2-5)r(2 ¥ z27)
=) =—2" ——1]. 66
-y e e )

As always in hydrodynamics, the dispersion relation (66) should be understood as a series ex-
pansion in k. However, the expression written on the right hand side of (66) resums this series
and so crisply packages information about its convergence. The radius of convergence k., of
the hydrodynamic dispersion relation is determined by the pole of the resummed series that is
closest to the origin. For A > 0 this is always the pole of the gamma function at k = FinTA,
as the apparent poles at k = +i2nT due to the prefactor are cancelled non-trivially by the
terms in brackets. Therefore at small A the radii of convergence of the hydrodynamic disper-
sion relations are k,,, = AnT. For wavenumbers beyond, the hydrodynamic theory is not
valid. Just like the transport coefficients, the radius of convergence at small A is universal: it
depends only on A and T.
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4.4 Breakdown of hydrodynamics

Hydrodynamics is an effective theory whose only excitations are those protected from decay by
symmetries. Physically, we expect it to break down at scales where other excitations become
important. This is precisely what the radius of convergence is indicating. In this Section
we are going to examine in more detail this momentum space picture of the breakdown of
hydrodynamics, and how it is consistent with the equilibration timescale 7., ~ 1/ (A2T).

At first glance, the pole in the hydrodynamic dispersion relation (66) is problematic as
such poles are incompatible with causality [45,48]. More careful thought reveals that as
the wavenumber becomes parametrically close to the pole location k = FinT A + O(A?), the
O(A?) correction to the dispersion relation (66) is parametrically enhanced to O(A°), and
thus perturbation theory in A is failing. In other words, the pole is an artifact of truncating
the dispersion relation at O(A2). Our expectation is that the apparent pole in the dispersion
relation at k = FintT A is in fact resolved into a branch point at k = :FircTA+O(A_2). Therefore
the radius of convergence of the hydrodynamic dispersion relation is

Knax = AT +0(A2), (67)

where the numerical value of the correction is beyond the scope of our calculation. Branch
points are compatible with causality and in App. E we provide a more complete analysis of the
causality of our dispersion relations.

The existence of a branch point singularity in the dispersion relations is natural upon con-
sidering the non-hydrodynamic excitations that become important at short distances. The CFT
contains in particular two decoupled types of excitations that are relevant here: the stress ten-
sor two-point function has poles at w = +k and the scalar two-point function has poles at
w=xk—i2nT(A+2n) withn=0,1,2,3,... When A # 0 there will be corrections to these
dispersion relations, with the former becoming the hydrodynamic excitations in the appropri-
ate limit. Much more importantly, when A # O the excitations are no longer decoupled: the
Ward identity (15) ensures that both two-point functions share a common set of poles. As-
suming that for A < 1 the corrections to the dispersion relations in the hydrodynamic limit
are small, we will argue that it is the coupling of the poles that leads to the breakdown of
hydrodynamics.

For concreteness we consider the right-moving sound wave, although an analogous ar-
gument applies to the left-moving one. As imaginary k is increased towards k — —inTA,
the hydrodynamic pole moves from the origin of the complex w plane, directly down the
imaginary axis towards w — —inTA. Here we are assuming that A < 1 and that we can
neglect the corrections to the dispersion relations above in this limit. Under the same condi-
tions, the right-moving thermal scalar poles move directly down the complex w plane from
—i2nT(A + 2n) to —i2nT % + 2n). In contrast, the left-moving thermal scalar poles move
directly up in the complex w plane from —i27T (A +2n) to —i277:T(% +2n). A sketch of this is
shown in Fig. 6. The key point is that the right-moving hydrodynamic pole becomes paramet-
rically close to the n = 0, left-moving thermal CFT pole at precisely the wavenumber where we
anticipate hydrodynamics breaks down. The natural conclusion is that these poles collide for
k = —inT A+0(A2), reflected in a branch point in the hydrodynamic dispersion relation. This
is qualitatively similar to the momentum space picture of the breakdown of hydrodynamics in
strongly coupled, large N theories in higher dimensions (for example, see [42-44,49-51]).!!

"1n corresponding weakly coupled theories, kinetic theory calculations (in a relaxation time approximation)
indicate that hydrodynamic breakdown is more intricate than simply a pole collision [52-54]. However this intri-
cacy is due to non-hydrodynamic branch points arising from phase space integrals [53], which will not be present
in a (1+1)d CFT. In the (1+1) dimensional large-N lattice model studied in [55], a pole collision leads to the
breakdown of hydrodynamics even at weak coupling.
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Figure 6: Collision in the complex frequency w plane of the right-moving hydrody-
namic pole (blue) with the left-moving scalar quasi-normal mode (red) as k evolves
from a small real number to —itT A.

The collision of poles has a simple physical interpretation: at short enough scales the
thermal scalar excitations of the CFT become important, and hydrodynamics breaks down as
it does not account for these. It had to be the case that it was a scalar CFT excitation responsible
for the breakdown of hydrodynamics: from Eq. (64) the dispersion relation (and so its radius
of convergence) is set directly by the scalar CFT thermal two-point function. However, it is
non-trivial that it is a collision between opposite-moving modes that leads to a breakdown in
hydrodynamics. This further highlights the importance of the coupling between left and right
moving modes induced by the breaking of conformal symmetry. The crucial pole collision
described above would not occur without such a coupling, and so dissipative hydrodynamics
would not emerge. Indeed, the microscopic mechanism identified in 3.2 and Fig. 1b relies on
the fact that O can propagate inside the lightcone.

Finally, armed with our knowledge of the hydrodynamic regime let us return to spacetime
to identify the time scale at which this regime emerges. In particular, we will see how a
seemingly “Planckian” radius of convergence k., ~ T leads to a parametrically sub-Planckian
thermalization time Toq ~ 1/ (A%T). We are interested in the correlator near the hydroydnamic
sound-front, as it is exponentially suppressed at late times elsewhere. Focusing on the right
moving front x =~ ¢t, one can Fourier transform (52) by first performing the frequency integral
and only picking up the right moving sound pole w, (k) = ¢,k — %Dk2 + ... The integral over
k then yields

G (t, x = c,t + %) ~ A(—id; ) —syame
R st T s - L x) e

v2nDt ’

where we defined ¥ = x — ¢t and A is a differential operator given by

(68)

2 1.2
AQ) = i(w —k*)

+ —

[sT(l - cs2 —iw, Aw,, k?)— %(“)i — k(. kz)] emibwit
U

We have suppressed the argument k in the right and left-moving dispersion relations . (k)
in this expression, and the last exponent involves 6 w, = w_ (k) — (c;k — %Dkz). The function
A(k) inherits the radius of convergence k., = AnT found in the previous Section. However,
each derivative d; brings down a factor of % ~ 1/+4/Dt. Eq. (68) therefore is a late-time series
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L o These corrections become small — allowing hydrodynamics to emerge —

expansion in
. kmax
at the time scale 1 1
Teq ™ ~—

k2 D 22T

max

(69)

consistently with what we found in Sec. 3.1? Inserting the first few terms in the small k ex-
pansion of A(k) in (68) gives a correlator of the form advertised in Eq. (39).

We close this Section with a brief comment on the A — 0 limit of our results. The radius
of convergence k., = AnT becomes small in this limit. This arises because the scalar pole
in Fig. 6 is closer to the origin — the precocious appearance of “new physics” beyond hydrody-
namics lowers the cutoff of the effective hydrodynamic description. However, it is interesting
to notice that the equilibration time is not affected by this lowered radius of convergence. In-

deed, since (59) implies that D ~ % ﬁA—);Z in this limit, the A dependence drops out of (69). This
cancellation is also apparent in the microscopic mechanism identified in Sec. 3.2, and arises
from the competition of two effects. On one hand, the scalar is longer-lived in the A — 0
limit, (O(t)O) ~ e~27t/F allowing for deeper propagation away from the lightcone in the red
regions in Fig. 1 — integrating over the relative coordinate between the two scalars produces

00
GR, CFT

00 ~ % T +...is proportional to A, so that the operator O decouples from the stress tensor in
this limit. These two factors cancel, leading to an equilibration time (69) that is not singular
as A — 0.

2
a factor of ~ (0,0) ~ f—A. On the other hand, the fusion of scalars into stress tensors

5 Discussion

In summary, we have given a general description of the mechanism and consequences of ther-
malization in (1+1) dimensional QFTs at high and low temperatures. Thermalization occurs
due to the exchange of stress tensors near the lightcone: this leads to the breakdown of con-
formal perturbation theory at times t 2 /A2 and allows for the emergence of dissipative
hydrodynamics. At large-c, we have argued that the hydrodynamic theory that emerges has
universal expressions for the transport coefficients at all orders in the gradient expansion.
Analysis of this hydrodynamic theory shows that it breaks down at times t S /A% where
thermal CFT excitations become important. Below we discuss a number of exciting future
directions that should be pursued.

Deriving hydrodynamics: Rigorous derivations of fluctuating hydrodynamics through the
fluctuating Boltzmann equation exist in certain classical models [56-58]. However, hydro-
dynamics has to our knowledge not been derived for any closed (deterministic) quantum
many-body system. The simple structure of the dynamics of (1+1)d QFTs near CFTs, with
the additional crutch of the ¢ — oo limit, makes it an ideal target for the analytic conformal
bootstrap [59,60] and its large-c implementations [ 15-17]. It is interesting that the stress ten-
sor plays a prominent role in the dominant channels that we have identified (Sec. 3.2): this
does not rely on a sparsity or holographic assumption but follows from its vanishing twist. This
suggests that the (double) lightcone limit of the analytic bootstrap, or the lightcone modular
bootstrap (see, e.g., [61-63]), may be useful in this regard. This would also be interesting to
study from the perspective of the effective field theory for large-c CFTs obtained from coadjoint
orbits of the Virasoro group [64-67], which would require understanding conformal pertur-
bation theory in that approach.

12Alternatively, this time scale can be identified without going through the momentum space Green’s functions
by expressing the hydrodynamic equations of motion (40) in terms of the coordinate ¥ = x —c,t, see Ref. [2].
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Figure 7: Our result (60), (61) carves out a family of allowed transport parameters,
parametrized by A and T. The plots above show combinations of parameters where

N -1
the temperature dependence drops out, as A — 0: {, = %1—1@ (left), and x, = Klzfcz
S S

(right), versus /8.

Tests of proposed hydrodynamics: As a first concrete step towards this, it is important to
establish the validity of our proposed universal generating function for transport coefficients.
One way forward would be to derive our hydrodynamic results by alternative methods re-
quiring less assumptions on the details of the effective theory. The obvious candidate is the
memory matrix formalism [46,47], given the structure of some of our results (e.g. Eq. (65)).
One subtlety is that the memory matrix formalism typically isolates the contributions of long-
lived operators to the two-point function, while in our case the dominant contributions come
from the trace of the stress tensor which is small, rather than long-lived.

A more direct approach to establishing this is by explicit computation of the transport
coefficients in suitable QFTs. In App. D we made a first step in this direction by verifying that
the viscosity of holographic theories in the high temperature limit agrees with our proposal. In
principle this comparison can be extended beyond just the viscosity to all transport coefficients,
as well as to the dispersion relations and collisions of the hydrodynamic modes. It can also be
extended to IR CFTs, where we expect the competition between the irrelevant O and TTbar
deformations at low temperatures to be realised similarly to analogous phenomena in higher-
dimensional theories [68].

Finally, it should also be possible to test our predicted transport parameters in numerics
and experiments. We expect recent progress in simulating the out-of-equilibrium dynamics of
relativistic (14+1)d QFTs to soon allow access to their hydrodynamic regime [69-73]. Large-N
nonlinear sigma models for example could offer an interesting target.'®> Several experimental
realizations of 14+1d CFTs exist [74-78] — our approach accounts for corrections away from
the CFT, which are inevitable in experiments and should control thermalization and hydrody-
namics in these systems.

Primal hydrodynamic bootstrap: Progress in UV/IR constraints in QFT (e.g. [79-81]) has
renewed the interest in establishing non-perturbative bounds on hydrodynamics transport pa-
rameters [2, 30,48, 82].'% Ref. [48] in particular found sharp bounds on hydrodynamics in

3Note that our conformal perturbation theory approach relies on a finite thermal mass in the 1+1d CFT, and
therefore does not apply to a free scalar deformed by ¢?.

14A subset of hydrodynamic coefficients already appear in equilibrium thermal effective actions, so that con-
straining these may prove more tractable [83-85].
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¢ — o0 QFTs. Our results in Sec. 4 show that at high and low temperatures, large ¢ hy-
drodynamics can be solved in (1+1)d: all hydrodynamic transport parameters that appear in
the stress tensor two-point function can be obtained analytically, see Eq. (57), and depend
smoothly on the dimension A of the perturbation away from the CFT. This can serve the oppo-
site purpose of ruling in hydrodynamic theories that have Lorentz invariant UV completions,
see Fig. 7. With this in mind it would be worth generalizing our approach to higher-point
functions: are the non-linear hydrodynamic transport coefficients similarly fixed by simple
CFT data, and if so do CFT constraints place interesting bounds on these?

These results connect more broadly to causality constraints beyond the vacuum, see
e.g. [86-89]. It would be interesting in this context to understand the superluminal group
velocities observed in App. E that are nonetheless compatible with causality.

Integrability breaking, GHD, and transport in low dimensions: The mechanism for ther-
malization identified in Sec. 3 is somewhat unique to (1+1)d QFTs. It is qualitatively different
from weakly coupled QFTs in higher dimension, where transport parameters are non-analytic
in the coupling. Viewing (1+1)d CFTs as integrable QFTs [90], the setup we consider has some
resemblance with the thermalization of nearly integrable quantum many-body systems. How-
ever in those situations, the dynamics is usually described by GHD and is already dissipative
before integrability breaking [29]. Moreover, while it is tempting to view (1+1)d QFTs at high
and low temperatures as having approximately conserved KdV charges [2], these decouple at
large-c so are not generally responsible for slow thermalization.

Transport in (1+1)d is a rich topic [91] and we expect to see further developments in this
area. It would be interesting to find classical models with similar thermalization properties
as (1+1)d QFTs near CFTs — while hard rods (of negative lengths) [92,93] or certain celular
automata [26,94] can serve as classical non-relativistic analogues for the TTbar deformation,
fixed velocity particles colliding with random time delays may provide a toy model for the
thermalization mechanism identified in Fig. 1. In the context of Luttinger liquids, it would
also be interesting to distinguish the dynamics between integrability-breaking and preserving
deformations [18,95]. The bulk viscosity is also of interest in nonrelativisitic systems with a
large number of degrees of freedom (e.g., [96]).

Thermalization of (1+1)d CFTs: The equilibration time marking the onset of dissipative
hydrodynamics Teq ~ 3/ A? diverges as one approaches the (1+1)d CFT A — 0. Other notions
and characterizations of thermalization or chaos may still apply to certain (14+1)d CFTs [97-
107]: while emergence of hydrodynamics usually goes hand in hand with other probes of
quantum chaos, it could be some of these notions decouple for the case of (1+1)d QFTs close
to CFTs. It would be interesting to understand if there is a qualitative difference between
chaotic (1+1)d QFTs obtained by deforming rational or irrational CFTs. This may be possible
to investigate in short RG flows that are perturbatively close to minimal models [108-110].

Higher dimensions: Our results fall in line with recent progress in identifying the CFT data
that captures thermal physics [83,84,111-117]. The case of (1+1) dimensions is special:
amongst other reasons, thermal CFT correlators can be computed exactly, the stress tensor
sector is formally described by hydrodynamics with almost all transport coefficients vanishing,
and thermalization happens parametrically slowly upon deformation of the CFT. On the one
hand these features are advantageous as they have allowed us to unravel in some detail the
dynamics of thermalization of QFTs. The drawback of course is that many results likely cannot
be extended to higher dimensions where conformal symmetry is less restrictive and even an
undeformed CFT can thermalize quickly. However we highlight below a couple of aspects that
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may have higher-dimensional analogues,'® albeit with less generality.

First, in any dimension there is a Ward identity relating the trace of the stress tensor to
the perturbation . One consequence of this is that many hydrodynamic transport coefficients
(e.g. bulk viscosity) are identically zero for an unperturbed CFT [32]. Upon perturbing the CFT,
following similar steps as in Sec. 4.2 should give expressions for these transport coefficients
in terms of thermal one and two-point functions of O in the CFT, which may be more readily
accessible. This would be a generalization of the approach used in [39] to compute the high
temperature bulk viscosity of certain holographic theories.

Second, the breakdown of hydrodynamics that we have found is reminiscent of that in
the spatially extended theories with local criticality that arise at low temperatures in large—N
Sachdev-Ye-Kitaev chains [119] and black holes with AdS,xR¢ horizons [120]. In these the-
ories, the radius of convergence is governed by the collision of the hydrodynamic diffusion
mode with a thermal excitation of a scalar operator in the critical theory, whose lifetime is de-
termined universally by T and its dimension A [51]. It would be very interesting to see if this
relation between the hydrodynamic dispersion relation and the thermal two-point functions
of the critical theory could be teased out into expressions for individual transport coefficients
like those we have found here.

Additional global symmetries: Finally, we briefly comment on thermalization of (1+1)d
QFTs with additional internal global symmetries, such as nonlinear sigma models. In these
situations, the holomorphic factorization in the CFT implies that both the current j4 and its
dual jua = €,,,], are conserved (see, e.g., [121,122] for related discussions in the context of
hydrodynamics). While the former symmetry is exact in the QFT, the latter is only an emer-
gent symmetry at high or low temperatures, and will be broken by the deformation in (1).
Slow thermalization Toq ~ 1/ (TA?) then follows a more familiar pattern of being caused by
a long-lived approximately conserved density (the dual density j© = j*). The corresponding
propagating hydrodynamic mode of the CFT transitions into a diffusive mode at late times, in
a way reminiscent of systems with approximately conserved momentum [123]. In this con-
text, we expect the charge diffusivity to be parametrically large, D, ~ 1/(T A?), contrary to the
transport parameters identified in Sec. 4.2 that are parametrically small. It would be interest-
ing, in this context, to: (i) identify the dominant CPT corrections, (ii) revisit the commutativity
of limits of Sec. 4.2, and finally (iii) study thermal correlators at finite density.
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A Ward identities

In this Appendix we spell out how the Ward identities (11) fix two-point functions of the stress
tensor T,,, and scalar O in terms of a single structure. Differentiating the first equation, with

respect to the metric, then setting g,, = 6,,,, J(x) = A = constant and finally analytically

15Analogues in lower dimensions also exist: see, e.g., [118].
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continuing to real time leads to

PuGr "7 (P) = —p, (NP (TH) + 07" (THP) — ™ (T?7)), (A1)

where p, = (—w, k). In (1+1) dimensions, this implies that there is only one independent
stress tensor two-point function, say that of the trace:

6ee (p) = L2 PTT e QRO (A.2)
where p* = €*”p,, and h*"P9(p) arises due to the contact terms on the right-hand side of
(A.1). Using (T*") = Pn‘” + (¢ + P)uMu”, with u* = &Y, one finds that its components in
lightcone coordinates x* 1/_(x + t) are given by:

1 +k
A =ht " = —Z(e +P), Rt = (e +P)2TE
2 w—k
w—k (A.3)
h*t=¢—P, h—=—(e+P)—,
£ (e )w +k
and h*~"~ = 0 by construction. All other components are fixed by symmetry under u < v and

(uv) «> (p o). For example this implies that the retarded Green’s function of the right-moving
component T__ is given by'®

T_T _ P ace A+
Gp (w,k) =Gy (w, k) = 2pp )ZG (w,k)+h
(e + k)2 w+k (A4
trace
—4(co D Gr*(w, k) — (e + P)—k

There are further constraints on the two-point functions from the second Ward identity in
(11). First, differentiating with respect to the metric and then restricting to the equilibrium
state gives the relations

O C u-
NpoGr " (P) = VA2 = MG ™ (p) = 2(T"") = o—p"P". (A.5)
Using Eq. (A.2), this becomes an equation for the mixed correlators in terms of the trace two-
point function. Second, differentiating with respect to the coupling J(x) and then restricting
to the equilibrium state gives

NuyGh 'O (p) = Ver2— A)GLO(p) + (2 — A) Oy (A.6)

By contracting Eq. (A.5) with 7,,,, using (T*,) = +/c(2 — A)A0,q (from (11)) and finally
using (A.6), we obtain the key relation (15) between the trace two-point function and the O
two-point function.

In principle, there are three further relations that arise by differentiating the first Ward
identity in (11) with respect to the coupling J(x). However, these are identically satisfied
once the conditions above are imposed.

16This relates to the normahzatlon used in [124] by T__ = —Tyere/ 7. In our normalization, the leading term in
the OPEis T__(x)T__(0) ~ )4 +---,withx™ = %(t —X).

87!2 (x—
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B Details of CPT calculation

B.1 Leading correction

The most interesting term in the leading O(A?) CPT correction to the T__ two-point function
(21) is

Gp " (w,k) > %c)‘@(z—A)Z/ﬂM“* x f3(, )G (@, k), (B.1)

with f(w,k) = #ﬁo* This is the only term in (21) that has other non-analyticities than
poles at w = k, which allow its Fourier transform to have support away from the right-moving
light-front. We compute its Fourier transform in this Appendix. We will first assume A < 1,
in which case UV divergences are absent and the Fourier transform of G}? O(x*) exists, and
discuss A > 1 at the end of this Section. Dropping the numerical factor %ciz(Z —A)?2B2A4
we can write its Fourier transform as a double convolution following (25):

F(t,x)= f d2x,d%x, f (x2)G9O ok — Xt f (o — xb), (B.2)
with the Fourier transfrom of f(w, k) = #ﬂ;m given by
Ft,x) =8(t)8(x) —28,5(x — )0(t) = feelt, x) + f-(£,x). (B.3)

We separated f into a contact term fct(t,x) = 6(t)6(x), and a term f_ that has support on
the right-moving light-front x~ = 0. We can then separate (B.2) into three contributions:

F(t,x) = Fe o(t,x) + Fe _(t,x)+F_ _(t,x). (B.4)

The first is simply Fy; (t,x) = G}? O(t,x). We expect the third, F_ _(t,x), to dominate at
late times: because it includes two T__ “propagators”, there is a freedom in where the pair
of O’s are placed which leads to an enhancement o< t for this correction (see Fig. 1a). It
was computed to leading order for t > 3 in Sec. 3.1; we compute it here up to exponential
precision O(e~*/?), and evaluate Fe _(t,x) as well.

To simplify notation, it will be useful to introduce chiral factors a(t £x) of the scalar Green’s

function
20(t —x)0(t + x)sintA _ O(t—x)O0(t+x)

G99(t,x) = = ) B.5
)= [ mesinh S sinh 218 — alt— v)aCi + ) (52
Then, the second term in (B.4) is
Fo,(t,x) =2 f d®x1 f_()GRO (e = x})
=—43XJdt19(t1)G§O(t—t1,x—t1)
thx (B.6)

4 2 dt,
“a(t—x) o alt+x—2ty)

s 9 thx g |
a(t—x) J, als)

where we changed variables from t; tos = t+x—2t;, and dropped an overall factor of 6(t—x)
since we are assuming t > x (otherwise the entire retarded Green’s function vanishes due to
causality). We now use the fact that a(s) o< sinh ﬁs% ~ e ™/P is exponentially small for s > f8
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to replace the upper limit of integration t + x — o0, up to exponentially small corrections.
Our result is thus

o(e~t/P B.
Fo _(t,x)= (t—X)J a()+ (e ). (B.7)
We now turn to F_ _(t,x):
F__(t,x)= f dledlef_(x’f)Ggo(xg — x‘f)fA_(x“ — x‘;)
=4EXZJdtldtze(tl)e(t—tz)Ggo(tz—tl,x—t+tz—tl)

dt = 2t21 G(X—t+2t21)
a(t—x) 2 1 a(x—t+2t21)

f21

(B.8)

t—t
_ 92 dt 21
a(t—x) t—x a(x—t+2t21)
2

In the third line we changed variables to t,; = t, —t7 and t,, = %(tl + t,); the integral over
t,y 1S trivial and was performed in the last line. Changing variables to s = x —t + 2t,; and
extending again the upper limit of the integral to oo, one finds up to exponentially small
terms:

N 2 * ds 5 1 Ooﬂ
F_’_(t’x)_axa(t—x)ﬁ a) " ali—x [(X t)f ® fo a(s)]'

The first term exactly cancels the previous result (B.7), so that collecting all contributions and
returning to (B.4) we find

F(t,x)=32—— |:(X+t)J f sds ]+O( —t/BYy
att= o 2ls) (B.9)
_ sin(nA) F(T)F(j) B 2 1 —t/B .
-~ (B/m)2e1 JT (X o 2tan %) x (sinh ;;TX)A o

Restoring the factor of %C)_LZ(Z — A)?32A74  this gives Eq. (29) quoted in the main text.

Let us now comment on UV divergences that arise if A > 1: in this situation, the Fourier
transform of the scalar two-point function (B.5) is UV divergent, a divergence that can be
absorbed by adding a (relevant) counterterm to the action S, = AXA~D f d?x J?(x), where
J(x) is the source for @. While the inverse Fourier transform of the CPT correction (B.1)
is well-defined, our approach to computing it using a convolution in (B.2) suffers from this
UV divergence. The simplest is to analytically continue our final expression (29) to A > 1.
Alternatively, one can directly Fourier transform % times the momentum space scalar
Green’s function (56).

B.2 Real time CPT and causal diamond

Systematizing the study of CPT corrections to higher orders requires integrating O insertions
over the thermal cylinder. This is most naturally done in Euclidean signature:

="

(T_(x)T__(0))p = Z f (T__(x)T__(0)O(x1)--- O(x,))p.crr>  (B.10)

xhesl xR

xt B

10000

30



Sci| SciPost Phys. 18, 177 (2025)

followed by continuing the external coordinate x* to real time (all correlators above are con-
nected). However, performing CPT directly in real time allows for better intuition for the
channels that are expected to dominate at late times, as discussed in Sec. 3.2. Analytically
continuing all coordinates xl’.* in the (n + 2)-point functions appearing in (B.10) produces a
fully retarded Green’s function involving n+ 1 nested commutators'” [125,126]. The integra-
tion region is therefore in the past lightcone of T__(x*). This leads to a new complication:
while the Euclidean expression Eq. (B.10) is manifestly free of IR divergences,'® it appears
that the channels identified in Fig. 1 can involve O insertions at arbitrarily early times, which
would be IR divergent (since T__ CFT correlators are unsuppressed along the lightcone).

In this Section, we consider a formulation of CPT in real time in terms of ‘interaction pic-
ture’ Hamiltonian evolution [127] that makes manifest the absence of IR divergences. This is
mostly intended as a sanity check for the mechanism identified in Fig. 1 — we do not necessarily
expect that this formulation will make the explicit evaluation of higher CPT corrections more
tractable than the Euclidean formulation (B.10). Writing the Hamiltonian as

H=Hcr+0H, 5H=—cﬁfdx(’)(t=0,x), (B.11)

interaction picture operators are defined as operators evolving purely in the CFT
A;(t) = e'Herrt pe~iHarrt (B.12)
They are related to regular Heisenberg operators as

A(t) = etfltemHamrtp ()etHerrtetHE = UT(£)A,()U(L), (B.13)

—iHt

where the unitary U(t) = e'fcrrte satisfies the equation of motion

2,U(t) = —ietflort sHe Ht = —i5H,(t)U(t), (B.14)
which involves the deformation in interaction picture §H,(t) = e'Herrt §He~HHerrt | The solution
is

U(t) = Te o dt'8HI(0) (B.15)

where T denotes time-ordering. One can similarly find a representation for the thermal density
matrix as e PH = ¢"PHox (expression involving §H), by defining
e PH = e~ PHoy(B). (B.16)

One representation for Uz(f) = ePHoe can be found by solving its imaginary time equation

of motion
p
3pUs(B)=—SHF(BYUp(B) =  Up(B)=Tee h ™2 (B.17)
where Ty denotes T ordering and

SHY (1) = e M05He ™o = 5H (—iT). (B.18)

17In Keldysh notation, this corresponds to G, qq...q-

18This follows from the fact that 2d CFTs have a thermal mass given by the dimension of the lightest operator
Mcpr = Apin/B. Quantizing in the x direction and inserting a complete basis of states in (B.10) shows that it
decays as e ™aTXi~%il at large spatial separations |x; —X;| — oo.
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Putting these pieces together, we arrive at the following representation of a real time thermal
correlator (ommitting the factor of Z = Tr e PH)

(A(t, X)B)p = Tr(e PHA(t, x)B) (B.19)
=Tr (e‘ﬁHo [TEe—ff dT/aHIE(T/)] I:Tei/lfotdt/éHI(t’):IAI(t, %) I:Te_ilfotdtl 5H1(”]B,)

- <[TEe—xfoﬁ dr'dx’ OE(T/,XI)] [Temfgdf’dx' O(t’,x’)]A(t’x) [Te—ilfotdt’dx’ (’)(t’,x’)]B> '

B,CFT
The final expression is a correlation function in the CFT. The CPT corrections of interest are
those integrated on real times t’ € [0, t]. The fact that these integration regions are bounded
prohibits IR divergences. Furthermore, expanding both unitaries UT(t), U(t) above leads to
nested commutators with A(t, x), restricting the integration region to the past lightcone of
(t,x). Finally, given that T__ correlators are peaked along the lightcone, we expect the kine-
matically dominant region of these integrals to be the causal diamond between (0,0) and
(t,x), as depicted in Fig. 1b.

C Hydrodynamic constitutive relation

In this Appendix we give proofs of two statements used when deriving the hydrodynamic
constitutive relation in Sec. 4.1.

The first statement is that the derivatives in the three building blocks V, -~V log(s),
Vi VigUy,andV, ---V, R canbe commuted at the expense of introducing only non-
linear terms. To prove this, let’s first recall that the commutator of covariant derivatives acts
on a tensor as

e — R Aok K2 B Ak Bk py-=-A
[V, V,]t ypen, =R ot o, TR ot oy, Foe F R e (CD)
Y gk _pr [T _ _pA 1+ ik
R, ot oy =R ot s e R T
where R, is the Riemann tensor (see e.g. [128]). As the Riemann tensor is linear in ampli-

tudes, it is immediately clear that the covariant derivativesin V,, ---V, ‘R can be commuted
at the expense of introducing non-linear terms. For the other two building blocks, we first use
Vi, =4,, V7 to obtain the following expression for the commutator of transverse derivatives
acting on a tensor

[V 10 Vi J OB = A B [V, VO b AL (VP A, (Ve )

—A,y (VGAHP) (Vp tm...,ukvr”v[) . (C.2)

When the transverse derivatives act on a tensor which is linear in the amplitude, it is clear
that this commutator is non-linear. The exceptional cases in the building blocks above are the
rightmost transverse derivatives. These act directly on the hydrodynamic variables which are
non-zero even in equilibrium. For these two special cases, Eq. (C.2) can be written

(Vi Vis] (b = App Ay [VP, VT 4 non-linear. (C.3)

1

When the tensor is log(s), the first term on the right hand side vanishes identically as log(s) is
a scalar. When the tensor is the fluid velocity, an explicit computation gives

1
Dyo [VP,VTus = Dy Dy 8raR™ Uy = R (A" Ay — A u A

A — —
L)

=0, (C4

ue uo)
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where we used the expression

1
R,u,vpo = ER (g,upgva _g,u,agvp) s (C.5)

for the Riemann tensor in (1+1) dimensions. Therefore even in these special cases the trans-
verse derivatives can be commuted at the cost of introducing only non-linear terms.
The second statement is that the local conservation equations (44) imply that

V' log(s) = —c, >V 2D (V- W)+ >V *R+..., (C.6)

where the ... denote higher-derivative or non-linear terms. To prove this, we first act with
V1, on the second equation in (44) to obtain

V2i log(s) = —c;2ViDuH + higher-derivative terms. (C.7)
The commutator of the derivatives acting on the right hand side is
w _
[V, D]u, =A""uP [V,,V, |u,+ A" (V,uP)(V,u,)—u’ (V,0") (V,u,)
= A""uP R"“ oyl +non-linear (C.8)
= —R + non-linear,
where on the second line we used the commutator (C.1) of covariant derivatives and on the
third line we used the expression (C.5) for the Riemann tensor in (1+1) dimensions. Com-

muting the derivatives in (C.7) using (C.8) and then acting on both sides with Vi‘z gives the
result (C.6).

D Viscosity of holographic theories

In this Appendix we will consider some explicit examples of theories where we expect the
large—c hydrodynamics described in the main text to be valid. These are holographic theories
of three-dimensional gravity coupled to matter. For these theories we will compute the viscosity
explicitly from first principles and show that it agrees with the result (59) argued for in Sec. 4.
See [47,129,130] for textbook introductions to holographic theories and simple examples of
the computation of their hydrodynamic transport coefficients.

D.1 The equilibrium state

We consider three dimensional theories of gravity with action

!
167G

Jd?’x\/—_g(R—%é’Hd)a“d) +V(¢))+dey, (D.1)

where G is Newton’s constant, R is the Ricci scalar of the Lorentzian metric g,,, and ¢ is a
scalar field with potential

V(= 0)= = — s AA =297+ 0($Y, 0.2)

and L is a constant. Spq, is a boundary term needed to make the variational problem well-
defined and the on-shell action finite: see [131] for details of this.
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We study planar black hole solutions of this theory that are dual to the thermal state of a
CFT deformed by a relevant scalar operator of dimension 1 < A < 2. We parameterize these
solutions as

ds? = =D(r)dt* + C(r)dx* +B(r)dr®, ¢ =&(r), (D.3)

and the equations of motion of the action (D.1) then require that

d ( c’ ) Cco"?
—— log =— ;
dr +vBCD c’

i (CB/Z(D/C)/)
vBD

dr
i Q.:p’ =—+/BCD a_V ,
dr \J B 26 | p—s

where primes denote derivatives with respect to r. We furthermore impose the boundary
conditions that there is an asymptotically AdS; boundary at r = 0 with

=0, (D.4)

2 2

L L
B(r—>0)—>—2+..., C(r—>0)—>—2+...,
r r (D.5)
L2 V12 '
D(r—>0)-> —+..., <I>(r—>0)—>—n7tr2_A+...,
r2 1—A
and a horizon at r = ry with
B(r —rg) — b + C(r — ) — (4Gs)* +
—_—+..., - e,
O AT (ro—1) 0 (D.6)
D(r -»rg) »4nTb(rg—r)+..., O(r —ry) >d5+...,

where A, T, s, b and $, are constants. s and T are the entropy density and temperature
of the state, and A is the relevant coupling that deforms the CFT.!° After specifying V(¢)
exactly, solving this set of equations yields the thermodynamic relations such as s(T, A) that
characterize the equilibrium state.

For the special case ® = 0 there is the BTZ black hole solution

2 2 2

2
C=23, DO=5f@),  fO)=1-5.  ®7)

BI)=ar iy 2

By examining the boundary condition (D.5) for ®, we see that this corresponds to the case A=0
(an undeformed CFT). This black hole has temperature T = 1/(27ry) and s/T = nL/(2G).
Comparing this to the result for the entropy density of an undeformed CFT in Sec. 2 yields the
classic holographic expression for the central charge ¢ = 3L/(2G).

D.2 Viscosity formula and probe limit

To compute the viscosity we need to determine two-point functions of the stress tensor in the
thermal states we have just described. Although fundamentally this requires the study of black
hole perturbations, the final result can be expressed in terms of the equilibrium state as [40]

¢_s (%)2
s 4n\9s )~ (D-8)

The prefactor in (D.5) corresponds to turning on a source A for an operator with vacuum correlator
¢|x—x'I"**, consistent with the normalizations in the main text.
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This formula is exact. In [40] it is presented for holographic theories of general dimensionality,
with s on the left hand side replaced by 4mn with n the shear viscosity. There is a subtlety
in (14+1) dimensions where there is no shear viscosity. However, we have checked by an
independent method (analogous to that in [132], see also [133]) that the formula (D.8) does
indeed hold for field theories in (1+1) dimensions.

Substituting the BTZ solution ($ = 0) into the formula (D.8) trivially produces the correct
viscosity { = 0 of an undeformed CFT. When conformal symmetry is broken, we no longer
have an exact expression for ®,. But we can make progress when A is small by assuming that
this means ® remains small enough everywhere outside the black hole that we can neglect its
backreaction on the BTZ metric. Intuitively, the high temperature means that the region where
scalar field corrections become large is hidden behind the horizon. This is the approximation
made in [39] and [40] which, written in our conventions, reproduces the result (59) we have
argued for in the main text.

It is instructive to see explicitly how this works. Treating ®(r) = A5®(r) + ... as a small
perturbation on the fixed BTZ background allows us to linearize the third equation of motion

in (D.4) to give
(f (r)

A(A 2)

I 5@'(r )) 6®(r)=0 (D.9)

The solution of this equation that obeys the boundary conditions in the previous Section is

_ VT2r 2n)A(5)? A A r2
5<I>(r)—(1_A) Ta_D 1(1 > 2,1,1—5) (D.10)
and thus s ,
V121 [ 6s F( )
‘1’0 (1—A)( ) m)ﬁ.-ﬁ-..., (D.11)

atsmall A. Substituting this into the expression (D.8) gives the expression (59) for the viscosity
proposed in the main text.

However, on its own this calculation is not a proof of the result (59) for these theories. The
linearized solution (D.10) captures exactly the conformal expression for the thermal two-point
function of the deforming operator. And so in assuming that the small A viscosity is given by
this solution, we are really making the same assumption as in the main text.

D.3 Exact results for viscosity

To truly verify the result (59) for holographic theories, we will now go beyond the linearized
solution and solve the full non-linear equations of motion (D.4). This can only be done nu-
merically.

For definiteness, and following [134], we considered the family of potentials

_1 ow _ ., A=2 4
V(qb)_z( (a¢)) W(p)= 2+—2 o +agp”. (D.12)

To solve the equations of motion numerically we used the procedure described in Sec. 3 of
[134], which builds on [135]. For a given potential we obtained black hole solutions for
different values of s and A, and then computed the viscosity by numerically evaluating the
right hand side of the exact formula (D.8). The speed of sound for each solution was obtained
numerically as described in [134].

In Fig. 8 we show the results we obtained for the ratio { /(s(1 — csz) for four different
potentials. In all cases the small A behaviour agrees with the expression (60) proposed in the
main text. The value of A where corrections to this expression become important — and the
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Figure 8: Numerical results for the the ratio {/(s(1 — csz) as a function of A for four
different potentials. All cases show agreement with Eq. (60) at small A.

effect they have — is sensitive to the details of the potential. Thermodynamic properties of the
equilibrium state for some of these potentials can be found in [134].

The analysis above can easily be extended to the case of deforming UV CFTs with an op-
erator of dimension 0 < A < 1 by considering an alternate quantization of the scalar field
¢. Holographic examples of IR CFTs deformed by operators with arbitrary A > 2 can also
be generated by choosing the potential appropriately — it would be interesting to repeat our
analysis for these cases.

E Causality of large-c hydrodynamics

In this Appendix we will examine the resummed hydrodynamic dispersion relations and show
that tensions with causality arise only at the wavenumbers where hydrodynamics starts to
break down. This is a check that the large-c theory of hydrodynamics we have proposed
makes sense within its regime of validity.

In relativistic QFTs, microcausality — the fact that space-like separated operators commute
- requires that retarded Green’s functions are analytic in the region where Im p* is a time-like
vector [136]. Any non-analyticity, such as poles, must therefore satisfy

Im (w4 (k)) < [Im (k)| . (E.1)

In [48,137] the inequality (E.1) was used to derive causal bounds on the values of individual
transport coefficients. However, as we have an expression for the full dispersion relation at
small A we will work directly with the fundamental inequality (E.1). We will discuss only the
right-moving mode w, (k) as the conditions arising from w_(k) are identical.

The condition (E.1) for the right-moving mode w_ (k) is in fact two different inequalities,
one for each sign of Im(k). It will be instructive to consider first the case of purely imaginary
k = ik, k € R. For negative k, the causality constraint on the correction to the thermal CFT
dispersion relation is

Rel, (ix) > -2, Kk <0. (E.2)

For this to be violated, the ‘small’ correction I, must be parametrically large. We saw in
the main text that I'; has a pole at k = —AT, which sets the radius of convergence of the
dispersion relation. This same pole produces a parametrically large I, at k = —tAT + O(A2)
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Figure 9: Plots of the leading corrections to the phase and group velocities of the
hydrodynamic sound mode, extracted from Eq. (66).

and so the causality inequality (E.2) starts to be violated precisely when hydrodynamics breaks
down.

For our hydrodynamic theory to be self-consistent, we also require the corresponding
causality constraint for k > 0 to be satisfied everywhere within the radius of convergence.
Specifically this requires that

L0 _@-aP ey (TE+ErG-s)mE@-8) & ) 4
2T AAD () 0% () 2ma)m

for 0 < k S wAT. This quantity is independent of A and, by plotting it, it is straightforward
to verify that (E.3) is indeed satisfied for all 0 < A < 3.

Considering the general case of complex k does not affect these conclusions: the first
tensions with the causality inequality (E.1) arise for k ~ —iTAT where hydrodynamics starts
to break down.

We close by noting a surprising feature of our hydrodynamic theory. We can define the
phase velocity and group velocity of the hydrodynamic sound wave as

w, (k) -
Vphase(k) =Re (+T) =1- 125Vphase(k) +...,

doo. (0 (E.4)

vgroup(k) = Re (

where k is real. From our dispersion relation (66), it is straightforward to extract the leading
deviations of these quantities from the speed of light at small A2 and these are shown in Fig. 9.
For all 0 < A < 3, the phase velocity is subluminal. However, for 0 < A < 2 the group veloc-
ity of the sound wave becomes superluminal. Although this happens at large wavenumbers,
these are still within the range of applicability of hydrodynamics. This is despite the fact the
theory satisfies the fundamental causality requirement (E.1). It would be very interesting to
understand better this surprising feature.

) =1 —}_Lzévgroup(k) +...,
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