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1 Introduction and summary

Interacting systems thermalize, leading to the emergence of hydrodynamics at late times.

While the structure of hydrodynamics is universal, how a system thermalizes, how long it

takes, and the details of the hydrodynamics that emerges, are not. Under certain conditions,

these features of quantum field theories (QFTs) may be studied using tools like kinetic theory

(at weak coupling) or holography (for a large number of degrees of freedom). In this paper, we

will show that low dimensionality offers a complementary way to gain the theoretical control

needed to answer these questions.

Thermal correlators in (1+1)d conformal field theory (CFT) are entirely fixed by symmetry,

forbidding the emergence of dissipative hydrodynamics. This suggests that (1+1)d QFTs at

high and low temperatures thermalize very slowly. In these limits, QFTs can be described as

CFTs deformed by a relevant or irrelevant operator O of dimension ∆:

S = SCFT +
p

cλ

∫

d2 x O . (1)

The coupling in units of temperature λ̄ ≡ λT∆−2 ≪ 1 then provides a dimensionless control

parameter for conformal perturbation theory (CPT). The anticipated slow thermalization sug-

gests that the real time thermalization dynamics may be analytically tractable in this limit.

This is analogous to how kinetic theory captures the slow thermalization of QFTs at weak cou-

pling, or how weakly perturbed integrable systems thermalize slowly (see, e.g., [1]), but here

without any restriction on the nature of the underlying CFT: we expect slow thermalization

even when it is strongly coupled and non-integrable.

In this paper, we identify the universal mechanism for the thermalization of (1+1)d QFTs

at high and low temperatures. For thermalization to occur the effects of the perturbation in (1)

must become large. This is because stress tensor correlators have support only near the light

front in a CFT, and only near the sound-front in hydrodynamics, and at late times these fronts

are far apart. In other words thermalization requires that CPT breaks down at late enough
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parameters of the theory. We argue that – to leading order in λ̄ – each of these parameters is

fixed by the thermal retarded Green’s function of the scalar O in the CFT

((2πT )2 + k2)(1− c2
s − iωΩ(ω, k2))− (ω2 − k2)

�

κ(ω, k2)− 1
�

= 12πλ2(2−∆)2
�

GOO

R,CFT(ω, k)− ∆

(2−∆)G
OO

R,CFT(0,0)

�

, (4)

where the right hand side should be considered as a series in small ω and k which can be

easily calculated from the explicit expression for GOO

R,CFT(ω, k) given in Eq. (56) below.

This complete knowledge of the hydrodynamic theory allows us to determine when, and

why, it breaks down. The hydrodynamic dispersion relations ω±(k) are analytic functions

with a universal radius of convergence kmax = ∆πT . At this wavenumber the hydrodynamic

poles of momentum space Green’s functions collide with poles corresponding to thermal CFT

excitations of O. In other words, hydrodynamics breaks down at short scales as it does not

account for these excitations. Upon translating back from momentum space to real space, this

leads to an early-time cutoff on hydrodynamics that agrees with the time scale (2) at which

CPT breaks down.

Taken together, our results provide a universal description of thermalization of (1+1)d

QFTs at high and low temperatures, from the perspective of both the early-time and late-time

effective theories. After reviewing some useful results in Sec. 2, the CPT perspective on ther-

malization is described in Sec. 3 and the hydrodynamic perspective in Sec. 4. In Sec. 5 we

close with some discussion, including some remarks on the prospects of deriving hydrody-

namics from CPT.

2 Thermodynamics and Ward identities

We study dynamics at finite temperature of (1 + 1)-dimensional quantum field theories that

are close to conformal fixed points. To do this, we consider the action

S = SCFT +
p

cλ

∫

d2 x O , (5)

where SCFT is the action of a conformal field theory with central charge c, and O is a scalar

primary operator of this CFT with scaling dimension ∆. We normalize O such that its vacuum

two-point function in the CFT is |x − x ′|−2∆.

We are interested in the limit where the effects of the deformation to the CFT are expected

to be small. When SCFT is a UV fixed point, we take 0 <∆ < 2 and consider the high temper-

ature limit λ≪ T2−∆. For field theories that arise by deforming a CFT with multiple relevant

scalar operators, the most dominant corrections to CFT physics at higher temperatures will

be due to the least relevant deforming operator. By choosing ∆ to be the dimension of this

operator, the simple action (5) captures these dominant effects.

The situation is more subtle when SCFT is an IR fixed point. In this case we consider the

low temperature limit λ ≪ T2−∆ where the effects of deformations by irrelevant operators

with 2 < ∆ will be small. RG flow will typically generate deformations by all such operators

and provided the least irrelevant has 2 <∆ < 3, the simple action (5) captures the dominant

corrections to CFT physics at low temperatures. The reason for the upper bound on ∆ is that

the effects of the T T̄ deformation dominate over those of a scalar primary with ∆ ≥ 3. This is

because the enhanced effects of the T T̄ operator, which is a descendant of the identity and so

has a non-zero expectation value in the thermal state [2]. We treat these special cases, namely

the low-temperature dynamics of QFTs that flow to IR CFTs with no operator of dimension

2<∆ < 3, in Sec. 3.3.
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2.1 Thermodynamics

Thermal expectation values of a CFT on the infinite line can be obtained by mapping Euclidean

expectation values from the plane to the cylinder. The corrections due to the dimensionful

coupling λ can be calculated in conformal perturbation theory and we will parameterize these

by the dimensionless coupling

λ̄ ≡ λT∆−2 , (6)

which will be small in both limits described above.

The energy density ǫ and pressure P of the thermal state are [2]

ǫ =
πc

6
T2

�

1+
2∆− 3

1−∆ α∆λ̄
2 + . . .

�

, P =
πc

6
T2

�

1+
1

1−∆α∆λ̄
2 + . . .

�

, (7)

where

α∆ = 3(2π)2(∆−1)
Γ (2−∆) Γ (∆2 )2

Γ (∆) Γ (1− ∆2 )2
, (8)

and the entropy density is s = (ǫ+ P)/T . The factor of
p

c in the action (5) was chosen so that

a coupling λ̄ ∼ 1 has a qualitatively important effect on the equation of state.

Defining the speed of sound cs by c2
s =

dP
dǫ gives

1− cs = (2−∆)α∆λ̄2 + . . . (9)

Causality requires that this quantity is non-negative and it is straightforward to verify that this

is the case provided 0≤∆ < 3.

2.2 Ward identities

To understand thermalization we will study the two-point functions of the stress tensor Tµν

and the primary operator O that deforms the action. These are strongly constrained by Ward

identities. In fact, in (1+1) dimensions there is only one independent two-point function of

this set of operators.

To obtain the relations between two-point functions, we first promote the constant coupling

λ in the action to a spacetime dependent coupling J(x) and the flat metric to gµν(x). The

expectation values in Euclidean signature are then given by

p
g〈Tµν〉(x) = 2

δW

δgµν(x)
,
p

g〈O〉(x) = 1p
c

δW

δJ(x)
, (10)

where W [gµν, J] = − log Z[gµν, J] is the generator of Euclidean connected correlators (see,

e.g., [3,4]). These expectation values obey the Ward identities1

∇µ〈Tµν〉=
p

c〈O〉∇νJ , 〈Tµµ〉=
p

c(2−∆)J〈O〉+ c

24π
R . (11)

The term involving R – the Ricci scalar of gµν – is the Weyl anomaly of the conformal theory.

For specific values of ∆, including ∆ = 1 and ∆ = 2, the trace Ward identity has additional

anomalies [5]. We will mostly focus on the generic case given in Eq. (11).

We define the connected Euclidean two-point functions by

G
µνρσ
E (x , x ′) = 2

δ
�p

g〈Tµν〉(x)
�

δgρσ(x
′)

, GOO

E (x , x ′) =
1p
c

δ
�p

gO(x)
�

δJ(x ′)
,

G
µνO
E (x , x ′) =

1p
c

δ
�p

g〈Tµν〉(x)
�

δJ(x ′)
, G

Oµν
E (x , x ′) = 2

δ
�p

g〈O〉(x)
�

δgµν(x
′)

.

(12)

1We are assuming that the gravitational anomaly vanishes.
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These are symmetric under the exchange of the two operators. Taking functional variations

of the three Ward identities (11) with respect to J and gµν gives relations between two-point

functions. Upon restricting to the flat metric and constant coupling λ, and then performing a

Fourier decomposition

GE(τ−τ′, x − x ′) = T
∑

n∈Z

∫ ∞

−∞

dk

2π
e−iωn(τ−τ′)+ik(x−x ′)GE(ωn, k) , ωn = 2πT n , (13)

these become algebraic relations, where we are now using x to denote only the spatial coordi-

nate. From solving the relations from the first Ward identity in (11) we find that there is only

one independent stress tensor two-point function, which we take to be the two-point function

of the trace. This is a consequence of the dimensionality. The second Ward identity relates

the two-point function of the trace to that of the operator O that explicitly breaks conformal

symmetry. See App. A for more details on these relations.

As thermalization is a real time phenomenon it will be important to work with real time

correlators. These can be defined as the analytic continuation of Euclidean time correlators on

the thermal cylinder, with different iε prescriptions leading to different operator orderings [6].

A particularly useful real time correlator is the retarded Green’s function, e.g.:

GOO

R (t, x)≡ iθ (t)〈[O(t, x),O]〉 . (14)

Its Fourier transform can be shown to analytically continue to the Euclidean Green’s function:2

GE(ωn, k) = GR(iωn, k). Conversely, GR(ω, k) is the only analytic continuation of GE(ωn, k)

that is analytic in the upper half plane and does not grow exponentially at largeω, by Carlson’s

theorem. Following the discussion above, all of the retarded Green’s functions of the stress

tensor can be expressed in terms of GOO

R . For example, the two-point function of the trace of

the stress tensor is (see App. A)

Gtrace
R (ω, k) = − c

12π
(ω2 − k2) + cλ2(2−∆)2

�

GOO

R (ω, k)− ∆

(2−∆)
Oeqp

cλ

�

. (15)

The first term on the right hand side is due to the Weyl anomaly and is the full result in the

conformal theory. Indeed, when λ = 0, the Ward identities of the CFT fix completely all stress

tensor two-point functions. The second term is a consequence of conformal symmetry breaking

and is exact in λ. In general GOO

R and Oeq ≡ 〈O〉 – the expectation value of O in the thermal

state – are functions of λ.

3 Breakdown of conformal perturbation theory

Thermal correlators in (1+1) dimensional CFTs are fixed by symmetry. Breaking of conformal

invariance is therefore necessary for a non-trivial hydrodynamic regime to emerge. Even in a

QFT obtained by deforming a UV CFT with a relevant operator as in Eq. (5), the early time

behavior should be described by the CFT in the thermal state, with small corrections accounted

for by conformal perturbation theory (CPT). For new physics to emerge at late times, CPT must

break down.

CPT was already used to obtain the approximate equation of state at high temperature in

(7). In these expressions, one expects CPT to fail when λ̄ ¦ 1. However, even when λ̄≪ 1,

in which case the equation of state is well captured by CPT, we expect CPT to break down for

2Note that we defined the Euclidean Green’s function as the second derivative of the generating functional

W . This differs from the Euclidean two point function∝
∫

Dψ TµνTρσe−SE [ψ] by thermal contact terms [7]. The

analytic continuation will therefore differ from GR by the corresponding contact terms.
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real time correlation functions at late times t ¦ τeq. We will show in this Section that the time

scale corresponding to the breakdown of CPT for real time thermal correlators is

τeq ∼
1

T

1

λ̄2
. (16)

This implies that (1+1) dimensional QFTs at high temperature thermalize as fast as causality

allows [2] (this is also true at low temperatures, up to one condition, as will be discussed in

Sec. 3.3). For asymptotically free QFTs, this timescale simply corresponds to the mean-free

time of particles with cross-section σ∝ λ2. However, Eq. (16) holds for any (1+1)d QFT that

is UV completed by a CFT. In this more general context, one can think of it as the time scale

before which holomorphic factorization, i.e. decoupling of left- and right-moving modes, still

effectively holds.

Establishing τeq ∼ 1/λ2 from diagramatics in weakly coupled relativistic theories is diffi-

cult, and involves resumming ladder diagrams [8,9]. The rest of this Section is devoted to the

similar task of establishing τeq ∼ 1/λ2 in general (1+1)d QFTs that are close to CFTs, where

‘diagramatics’ is replaced by real time CPT and the operator product expansion.3 We will focus

for concreteness on the right-moving component of the stress tensor

T−− , x± =
1p
2
(x ± t) , (17)

whose thermal two-point function is peaked at the right-moving lightcone x = t in the CFT.

As the QFT thermalizes, we expect CPT corrections to become large at late times. We will

evaluate CPT corrections to the expected sound-front x = cs t:

G
T−−T−−
R (t, x = cs t) , (18)

and find that they indeed become large for times larger than τeq = 1/(T λ̄2).

3.1 Leading CPT correction to stress tensor two-point function

Computing CPT corrections in Eq. (18) requires integrating higher-point functions of a CFT

over the thermal cylinder. This is challenging even for the leading correction, which requires

integrating the CFT four-point function 〈T−−(t, x)T−−(0, 0)OO〉 twice over the thermal cylin-

der, once for each O insertion. However, this leading correction is actually already captured

by the dilation Ward identity, Eq. (15). We will first look into this leading correction in detail,

before going on to study the general structure of CPT corrections. While evaluating the leading

correction does not allow to establish the breakdown of CPT, this calculation will already re-

veal the general pattern that arises at higher orders. It will also illustrate that CPT corrections

can become large at late times, even though the dimensionless coupling is small λ̄≪ 1.

The two-point function of T−− is related to the trace two-point function given in Eq. (15)

by a diffeomorphism Ward identity (see Eq. (A.4))

G
T−−T−−
R (ω, k) =

(ω+ k)2

4(ω− k)2
Gtrace

R (ω, k)− (ǫ + P)
ω+ k

ω− k
. (19)

Keeping only O(λ2) terms in the trace correlator (15) means that GOO

R should be evaluated in

the CFT, and
Oeqp

cλ
=

1

c
∂ 2
λ P(T,λ)|λ=0 + . . .=

π

3

α∆

1−∆T2∆−2 + . . . , (20)

3See Refs. [10–14] for other uses of CPT in a real time context.
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where we used the leading correction to the equation of state (7). So the retarded Green’s

function of the right-moving component of the stress tensor is

1

c
G

T−−T−−
R (ω, k) = − 1

48π

(ω+ k)3

ω− k
− π

3

�

1−α∆λ̄2
�

T2ω+ k

ω− k
(21)

+ λ̄2T2 (ω+ k)2

(ω− k)2

�

(2−∆)2
4T2∆−2

GOO

R,CFT(ω, k)− (2−∆)∆α∆
1−∆

π

12

�

+O(λ̄3) .

The first line contains the O(λ0) CFT correlator, whereas the O(λ2) corrections are in the

second line and last term of the first line. We will take the inverse Fourier transform of these

expressions to study corrections in real time. Note that GR is analytic in the upper half complex

ω plane, and poles should be resolved by setting ω → ω + i0+. The first line of (21) is

straightforward and becomes
�

− 1

6π
δ′′′(x − t) +

2π

3
(1−α∆λ̄2)T2δ′(x − t)

�

θ (t) . (22)

The first term is the vacuum CFT retarded Green’s function 1
c G

T−−T−−
R (t, x), and the second term

is the thermal CFT contribution (together with one simple CPT correction). We are assuming

t > 0 throughout, and are ignoring contact terms ∝ δ(t) and its derivatives. Both terms

above are concentrated on the light front. The only term in (21) whose Fourier transform has

support in the interior of the lightcone is the term involving a product of GOO

R (ω, k) and the

factor f 2(ω, k)≡ (ω+k)2

(ω−k)2
:

F(t, x)≡
∫

dωdk

(2π)2
e−iωt+ikx f 2(ω, k)GOO

R,CFT(ω, k) . (23)

There are several ways to evaluate this contribution. The simplest is to use the fact that the

Fourier transform of this product is equal to the convolution of Fourier transforms

F(t, x) =

∫

d2 x1 GOO

R,CFT(x
µ − x

µ
1
) f̂ 2(x

µ
1
) , (24)

where f̂ 2 is the Fourier transform of f 2(ω, k) =
(ω+k)2

(ω−k)2
. Here, we will follow a slightly less

direct approach to computing (23), that will already reflect the general structure of CPT cor-

rections. We will instead view the integrand as a product of three factors ( f , f , and GOO

R ), so

that its Fourier transform can be written as two convolutions:

F(t, x) =

∫

d2 x1d2 x2 f̂ (x
µ
1
)GOO

R,CFT(x
µ
2
− x

µ
1
) f̂ (xµ − x

µ
2
) , (25)

with f̂ (t, x) = δ(t)δ(x)−2∂xδ(x− t)θ (t) the inverse Fourier transform of f (ω, k) = ω+k
ω−k+i0+ .

This has the interpretation of a right-moving stress tensor T−− propagating4 from the origin to

x
µ
1

, followed by the O operator propagating from x
µ
1

to x
µ
2

, and finally a stress tensor propa-

gating from x
µ
2

to xµ. This is illustrated in Fig. 1a. While the f̂ factors are concentrated along

right-moving light-fronts, the scalar Green’s function GOO

R,CFT(t, x) =
2θ (t)θ (t2−x2) sin(π∆)

[(β/π)2 sinh t−x
β/π

sinh t+x
β/π
]∆

al-

lows to move within ∼ β away from the light-front, as illustrated in red in Fig. 1a.

The largest contribution to (25) will come from the long-range δ′(x − t) piece in both f̂

factors. We focus on this contribution here and study the remaining ones, which give sublead-

ing corrections at late times, in App. B. After integrating by parts, this contribution to (25)

is

F(t, x) = 4∂ 2
x

∫ t

0

d t1

∫ t

t1

d t2 GOO

R,CFT(t2 − t1, x − t + t2 − t1) + . . . (26)

4Indeed, notice that the thermal piece of the stress tensor two-point function in the CFT in (21) is∝ ω+k

ω−k
.
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Changing variables to tav =
1
2(t1 + t2) and t21 = t2 − t1, we see that the integrand does not

depend on the average location tav of the pair of operators O. This integral therefore simply

produces a factor of t − t21, the size of the range of the tav integral. This factor of ∼ t is

key to the breakdown of CPT at late times (large t). We will see in the next Section that

while further CPT corrections are suppressed by λ2, they come with additional factors of t:

the dimensionless number accompanying corrections is tλ̄2/β , which leads to the breakdown

of CPT at times t ¦ β/λ̄2.

Let us finish evaluating (26). Inserting the scalar Green’s function, one obtains

F(t, x) =
8 sin(π∆)

(β/π)2∆
∂ 2

x

1
�

sinh t−x
β/π

�∆

∫ t

t−x
2

d t21

t − t21
�

sinh
x−t+2t21

β/π

�∆
+ . . . (27)

This integral can be evaluated in terms of hypergeometric functions. However, it is more

illuminating to approximate it in the kinematic region of interest, the forward lightcone at

late times t ≫ β . One can then replace the upper limit of integration by t → ∞ up to

exponentially small terms ∼ e−t/β . This gives, to leading order in t ≫ β ,

F(t, x) =
Γ

�

1−∆
2

�

Γ

�

∆

2

�

sin(π∆)
p
π(β/π)2∆−1

(t + x)∂ 2
x

1
�

sinh t−x
β/π

�∆
+ . . . (28)

Returning to (21), one finds that the final result for the retarded Greens function in the interior

of the forward lightcone t > x is:

1

c
G

T−−T−−
R (t, x)= λ̄2 1

β2

(2−∆)2Γ
�

1−∆
2

�

Γ

�

∆

2

�

sin(π∆)

4
p
ππ2−2∆

�

t + x

β/π
− π/2

tan π∆2

�

∂ 2
x

1
�

sinh t−x
β/π

�∆

+O(e−t/β ) +O(λ̄3) .

(29)

We have included subleading terms (the second term in square brackets) and are now precise

about the error terms: this expression holds up to exponentially suppressed corrections at late

times t ≫ β , and up to higher orders in CPT (see App. B for details).

As anticipated, this leading CPT correction allows G
T−−T−−
R (t, x) to have support away from

the strict light-front, at a distance β ¦ t − x > 0 (Fig. 1a). Beyond this qualitative effect, one

can also compare more quantitatively this correction to the Wightman function of T−−, which

has support in the interior of the lightcone even in the CFT

〈T−−(t, x)T−−〉CFT =
c

2π2





π/β

sinh
�

π
β (t − x)

�





4

∼ 1

β4
, (30)

where in the last step we evaluated at t − x ∼ β . The correction (29) in this regime scales as

(λ̄2 t/β)× 1
β4 at late times t ≫ β . It therefore becomes comparable to the leading term when

t approaches τeq = β/λ̄
2. This shows that CPT corrections have the potential to become large

at late times, even when the coupling is small λ̄≪ 1.

3.2 General scaling of CPT corrections

We will now try to understand the general structure of CPT corrections in the hydrodynamic

regime. We are interested in λ̄≪ 1, where CPT provides a controlled expansion for the equa-

tion of state. In particular, the speed of sound cs = 1−O(λ̄2) is given by (9). In hydrodynam-

ics, one therefore expects a fairly large correlator along the sound-front x = cs t, decaying only

9
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polynomially at asymptotically late times (see Eq. (39) later). This is clearly not the behavior

of the CFT two-point function (30), nor of the leading CPT correction to it (29): while these

decay polynomially on the sound-front for β ≪ t ≪ β/λ̄2, they decay exponentially at later

times. The emergence of hydrodynamics in (1+1)d QFTs is therefore only visible at higher

order in CPT.

We will argue here that there is a proliferation of CPT corrections at times t ¦ β/λ̄2, which

allows for the emergence of hydrodynamics. The CPT correction to the correlation function

(18) at O(λn) is found by evaluating Euclidean integrals of the form

∫

x
µ
1

,...,x
µ
n∈S1

β
×R

〈T−−(x)T−−(0)O(x1) · · ·O(xn)〉β ,CFT , (31)

following by analytically continuing to real times. In general, this is very difficult and we have

not done it explicitly beyond the case n= 2 studied in the previous subsection. However, it is

fairly simple to identify the dominant channels that will contribute at late times. In order to do

this, it is more helpful to directly study CPT in Lorentzian signature. In Lorentzian two-point

functions, the dominant CPT corrections correspond to the deformation λO integrated over

the causal diamond between the two points (the shaded region in Fig. 1b). See App. B.2 for

more details on this.

To identify the dominant channels, first notice that the thermal O two-point function in

the CFT is very ‘short-lived’: it is exponentially suppressed unless x ® β and t ® β (see,

for example, equation (B.5)). Therefore we only expect there to be appreciable corrections

from configurations where scalars are inserted in spacetime pairs. Furthermore, for such a

configuration to produce an appreciable correction to a connected correlator at late times

t ≫ β near the right-moving sound-front, each pair must be located close to this front and

fuse into an operator which is long-lived along it. The only such operators (barring an extended

current algebra in the CFT) are those in the Virasoro multiplet of the identity, including the

stress tensor T−− and other chiral descendants. Indeed, the CFT two-point function of T−−
(30) shows that T−− is fairly long-lived along the sound-front x = cs t = t(1 − O(λ̄2)): it is

only polynomially decaying for t ® β/λ̄2. To produce a contribution to the correlator (18) that

is not exponentially small at late times t ≫ β/λ̄2, one can consider a O(λ2n) CPT correction,

with n ∼ tλ̄2/β , where n pairs of O’s fuse into T−− (or other Virasoro descendants of the

identity) that propagate for a fraction ∼ 1/n of the total segment. This is illustrated in Fig. 1b.

How do these higher order CPT corrections scale? Adding a pair of operators O is sup-

pressed by an additional λ̄2; however, while the two operators must be close to each other

(∆x , ∆t ® β), there is freedom in where the pair is positioned along the light front. Integrat-

ing that coordinate over the causal diamond produces a factor of t. This is exactly what was

observed when evaluating the leading correction in the previous Section, below (26): while

the t21 integral was dominated by the region t21 ® β , the integral over the average time tav

of the pair of operators O produced a factor of t. We therefore find that higher order CPT

corrections to (18) are only suppressed by the dimensionless number

λ̄2 t/β . (32)

This identifies the time scale τeq ∼ β/λ̄2 at which the CPT corrections that we have described

above blow up.

Note that a pair of scalars O could also fuse into a left-mover T++ (or descendant), which

could give a large correction deeper inside the lightcone. However, in the kinematics consid-

ered here (x ≃ cs t), these types of corrections are subleading to the ones identified in Fig. 1b.

Indeed, the “left turn” can be placed at any time t and so comes with a factor λ̄2 t/β , but

the “right turn” must fit in the causal diamond in Fig. 1 and therefore does not have such an

10
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O

OO

O

T−− T−−

(a)

O

OO

O

T−− T−−

(b)

O

OO

O

T−− T−−

(c)

Figure 2: Witten diagrams can help identify the large-c scaling of OPE channels, even

if the CFT does not have a bulk dual. The figures above show several channels that

contribute at O(λ4) to the T−− two-point function. Blue lines denote T−− (and its

global descendants), or “gravitons”. (a) Both pairs of O’s fuse into T−−, which then

fuse with the external T−− into another T−−. (b) Both pairs of O’s instead fuse into

(T−−)
2 or other double-twist operators built out of T−−. (c) Pairs of O’s fusing into

higher-twist operator such as (T−−)
3 have 1/c suppression, as is clear in the diagram

which must contain a “graviton loop”.

enhancement: it comes with a factor λ̄2× λ̄2 t/β , where the first term is from inserting the Os

and the second is from integration over the causal diamond.

Large c scaling

While an explicit computation and resummation of CPT in the hydrodynamic regime seems

out of reach, the expansion may be more tractable at large c where conformal blocks simplify

[15–17]. From the EFT perspective, the fact that hydrodynamics with c →∞ (discussed in

Sec. 4) is considerably simpler than hydrodynamics with c <∞ makes it seem plausible that

one could derive the emergence of hydrodynamics from microscopics, for any (1+1)d QFT

close to a CFT. We will make here a first step in this direction, by identifying the dominant

channels in the general CPT corrections depicted in Fig. 1.

The contribution of the identity multiplet to the OPE of two scalars takes the schematic

form

OROR ∼ 1+
1

c
T−− +

1

c2
(T−−)

2 +
1

c3
(T−−)

3 + . . . (33)

We are focusing on the holomorphic factors of O = OLOR, since the left-moving or antiholo-

morphic ones will simply fuse into the identity in the leading contributions depicted in Fig. 1b.

Contributions of other Virasoro multiplets to the OPE lead to CPT corrections that are further

suppressed, since these operators would not have zero twist. The stress tensor has a similar

OPE, up to an overall factor of c, and with one exception:

T−−T−− ∼ c

�

1+
1

c
T−− +

1

c
(T−−)

2 +
1

c3
(T−−)

3 + . . .

�

. (34)

Notice the enhancement of the (T−−)
2 term, which enters with coefficient 1 in the T−−T−−

OPE. These OPEs allow us to identify which channels give the leading in c contributions to

the correlators (31) that provide the CPT corrections. By analyzing different OPE contractions

of the operators in (31), and using the large-c scalings in (33) and (34), one sees that the

leading contributions at large−c come from those whose Witten diagrams contain no loops.

An example of this at O(λ4) is shown in Fig. 2. As a consequence, one finds that at leading

order in c, pairs of O must fuse into T−− or a double-twist (or double-trace) operator built out

11
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of T−−, but not any higher-twist operator. The dominant channels at large c therefore seem to

consist entirely in products of stress tensor two-point functions.

Let us now compare this to the expected hydrodynamic behavior, obtained in Sec. 4. For

ω− k = O(λ2) and k≪ T , we will find (using Eqs. (52) and (57))

G
T−−T−−
R (ω, k) + sT

ω+ k

ω− k
= c

k2

ω− k

λ2(2−∆)2 g(k, k)− 1
12π(ω

2 − k2) + . . .

ω− k+λ2 (2−∆)2
(π/3)T2 g(k, k) + . . .

, (35)

where the . . . in the numerator and denominator are both O(λ4), and

g(ω, k)≡ GOO

R (ω, k)− ∆

2−∆GOO

R (0,0) .

Further expanding this expression in λ2 agrees with the leading order CPT correction found

in Eq. (21). The higher order terms in λ appear as a geometric series of scalar propagators

near the lightcone g(k, k), times T−− propagators ∼ 1
ω−k . This structure is similar to the one

sketched in Fig. 1b, especially at large c where only T−− propagators enter. The higher order

Witten diagrams (Fig. 2) that form a similar geometric series are the ones that are expected to

have a enhancement factor∝ t for every O
2 insertion. Resumming these requires accounting

for the exchanged double-twist operators using large-c conformal blocks – we leave this de-

tailed investigation for future work. Another aspect of this discussion that should be improved

is that we have used the OPE outside of its strict radius of convergence, in particular when

fusing chiral operators along lightrays. It would be interesting to justify this step.

3.3 Low temperatures

The equilibrium and out-of-equilibrium dynamics of QFTs at low temperature can also be de-

scribed by CPT. We will assume that the IR is not gapped, otherwise the thermodynamics is

Boltzmann suppressed and thermalization takes an exponentially long time. The IR is then

described by a CFT, with an infinite series of irrelevant corrections

S = SCFTIR
+
∑

i

p
cλi

∫

d2 x Oi +
1

c
λT T̄

∫

d2 x T T̄ . (36)

This can also describe 1+1d lattice systems near a quantum critical point or phase.5 A notable

application in this context is the thermalization of non-linear Luttinger liquids [18].

Among the irrelevant deformations Oi , we have singled out the operator T T̄ ≡ : T−−T++ :

which can play an important role in the low temperature dynamics of QFTs [2]. The reason is

that it is the lightest scalar global primary that is a Virasoro descendant of the identity, so that

it can acquire a thermal expectation value 〈T T̄ 〉 = (πc/(6β2))2. It then already contributes

at linear order in CPT∝ λT T̄ , giving a correction to thermodynamics that is more important

than that of operators of dimension ∆i > 3. The dynamics is then qualitatively different if the

dimension of the lightest scalar ∆ ≡ mini∆i is greater or lesser than 3. We treat both cases

separately below.

First case: 2 ≤∆ ≤ 3

When the lightest irrelevant operator has dimension less than 3, it controls the leading correc-

tion to the equation of state and dynamics of the theory at low temperatures λ̄ ≡ λT∆−2≪ 1.

The analysis so far then essentially goes through without changes. Of course, at very

early times correlators are not controlled by the IR CFT, but are sensitive to the UV: these

effects can be ignored if t2 − x2 ≫ λ2/(∆−2). Away from the lightcone, this requires

5To fully capture situations where Lorentz invariance is only emergent, one should allow for irrelevant operators

in Eq. (36) with any Lorentz spin.

12



SciPost Phys. 18, 177 (2025)

t ≫ λ1/(∆−2) = βλ̄1/(∆−2); however along the sound-front x = cs t = t(1−O(λ̄2)), this leads

to the stronger condition t ≫ βλ̄ 3−∆
∆−2 . The irrelevant corrections to the CFT are not irrelevant

from the perspective of the finite temperature dynamics: they again lead to a breakdown of

CPT at later times t ¦ β/λ̄2 as described in Sec. 3.2, allowing for the QFT to thermalize and

hydrodynamics to emerge. These regimes are summarized as follows:

t/β

λ̄
3−∆
∆−2 1 1/λ̄2

UV IR CFT Hydrodynamics

Figure 3: Regimes of validity for effective theories when 2≤∆ ≤ 3 .

The second and third regimes are captured by our approaches.

Second case: 3 <∆

When the least irrelevant correction to the IR CFT has dimension∆ > 3, the leading correction

to the equation of state is due to the T T̄ operator [2]. The speed of sound at low temperatures

is given by [19]

cs = 1− π
3

λT T̄

β2
+ . . . (37)

Subluminality of sound then constrains the coefficient of the T T̄ operator to be positiveλT T̄>0

(this constraint of course does not apply to lattice UV completions).6

The dynamics in this situation is also more subtle. If the irrelevant corrections beyond

T T̄ are fine-tuned to preserve integrability (the “TTbar” deformation) [19, 21–24], regular

hydrodynamics does not emerge. Instead the dynamics is expected to be described by gen-

eralized hydrodynamics (GHD) [25–28], the hydrodynamics of systems with a macroscopic

number of conserved quantities (see Ref. [29] for a review on GHD). Now even if the higher

irrelevant corrections are not fine-tuned to preserve integrability, GHD will describe the dy-

namics in an intermediate time window before the system ultimately thermalizes and regular

hydrodynamics emerges. Let us estimate the time scales where these various regimes describe

dynamical correlators such as (18) along the sound-front x = cs t, with now cs given by (37).

First, as before the expansion in irrelevant operators (36) is only controlled at times satis-

fying t2 − x2 ≫ λT T̄ . Along the sound-front, this requires t ≫ β . The correlator is then

described by the (thermal) IR CFT (30), and has width ∼ β around the lightcone x = t. The

TTbar-deformed dynamical correlators have to our knowledge not been computed yet, but

we expect them to predict instead a correlator with width ∼ β around the corrected speed of

sound (37); this differs significantly from the IR CFT prediction along the sound-front at times

t ¦ 1/(λT T̄ T3). Finally, integrability is broken by further irrelevant operators which ultimately

allows for hydrodynamics to emerge at times t ¦ 1/(λ2T3× T2(∆−3)) (this is indeed the latest

time scale if ∆ > 3 – recall that we are assuming T is smaller than all scales entering in the

action (36)). These regimes are summarized below:

t/β

1 1/(λT T̄ T2) 1/λ̄2

UV IR CFT GHD Hydrodynamics

Figure 4: Regimes of validity for effective theories when 3<∆ .

6See also Ref. [20] for CPT calculations similar to those done in Sec. 3.1, but with O = T T̄ .
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4 Hydrodynamics at large central charge

We have seen how the onset of thermalization is reflected in the breakdown of the CPT that

captures the early time dynamics of the system. We are now going to study this phenomenon

from the opposite, late time, perspective: by examining how the emergent theory of hydrody-

namics breaks down at early times as the effects of thermal CFT excitations become important.

Hydrodynamics in (1+1) dimensions is typically qualitatively different than in higher di-

mensions as interactions between hydrodynamic modes are more relevant than conventional

viscous effects. From now on we will consider the limit of large-c where these interactions

are suppressed and the excitations that are relevant at late times are the viscous sound waves

familiar from higher dimensions.

Hydrodynamics is an effective theory that – in principle – completely determines the form

of the retarded two-point functions of the stress tensor at late times and large distances in terms

of transport coefficients. Transport coefficients are the analogue of the Wilson coefficients of

an effective field theory. Their values are an input to the theory: they must be determined by

some other means and typically depend on details of the specific system.

Specifically, the retarded two-point functions of the stress tensor at late times are peaked

around the trajectories of the sound waves x(t) = ±cs t, with width

|x | − cs t ≈
p

Dt , D =
ζ

sT
, (38)

where the speed of sound cs, the viscosity ζ and the entropy density s are examples of transport

coefficients. Along these trajectories at late times, we will find

G t x t x
R (t, x)∝

exp
�

− (|x |−cs t)2

2Dt

�

t

 

1+

�

1+
c2
s τΠ

D

�

√

√

√
D

c2
s t
+ . . .

!

, (39)

where τΠ – the finite lifetime of pressure perturbations – is another transport coefficient, and

we have suppressed unimportant O(1) coefficients for simplicity.

The result (39) arises from including only the transport coefficients that are most relevant

at late times, but there are infinitely many coefficients providing early-time corrections to this.

At a sufficiently early time, we expect that the expansion in (39) will become uncontrolled.

We identify this timescale as the local equilibration time τeq, beyond which the system has

thermalized and hydrodynamics has emerged. The value of τeq can vary widely between

different systems since it is determined by the transport coefficients.

It is worth remarking further on our choice to defineτeq in this way. Firstly, as advocated for

in [30], thisτeq is a property of the hydrodynamic theory itself, and can be defined independent

of any microscopic details. This is in contrast to the τeq computed in Sec. 3, which was defined

by the late-time breakdown of a specific UV theory. It is the former that is more universal. In

the theories we consider we will see that these two timescales agree, signifying that in these

cases the breakdown of CPT coincides with the emergence of hydrodynamics (i.e. there is no

intermediate regime governed by a different effective theory – one exception is discussed in

Sec. 3.3). See Ref. [2] for an argument that hydrodynamics emerges at τeq ∼ λ̄2/T even

outside the large-c limit.7

Secondly, in defining τeq we are singling out corrections along a specific trajectory – the

sound front. One can argue that this is the only sensible definition for τeq (in the absence of

additional hydrodynamic modes): the stress tensor two-point function along other rays x = vt,

7There are of course other possible definitions of thermalization. For example, the weaker condition of re-

laxation of correlation functions to their equilibrium value is satisfied by 2d CFTs, including free and integrable

models. Our definition distinguishes integrable, weakly coupled, and strongly coupled systems.
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v 6= cs is exponentially suppressed at late times, and highly sensitive to higher gradient terms

in hydrodynamics. It is interesting that the timescale τeq thus defined, i.e. the time scale at

which the leading corrections in (39) along the sound front become large, is not related in a

straightforward way to the transport coefficient τΠ.

In this Section we are going to show that there is a surprisingly dramatic simplification near

large-c conformal fixed points in (1+1) dimensions. Firstly, we will give a simple classification

of all transport coefficients that appear in the stress tensor two-point functions. We will then

argue that at small λ̄ the value of every such transport coefficient is universal – i.e. determined

only by the temperature and the values of c and∆ – and propose a simple generating function

from which they can all be easily computed. Armed with this, we will study the breakdown

of hydrodynamics at early times by examining momentum space Green’s functions. We will

establish the local equilibration time τeq ∼ λ̄2/T , and identify that the breakdown is due to

the importance of thermal CFT excitations at sufficiently early times.

4.1 Hydrodynamics to all orders

In a system that has thermalized, the excitations that are relevant at late times are those that

transport the densities of conserved charges and so are protected from decay by symmetries.

In our case, these densities are the energy and momentum densities that obey the local con-

servation law

∇µ〈Tµν〉= 0 , (40)

where we allow the spacetime metric to be non-trivial for now. Hydrodynamics is the effective

theory governing the dynamics of these densities – see [31] for a pedagogical introduction.

The assumption of local equilibration means that the expectation values of all other oper-

ators can be expressed in a derivative expansion in the conserved densities and the spacetime

metric. To do this while making Lorentz invariance manifest, it is convenient to reparame-

terize the stress tensor in terms of auxiliary hydrodynamic variables: a local energy density

ε(x) and a local velocity uµ(x) where uµuµ = −1. More precisely, we use the Landau frame

condition

uνTµν = −εuµ , (41)

and then express the stress tensor in terms of the hydrodynamic variables via the constitutive

relation

Tµν = εuµuν + P∆µν +Πµν , ∆
µν = gµν + uµuν . (42)

The first two terms in Tµν in Eq. (42) comprise ideal hydrodynamics, and P – the pressure –

is a function of ε that varies between systems and must be input accordingly. The remaining

term Πµν is determined order-by-order in an expansion of derivatives of the hydrodynamic

variables and the metric. Every term with the appropriate symmetries is included in this ex-

pansion, multiplied by its own transport coefficient (a function of the energy density ε that

varies between systems).

Once Πµν has been specified, the local conservation equations (40) and the constitutive

relations (42) are a closed set of equations that can be solved for the stress tensor on a given

spacetime. In practice, Πµν is typically only calculated to a low order in the derivative ex-

pansion as the number of terms proliferates rapidly [32–35]. We are going to show that in

(1+1) dimensions, and restricting to small amplitude perturbations around the static equilib-

rium state, it is possible to compute the constitutive relation to all orders in derivatives. The

restriction to small amplitudes will allow us to compute all two-point functions of the stress

tensor, but not higher-point functions.

The first simplifications are due to the dimensionality. Πµν is a symmetric tensor satisfying

uνΠ
µν = 0. In (1+1) dimensions such a tensor has only a single independent component.
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Therefore the constitutive relation is specified by a single scalar function

Π
µν =∆µνΠ , (43)

where Π(∇µ, gµν, uµ,ε, Rµνρσ) and Rµνρσ is the Riemann tensor. In (1+1) dimensions the

only independent component of the Riemann tensor is the Ricci scalar R and so this simplifies

to Π(∇µ, gµν, uµ,ε,R).

The second simplifications are achieved by a change of hydrodynamic variable from local

energy density ε(x) to log(s(x)), the logarithm of the local entropy density. In these variables,

the conservation equations are

D log(s) = −∇⊥ · u+ . . . , Duµ = −c2
s∇

µ

⊥ log(s) + . . . , (44)

where we have decomposed ∇µ =∇µ⊥ − uµD into the longitudinal and transverse derivatives

D ≡ uµ∇µ , ∇µ⊥ ≡∆
µν∇ν , (45)

and where . . . denote higher-derivative corrections to ideal hydrodynamics [33]. The equa-

tions (44) can be used to eliminate longitudinal derivatives of log(s) and uµ at any order in

the derivative expansion [34]. Therefore we only have to consider terms constructed from the

transverse derivatives of these hydrodynamic variables.

With these simplifications, the remaining task is to classify all scalars that can be con-

structed from (gµν, uµ;∇µ⊥, uµ, log(s);∇µ,R). The third simplification comes from considering

only small amplitude perturbations around an equilibrium state: a metric of the form

gµν(t, x) = ηµν +δgµν(t, x) , (46)

and hydrodynamic fields of the form

ε(t, x) = ǫ +δε(t, x) , uµ(t, x) = δ
µ
t +δuµ(t, x) , (47)

where ǫ is the uniform energy density of the thermal state and sT = ε + P. The number of

allowed scalars is greatly reduced by restricting to only those that are non-zero at linear order

in the perturbation amplitude.

We can now classify the allowed terms inΠ. At any order n≥ 1 in the derivative expansion,

we can construct the allowed scalars by left-multiplying the building blocks∇⊥µ1
· · ·∇⊥µn

log(s),

∇⊥µ1
· · ·∇⊥µn

uν, and ∇µ1
· · ·∇µn−2

R by appropriate factors of gµν and uµ and contracting the

indices. This is because terms with extra factors of the hydrodynamic fields or Ricci scalar

inserted between any derivatives will differ from these only by terms that are products of

derivatives and so are non-linear in the perturbation amplitude. Furthermore, in each building

block the derivatives can be commuted at the expense of introducing only non-linear terms

(this is proven in App. C).

We consider first the log(s) building block. Since uµ∇µ⊥ = 0 identically, non-zero scalars

can only be constructed by contracting all indices of the transverse derivatives with metric

tensors. This is only possible when n is even. And since the transverse derivative operators

commute to linear order in perturbation amplitude, there is only one such scalar: ∇n
⊥ log(s).

Now we turn to the uν building block. Again, since uµ∇µ⊥ = 0 we must contract all indices

of the transverse derivatives with metric tensors. Since the transverse derivatives commute

to linear order in perturbation amplitude, for odd n the only possible independent scalar is

∇n−1
⊥ (∇⊥ · u) and for even n the only one is uν∇n

⊥uν. In fact, as uν∇⊥µuν = 0, this latter

possibility is non-linear in the perturbation amplitude and so can be discarded.

Finally we turn to the Ricci scalar building block. In general we can contract this with m

copies of the metric tensor and n−2−2m copies of the velocity. This produces terms that have
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the structure of m copies of∇2 and n−2−2m copies of D acting on R. Since R is already linear

in the perturbation amplitude, we can replace∇2 and D by the partial derivatives ∂ 2
x −∂ 2

t and

∂t at the cost of only non-linear corrections. As a consequence, the independent scalars are

∇2m
⊥ Dn−2−2m

R for all non-negative integer m≤ (n− 2)/2.

We have now obtained the set of all independent scalars that can appear in Π. Before

proceeding, it is convenient to reorganize the terms that appear at even n. Using the hydro-

dynamic Eq. (44), we show in App. C that

∇n
⊥ log(s) = −c−2

s ∇n−2
⊥ D (∇⊥ · u) + c−2

s ∇n−2
⊥ R+ . . . , (48)

where the . . . denote higher derivative or non-linear terms. Therefore for even n we can replace

∇n
⊥ log(s) by∇n−2

⊥ D (∇⊥ · u) in our set of independent scalars, since we already include∇n−2
⊥ R

in this set.

We now write the constitutive relation for Π to all orders in the derivative expansion as the

sum of all independent scalars outlined above, each multiplied by an independent transport

coefficient. This organizes neatly into two independent terms

Π = (ǫ + P)Ω̂(D,∇2
⊥) (∇⊥ · u) +

c

24π
κ̂(D,∇2

⊥)R , (49)

where Ω̂ and κ̂ are the differential operators

Ω̂(D,∇2
⊥) = Ω1 +Ω2D+Ω3∇2

⊥ +Ω4∇2
⊥D+Ω5∇4

⊥ +Ω6∇4
⊥D+ . . . ,

κ̂(D,∇2
⊥) = κ2,0 + κ3,0D+ κ4,0D2 + κ4,1∇2

⊥ + κ5,0D3 + κ5,1∇2
⊥D+ . . .

(50)

Ωn and κn,m are transport coefficients, with n labelling the corresponding order of the deriva-

tive expansion and m labelling the number of ∇2
⊥ operators. To linear order in the small

amplitude expansion, we can replace the derivatives D → ∂t and ∇2
⊥ → ∂ 2

x and take each

transport coefficient to be a function of the equilibrium temperature. The prefactors of the

differential operators in the constitutive relation (49) are simply a convenient choice of nor-

malization where c will later be the CFT central charge. Our transport coefficients are related

to the viscosity ζ and relaxation time τΠ in (39) and [33] by

Ω1 = −
ζ

ǫ + P
, Ω2 =

ζτΠ

ǫ + P
. (51)

The result (49) for Π completely specifies the stress tensor and taking derivatives with

respect to δgµν gives the stress tensor two-point functions. This is most easily done in mo-

mentum space where, for example, the hydrodynamic two-point function of the trace of the

stress tensor is

Gtrace
R (ω, k) = (ω2 − k2)

(ǫ + P)(1− c2
s − iωΩ(ω, k2))− c

12π(ω
2 − k2)κ(ω, k2)

ω2 − c2
s k2 − iωk2Ω(ω, k2)

, (52)

where Ω(ω, k2) = Ω̂(−iω,−k2) and κ(ω, k2) = κ̂(−iω,−k2). As explained in Sec. 2, in (1+1)

dimensions all other stress tensor two-point functions can be reconstructed from this using

the Ward identity (40). The dispersion relations of the hydrodynamic excitations ωhydro(k)

are given by the poles of Eq. (52): these are independent of the κn,m transport coefficients.

4.2 Universal generating function for transport coefficients

The hydrodynamic theory described above applies in general in (1+1) dimensions, provided

hydrodynamic fluctuations can be neglected. We are now going to specialize to systems with

approximate conformal symmetry, i.e. those described by the action (5) with λ̄≪ 1.

17



SciPost Phys. 18, 177 (2025)

Firstly, when the theory is exactly conformal, P(ε) = ε and a comparison of the constitutive

relation (42) with the trace Ward identity (11) gives the exact result Π = (c/24π)R. We can

therefore think of a CFT stress tensor as formally governed by a theory of hydrodynamics with

c2
s = 1, κ2,0 = 1 and all other transport coefficients vanishing. This is formal in the sense that

the Green’s function is in this case entirely fixed by symmetries, which are one of the inputs of

hydrodynamics. The other hydrodynamic input, the assumption that all operators at late time

can be expressed in terms of the two conserved densities (or ε and uµ), is vacuous for (1+1)d

CFTs.

When the conformal symmetry is weakly broken λ̄≪ 1, we expect a non-trivial hydrody-

namic regime to emerge. We will argue below that in this limit, all hydrodynamic transport

parameters can be derived. This will rely on one key assumption, that we describe and motivate

below, but were not able to prove.

Our starting point is the momentum space relation (15) between the two-point function of

the trace and that of the scalar operator that breaks conformal symmetry. In the hydrodynamic

limit, the former can be expressed in terms of transport coefficients as

Gtrace
R (ω, k) +

c

12π
(ω2 − k2) =

(ǫ + P + c
12πk2)(1− c2

s − iωΩ)− c
12π(ω

2 − k2) (κ− 1)

1+ k2

ω2−k2 (1− c2
s − iωΩ)

, (53)

where, for conciseness, we have suppressed the arguments of Ω(ω, k2) and κ(ω, k2). Since

hydrodynamics is an effective theory, this expression should be understood to be valid in an

expansion at small ω, k. We subsequently expand this as λ̄ → 0 and keep only the leading

term to obtain

Gtrace
R (ω, k)+

c

12π
(ω2−k2)→ c

12π

�

(4π2T2 + k2)(1− c2
s − iωΩ)− (ω2 − k2) (κ− 1)

�

, (54)

where on the right hand side we mean the leading small λ̄2 contribution to each transport

coefficient. More precisely, this latter expansion corresponds to the limit kλ̄2/(ω ± k) → 0,

i.e. far away from the hydrodynamic poles. In real space this schematically corresponds to the

part of the hydrodynamic regime that is far from both lightcones.

We are now going to evaluate this quantity in the opposite order of limits. Expanding

λ→ 0 in Eq. (15) yields

Gtrace
R (ω, k) +

c

12π
(ω2 − k2)→ cλ2(2−∆)2

�

GOO

R,CFT(ω, k)− ∆

(2−∆)G
OO

R,CFT(0,0)

�

, (55)

at leading order, where we have assumed that the two-point function of O approaches the

thermal CFT result [36]

GOO

R,CFT(ω, k) = π (2πT )2(∆−1) Γ (1−∆)
Γ (∆)

Γ

�

∆

2 −
i(ω+k)

4πT

�

Γ

�

∆

2 −
i(ω−k)

4πT

�

Γ

�

1− ∆2 −
i(ω+k)

4πT

�

Γ

�

1− ∆2 −
i(ω−k)

4πT

� , (56)

in this limit. The right hand side of (55) is then expanded in the hydrodynamic limit of small

ω and k where it gives a series compatible with (54).

The key step is now to assume that the two different orders of limits we have taken com-

mute, giving

(4π2T2 + k2)(1− c2
s − iωΩ(ω, k2))− (ω2 − k2)

�

κ(ω, k2)− 1
�

= 12πλ2(2−∆)2
�

GOO

R,CFT(ω, k)− ∆

(2−∆)G
OO

R,CFT(0, 0)

�

. (57)
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The right hand side is the generating function – it should be understood as an expansion in

ω and k, and gives expressions for all transport coefficients, i.e. Ωn and κn,m identified in

Eq. (50), to leading order in λ̄≪ 1.8

The assumption that there is a limit in which the hydrodynamic and conformal expres-

sions for the momentum space two-point function agree seems to contradict our conclusion

in Sec. 3 that even a small breaking of conformal symmetry is important at late times. We

reconcile this apparent contradiction by recalling that the large late time corrections of Sec. 3

are found close to the soundcone, while the regime in which we equate the hydrodynamic

and conformal expressions above corresponds schematically to late times but parametrically

far from the lightcone (and soundcone).

In other words, we are assuming that far from the lightcone the scalar two-point function

in the weakly deformed theory looks like that of a CFT. We use this to extract expressions for

the transport coefficients at small λ̄. Note that it is important to properly keep track of analytic

terms in momentum space (contact terms) to make this identification in (57). The transport

parameters can then be input to the theory of hydrodynamics to tell us what is happening

everywhere in the hydrodynamic regime, including near the lightcone.

Explicitly, the generating function gives the following correction to the conformal value for

the speed of sound

1− cs = (2−∆)α∆λ̄2 + . . . , (58)

in agreement with (9). Expressing the first order transport coefficient Ω1 as a viscosity ζ using

(51), the generating function gives

ζ =
πc

6
T
(2−∆)2
(1−∆) α∆ cot

�

π∆

2

�

λ̄2 + . . . (59)

This is never negative provided ∆ ≥ 0. It is interesting to consider the following ratio of

transport parameters, which has a finite limit as λ→ 0

ζ

s

1

1− c2
s

=
1

4

(2−∆)
(1−∆) cot

�

π∆

2

�

+O(λ̄2) . (60)

This ratio of transport parameters has been discussed in holographic models in d > 1 spatial

dimensions (with the replacements 1− c2
s →

1
d − c2

s and s→ 4πη with η the shear viscosity),

where it was first conjectured to be bounded below by 1
2π before violations were found [37–

41]. Our results, which do not rely on a holographic construction, show that this ratio is

bounded from below in the high temperature limit of any (1+1)d QFT that is UV completed

by a CFT: in this case, 0 < ∆ ≤ 2 and this ratio is bounded from below by its value at ∆ = 2,

namely 1
2π . Instead, at low temperatures, Eq. (60) implies that this ratio is bounded from

above by this same value,
ζ
s

1
1−c2

s
≤ 1

2π . Indeed, if 2 ≤ ∆ < 3, then (60) can take on any value

between 1
2π and 0. For ∆ > 3, we still expect Eq. (59) to be valid as we do not expect the

TTbar deformation to generate viscous effects at large c.9 With this assumption, for∆ > 3 the

ratio on the left hand side of Eq. (60) vanishes as T2(∆−3) at low temperatures, because 1− c2
s

is parametrically larger than ζ, see Eq. (37). Fig. 5 shows a sketch of the qualitative behavior

of the bulk viscosity at high and low temperatures.

8Although there are two undetermined functions of (ω, k) appearing on the left hand side, their Taylor expan-

sions are not those of generic functions – recall equation (50). This is why all transport coefficients can be fixed

by the Taylor expansion of the one function on the right hand side.
9In Ref. [26] the viscosity of a TTbar-deformed CFT was computed using similar methods to here. Upon nor-

malizing operators such that the large-c limit exists, it was found to vanish at O(c).
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T

ζ

s

1

1− c2
s

0 T →∞

1

2π

Figure 5: Sketch of the possible behavior of the bulk viscosity in a (1+1)d QFT.

The leading CPT calculation shows that the ratio
ζ
s

1
1−c2

s
is larger than 1

2π at high

temperatures, and smaller than 1
2π at low temperatures. This ratio is not necessarily

monotonic in T ; see Fig. 8 for examples in holographic theories.

The generating function also gives higher order transport coefficients. For example, the

second order transport coefficients are

1− κ2,0 =
(2−∆)2
2(1−∆)α∆

�

ψ(1)
�

∆

2

�

− π
2

2
cosec2

�

π∆

2

�

+
4(1−∆)
(2−∆)

�

λ̄2 + . . . ,

τΠ =
tan

�

π∆
2

�

2π2

�

ψ(1)
�

∆

2

�

− π
2

2
+

2(1−∆)
(2−∆)

�

1

T
+ . . . ,

(61)

where ψ(1)(z) is the polygamma function of order 1, and we have expressed the second order

transport coefficient Ω2 in terms of the timescale τΠ using (51). It is straightforward in princi-

ple to continue this procedure to higher orders, but the explicit expressions are not particularly

illuminating. One interesting note is that all of these transport coefficients are continuous as

∆→ 1. So although the trace Ward identity is modified for this specific case, it nevertheless

seems likely that a more careful calculation would yield the corresponding limit of the answers

above.

Our proposal for the simple generating function for transport coefficients (57) is really

quite remarkable. Even under helpful conditions (e.g. weak coupling or large N) the compu-

tation of just a single transport coefficient of a QFT is typically difficult and the result sensitive

to details of the specific QFT. In contrast, our proposal gives expressions for every transport

coefficient that are universal: they depend only on c, T and ∆, and are independent of any

other details of the theory.

While our proposal is self-consistent, it is obviously important to test it further. We expect

the small k and λ limits to commute in equilibrium correlation functions due to the finite

thermal mass. However, outside of equilibrium it is less clear and so it would be valuable

to compare its predictions to explicit computations in specific QFTs close to a fixed point. In

App. D we take a first step in this direction by showing that the viscosity of large-c theories with

a holographic dual are indeed given by the expression (59). It is clear that our proposal will

not be valid outside the large-c limit. At finite c, hydrodynamic interactions generate terms in

the trace two-point function that are non-analytic in ω and k and so the expressions on either

side of the equality in (57) are no longer compatible.10

10For example, the low frequency bulk viscosity of a (1+1)d QFT is ζ(ω)/s∝
�

λ̄8T/(c2ω)
�1/3
[2], showing that

the limits ω→ 0 and λ→ 0 do not commute.
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4.3 Resummed dispersion relations

At large c, the regime of validity of hydrodynamics can be neatly parameterized by the radius

of convergence of the dispersion relations of the hydrodynamic excitations [42–45]. We can

compute this to leading order in λ̄ using the generating function.

The excitations of hydrodynamics are sound waves, with dispersion relations given by the

poles of Eq. (52). It is convenient to represent this as

ω±(k) = ±k (1+ Γ±(k)) , (62)

such that Γ±(k) gives the deviation from the dispersion relations of the thermal CFT. We are

interested in Γ±(k) at leading order in λ̄2, where it is related to the hydrodynamic transport

coefficients by

Γ±(k) = −
1

2

�

1− c2
s ∓ ikΩ(±k, k2)

�

+O(λ3) . (63)

This particular combination of transport coefficients can be isolated in the generating function

(57) by evaluating it at ω = ±k. Therefore, at leading order in λ̄2, the correction to the

dispersion relation is controlled by the thermal two-point function of the scalar operator in

the CFT

Γ±(k) = −
6πλ2

(2πT )2 + k2
(2−∆)2

�

GOO

R,CFT(±k, k)− ∆

(2−∆)G
OO

R,CFT(0,0)

�

+O(λ3) . (64)

The relaxation of the modes is captured by their imaginary part. This is governed by the

thermal spectral density of O in the CFT at ω = ±k:

Im(ω±(k)) = ∓
3(2−∆)2

2π

k

1+
�

k
2πT

�2
ImGOO

R,c (±k, k)

�

λ

T

�2

+O(λ3) . (65)

Equation (65) looks temptingly similar to relaxation rates computed in other systems using the

memory function formalism [46,47] and it would be interesting to see if it could be obtained

more directly using this approach.

Using the expression (56) for the thermal CFT two-point function of a scalar operator gives

the explicit dispersion relation

Γ±(k) = −λ̄2∆(2−∆)
2(1−∆)

α∆

1+
�

k
2πT

�2

�

Γ

�

2− ∆2
�

Γ

�

∆

2 ∓
ik

2πT

�

Γ

�

1+ ∆2

�

Γ

�

1− ∆2 ∓
ik

2πT

� − 1

�

. (66)

As always in hydrodynamics, the dispersion relation (66) should be understood as a series ex-

pansion in k. However, the expression written on the right hand side of (66) resums this series

and so crisply packages information about its convergence. The radius of convergence kmax of

the hydrodynamic dispersion relation is determined by the pole of the resummed series that is

closest to the origin. For ∆ ≥ 0 this is always the pole of the gamma function at k = ∓iπT∆,

as the apparent poles at k = ±i2πT due to the prefactor are cancelled non-trivially by the

terms in brackets. Therefore at small λ̄ the radii of convergence of the hydrodynamic disper-

sion relations are kmax = ∆πT . For wavenumbers beyond, the hydrodynamic theory is not

valid. Just like the transport coefficients, the radius of convergence at small λ̄ is universal: it

depends only on ∆ and T .
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4.4 Breakdown of hydrodynamics

Hydrodynamics is an effective theory whose only excitations are those protected from decay by

symmetries. Physically, we expect it to break down at scales where other excitations become

important. This is precisely what the radius of convergence is indicating. In this Section

we are going to examine in more detail this momentum space picture of the breakdown of

hydrodynamics, and how it is consistent with the equilibration timescale τeq ∼ 1/(λ̄2T ).

At first glance, the pole in the hydrodynamic dispersion relation (66) is problematic as

such poles are incompatible with causality [45, 48]. More careful thought reveals that as

the wavenumber becomes parametrically close to the pole location k = ∓iπT∆+O(λ̄2), the

O(λ̄2) correction to the dispersion relation (66) is parametrically enhanced to O(λ̄0), and

thus perturbation theory in λ̄ is failing. In other words, the pole is an artifact of truncating

the dispersion relation at O(λ̄2). Our expectation is that the apparent pole in the dispersion

relation at k = ∓iπT∆ is in fact resolved into a branch point at k = ∓iπT∆+O(λ̄2). Therefore

the radius of convergence of the hydrodynamic dispersion relation is

kmax =∆πT +O(λ̄2) , (67)

where the numerical value of the correction is beyond the scope of our calculation. Branch

points are compatible with causality and in App. E we provide a more complete analysis of the

causality of our dispersion relations.

The existence of a branch point singularity in the dispersion relations is natural upon con-

sidering the non-hydrodynamic excitations that become important at short distances. The CFT

contains in particular two decoupled types of excitations that are relevant here: the stress ten-

sor two-point function has poles at ω = ±k and the scalar two-point function has poles at

ω = ±k − i2πT (∆+ 2n) with n = 0,1, 2,3, . . . When λ 6= 0 there will be corrections to these

dispersion relations, with the former becoming the hydrodynamic excitations in the appropri-

ate limit. Much more importantly, when λ 6= 0 the excitations are no longer decoupled: the

Ward identity (15) ensures that both two-point functions share a common set of poles. As-

suming that for λ̄ ≪ 1 the corrections to the dispersion relations in the hydrodynamic limit

are small, we will argue that it is the coupling of the poles that leads to the breakdown of

hydrodynamics.

For concreteness we consider the right-moving sound wave, although an analogous ar-

gument applies to the left-moving one. As imaginary k is increased towards k → −iπT∆,

the hydrodynamic pole moves from the origin of the complex ω plane, directly down the

imaginary axis towards ω → −iπT∆. Here we are assuming that λ̄ ≪ 1 and that we can

neglect the corrections to the dispersion relations above in this limit. Under the same condi-

tions, the right-moving thermal scalar poles move directly down the complex ω plane from

−i2πT (∆+ 2n) to −i2πT (3∆
2 + 2n). In contrast, the left-moving thermal scalar poles move

directly up in the complexω plane from −i2πT (∆+2n) to −i2πT (∆2 +2n). A sketch of this is

shown in Fig. 6. The key point is that the right-moving hydrodynamic pole becomes paramet-

rically close to the n= 0, left-moving thermal CFT pole at precisely the wavenumber where we

anticipate hydrodynamics breaks down. The natural conclusion is that these poles collide for

k = −iπT∆+O(λ̄2), reflected in a branch point in the hydrodynamic dispersion relation. This

is qualitatively similar to the momentum space picture of the breakdown of hydrodynamics in

strongly coupled, large N theories in higher dimensions (for example, see [42–44,49–51]).11

11In corresponding weakly coupled theories, kinetic theory calculations (in a relaxation time approximation)

indicate that hydrodynamic breakdown is more intricate than simply a pole collision [52–54]. However this intri-

cacy is due to non-hydrodynamic branch points arising from phase space integrals [53], which will not be present

in a (1+1)d CFT. In the (1+1) dimensional large-N lattice model studied in [55], a pole collision leads to the

breakdown of hydrodynamics even at weak coupling.
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k− i2πT∆

Figure 6: Collision in the complex frequency ω plane of the right-moving hydrody-

namic pole (blue) with the left-moving scalar quasi-normal mode (red) as k evolves

from a small real number to −iπT∆.

The collision of poles has a simple physical interpretation: at short enough scales the

thermal scalar excitations of the CFT become important, and hydrodynamics breaks down as

it does not account for these. It had to be the case that it was a scalar CFT excitation responsible

for the breakdown of hydrodynamics: from Eq. (64) the dispersion relation (and so its radius

of convergence) is set directly by the scalar CFT thermal two-point function. However, it is

non-trivial that it is a collision between opposite-moving modes that leads to a breakdown in

hydrodynamics. This further highlights the importance of the coupling between left and right

moving modes induced by the breaking of conformal symmetry. The crucial pole collision

described above would not occur without such a coupling, and so dissipative hydrodynamics

would not emerge. Indeed, the microscopic mechanism identified in 3.2 and Fig. 1b relies on

the fact that O can propagate inside the lightcone.

Finally, armed with our knowledge of the hydrodynamic regime let us return to spacetime

to identify the time scale at which this regime emerges. In particular, we will see how a

seemingly “Planckian” radius of convergence kmax ∼ T leads to a parametrically sub-Planckian

thermalization time τeq ∼ 1/(λ̄2T ). We are interested in the correlator near the hydroydnamic

sound-front, as it is exponentially suppressed at late times elsewhere. Focusing on the right

moving front x ≃ cs t, one can Fourier transform (52) by first performing the frequency integral

and only picking up the right moving sound pole ω+(k) = csk − i
2 Dk2 + . . . The integral over

k then yields

Gtrace
R (t, x = cs t + x̃)≃ A(−i∂ x̃)

θ (t)p
2πDt

e− x̃2/(2Dt) , (68)

where we defined x̃ ≡ x − cs t and A is a differential operator given by

A(k) =
−i(ω2

+ − k2)

ω+ −ω−

h

sT (1− c2
s − iω+Ω(ω+, k2))− c

12π
(ω2
+ − k2)κ(ω+, k2)

i

e−iδω+ t .

We have suppressed the argument k in the right and left-moving dispersion relations ω±(k)
in this expression, and the last exponent involves δω+ ≡ω+(k)− (csk− i

2 Dk2). The function

A(k) inherits the radius of convergence kmax =∆πT found in the previous Section. However,

each derivative ∂ x̃ brings down a factor of x̃
Dt ∼ 1/

p
Dt. Eq. (68) therefore is a late-time series
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expansion in 1

kmax

p
Dt

. These corrections become small – allowing hydrodynamics to emerge –

at the time scale

τeq ∼
1

k2
maxD
∼ 1

λ̄2T
, (69)

consistently with what we found in Sec. 3.12 Inserting the first few terms in the small k ex-

pansion of A(k) in (68) gives a correlator of the form advertised in Eq. (39).

We close this Section with a brief comment on the ∆→ 0 limit of our results. The radius

of convergence kmax = ∆πT becomes small in this limit. This arises because the scalar pole

in Fig. 6 is closer to the origin – the precocious appearance of “new physics” beyond hydrody-

namics lowers the cutoff of the effective hydrodynamic description. However, it is interesting

to notice that the equilibration time is not affected by this lowered radius of convergence. In-

deed, since (59) implies that D ≃ 12
π3

βλ̄2

∆2 in this limit, the∆ dependence drops out of (69). This

cancellation is also apparent in the microscopic mechanism identified in Sec. 3.2, and arises

from the competition of two effects. On one hand, the scalar is longer-lived in the ∆ → 0

limit, 〈O(t)O〉 ∼ e−∆πt/β , allowing for deeper propagation away from the lightcone in the red

regions in Fig. 1 – integrating over the relative coordinate between the two scalars produces

a factor of ∼ GOO

R, CFT(0, 0) ≃ β2

π∆ . On the other hand, the fusion of scalars into stress tensors

OO ∼ ∆c T+ . . . is proportional to∆, so that the operator O decouples from the stress tensor in

this limit. These two factors cancel, leading to an equilibration time (69) that is not singular

as ∆→ 0.

5 Discussion

In summary, we have given a general description of the mechanism and consequences of ther-

malization in (1+1) dimensional QFTs at high and low temperatures. Thermalization occurs

due to the exchange of stress tensors near the lightcone: this leads to the breakdown of con-

formal perturbation theory at times t ¦ β/λ̄2 and allows for the emergence of dissipative

hydrodynamics. At large-c, we have argued that the hydrodynamic theory that emerges has

universal expressions for the transport coefficients at all orders in the gradient expansion.

Analysis of this hydrodynamic theory shows that it breaks down at times t ® β/λ̄2 where

thermal CFT excitations become important. Below we discuss a number of exciting future

directions that should be pursued.

Deriving hydrodynamics: Rigorous derivations of fluctuating hydrodynamics through the

fluctuating Boltzmann equation exist in certain classical models [56–58]. However, hydro-

dynamics has to our knowledge not been derived for any closed (deterministic) quantum

many-body system. The simple structure of the dynamics of (1+1)d QFTs near CFTs, with

the additional crutch of the c →∞ limit, makes it an ideal target for the analytic conformal

bootstrap [59,60] and its large-c implementations [15–17]. It is interesting that the stress ten-

sor plays a prominent role in the dominant channels that we have identified (Sec. 3.2): this

does not rely on a sparsity or holographic assumption but follows from its vanishing twist. This

suggests that the (double) lightcone limit of the analytic bootstrap, or the lightcone modular

bootstrap (see, e.g., [61–63]), may be useful in this regard. This would also be interesting to

study from the perspective of the effective field theory for large-c CFTs obtained from coadjoint

orbits of the Virasoro group [64–67], which would require understanding conformal pertur-

bation theory in that approach.

12Alternatively, this time scale can be identified without going through the momentum space Green’s functions

by expressing the hydrodynamic equations of motion (40) in terms of the coordinate x̃ = x − cs t, see Ref. [2].
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Figure 7: Our result (60), (61) carves out a family of allowed transport parameters,

parametrized by ∆ and T . The plots above show combinations of parameters where

the temperature dependence drops out, as λ̄→ 0: ζo ≡ ζ
s

1
1−c2

s
(left), and κo ≡

κ2,0−1

1−c2
s

(right), versus τΠ/β .

Tests of proposed hydrodynamics: As a first concrete step towards this, it is important to

establish the validity of our proposed universal generating function for transport coefficients.

One way forward would be to derive our hydrodynamic results by alternative methods re-

quiring less assumptions on the details of the effective theory. The obvious candidate is the

memory matrix formalism [46,47], given the structure of some of our results (e.g. Eq. (65)).

One subtlety is that the memory matrix formalism typically isolates the contributions of long-

lived operators to the two-point function, while in our case the dominant contributions come

from the trace of the stress tensor which is small, rather than long-lived.

A more direct approach to establishing this is by explicit computation of the transport

coefficients in suitable QFTs. In App. D we made a first step in this direction by verifying that

the viscosity of holographic theories in the high temperature limit agrees with our proposal. In

principle this comparison can be extended beyond just the viscosity to all transport coefficients,

as well as to the dispersion relations and collisions of the hydrodynamic modes. It can also be

extended to IR CFTs, where we expect the competition between the irrelevant O and TTbar

deformations at low temperatures to be realised similarly to analogous phenomena in higher-

dimensional theories [68].

Finally, it should also be possible to test our predicted transport parameters in numerics

and experiments. We expect recent progress in simulating the out-of-equilibrium dynamics of

relativistic (1+1)d QFTs to soon allow access to their hydrodynamic regime [69–73]. Large-N

nonlinear sigma models for example could offer an interesting target.13 Several experimental

realizations of 1+1d CFTs exist [74–78] – our approach accounts for corrections away from

the CFT, which are inevitable in experiments and should control thermalization and hydrody-

namics in these systems.

Primal hydrodynamic bootstrap: Progress in UV/IR constraints in QFT (e.g. [79–81]) has

renewed the interest in establishing non-perturbative bounds on hydrodynamics transport pa-

rameters [2, 30, 48, 82].14 Ref. [48] in particular found sharp bounds on hydrodynamics in

13Note that our conformal perturbation theory approach relies on a finite thermal mass in the 1+1d CFT, and

therefore does not apply to a free scalar deformed by φp.
14A subset of hydrodynamic coefficients already appear in equilibrium thermal effective actions, so that con-

straining these may prove more tractable [83–85].
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c → ∞ QFTs. Our results in Sec. 4 show that at high and low temperatures, large c hy-

drodynamics can be solved in (1+1)d: all hydrodynamic transport parameters that appear in

the stress tensor two-point function can be obtained analytically, see Eq. (57), and depend

smoothly on the dimension∆ of the perturbation away from the CFT. This can serve the oppo-

site purpose of ruling in hydrodynamic theories that have Lorentz invariant UV completions,

see Fig. 7. With this in mind it would be worth generalizing our approach to higher-point

functions: are the non-linear hydrodynamic transport coefficients similarly fixed by simple

CFT data, and if so do CFT constraints place interesting bounds on these?

These results connect more broadly to causality constraints beyond the vacuum, see

e.g. [86–89]. It would be interesting in this context to understand the superluminal group

velocities observed in App. E that are nonetheless compatible with causality.

Integrability breaking, GHD, and transport in low dimensions: The mechanism for ther-

malization identified in Sec. 3 is somewhat unique to (1+1)d QFTs. It is qualitatively different

from weakly coupled QFTs in higher dimension, where transport parameters are non-analytic

in the coupling. Viewing (1+1)d CFTs as integrable QFTs [90], the setup we consider has some

resemblance with the thermalization of nearly integrable quantum many-body systems. How-

ever in those situations, the dynamics is usually described by GHD and is already dissipative

before integrability breaking [29]. Moreover, while it is tempting to view (1+1)d QFTs at high

and low temperatures as having approximately conserved KdV charges [2], these decouple at

large-c so are not generally responsible for slow thermalization.

Transport in (1+1)d is a rich topic [91] and we expect to see further developments in this

area. It would be interesting to find classical models with similar thermalization properties

as (1+1)d QFTs near CFTs – while hard rods (of negative lengths) [92, 93] or certain celular

automata [26,94] can serve as classical non-relativistic analogues for the TTbar deformation,

fixed velocity particles colliding with random time delays may provide a toy model for the

thermalization mechanism identified in Fig. 1. In the context of Luttinger liquids, it would

also be interesting to distinguish the dynamics between integrability-breaking and preserving

deformations [18, 95]. The bulk viscosity is also of interest in nonrelativisitic systems with a

large number of degrees of freedom (e.g., [96]).

Thermalization of (1+1)d CFTs: The equilibration time marking the onset of dissipative

hydrodynamics τeq ∼ β/λ̄2 diverges as one approaches the (1+1)d CFT λ̄→ 0. Other notions

and characterizations of thermalization or chaos may still apply to certain (1+1)d CFTs [97–

107]: while emergence of hydrodynamics usually goes hand in hand with other probes of

quantum chaos, it could be some of these notions decouple for the case of (1+1)d QFTs close

to CFTs. It would be interesting to understand if there is a qualitative difference between

chaotic (1+1)d QFTs obtained by deforming rational or irrational CFTs. This may be possible

to investigate in short RG flows that are perturbatively close to minimal models [108–110].

Higher dimensions: Our results fall in line with recent progress in identifying the CFT data

that captures thermal physics [83, 84, 111–117]. The case of (1+1) dimensions is special:

amongst other reasons, thermal CFT correlators can be computed exactly, the stress tensor

sector is formally described by hydrodynamics with almost all transport coefficients vanishing,

and thermalization happens parametrically slowly upon deformation of the CFT. On the one

hand these features are advantageous as they have allowed us to unravel in some detail the

dynamics of thermalization of QFTs. The drawback of course is that many results likely cannot

be extended to higher dimensions where conformal symmetry is less restrictive and even an

undeformed CFT can thermalize quickly. However we highlight below a couple of aspects that
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may have higher-dimensional analogues,15 albeit with less generality.

First, in any dimension there is a Ward identity relating the trace of the stress tensor to

the perturbation O. One consequence of this is that many hydrodynamic transport coefficients

(e.g. bulk viscosity) are identically zero for an unperturbed CFT [32]. Upon perturbing the CFT,

following similar steps as in Sec. 4.2 should give expressions for these transport coefficients

in terms of thermal one and two-point functions of O in the CFT, which may be more readily

accessible. This would be a generalization of the approach used in [39] to compute the high

temperature bulk viscosity of certain holographic theories.

Second, the breakdown of hydrodynamics that we have found is reminiscent of that in

the spatially extended theories with local criticality that arise at low temperatures in large−N

Sachdev-Ye-Kitaev chains [119] and black holes with AdS2×Rd horizons [120]. In these the-

ories, the radius of convergence is governed by the collision of the hydrodynamic diffusion

mode with a thermal excitation of a scalar operator in the critical theory, whose lifetime is de-

termined universally by T and its dimension ∆ [51]. It would be very interesting to see if this

relation between the hydrodynamic dispersion relation and the thermal two-point functions

of the critical theory could be teased out into expressions for individual transport coefficients

like those we have found here.

Additional global symmetries: Finally, we briefly comment on thermalization of (1+1)d

QFTs with additional internal global symmetries, such as nonlinear sigma models. In these

situations, the holomorphic factorization in the CFT implies that both the current j
µ
a and its

dual j̃µa = εµν jνa are conserved (see, e.g., [121, 122] for related discussions in the context of

hydrodynamics). While the former symmetry is exact in the QFT, the latter is only an emer-

gent symmetry at high or low temperatures, and will be broken by the deformation in (1).

Slow thermalization τeq ∼ 1/(T λ̄2) then follows a more familiar pattern of being caused by

a long-lived approximately conserved density (the dual density j̃0 = j x). The corresponding

propagating hydrodynamic mode of the CFT transitions into a diffusive mode at late times, in

a way reminiscent of systems with approximately conserved momentum [123]. In this con-

text, we expect the charge diffusivity to be parametrically large, Dc ∼ 1/(T λ̄2), contrary to the

transport parameters identified in Sec. 4.2 that are parametrically small. It would be interest-

ing, in this context, to: (i) identify the dominant CPT corrections, (ii) revisit the commutativity

of limits of Sec. 4.2, and finally (iii) study thermal correlators at finite density.
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A Ward identities

In this Appendix we spell out how the Ward identities (11) fix two-point functions of the stress

tensor Tµν and scalar O in terms of a single structure. Differentiating the first equation, with

respect to the metric, then setting gµν = δµν, J(x) = λ = constant and finally analytically

15Analogues in lower dimensions also exist: see, e.g., [118].
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continuing to real time leads to

pµG
µνρσ
R (p) = −pµ (η

ρν〈Tµσ〉+ησν〈Tµρ〉 −ηµν〈Tρσ〉) , (A.1)

where pµ = (−ω, k). In (1+1) dimensions, this implies that there is only one independent

stress tensor two-point function, say that of the trace:

G
µνρσ
R (p) =

p̃µ p̃ν p̃ρ p̃σ

p4
Gtrace

R (p) + hµνρσ(p) , (A.2)

where p̃µ = εµνpν, and hµνρσ(p) arises due to the contact terms on the right-hand side of

(A.1). Using 〈Tµν〉 = Pηµν + (ǫ + P)uµuν, with uµ = δ
µ
t , one finds that its components in

lightcone coordinates x± = 1p
2
(x ± t) are given by:

h−−−+ = h+++− = −1

2
(ǫ + P) , h++++ = −(ǫ + P)

ω+ k

ω− k
,

h−−++ = ǫ − P , h−−−− = −(ǫ + P)
ω− k

ω+ k
,

(A.3)

and h+−+− = 0 by construction. All other components are fixed by symmetry under µ↔ ν and

(µν)↔ (ρσ). For example this implies that the retarded Green’s function of the right-moving

component T−− is given by16

G
T−−T−−
R (ω, k) = G++++R (ω, k) =

(p+)4

(2p+p−)2
Gtrace

R (ω, k) + h++++

=
(ω+ k)2

4(ω− k)2
Gtrace

R (ω, k)− (ǫ + P)
ω+ k

ω− k
.

(A.4)

There are further constraints on the two-point functions from the second Ward identity in

(11). First, differentiating with respect to the metric and then restricting to the equilibrium

state gives the relations

ηρσG
µνρσ
R (p) =

p
cλ(2−∆)GµνOR (p)− 2〈Tµν〉 − c

12π
p̃µ p̃ν . (A.5)

Using Eq. (A.2), this becomes an equation for the mixed correlators in terms of the trace two-

point function. Second, differentiating with respect to the coupling J(x) and then restricting

to the equilibrium state gives

ηµνG
µνO
R (p) =

p
cλ(2−∆)GOO

R (p) + (2−∆)Oeq . (A.6)

By contracting Eq. (A.5) with ηµν, using 〈Tµµ〉 =
p

c(2 − ∆)λOeq (from (11)) and finally

using (A.6), we obtain the key relation (15) between the trace two-point function and the O

two-point function.

In principle, there are three further relations that arise by differentiating the first Ward

identity in (11) with respect to the coupling J(x). However, these are identically satisfied

once the conditions above are imposed.

16This relates to the normalization used in [124] by T−− = −Tthere/π. In our normalization, the leading term in

the OPE is T−−(x)T−−(0)∼ c

8π2
1

(x−)4 + · · · , with x− = 1p
2
(t − x).
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B Details of CPT calculation

B.1 Leading correction

The most interesting term in the leading O(λ̄2) CPT correction to the T−− two-point function

(21) is

G
T−−T−−
R (ω, k) ⊃ 1

4
cλ̄2(2−∆)2β2∆−4 × f 2(ω, k)GOO

R (ω, k) , (B.1)

with f (ω, k) = ω+k
ω−k+i0+ . This is the only term in (21) that has other non-analyticities than

poles atω = k, which allow its Fourier transform to have support away from the right-moving

light-front. We compute its Fourier transform in this Appendix. We will first assume ∆ < 1,

in which case UV divergences are absent and the Fourier transform of GOO

R (xµ) exists, and

discuss ∆ > 1 at the end of this Section. Dropping the numerical factor 1
4 cλ̄2(2−∆)2β2∆−4,

we can write its Fourier transform as a double convolution following (25):

F(t, x)≡
∫

d2 x1d2 x2 f̂ (x
µ
1
)GOO

R (x
µ
2
− x

µ
1
) f̂ (xµ − x

µ
2
) , (B.2)

with the Fourier transfrom of f (ω, k) = ω+k
ω−k+i0+ given by

f̂ (t, x) = δ(t)δ(x)− 2∂xδ(x − t)θ (t)≡ f̂ct(t, x) + f̂−(t, x) . (B.3)

We separated f̂ into a contact term f̂ct(t, x) = δ(t)δ(x), and a term f̂− that has support on

the right-moving light-front x− = 0. We can then separate (B.2) into three contributions:

F(t, x) = Fct, ct(t, x) + Fct,−(t, x) + F−,−(t, x) . (B.4)

The first is simply Fct, ct(t, x) = GOO

R (t, x). We expect the third, F−,−(t, x), to dominate at

late times: because it includes two T−− “propagators”, there is a freedom in where the pair

of O’s are placed which leads to an enhancement ∝ t for this correction (see Fig. 1a). It

was computed to leading order for t ≫ β in Sec. 3.1; we compute it here up to exponential

precision O(e−t/β ), and evaluate Fct,−(t, x) as well.

To simplify notation, it will be useful to introduce chiral factors a(t±x) of the scalar Green’s

function

GOO

R (t, x) =
2θ (t − x)θ (t + x) sinπ∆

[(β/π)2 sinh t−x
β/π sinh t+x

β/π]
∆
≡ θ (t − x)θ (t + x)

a(t − x)a(t + x)
. (B.5)

Then, the second term in (B.4) is

Fct,−(t, x) = 2

∫

d2 x1 f̂−(x
µ
1
)GOO

R (xµ − x
µ
1
)

= −4∂x

∫

d t1θ (t1)G
OO

R (t − t1, x − t1)

= −∂x

4

a(t − x)

∫ t+x
2

0

d t1

a(t + x − 2t1)

= −∂x

2

a(t − x)

∫ t+x

0

ds

a(s)
,

(B.6)

where we changed variables from t1 to s = t+x−2t1, and dropped an overall factor of θ (t−x)

since we are assuming t > x (otherwise the entire retarded Green’s function vanishes due to

causality). We now use the fact that a(s)∝ sinh s
β/π ∼ e−πs/β is exponentially small for s≫ β
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to replace the upper limit of integration t + x →∞, up to exponentially small corrections.

Our result is thus

Fct,−(t, x) = −∂x

2

a(t − x)

∫ ∞

0

ds

a(s)
+O(e−t/β ) . (B.7)

We now turn to F−,−(t, x):

F−,−(t, x) =

∫

d2 x1d2 x1 f̂−(x
µ
1
)GOO

R (x
µ
2
− x

µ
1
) f̂−(x

µ − x
µ
2
)

= 4∂ 2
x

∫

d t1d t2θ (t1)θ (t − t2)G
OO

R (t2 − t1, x − t + t2 − t1)

= ∂ 2
x

4

a(t − x)

∫ t

0

d t21

∫ t− 1
2 t21

1
2 t21

d tav

θ (x − t + 2t21)

a(x − t + 2t21)

= ∂ 2
x

4

a(t − x)

∫ t

t−x
2

d t21

t − t21

a(x − t + 2t21)
.

(B.8)

In the third line we changed variables to t21 = t2 − t1 and tav =
1
2(t1 + t2); the integral over

tav is trivial and was performed in the last line. Changing variables to s = x − t + 2t21 and

extending again the upper limit of the integral to ∞, one finds up to exponentially small

terms:

F−,−(t, x)≃ ∂x

2

a(t − x)

∫ ∞

0

ds

a(s)
+ ∂ 2

x

1

a(t − x)

�

(x + t)

∫ ∞

0

ds

a(s)
−
∫ ∞

0

sds

a(s)

�

.

The first term exactly cancels the previous result (B.7), so that collecting all contributions and

returning to (B.4) we find

F(t, x) = ∂ 2
x

1

a(t − x)

�

(x + t)

∫ ∞

0

ds

a(s)
−
∫ ∞

0

sds

a(s)

�

+O(e−t/β )

=
sin(π∆)

(β/π)2∆−1

Γ (1−∆
2 )Γ (

∆

2 )p
π

�

x + t − β

2 tan π∆2

�

∂ 2
x

1
�

sinh t−x
β/π

�∆
+O(e−t/β ) .

(B.9)

Restoring the factor of 1
4 cλ̄2(2−∆)2β2∆−4, this gives Eq. (29) quoted in the main text.

Let us now comment on UV divergences that arise if ∆ ≥ 1: in this situation, the Fourier

transform of the scalar two-point function (B.5) is UV divergent, a divergence that can be

absorbed by adding a (relevant) counterterm to the action Sct = Λ
2(∆−1)

∫

d2 x J2(x), where

J(x) is the source for O. While the inverse Fourier transform of the CPT correction (B.1)

is well-defined, our approach to computing it using a convolution in (B.2) suffers from this

UV divergence. The simplest is to analytically continue our final expression (29) to ∆ > 1.

Alternatively, one can directly Fourier transform
(ω+k)2

(ω−k+i0+)2
times the momentum space scalar

Green’s function (56).

B.2 Real time CPT and causal diamond

Systematizing the study of CPT corrections to higher orders requires integrating O insertions

over the thermal cylinder. This is most naturally done in Euclidean signature:

〈T−−(x)T−−(0)〉β =
∑

n

(−λ)n
n!

∫

x
µ
1

,...,x
µ
n∈S1

β
×R

〈T−−(x)T−−(0)O(x1) · · ·O(xn)〉β ,CFT , (B.10)
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followed by continuing the external coordinate xµ to real time (all correlators above are con-

nected). However, performing CPT directly in real time allows for better intuition for the

channels that are expected to dominate at late times, as discussed in Sec. 3.2. Analytically

continuing all coordinates x
µ

i
in the (n + 2)-point functions appearing in (B.10) produces a

fully retarded Green’s function involving n+1 nested commutators17 [125,126]. The integra-

tion region is therefore in the past lightcone of T−−(x
µ). This leads to a new complication:

while the Euclidean expression Eq. (B.10) is manifestly free of IR divergences,18 it appears

that the channels identified in Fig. 1 can involve O insertions at arbitrarily early times, which

would be IR divergent (since T−− CFT correlators are unsuppressed along the lightcone).

In this Section, we consider a formulation of CPT in real time in terms of ‘interaction pic-

ture’ Hamiltonian evolution [127] that makes manifest the absence of IR divergences. This is

mostly intended as a sanity check for the mechanism identified in Fig. 1 – we do not necessarily

expect that this formulation will make the explicit evaluation of higher CPT corrections more

tractable than the Euclidean formulation (B.10). Writing the Hamiltonian as

H = HCFT +δH , δH = −c
p

λ

∫

d x O(t = 0, x) , (B.11)

interaction picture operators are defined as operators evolving purely in the CFT

AI (t)≡ eiHCFT tAe−iHCFT t . (B.12)

They are related to regular Heisenberg operators as

A(t) = eiH t e−iHCFT tAI (t)e
iHCFT t e−iH t ≡ U†(t)AI (t)U(t) , (B.13)

where the unitary U(t)≡ eiHCFT t e−iH t satisfies the equation of motion

∂t U(t) = −ieiHCFT tδHe−iH t = −iδHI (t)U(t) , (B.14)

which involves the deformation in interaction pictureδHI (t)≡ eiHCFT tδHe−iHCFT t . The solution

is

U(t) = Te−i
∫ t

0
d t ′δHI (t) , (B.15)

where T denotes time-ordering. One can similarly find a representation for the thermal density

matrix as e−βH = e−βH0×(expression involving δH), by defining

e−βH ≡ e−βH0 UE(β) . (B.16)

One representation for UE(β) = eβH0 e−βH can be found by solving its imaginary time equation

of motion

∂βUE(β) = −δHE
I (β)UE(β) ⇒ UE(β) = TEe−

∫ β

0
dτδHE

I (τ) , (B.17)

where TE denotes τ ordering and

δHE
I (τ)≡ eτH0δHe−τH0 = δHI (−iτ) . (B.18)

17In Keldysh notation, this corresponds to Graa···a.
18This follows from the fact that 2d CFTs have a thermal mass given by the dimension of the lightest operator

mCFT = ∆min/β . Quantizing in the x direction and inserting a complete basis of states in (B.10) shows that it

decays as e−mCFT |xi−x j | at large spatial separations |x i − x j | →∞.
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Putting these pieces together, we arrive at the following representation of a real time thermal

correlator (ommitting the factor of Z = Tr e−βH)

〈A(t, x)B〉β = Tr(e−βHA(t, x)B) (B.19)

= Tr
�

e−βH0

h

TEe−
∫ β

0
dτ′ δHE

I (τ
′)
i
�

T̄ eiλ
∫ t

0
d t ′ δHI (t

′)
�

AI (t, x)
�

Te−iλ
∫ t

0
d t ′ δHI (t

′)
�

BI

�

=
Dh

TEe−λ
∫ β

0
dτ′d x ′OE(τ′,x ′)

i
�

T̄ eiλ
∫ t

0
d t ′d x ′O(t ′,x ′)

�

A(t, x)
�

Te−iλ
∫ t

0
d t ′d x ′O(t ′,x ′)

�

B

E

β ,CFT
.

The final expression is a correlation function in the CFT. The CPT corrections of interest are

those integrated on real times t ′ ∈ [0, t]. The fact that these integration regions are bounded

prohibits IR divergences. Furthermore, expanding both unitaries U†(t), U(t) above leads to

nested commutators with A(t, x), restricting the integration region to the past lightcone of

(t, x). Finally, given that T−− correlators are peaked along the lightcone, we expect the kine-

matically dominant region of these integrals to be the causal diamond between (0, 0) and

(t, x), as depicted in Fig. 1b.

C Hydrodynamic constitutive relation

In this Appendix we give proofs of two statements used when deriving the hydrodynamic

constitutive relation in Sec. 4.1.

The first statement is that the derivatives in the three building blocks ∇⊥µ1
· · ·∇⊥µn

log(s),

∇⊥µ1
· · ·∇⊥µn

uν, and∇µ1
· · ·∇µn−2

R can be commuted at the expense of introducing only non-

linear terms. To prove this, let’s first recall that the commutator of covariant derivatives acts

on a tensor as

�

∇ρ,∇σ
�

tµ1···µk
ν1···νl

= R
µ1

λρσ
tλµ2···µk

ν1···νl
+ R

µ2

λρσ
tµ1λ···µk

ν1···νl
+ . . .+ R

µk

λρσ
tµ1···λ

ν1···νl
(C.1)

− Rλν1ρσ
t
µ1···µk

λν2···νl
− Rλν2ρσ

t
µ1···µk

ν1λ···νl
− . . .− Rλνlρσ

t
µ1···µk

ν1···λ ,

where Rµνρσ is the Riemann tensor (see e.g. [128]). As the Riemann tensor is linear in ampli-

tudes, it is immediately clear that the covariant derivatives in∇µ1
· · ·∇µn−2

R can be commuted

at the expense of introducing non-linear terms. For the other two building blocks, we first use

∇⊥µ =∆µν∇ν to obtain the following expression for the commutator of transverse derivatives

acting on a tensor

�

∇⊥µ,∇⊥ν
�

tµ1···µk
ν1···νl

=∆µρ∆νσ [∇ρ,∇σ] tµ1···µk
ν1···νl

+∆µρ (∇ρ∆νσ)
�

∇σ tµ1···µk
ν1···νl

�

−∆νσ
�

∇σ∆µρ
�
�

∇ρ tµ1···µk
ν1···νl

�

. (C.2)

When the transverse derivatives act on a tensor which is linear in the amplitude, it is clear

that this commutator is non-linear. The exceptional cases in the building blocks above are the

rightmost transverse derivatives. These act directly on the hydrodynamic variables which are

non-zero even in equilibrium. For these two special cases, Eq. (C.2) can be written

�

∇⊥µ,∇⊥ν
�

tµ1···µk
ν1···νl

=∆µρ∆νσ [∇ρ,∇σ] tµ1···µk
ν1···νl

+ non-linear. (C.3)

When the tensor is log(s), the first term on the right hand side vanishes identically as log(s) is

a scalar. When the tensor is the fluid velocity, an explicit computation gives

∆µρ∆νσ [∇ρ,∇σ]uλ =∆µρ∆νσgγαRαλρσuλ =
1

2
R
�

∆µγu
σ
∆νσ −∆νγuσ∆µσ

�

= 0 , (C.4)
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where we used the expression

Rµνρσ =
1

2
R
�

gµρ gνσ − gµσgνρ
�

, (C.5)

for the Riemann tensor in (1+1) dimensions. Therefore even in these special cases the trans-

verse derivatives can be commuted at the cost of introducing only non-linear terms.

The second statement is that the local conservation equations (44) imply that

∇n
⊥ log(s) = −c−2

s ∇n−2
⊥ D (∇⊥ · u) + c−2

s ∇n−2
⊥ R+ . . . , (C.6)

where the . . . denote higher-derivative or non-linear terms. To prove this, we first act with

∇⊥µ on the second equation in (44) to obtain

∇2
⊥ log(s) = −c−2

s ∇
µ

⊥Duµ + higher-derivative terms. (C.7)

The commutator of the derivatives acting on the right hand side is

�

∇µ⊥, D
�

uµ =∆
µνuρ

�

∇ν,∇ρ
�

uµ +∆
µν (∇νuρ)

�

∇ρuµ
�

− uρ
�

∇ρ∆µν
� �

∇νuµ
�

=∆µνuρRσµρνuσ + non-linear

= −R+ non-linear,

(C.8)

where on the second line we used the commutator (C.1) of covariant derivatives and on the

third line we used the expression (C.5) for the Riemann tensor in (1+1) dimensions. Com-

muting the derivatives in (C.7) using (C.8) and then acting on both sides with ∇n−2
⊥ gives the

result (C.6).

D Viscosity of holographic theories

In this Appendix we will consider some explicit examples of theories where we expect the

large−c hydrodynamics described in the main text to be valid. These are holographic theories

of three-dimensional gravity coupled to matter. For these theories we will compute the viscosity

explicitly from first principles and show that it agrees with the result (59) argued for in Sec. 4.

See [47,129,130] for textbook introductions to holographic theories and simple examples of

the computation of their hydrodynamic transport coefficients.

D.1 The equilibrium state

We consider three dimensional theories of gravity with action

S =
1

16πG

∫

d3 x
p

−g

�

R− 1

2
∂µφ∂

µφ + V (φ)

�

+ Sbdy , (D.1)

where G is Newton’s constant, R is the Ricci scalar of the Lorentzian metric gµν and φ is a

scalar field with potential

V (φ→ 0) =
2

L2
− 1

2L2
∆(∆− 2)φ2 +O(φ4) , (D.2)

and L is a constant. Sbdy is a boundary term needed to make the variational problem well-

defined and the on-shell action finite: see [131] for details of this.
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We study planar black hole solutions of this theory that are dual to the thermal state of a

CFT deformed by a relevant scalar operator of dimension 1 < ∆ < 2. We parameterize these

solutions as

ds2 = −D(r)d t2 + C(r)d x2 + B(r)dr2 , φ = Φ(r) , (D.3)

and the equations of motion of the action (D.1) then require that

d

dr
log

�

C ′p
BC D

�

= −CΦ′2

C ′
,

d

dr

�

C3/2(D/C)′p
BD

�

= 0 ,

d

dr

�√

√C D

B
Φ
′
�

= −
p

BC D
∂ V

∂ φ

�

�

�

�

φ=Φ

,

(D.4)

where primes denote derivatives with respect to r. We furthermore impose the boundary

conditions that there is an asymptotically AdS3 boundary at r = 0 with

B(r → 0)→ L2

r2
+ . . . , C(r → 0)→ L2

r2
+ . . . ,

D(r → 0)→ L2

r2
+ . . . , Φ(r → 0)→

p
12π

1−∆ λr2−∆ + . . . ,

(D.5)

and a horizon at r = r0 with

B(r → r0)→
b

4πT (r0 − r)
+ . . . , C(r → r0)→ (4Gs)2 + . . . ,

D(r → r0)→ 4πT b(r0 − r) + . . . , Φ(r → r0)→ Φ0 + . . . ,

(D.6)

where λ, T , s, b and Φ0 are constants. s and T are the entropy density and temperature

of the state, and λ is the relevant coupling that deforms the CFT.19 After specifying V (φ)

exactly, solving this set of equations yields the thermodynamic relations such as s(T,λ) that

characterize the equilibrium state.

For the special case Φ = 0 there is the BTZ black hole solution

B(r) =
L2

r2 f (r)
, C(r) =

L2

r2
, D(r) =

L2

r2
f (r) , f (r) = 1− r2

r2
0

. (D.7)

By examining the boundary condition (D.5) forΦ, we see that this corresponds to the case λ=0

(an undeformed CFT). This black hole has temperature T = 1/(2πr0) and s/T = πL/(2G).

Comparing this to the result for the entropy density of an undeformed CFT in Sec. 2 yields the

classic holographic expression for the central charge c = 3L/(2G).

D.2 Viscosity formula and probe limit

To compute the viscosity we need to determine two-point functions of the stress tensor in the

thermal states we have just described. Although fundamentally this requires the study of black

hole perturbations, the final result can be expressed in terms of the equilibrium state as [40]

ζ

s
=

s2

4π

�

∂Φ0

∂ s

�2

λ
. (D.8)

19The prefactor in (D.5) corresponds to turning on a source λ for an operator with vacuum correlator

c |x − x ′|−2∆
, consistent with the normalizations in the main text.
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This formula is exact. In [40] it is presented for holographic theories of general dimensionality,

with s on the left hand side replaced by 4πη with η the shear viscosity. There is a subtlety

in (1+1) dimensions where there is no shear viscosity. However, we have checked by an

independent method (analogous to that in [132], see also [133]) that the formula (D.8) does

indeed hold for field theories in (1+1) dimensions.

Substituting the BTZ solution (Φ = 0) into the formula (D.8) trivially produces the correct

viscosity ζ = 0 of an undeformed CFT. When conformal symmetry is broken, we no longer

have an exact expression for Φ0. But we can make progress when λ̄ is small by assuming that

this means Φ remains small enough everywhere outside the black hole that we can neglect its

backreaction on the BTZ metric. Intuitively, the high temperature means that the region where

scalar field corrections become large is hidden behind the horizon. This is the approximation

made in [39] and [40] which, written in our conventions, reproduces the result (59) we have

argued for in the main text.

It is instructive to see explicitly how this works. Treating Φ(r) = λ̄δΦ(r) + . . . as a small

perturbation on the fixed BTZ background allows us to linearize the third equation of motion

in (D.4) to give
d

dr

�

f (r)

r
δΦ′(r)

�

− ∆(∆− 2)

r3
δΦ(r) = 0 . (D.9)

The solution of this equation that obeys the boundary conditions in the previous Section is

δΦ(r) =

p
12π

(1−∆)
(2π)∆−2

Γ (∆2 )
2

Γ (∆− 1)
2F1

�

1− ∆
2

,
∆

2
, 1; 1−

r2
0

r2

�

, (D.10)

and thus

Φ0 =

p
12π

(1−∆)

�

6s

c

�∆−2 Γ (∆2 )
2

Γ (∆− 1)
λ+ . . . , (D.11)

at small λ. Substituting this into the expression (D.8) gives the expression (59) for the viscosity

proposed in the main text.

However, on its own this calculation is not a proof of the result (59) for these theories. The

linearized solution (D.10) captures exactly the conformal expression for the thermal two-point

function of the deforming operator. And so in assuming that the small λ̄ viscosity is given by

this solution, we are really making the same assumption as in the main text.

D.3 Exact results for viscosity

To truly verify the result (59) for holographic theories, we will now go beyond the linearized

solution and solve the full non-linear equations of motion (D.4). This can only be done nu-

merically.

For definiteness, and following [134], we considered the family of potentials

V (φ) =
1

2

�

W 2 −
�

∂W

∂ φ

�2
�

, W (φ) = −2+
∆− 2

2
φ2 +αφ4 . (D.12)

To solve the equations of motion numerically we used the procedure described in Sec. 3 of

[134], which builds on [135]. For a given potential we obtained black hole solutions for

different values of s and λ, and then computed the viscosity by numerically evaluating the

right hand side of the exact formula (D.8). The speed of sound for each solution was obtained

numerically as described in [134].

In Fig. 8 we show the results we obtained for the ratio ζ/(s(1 − c2
s ) for four different

potentials. In all cases the small λ̄ behaviour agrees with the expression (60) proposed in the

main text. The value of λ̄ where corrections to this expression become important – and the
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Figure 8: Numerical results for the the ratio ζ/(s(1− c2
s ) as a function of λ̄ for four

different potentials. All cases show agreement with Eq. (60) at small λ̄.

effect they have – is sensitive to the details of the potential. Thermodynamic properties of the

equilibrium state for some of these potentials can be found in [134].

The analysis above can easily be extended to the case of deforming UV CFTs with an op-

erator of dimension 0 < ∆ < 1 by considering an alternate quantization of the scalar field

φ. Holographic examples of IR CFTs deformed by operators with arbitrary ∆ > 2 can also

be generated by choosing the potential appropriately – it would be interesting to repeat our

analysis for these cases.

E Causality of large-c hydrodynamics

In this Appendix we will examine the resummed hydrodynamic dispersion relations and show

that tensions with causality arise only at the wavenumbers where hydrodynamics starts to

break down. This is a check that the large-c theory of hydrodynamics we have proposed

makes sense within its regime of validity.

In relativistic QFTs, microcausality – the fact that space-like separated operators commute

– requires that retarded Green’s functions are analytic in the region where Im pµ is a time-like

vector [136]. Any non-analyticity, such as poles, must therefore satisfy

Im (ω±(k))≤ |Im (k)| . (E.1)

In [48,137] the inequality (E.1) was used to derive causal bounds on the values of individual

transport coefficients. However, as we have an expression for the full dispersion relation at

small λ̄ we will work directly with the fundamental inequality (E.1). We will discuss only the

right-moving mode ω+(k) as the conditions arising from ω−(k) are identical.

The condition (E.1) for the right-moving mode ω+(k) is in fact two different inequalities,

one for each sign of Im(k). It will be instructive to consider first the case of purely imaginary

k = iκ, κ ∈ R. For negative κ, the causality constraint on the correction to the thermal CFT

dispersion relation is

ReΓ+(iκ)≥ −2 , κ≤ 0 . (E.2)

For this to be violated, the ‘small’ correction Γ+ must be parametrically large. We saw in

the main text that Γ+ has a pole at κ = −π∆T , which sets the radius of convergence of the

dispersion relation. This same pole produces a parametrically large Γ+ at κ= −π∆T +O(λ̄2)
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Figure 9: Plots of the leading corrections to the phase and group velocities of the

hydrodynamic sound mode, extracted from Eq. (66).

and so the causality inequality (E.2) starts to be violated precisely when hydrodynamics breaks

down.

For our hydrodynamic theory to be self-consistent, we also require the corresponding

causality constraint for κ ≥ 0 to be satisfied everywhere within the radius of convergence.

Specifically this requires that

Re
Γ+(iκ)

λ̄2
=
(2−∆)2
2(∆− 1)

α∆

1−
�

κ
2πT

�2

 

Γ
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�

Γ

�

∆

2

�2

sin
�

π∆
2 −

κ
2T

�

sin
�

π∆
2

� − ∆

2−∆

!

≤ 0 , (E.3)

for 0 ≤ κ ® π∆T . This quantity is independent of λ̄ and, by plotting it, it is straightforward

to verify that (E.3) is indeed satisfied for all 0<∆ < 3.

Considering the general case of complex k does not affect these conclusions: the first

tensions with the causality inequality (E.1) arise for k ≈ −iπ∆T where hydrodynamics starts

to break down.

We close by noting a surprising feature of our hydrodynamic theory. We can define the

phase velocity and group velocity of the hydrodynamic sound wave as

vphase(k) = Re

�

ω+(k)

k

�

= 1− λ̄2δvphase(k) + . . . ,

vgroup(k) = Re

�

dω+(k)

dk

�

= 1− λ̄2δvgroup(k) + . . . ,

(E.4)

where k is real. From our dispersion relation (66), it is straightforward to extract the leading

deviations of these quantities from the speed of light at small λ̄2 and these are shown in Fig. 9.

For all 0 < ∆ < 3, the phase velocity is subluminal. However, for 0 < ∆ < 2 the group veloc-

ity of the sound wave becomes superluminal. Although this happens at large wavenumbers,

these are still within the range of applicability of hydrodynamics. This is despite the fact the

theory satisfies the fundamental causality requirement (E.1). It would be very interesting to

understand better this surprising feature.
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[114] R. Karlsson, A. Parnachev and P. Tadić, Thermalization in large-N CFTs, J. High Energy

Phys. 09, 205 (2021), doi:10.1007/JHEP09(2021)205.

[115] M. Dodelson, C. Iossa, R. Karlsson and A. Zhiboedov, A thermal product formula, J. High

Energy Phys. 01, 036 (2024), doi:10.1007/JHEP01(2024)036.

[116] O. Diatlyk, F. K. Popov and Y. Wang, Beyond N =∞ in large N confor-

mal vector models at finite temperature, J. High Energy Phys. 08, 219 (2024),

doi:10.1007/JHEP08(2024)219.

44



SciPost Phys. 18, 177 (2025)

[117] N. Benjamin, J. Lee, S. Pal, D. Simmons-Duffin and Y. Xu, Angular fractals in thermal

QFT, J. High Energy Phys. 11, 134 (2024), doi:10.1007/JHEP11(2024)134.

[118] D. Anninos, D. A. Galante and S. U. Sheorey, Renormalisation group flows of deformed

SYK models, J. High Energy Phys. 11, 197 (2023), doi:10.1007/JHEP11(2023)197.

[119] Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in

generalized Sachdev-Ye-Kitaev models, J. High Energy Phys. 05, 125 (2017),

doi:10.1007/JHEP05(2017)125.

[120] N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, J. High Energy Phys. 04, 086

(2012), doi:10.1007/JHEP04(2012)086.

[121] K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, J. High Energy Phys. 01,

109 (2011), doi:10.1007/JHEP01(2011)109.

[122] D. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries,

SciPost Phys. 6, 006 (2019), doi:10.21468/SciPostPhys.6.1.006.

[123] R. A. Davison and B. Goutéraux, Momentum dissipation and effective theories

of coherent and incoherent transport, J. High Energy Phys. 01, 039 (2015),

doi:10.1007/JHEP01(2015)039.

[124] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York,

USA, ISBN 9781461274759 (1997), doi:10.1007/978-1-4612-2256-9.

[125] T. S. Evans, N-point finite temperature expectation values at real times, Nucl. Phys. B 374,

340 (1992), doi:10.1016/0550-3213(92)90357-H.

[126] S. Caron-Huot, Hard thermal loops in the real-time formalism, J. High Energy Phys. 04,

004 (2009), doi:10.1088/1126-6708/2009/04/004.

[127] M. E. Peskin, An introduction to quantum field theory, CRC Press, Boca Raton, USA, ISBN

9780429972102 (2018), doi:10.1201/9780429503559.

[128] S. M. Carroll, Lecture notes on general relativity, (arXiv preprint) doi:10.48550/arXiv.gr-

qc/9712019.

[129] M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cam-

bridge, UK, ISBN 9780511846373 (2015), doi:10.1017/CBO9780511846373.

[130] J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic duality in condensed matter

physics, Cambridge University Press, Cambridge, UK, ISBN 9781107080089 (2015),

doi:10.1017/CBO9781139942492.

[131] S. de Haro, K. Skenderis and S. N. Solodukhin, Holographic reconstruction of space-time

and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217, 595

(2001), doi:10.1007/s002200100381.

[132] R. A. Davison, B. Goutéraux and E. Mefford, Zero sound and higher-form sym-

metries in compressible holographic phases, J. High Energy Phys. 12, 040 (2023),

doi:10.1007/JHEP12(2023)040.

[133] T. Demircik, D. Gallegos, U. Gürsoy, M. Järvinen and R. Lier, A novel method for holo-

graphic transport, (arXiv preprint) doi:10.48550/arXiv.2311.00042.

45



SciPost Phys. 18, 177 (2025)

[134] C. Ecker, D. Grumiller, H. Soltanpanahi and P. Stanzer, QNEC2 in deformed holographic

CFTs, J. High Energy Phys. 03, 213 (2021), doi:10.1007/JHEP03(2021)213.

[135] S. S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole,

Phys. Rev. D 78, 086007 (2008), doi:10.1103/PhysRevD.78.086007.

[136] C. Itzykson and J.-B. Zuber, Quantum field theory, Dover Publications, Garden City, USA,

ISBN 9780486445687 (2006).
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