W) Check for updates

Received: 20 June 2024 Revised: 16 September 2024 Accepted: 29 September 2024

DOI: 10.1112/jlms.70024

Journal of the London

RESEARCH ARTICLE Mathematical Society

The Borel complexity of the space of
left-orderings, low-dimensional topology, and
dynamics

Filippo Calderoni'! | Adam Clay*

IDepartment of Mathematics, Hill Center
for the Mathematical Sciences, Rutgers
University, Piscataway, New Jersey, USA

Abstract

We develop new tools to analyze the complexity of the
2Department of Mathematics, University

conjugacy equivalence relation E|,(G), whenever G is a
of Manitoba, Winnipeg, Canada

left-orderable group. Our methods are used to demon-

Correspondence

Filippo Calderoni, Department of
Mathematics, Hill Center for the
Mathematical Sciences, Rutgers
University, 110 Frelinghuysen Rd,
Piscataway, NJ 08854-8019, USA.
Email: filippo.calderoni@rutgers.edu

Funding information

NSF, Grant/Award Number:
DMS-2348819; NSERC, Grant/Award
Number: RGPIN-2020-05343

strate nonsmoothness of E,,(G) for certain groups G of
dynamical origin, such as certain amalgams constructed
from Thompson’s group F. We also initiate a system-
atic analysis of E,,(7r;(M)), where M is a 3-manifold. We
prove that if M is not prime, then E, (7r; (M)) is a univer-
sal countable Borel equivalence relation, and show that
in certain cases the complexity of E,(7r; (M)) is bounded
below by the complexity of the conjugacy equivalence
relation arising from the fundamental group of each of
the JST pieces of M. We also prove that if M is the com-
plement of a nontrivial knot in S3 then E,(7;(M)) is
not smooth, and show how determining smoothness of
E,(r;(M)) for all knot manifolds M is related to the
L-space conjecture.

MSC 2020
03E15, 06F15, 20F60, 57K18, 57K30 (primary), 57R58 (secondary)

© 2024 The Author(s). Journal of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction

in any medium, provided the original work is properly cited and is not used for commercial purposes.

J. London Math. Soc. (2) 2024;110:€70024.
https://doi.org/10.1112/jlms.70024

wileyonlinelibrary.com/journal/jlms 10f22



20f22 | CALDERONTI and CLAY

1 | INTRODUCTION

The theory of ordered groups dates back as far as Holder and Dedekind, however it is only over the
last few decades that connections with orderable groups have brought to light a fruitful interplay
between algebra, topology, and dynamics. Recent advances in the theory of left-orderable groups
crucially use this interaction. For example, Morris [27] uses the dynamical properties of amenable
groups to prove that every left-orderable amenable group is locally indicable, answering a question
of Linnell [25].

One of the key tools in applying topological arguments to orderable groups is the compact space
LO(G) of all left-orderings of G, which comes equipped with a natural G-action by conjugation.
When G is left-orderable, either |LO(G)| = 2" and G is a Tararin group, or LO(G) has the car-
dinality of the continuum [26]. As Tararin groups and their spaces of orderings are completely
understood, the structure of uncountable spaces of left-orderings is the remaining challenge fac-
ing the field. An emerging program in this direction is the analysis of uncountable spaces of
left-orderings of countable groups by using the tools of descriptive set theory. The goal is to classify
left-orderable groups and their corresponding spaces of left-orderings in a complexity hierarchy
using a finer notion of cardinality, namely Borel cardinality.

The motivating question for this program was posed in the manuscript of Deroin, Navas, and
Rivas [13], which asks whether there exists a countable left-orderable group with nonstandard
quotient space LO(G)/G. If the answer to this question were negative, then recovering algebraic
properties of a left-orderable group from the Borel structure of its orbit space would be impossi-
ble, as a famous theorem of Kuratowswki states that all uncountable standard Borel spaces are
Borel isomorphic.

Fortunately this is not the case. The main results of Calderoni and Clay [6] show that for many
left-orderable groups the Borel structure of LO(G)/G is more complicated than that of standard
Borel spaces. For example, if LO(G)/G is standard then G must be locally indicable; thus for any
left-orderable group G that does not admit a Conradian left-order, the space LO(G)/G is not stan-
dard. This result fits more broadly in the topic of set theoretic rigidity, where the main question of
study is how much information about the given group action is encoded by the Borel cardinality
of the corresponding orbit space.

Our methods use the theory of countable Borel equivalence relations, which is of fundamental
significance to the study of countable group actions and their corresponding orbit spaces. The
orbit space of a G-action is standard precisely when the corresponding orbit equivalence relation
is smooth. In particular, [6] shows that a program to analyze left-orderable groups via the Borel
complexity of the corresponding conjugacy actions is possible.

For a countable left-orderable group G denote by E,,(G) the countable Borel equivalence rela-
tion induced by the conjugacy G-action on LO(G). This article continues the study started in [6, 7],
and determines new classes of countable left-orderable groups G for which E,,(G) is not smooth,
and a new class for which E,,(G) is universal.

Theorem 1.1. If G and H are countable left-orderable groups, then E(G * H) is a universal
countable Borel equivalence relation.

Our refined techniques for determining nonsmoothness of E,,(G) rely upon either being able
to control the normal subgroups of G, or upon being able to construct families of left-orderings
of G having prescribed algebraic properties. Each of these techniques lends itself to an analysis
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THE BOREL COMPLEXITY OF THE SPACE OF LEFT-ORDERINGS | 3 0f22

of families of groups arising naturally from recent advances in the study of left-orderable groups.
We show:

Theorem 1.2. If G is a countable left-orderable group that admits no finite quotient and is not
bi-orderable, then E\,(G) is not smooth.

There is an abundant supply of groups satisfying these properties, arising from recent work in
dynamics. We will show how to use [24] to create such groups in Subsection 4.1.

We also systematically analyze the complexity of E|,(G) whenever G is a left-orderable funda-
mental groups of a 3-manifold, using both Theorem 1.1 and new nonsmoothness results that rely
on constructing closed G-invariant subsets of LO(G).

Our analysis begins by leveraging the prime decomposition of M. We first observe that for a
compact, connected 3-manifold M, if M is not prime, then E,,(7r;(M)) is universal; whereas if M
is prime and reducible, then E, (7r; (M)) is smooth. We also show how to use the JSJ decomposition
in an analysis of E, (7, (M)), showing that it is universal in certain cases involving two JSJ pieces.

Then, for irreducible prime manifolds, we discuss a conjectural connection between the Borel
complexity of E\,(r;(M)) and the Heegaard Floer homology of M, via the so called L-space con-
jecture. This discussion shows how a combination of tools developed in [4] and [2] to study the
L-space conjecture can be used alongside our nonsmoothness results. We show the following.

Theorem 1.3. If G is a noncyclic knot group, then E\,(G) is not smooth.

However, we expect that a similar result holds for most knot manifolds, in particular we con-
jecture that if M is a knot manifold and E,,(7,(M)) is smooth, then M is a generalized solid torus
in the sense of [30].

The manuscript is organized as follows. In Section 2, we cover background material on
left-orderable groups and countable Borel equivalence relations, and in Section 3 we prove Theo-
rem 1.1. In Section 4, we use generic ergodicity to strengthen existing criteria for nonsmoothness
of E,,(G), prove Theorem 1.2 and discuss applications. In Section 5, we address the complexity of
E,(G) for left-orderable fundamental groups G of 3-manifolds. In Section 6, we provide a gener-
alized method of defining Borel reductions from short exact sequences of left-orderable groups,
as such constructions are ubiquitous in our work.

2 | PRELIMINARIES
2.1 | Left-orderable groups

A group G is left-orderable if it admits a strict total ordering < such that g < h implies fg < fh
forall f,g,h €G.

Proposition 2.1. The following are equivalent.

(1) G is left-orderable.
(2) Thereis P C G such that
() P-PCP;
(b) PUPL =G\ {15}
(3) Thereis a totally ordered set (Q, <) such that G & Aut(Q, <).
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4 0f 22 | CALDERONTI and CLAY

The subset P in (2) above is referred to as a positive cone. It is clear that every left-ordering
< of G determines a positive cone P = {g € G : g > 1}. The identification of left-orderings with
their positive cones allows us to define the space of left-orderings as follows. Equip {0, 1} with the
discrete topology, {0, 1}¢ with the product topology, and set

LO(G) = {P c G : Pisa positive cone } C {0,1}°,

equipped with the subspace topology. Thus, the subbasic open sets in LO(G) are U, ={P : g €
P}, where g € G \ {1}. One can easily check that LO(G) is closed, hence compact. There is a G-
action by homeomorphisms on LO(G), given by g - P = gPg~!, which carries subbasic open sets
to subbasic open sets.

The space LO(G) admits several distinguished G-invariant subspaces. Recall that an ordering
< of a group G is Conradian if whenever g, h € G are both positive, then there exists n € N such
that 1 < g~'hg" [11]. Equivalently, if g, h € G and g, h > 1 then 1 < g~ 'hg? [28, Proposition 3.7].
We denote by CLO(G) C LO(G) the (closed) subspace of all Conradian orders, one can check from
the definition of Conradian orderings that CLO(G) is G-invariant.

A group G is locally indicable if for every finitely generated subgroup H < G there is an onto
homomorphism h : H — Z. As a consequence of the Burns-Hale theorem (e.g., see [10, Theorem
1.50]) every locally indicable group is left-orderable. In fact, a group is locally indicable if and only
if it admits a Conradian left-order [11, Theorem 4.1].

Now let G be a group equipped with a fixed left-ordering <. A subgroup C of G is convex
relative to < if whenever g,h € Cand f € Gwith g < f < h,then f € C. Asubgroup C C G is left-
relatively convex in G (or relatively convex in G for short) if C is convex relative to some left ordering
of G. When C is normal in G, the quotient G/C is left-orderable if and only if C is left-relatively
convex in G.

We require two results concerning the relative convexity of certain kinds of subgroups that will
be needed in the later sections of this paper. Recall that a subgroup H of G is isolated if h" € H
implies h € H.

Proposition 2.2 [9, Lemma 3.2]. In a bi-orderable group G, every isolated abelian subgroup is left-
relatively convex.

Proposition 2.3 [1, Example 1.18]. Suppose A and B are groups, C C A a subgroupand¢ : C - B
an injective homomorphism. If C and ¢(C) are relatively convex in A and B, respectively, then A and
B are relatively convex in the free product with amalgamation A *4 B.

2.2 | Countable Borel equivalence relations

Suppose that X is a set and that B is a o-algebra of subsets of X. Then (X, B) is a standard Borel
space if there exists a Polish topology 7 on X such that B is the o-algebra generated by 7. An
equivalence relation E on the standard Borel space X is said to be Borel if E C X X X is a Borel
subset of X X X. A Borel equivalence relation E is said to be countable if every E-equivalence class
is countable.

Most of the Borel equivalence relations that we will consider in this paper arise from group
actions as follows. Let G be a countable group. Then a standard Borel G-space is a standard Borel
space X equipped with a Borel action G X X — X, (g,x) — g - x of G on X. For any x € X, we
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denoteby G - x = {g - x : g € G} the orbit of x. We denote by Eé the orbit equivalence relation on
X whose classes are the G-orbits. That is,

xEfy < G-x=G-y.

When G is a countable group, then it is clear that Eé{ is a countable Borel equivalence relation.
Conversely, a theorem of Feldman and Moore [16] states that if E is an arbitrary countable Borel
equivalence relation on some standard Borel space X, then there exist a countable group G and a
Borel action of G on X such that E = Eé.( .

When G is a countable left-orderable group, X = LO(G), and we let G act on X by conjugacy,
we denote the corresponding orbit equivalence relation by E,,(G). Moreover, for any countable
group G we denote by E (G) the countable Borel equivalence relation induced by the shift action
of G on {0, 1}°. It is clear from the definition that both E,, and E,(G) are examples of countable
Borel equivalence relations.

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y, respec-
tively. Then a Borel map f: X — Y is said to be a homomorphism from E to F if for all x,y €
X,

xEy= f(x)F f(y).

If f satisfies the stronger property that for all x,y € X,

XEy < f(X)F f(y),

then f is said to be a Borel reduction from E to F and we write E <z F. Further we say that E and F
are Borel isomorphic (in symbols, E =5 F) if there is a Borel bijection f : X — Y which is a Borel
reduction from E to F.

Another way to look at Borel reducibility is to notice that E <p F is equivalent to the existence
of an injection from the quotient space X /E into Y /F which is “Borel,” in the sense that it has
a Borel lifting. Thus, E < F is interpreted as saying that X /E has Borel cardinality less than or
equal to that of Y /F. Moreover, in case E <g F <z E we say that X /E and Y /F have the same
Borel cardinality, in symbols |[X/E|z = |X/F|5.

Definition 2.4. Let E be a Borel equivalence relation on the standard Borel space X. We say that
E is smooth if there is a standard Borel space Y and a Borel function f : X — Y such that

XgEx; <= f(xp) = (x9).

Note that as all uncountable standard Borel spaces are Borel isomorphic we can replace Y
with R in the definition of smooth equivalence relations. Therefore, when X is uncountable, E
is smooth if and only if | X /E|; = |R|3.

Fact 2.5. Suppose that E, F are countable Borel equivalence relations.

(1) IfE <z F and F is smooth, then E is smooth.
(2) Supposethat E C F and F is smooth, then E is smooth.
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6 of 22 | CALDERONTI and CLAY

Notice that Fact 2.5(1) implies that whenever X is a standard Borel G-space, and Y C X is Borel
and G-invariant, if Eg is smooth then Eg is also a smooth equivalence relation.

Now we recall some useful characterizations of smoothness. A transversal for E is a set B C X
that intersects each E-class in exactly one point. A selector for E is a function s : X — X such that
s(x) E x for all x € X and x E y implies s(x) = s(y).

Proposition 2.6. Let E be a countable Borel equivalence relation on X. The following are
equivalent.

(i) E is smooth.
(ii) E admits a Borel transversal.
(iii) E admits a Borel selector.

The following proposition is a crucial consequence of generic ergodicity. For a proof, we refer
the reader to [6].

Proposition 2.7 (For example, [6, Proposition 2.4]). Suppose that G is a countable group acting by
homeomorphisms on a compact Polish space X such thatE)G( is smooth. Then there exists a finite orbit.

3 | UNIVERSALITY OF FREE PRODUCTS

A countable Borel equivalence relation E is universal if every countable Borel equivalence rela-
tion F is Borel reducible to E. One of the primary tools from [6] used to show universality is the
following proposition.

Proposition 3.1 [6, Proposition 3.1]. If C is left-relatively convex in G, and forallh € G, hCh™! C C
implies h € C, then E,(C) <z E|,(G).

We will use this, together with the fact that E, (F,) is universal [6, Theorem 1.2], to prove
Theorem 1.1.

Proof of Theorem 1.1. Vinogradov [32] proved that the free product of left-orderable groups is
left-orderable, so LO(G * H) is nonempty. Consider the short exact sequence

1—>K—>G*HtiH—>1,

where ¢ is the homomorphism induced by the maps¢; : G - G X Hand ¢y : H — G X H given
by ¢5(9) = (9,1) and ¢y (h) = (1, h) for all g € G and h € H. For ease of exposition, set x, , =
[g,h] = ghg~'h~!. ThenK is a free group, with free basis {x,nywhereg € G\ {l}andh € H \ {1}
[31, Proposition 4]. Observe that for all g € G\ {1} and h € H \ {1}, if b € H then bxy,hb_1 =

x1x andifa € G, thenax,,a=! =x  x~!. Therefore,
g g, a a,h

,b g,bh; g,h

x -1

-1,,-1 _ 1
abx,pb™ a™" =X, X0 XX e

a,b

Fix nonidentity elements s € Gandt € H,and set S = {x,, X; ;2} and choose (a,b) € G x H. We
first show that abShb~'a~! C ((S))x implies (a, b) = (1, 1), here ((S)) is the normal closure in K
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of S. Note that elements of ((S))g, when written as a reduced word in the generators {x, ,}, must
have zero exponent sum in every generator that does not lie in S. So, we check that abSb~'a~!
always contains an element that, when expressed as a reduced word in {x, ,}, contains a generator
that is not in S and which appears with nonzero exponent sum.

‘We consider cases.

Casel.a = 1. Then abx,;b~'a™" = x_;x , . note thatif b # 1 then x, , and x; ;, are distinct,
and x;;, & S. Therefore in this case, abSb~a™! C ((S)) is only possible if (a, b) = (1, 1).

Case 2. b = 1. Then abx,;b~'a™' = x,  ,x_}. As in Case 1, if @ # 1 then X, and x,, are
distinct, and x,; € S. We conclude as in Case 1.

Case3.a #1and b # 1. Then

1

abxs,[b_la_ =X X x

a,b c:sl,bxas,bt c:,})t

Subcase 3a. x, ;, € S. Then observe that x, ;, is distinct from x , and from x, ;;, and so x,, ;, pro-
vides a generator that is not in S and has nonzero exponent sum in abx,,b~'a™!, demonstrating
abSb~ta~! ¢ ((S))k.

Subcase 3b. x,, ;, € S. In this case observe that x; ;, S and is distinct from x, ; and x; j,, and
thus has nonzero exponent sum in x, ,, demonstrating abSb~ta~! ¢ ((S))k.

Now, set C = (S) C G * H. We verify that C satisfies the required properties so that we may
apply Proposition 3.1. First, we observe that C is relatively convex in G % H, because C is relatively
convex in K as it is a free factor of K, and K is relatively convex in G * H because (G * H)/K =
G X H is left-orderable.

Next, choose w € G * H and write w = kab for some k € K and a € G, b € H. First, observe
that if (a,b) # (1,1) then abSb~'a~! ¢ ({(S))x and therefore abCb~la™! ¢ ((C))x = ({S))k.
Therefore, wCw™! = kabCb~ta~k~! ¢ ((C))g, in particular, wCw™! ¢ C.

So, we suppose that w = k € K. But then wCw™! N C # {1} implies w € C, because C is a free
factor in K and is therefore malnormal” in K.

Thus, C satisfies the hypotheses of Proposition 3.1, and as C = F,, we conclude that E|,(F,) <z

E,(G * H) and so E|,(G * H) is universal. O

In contrast, if G is a free product with amalgamation then E,,(G) need not be universal, in fact,
it may be smooth.

Example 3.2. Consider the group G = (a,b : a?> = b?), which is an amalgam of two copies of the
integers. It is isomorphic to the K = (x,y : xyx~! = y~!), which is a Tararin group having only
four left-orderings. Therefore, E,,(G) is smooth in this case.

4 | NEW SUFFICIENT CONDITIONS FOR NONSMOOTHNESS OF
E,(G)

The techniques of [6] developed to show nonsmoothness of E|,(G) are targeted toward answering
[13, Question 2.2.11]. Here we develop several more general techniques that subsume those results,
with the goal of determining when E|,(G) is smooth for a given group G. Our primary tool is
Proposition 2.7.

T Recall that a subgroup H of G is malnormal if gHg™' n H = {15} for all g € G with g & H.

A *S PT0T “0SLLE9YT

:sdny woiy

sdny) suopIpue)) pue SWIL 341 33§ *[SZ0Z/90/E 1] U0 AIeaqry uIuQ ASNIA “$ZOOL SWIIZ I 1 101 /10p/wioo Kajim'&

PUE-SULID) /WO K[IM"

ASURDIT suowwo) 2anear) d[qearjdde ayy Aq pauIaa0s aIe SI[O1IE V() (asn JO [N 10§ A1eIqr] auruQ A3[Ip UO (



8 of 22 | CALDERONTI and CLAY

As the conjugacy action is trivial for abelian groups, it is immediate that abelian groups yield
examples where E, (G) is smooth. However, [6, Example 2.8] provided a nonabelian example for
which E| (G) is smooth as well. The next proposition generalizes that example.

Proposition 4.1. Suppose that G is countable, virtually abelian and left-orderable. Then E,,(G)
is smooth.

Proof. Suppose A < G is abelian and |G : A| = n, we first show that the action of the subgroup
A on LO(G) is trivial. To this end, let P, Q € LO(G) and suppose that PN A = QN A. Then g € P
implies the existence of some 1 < k < n such that g € Pn A, so that ¢¥ € Q. But then ¢ € Q,
and so P C Q and therefore P = Q. Using this, we conclude thatif a € A and P € LO(G), then as
aPa'nA = a(P n A)a~! we must have aPa™! = P.

Now let {g, ..., g,,} be a complete set of left coset representatives for A in G. Then given g €
G, write g = g, a for some k € {1,...,n} and a € A, and note that for every P € LO(G) we have
gPg~! = graPa~'g ' = g, Pg,'. From this it follows that the orbit of P is {¢,Pg; ", ..., 9,Pg; ' }-
As g € G and P € LO(G) were arbitrary, we conclude that every orbit is finite.

As LO(G) is a Polish space, it admits a Borel ordering <. Therefore, the map s: LO(G) —
LO(G), s(P) = min_{Q € LO(G) : (Q,P) € E,,(G)} is a Borel selector for E,,(G) and so E,,(G) is
smooth. O

Remark 4.2. To contrast Proposition 4.1, note that the analogue fails for abelian-by-cyclic groups.
Recall that a group G is abelian-by-cyclic if there is a short exact sequence

1-oA->G->27Z->1,

where A is an abelian group and Z is an infinite cyclic group. An example of an abelian-
by-cyclic group is the (restricted) wreath product Z wr Z = 2% % 7, where 29 ={f: 7z -
Z : supp(f) is finite} and Z acts on Z(?) by shift. As Z is bi-orderable, one can prove that
E(Z) <g E\,(Z wr Z) arguing as in [6, Proposition 4.2]. Moreover, E,(Z) is invariantly univer-
sal for hyperfinite Borel equivalence [14, section 9] thus it is not smooth. The following question
remains open.

Question 4.3. Is E|,(Z wr Z) hyperfinite?

As Z wr Z is amenable, Question 4.3 is a particular instance of the most long-standing open
questions in the theory of countable Borel equivalence relations:

Question 4.4 (Weiss [34]). If G is a countable amenable group and X is a standard Borel space
G-space, must the orbit equivalence relation E)G( be hyperfinite?
4.1 | Restrictions on subgroups of G

Suppose that X is a standard Borel G-space. For any x € X, let G, :={g € G : g - x = x} be the
stabilizer of x.
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THE BOREL COMPLEXITY OF THE SPACE OF LEFT-ORDERINGS | 9 of 22

Proposition 4.5. If the orbit G - x is finite and contains more than one element, then there is a
proper subgroup N with N < G, with N 4 G and [G : N] < oo.

Proof. Suppose that |G - x| = k < 0. As we can identify the set of left-cosets {¢G,, : g € G} with
the finite orbit G - x, it is clear that G, < G, with [G : G,] = k.

Then consider the action by left-translation of G on the set of left-cosets {¢G, : g € G}. This
induces a representation p: G — S;. Set N = ker p. It follows that G/N is isomorphic to a
nontrivial subgroup of S;, which is finite. I

Proposition 4.6. Suppose X is compact and G ~ X by homeomorphisms. If E)G( is smooth and
thereisnox € X with g - x = x forall g € G, then there must be a finite orbit and G has a nontrivial
finite quotient.

Proof. Suppose E}G( is smooth. By Proposition 2.7, there must be a finite orbit G - x € X /G, which
by assumption contains more than one element. By letting N < G, as in Proposition 4.5, we have
|G/N| < oo with G/N nontrivial. O

Proof of Theorem 1.2. Note P € LO(G) is the positive cone of a bi-ordering if and only if gPg~—! = P
for all g € G. To see this, suppose that < is the left-ordering of G associated to P. If < is a bi-
ordering, then clearly gPg~! = P for all g € G. On the other hand, suppose gPg~! = P for all
g€Gand f < h.Then f~'h € Pand so g~'f~thg € P for every g € G, and therefore fg < hg.
With this fact in hand, we apply Proposition 4.6. O

Note that in particular, this result implies that if G is simple and not bi-orderable, then E,,(G)
is not smooth.

4.2 | Examples: Free products of simple groups with amalgamation

An abundant supply of left-orderable groups with restrictions on the existence of normal sub-
groups arises from the recent discovery of finitely generated, left-orderable simple groups [21],
as well as the investigation of critical regularity and associated smoothness questions concerning
actions of left-orderable groups on the real line [24].

As a finitely generated, left-orderable simple group G can never be locally indicable, the results
of [6] already show that E|,(G) is not smooth in this case. However these results say nothing
about the case of countable left-orderable groups admitting no finite quotients that are locally
indicable, plenty of which are known to exist. Below, we construct such a class of groups, and
apply Theorem 1.2.

Lemma 4.7. Suppose that G and H are simple groups, and C an infinite cyclic group equipped
with injective homomorphisms ¢5: C - G and ¢y : C — H. Then the free product G - H
amalgamated via the maps ¢, ¢y admits no finite quotient.

Proof. Suppose that N is a finite index normal subgroup of G - H. As C is infinite cyclic, N n
¢5(C) is infinite, as is N N ¢;;(C). But then N N G is a nontrivial normal subgroup of G, and as G
is simple, this implies G C N. Similarly, we conclude that H C N, sothat N = G %, H. O

We also require the following well-known lemma.
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10 of 22 | CALDERONTI and CLAY

Lemma 4.8. Suppose that G is a bi-orderable group, and that g,h € G and [gP, hq] = 1 for some
Dp,q € Z\ {0}. Then[g,h] = 1.

Proof. Suppose that g,h € G with [¢P,h9] = 1, and that [g, h] # 1. Then ghg~! # h, we may
assume that ghg~! < h for some bi-ordering of G. Assume p, q > 0, the other cases being sim-
ilar. Then gPhg=P < gP~'hg'~P < ... < h and therefore gPhlg=P < h9, so that [¢gP,h?] < 1, a
contradiction. O

Proposition 4.9. Suppose that G, H are locally indicable simple groups, and C = (t) is an infi-
nite cyclic group. Choose nonidentity elements g € G and h € H and integers p,q € Z \ {0, £1},
and define ¢;: C — G and ¢y : C — H by ¢p5(t) = gP and ¢y (t) = h9. Then G = H is locally
indicable, not bi-orderable, and admits no finite quotient.

Proof. That G *- H admits no finite quotient follows from Lemma 4.7. To see that G is not bi-
orderable, note that our choice of p and q implies g & ¢5(C) and h & ¢ (C), and therefore g
and h do not commute. However, ¢ (t) = h? and ¢;(¢t) = ¢gP implies [¢P, h] = 1,so that G =, H
cannot be bi-orderable by Lemma 4.8. It is locally indicable by [23, Theorem 9]. O

Proposition 4.9 therefore yields plenty of examples where we can apply Corollary 1.2, provided
we have an ample supply of locally indicable, countable simple groups. As a first example, we
consider Thompson’s group F and its commutator subgroup.

Example 4.10. Recall that Thompson’s group F has presentation
F={(a,b|[ab~!,a 'ba] = [ab~!,a"%ba?] = id).

It is well-known that this group is bi-orderable, hence it is also locally indicable [29]. The com-
mutator subgroup F’ is simple, by an application of the main result of [20]. Suppose C = (t) is
an infinite cyclic group, and define ¢;, ¢, : C — F’ by ¢,(t) = gP, $,(t) = h9 for some nontrivial
g,h € F/, thenset K = F/ %, F’, with amalgamation via the maps ¢;. Then E,(K) is not smooth
by Proposition 4.9.

We can produce many more examples using the dynamical results of [24] and the group F. We
first require two preliminary ingredients.

Recall that Thompson’s group F can be realized as a subgroup of Homeo, ([0, 1]), namely
the subgroup of piecewise-linear maps whose breakpoints have dyadic rational coordinates and
whose linear segments have slopes that are integral powers of 2. This yields a embedding of
p: F — Homeo ([0, 1]), which by Ghys-Sergiescu [17] is topologically conjugate to an embedding
pgs - F — Diff ([0, 1]).

We also recall that a homeomorphism f : [0,1] — [0, 1] is piecewise differentiable of class C?,
or piecewise C' for short, if there exists a finite subset S + C[0,1] such that f isa C! diffeomor-
phism on [0,1] \ Sf, and at every point x € S the left and right derivatives of f exist. The group
of all piecewise C! diffeomorphisms of [0,1] is denoted PDiff!([0,1]). Given a subgroup H of
PDiff!([0, 1]), the support of H, denoted supp(H), is the closure of the set

{x € [0,1] | 3h € H such that h(x) # x}.

The following lemma is well-known to experts.
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THE BOREL COMPLEXITY OF THE SPACE OF LEFT-ORDERINGS 11 of 22

Lemma 4.11. The group PDiff'([0, 1]) is locally indicable.

Proof. Suppose that H c PDiff!([0,1]) is a finitely generated subgroup, say with generators
{hy, ..., h,} and set p =infsupp(H). As every element of H fixes p, there is an inclusion
¢ : H — Fix(p) c PDiff!([0,1]). Now the group of C! germs fixing p can be identified with
G, = Fix(p)/N,, where

N, ={f € Fix(p) | 3U open with p € U and f|y = id}.

So, there is a homomorphism H — G, by following ¢ with the quotient map Fix(p) - G,, and
as G, is locally indicable by [8, Theorem 2.119], we need only to check that the image of this
homomorphism is nontrivial.

To this end, suppose that ¢(H) C N, and for each h; choose an open set U; with p € U;
and h|y, = id. Set U = N, U;, then |y = id for all i and p € U, which contradicts p =
inf supp(H). This finishes the proof. O

Proposition 4.12. Suppose that G C PDiff'([0,1]) is a countable subgroup whose support is com-
pactly contained in [0,1], and let G denote the subgroup of PDiff'([0, 1]) generated by G U Pas(F).
Then [G, G] is simple, countable and locally indicable.

Proof. That [G,G] is simple is a consequence of [24, Lemma 6.4], while local indicability follows
from Lemma 4.11. O

Question 4.13. Are there simple, locally indicable groups that are not bi-orderable?

4.3 | Restrictions on orderings of G

One of the key tools from [6] was the observation that if P € LO(G) has a finite orbit, then in fact
P € CLO(G), the subspace of all Conradian orderings of G (see [6, Proof of Theorem 1.1]). This
observation was used to prove that if G is not Conradian left-orderable (i.e., if CLO(G) is empty),
then E; (G) is not smooth because there cannot be a finite orbit. We can generalize this line of
reasoning, arriving at the following:

Proposition 4.14. If there exists X C LO(G) \ CLO(G) that is both closed and G-invariant, then
E,,(G) is not smooth.

Proof. If E,(G) is smooth and X C LO(G) is G-invariant, then E}G( is smooth. Thus the action of G
on X has a finite orbit by Proposition 2.7. However, this is not possible because all finite orbits lie
in CLO(G), while X ¢ LO(G) \ CLO(G). O

There are natural techniques for producing closed, G-invariant subsets X ¢ LO(G) \ CLO(G) as
in Proposition 4.14. For instance, we can construct such a set of orderings via short exact sequences
as follows:
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12 of 22 | CALDERONTI and CLAY

Proposition 4.15. Suppose that

1—>K—1>GiH—)1

is a short exact sequence of groups, and that G and H are left-orderable. If there exists a closed,
H-invariant set X C LO(H) \ CLO(H) then E,,(G) is not smooth.

Proof. Define a map lex : LO(K) x LO(H) — LO(G) by setting
lex (Pg,Py) = i(Pg) U g~ (Py).

Then lex is a continuous map, which can be checked by verifying that the preimage of a subba-
sic open set Ug ={P € LO(G) | g € P}is either Uilfl(q) x LO(H) or LO(K) X Uqfig) depending on
whether g € i(K) or g(g) # 1. Here, the superscripts on the subbasic open sets indicate whether
we are working with subbasic open sets of LO(K), LO(H) or LO(G).

Set lex (LO(K) X X) = Y, and note that Y is a compact set. We claim that Y ¢ LO(G) \ CLO(G)
and that Y is G-invariant.

We first show that lex (P, Py;) € CLO(G) if and only if both P, € CLO(G) and P; € CLO(H).
To this end, suppose that lex (Pg, Py) = i(Px) U q~'(Py) € CLO(G). Then there exist g,h €
lex(Py, Py;) such that g~hg? & lex (Pg, Py). There are three possibilities:

Case 1. g € i(Py) and h € q~1(Py). In this case, q(g~'hg?) = q(h) € Py, so that g~ hg? €
lex (Pg, Py;) meaning this case is impossible. Similarly, the case of h € i(Pg) and g € ¢~ }(Py)
is impossible, as then (g 'hg?) = q(g) € Py,.

Case 2. g, h € i(Py). Then g~'hg? & lex (Py, Py;) implies g~'hg? & i(Py), so that Py is not the
positive cone of a Conradian ordering.

Case 3. g,h € g '(Py). Then g 'hg? & lex (Py,Py) implies g 'hg®> & q~'(Py), so that
q(9),q(h) € Py while q(g)~'q(h)q(g)* & Py, so that P is not the positive cone of a Conra-
dian ordering.

On the other hand, if Py or Py is not the positive cone of a Conradian ordering, then it is
clear that lex (P, Py;) € CLO(G) via reasoning similar to above. It follows that lex (LO(K) x X) =
Y N CLO(G) = #.

Last we prove that Y is G-invariant. Given g € G and Py € LO(K), Py; € X, then

g ex (Pg,Py)g = g i(Pr)g U g g (Py)g.

Note that ¢ 'i(Px)g € LO(K) and that ¢~ 'q '(Py)g=q '(q(9)"'Pyq(g)), where
q(9)'Pyq(g) € X because X is H-invariant. Thus,

g Hex (Pg,Py)g = lex (¢7i(Pg)g,q(9) ' Puq(g)) € Y.

This shows that Y is G-invariant, and completes the proof as the statement now follows from
Proposition 4.14. Ol

Corollary 4.16. Suppose that G is left-orderable and admits a left-orderable quotient that is not
locally indicable. Then E,,(G) is not smooth.
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THE BOREL COMPLEXITY OF THE SPACE OF LEFT-ORDERINGS | 13 of 22

Proof. Denote the left-orderable nonlocally indicable quotient by H, and apply the Proposition 4.15
with X = LO(H). L]

Remark 4.17. Note that when G is bi-orderable, we can conclude that E (H) <z E|,(G) by [6,
Corollary 3.5].

5 | THE L-SPACE CONJECTURE AND 3-MANIFOLD GROUPS

Let M be a compact, orientable 3-manifold. Over the last decade, orderability of 77, (M) has become
an active area of study in low-dimensional topology, as this group may be left-orderable (for
instance, every knot group is left-orderable because it has infinite cyclic abelianization [5, The-
orem 1.1]) while in other cases the group is not left-orderable, such as when M is a lens space,
the Hantzsche-Wendt manifold [10, Example 1.59], or the Weeks manifold [10, Example 5.11].
Whether or not 77,(M) is left-orderable is conjecturally related to the Heegaard Floer homology
of M, and whether or not M supports a co-orientable taut foliation: a conjecture known as the
L-space conjecture (see Conjecture 5.5).

The goal of this subsection is to explain how smoothness of E, (7;(M)) when 7;(M) is left-
orderable is connected to the prime and JSJ decompositions of M, and observe some of the
expected behaviors that are a consequence of the L-space conjecture.

Recall that a 3-manifold M is prime if M =~ M, # M, implies M; =~ S® or M, ~ S3, where
# denotes connect sum. Every 3-manifold M admits a prime decomposition, that is, it can be
expressed uniquely as a connect sum of prime 3-manifolds

MM, #..#M,,

from which we conclude 7, (M) = m,(M;) * ... * m,(M,,).

Closely related is the notion of irreducibility: A 3-manifold M is irreducible if every embedded
2-sphere in M bounds a 3-ball. There are only two 3-manifolds that are prime but not irreducible,
either S? x S! or the twisted 2-sphere bundle over S'. From this, we observe that the fundamental
group of a prime, reducible manifold is always Z, and so the prime decomposition of a 3-manifold
M above yields

T (M) 2w (M) % ...« m1y(My) % Z * ... % Z,

where n — k is the number of prime, reducible factors (corresponding to the copies of Z), and
M,, ..., M, are irreducible. As the free product of left-orderable groups is left-orderable [32], it
follows that 7, (M) is left-orderable if and only if 77, (M;) is left-orderable for each i = 1, ..., k. From
this we observe:

Proposition 5.1. Suppose that M is a compact, connected orientable 3-manifold whose fundamen-
tal group is left-orderable. If M is not prime, then E,,(7r;(M)) is universal; and if M is prime and
reducible, then E, (7, (M)) is smooth.

Proof. This follows from Theorem 1.1 and the observations above. O

We therefore focus on investigating E,, (77, (M)) in the case that M is an irreducible 3-manifold.
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14 of 22 | CALDERONTI and CLAY

To do this, we employ a further unique decomposition of M into pieces, namely the JSJ decom-
position. Before introducing this decomposition, we introduce some standard terminology from
3-manifold topology, following [19]. A two-sided surface S in M is incompressible if, for each disk
D in M with DN S = 8D, there is a disk D’ C S with D’ = dD. A surface S is called 8-parallel if
there is an isotopy fixing 0S carrying S into dM. A 3-manifold M is atoroidal if every incompress-
ible torus in M is d-parallel. A Seifert fibered 3-manifold is a 3-manifold that admits a foliation by
circles [15].

The JSJ decomposition is a decomposition of M into pieces as follows: If M is compact, con-
nected, orientable, irreducible and the boundary of M (if nonempty) consists of a union of tori,
then there exists a unique (up to isotopy) collection 7 of disjoint, incompressible embedded tori
such that

M\T =M, U--UM,,

where each M; is either Seifert fibered or atoroidal. This reduces the problem of analyzing
E,,(7r;(M)) to the problem of analyzing fundamental groups of graphs of groups with Z @ Z edge
groups (corresponding to the tori of 7), and vertex groups given by the fundamental group of
atoroidal 3-manifolds and Seifert fibred manifolds whose boundary is a union of tori (when M
consists of many pieces), or empty, if M consists of a single piece (for background on graphs of
groups, see [31]).

In general, if G is a fundamental group of a graph of groups, then relating E, (G) to the vertex
and edge groups is difficult. However there are sufficient tools available in 3-manifold topology
that we can show:

Theorem 5.2. Suppose that for i = 1,2, the 3-manifold M, is compact, connected, orientable and
irreducible, and that M; is not homeomorphic to St x St x [0,1], and that the boundary of each
M; consists of a union of incompressible tori. Suppose that there exists a choice of boundary torus
T; C OM,; such that the JSJ piece of M; containing T is not Seifert fibred.

Fix a homeomorphism ¢ : T, — T, and set M = M, Uy M,. If 7t,(M;) are bi-orderable for i =
1,2, then E\(7r1(M;)) <g E,(m,(M)) fori =1,2.

Before proceeding with the proof of this theorem, we require the following well-known
proposition, whose proof we include for completeness.

Proposition 5.3. In an amalgam G = A *. B, A is malnormal in G if and only if C is malnormal
in B.

Proof. First suppose that C is malnormal in B. Leta € A, a # 1, and x;x, -+ X,,, € G \ A, written
so that m > 1 and x4, x5, ... , X, are alternately from A \ C, and B \ C. It is a standard result that
an alternating product of this form lies in one of the factors A or B if and only if m = 1. We want
to prove that w = x;,' - x;'ax; -+ x,, & A. We consider two cases:

Casel x; € B\ C. Then either w is already an alternating product with more than one term if
a€A\C,sowisnotin A;orw = x,! - xz‘l(xl‘laxl)x2 --- X,,, is an alternating product
if a € C with either a single term lying in B \ C or more than one term. In either case, w
isnotin A.

Case2 x; € A\ C. Then m > 2. We see that either t := xl‘lax1 isin C orin A \ C, and proceed
asin Case1.Iftisin C, thenw = x ! --- x5 1(x2_ Ytx,)x5 -+ x,, is either a single term lying
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in B\ C, or an alternating product with more than one term. If ¢ isin A \ C, then w =
Xt X3 X e x - X, is an alternating product with more than one term. In either
case, w is not in A.

If C is not malnormal in B, then there are some nontrivial ¢ € C and b € B\ C, such that
beb~! € C. Then this c is nontrivial in A and b is in G \ A with bch~! € A. Hence, A is not
malnormal in G. O

Proof of Theorem 5.2. As the boundary tori of M; are incompressible, the inclusion map T; — M;
induces an injective homomorphism 7,(T;) — 7;(M;). Therefore 7r,(M) = 7,(M;) *4_71(M,),
the amalgam of 7;(M,) and 7,(M,) with respect to the isomorphism ¢, : 7,(T,) = 7,(T,), by
the Seifert-Van Kampen theorem. Moreover, for each i, the manifold M, is not S 1 % D? because
the boundary of M; is incompressible, so the group 7, (T;) is malnormal in each 7,(M;) by [12,
Theorem 3]. Therefore, the subgroup 7, (M;) is malnormal in 77, (M) by Proposition 5.3.

Next, suppose that g € ;(M;) \ 771(T;), and that = m,(T;) for some k > 1. Then (g¥) c
g71(T)g~t N 71 (T;), which contradicts malnormality of 7z, (T;). So it must be that = 7,(T;) for
some k > 1 implies g € 7,(T;), meaning that the subgroup 7,(T;) is relatively convex by Propo-
sition 2.2. It follows that for each i = 1,2, the subgroup 7, (M;) is relatively convex in 7;(M) by
Proposition 2.3. The conclusion now follows from Proposition 3.1. O

This shows that in some cases (and we expect in much more generality), the issue of smoothness
of E,,(7r,(M)) reduces to considering the pieces of the JSJ decomposition of M, that is, irreducible
3-manifolds with nonempty boundary consisting of a collection of disjoint incompressible tori.

From here forward, we focus on an analysis of the simplest possible kind of JSJ piece, called a
knot manifold, which is a compact, connected, orientable and irreducible manifold M other than
S x D? having boundary a single torus T and H, (M; Q) = Q. For such manifolds, 7z, (M) is always
left-orderable, as |H,(M; Z)| = oo and so 7; (M) admits a surjection onto Z [5, Theorem 1.1].

Recall that an element g € G is called primitive if ¢ = h" for some h € G, n > 0, implies g = h
and n = 1. A primitive element of 7, (T) whose image has finite order in H,(M; Z) will be called
a rational longitude, we fix a choice of such an element and denote it by 4,,. Such an element 4,
always exists, by a standard rank argument based on the long exact sequence in homology arising
from the pair (M, 0M) [19, Lemma 3.5], see also [33, section 1.3].

For every primitive element o € 7,(T) C 7,(M), the quotient 7r;(M)/({«)) is the fundamen-
tal group of a 3-manifold denoted M(«), which is the manifold constructed as follows. Choose a
simple closed curve y C T such that [y] = @, and a homeomorphism f : 3(S! x D?) — T sending
{#} x 9D to y, and set M(at) = M U (S' x D?). The manifold M(«) is called the Dehn filling of
M along the curve «; a standard argument shows that H;(M(«); Z) is finite whenever a # /11%41
[33, Lemma 1.5]. Consequently, as 7;(M()) is a finitely generated group whose abelianization
H,(M(«); Z) is finite, it is not locally indicable.

Therefore, from the short exact sequence

1 - (a)) = (M) - m(M(a)) > 1
and an application of Corollary 4.16, we conclude:

Proposition 5.4. If M is a knot manifold, then E,,(r,(M)) is nonsmooth whenever M admits a
primitive element o € 7r,(T) distinct from /1]‘\*/11 such that w,(M(cx)) is left-orderable.
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16 of 22 | CALDERONTI and CLAY

Although the technology for determining left-orderability of 77, (M(«)) for an arbitrary « is not
yet developed, there is a conjectural picture known as the L-space conjecture.

Conjecture 5.5 ([3, Conjecture 1] and [22, Conjecture 5]). Suppose that M is a compact, connected,
orientable irreducible rational homology 3-sphere that is not homeomorphic to S3. Then the following
are equivalent.

(1) M is not a Heegaard Floer homology L-space.
(2) M admits a co-orientable taut foliation.
(3) 7 (M) is left-orderable.

The behavior of Dehn filling with respect to Heegaard Floer homology is controllable, in the
sense that

Ly ={a € m(T) | a primitive and M(«) is an L-space}

is fairly well-understood. In particular, we make the following observation: Owing to the short
exact sequence

1= (a)) = (M) - m(M(a)) > 1

and Corollary 4.16, the L-space conjecture predicts that E, (7r; (M)) is nonsmooth whenever there
exists a & L, distinct from /1;\—“41. The manifolds for which such an « fails to exist are known as
generalized solid tori [30, Proposition 7.5], cf. [18, section 1.5]. That is, a generalized solid torus is
a knot manifold M such that if a # 1, is primitive, then M(«) is an L-space; examples of such
manifolds are the solid torus itself and the twisted I-bundle over the Klein bottle.

We therefore conjecture:

Conjecture 5.6. If M is a knot manifold and E,,(m,(M)) is smooth, then M is a generalized
solid torus.

It should be noted that E,,(sr;(M)) is smooth for the generalized solid tori listed above: The
fundamental group of the solid torus is the integers, so E,(7r;(M)) is smooth in this case, and the
fundamental group of the twisted I-bundle over the Klein bottle is (x,y | xyx~! = y~1), which
admits only four orderings as in Example 3.2. So E,(7r; (M)) is smooth in this case as well.

On the other hand, the set of 3-manifolds that are generalized solid tori is conjecturally the same
as the set of all LO-generalized solid tori, introduced in [4, p. 24]. An LO-generalized solid torus
is a knot manifold M such that the restriction of every left-ordering of 7z,(M) to 7,(T) C m;(M)
yields a lexicographic ordering of 7z, (T') arising from the short exact sequence

1-> Ay »>m(T)>Z - 1.

The conjectured relationship with generalized solid tori comes from the fact that for these
manifolds, 7;(M(«)) is not left-orderable whenever a # 4,,.

Although E, (7, (M)) is easily understood for the solid torus and the Klein bottle, in [4, Propo-
sition 7.2] the authors show that the hyperbolic knot manifold M = v2503 is an example of an
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LO-generalized solid torus, and so is conjecturally also a generalized solid torus. For this manifold,
the complexity of E,(7r;(M)) is completely unknown.

Question 5.7. Determine the complexity of E,,(r;(M)) when for M = v2503.

We are able to verify Conjecture 5.6 for the case where M is the complement of a knot in S3,
which in some sense is the simplest class of knot manifolds (in general, if M is a closed 3-manifold
and K is a knot in M that does not bound a disk and is not contained in a 3-ball, then the comple-
ment of K in M is a knot manifold). However, to verify Conjecture 5.6 even in this special case,
we need a generalization of Corollary 4.16, as even in this simplest case one cannot guarantee the
existence of an appropriate Dehn filling with left-orderable fundamental group.

Proposition 5.8. Suppose that G is a countable left-orderable group, and that H C G is a subgroup.
If there exists P € LO(G) such that:

(i) {gPg ' N H | g € G}is a closed subset of LO(H),
(ii) thereisnoQ € CLO(G) and g € G satisfying QN H = gPg~' N H,

then E,,(G) is not smooth.

Proof. First observe that the restriction map r : LO(G) — LO(H) is continuous, and consider the
closed, G-invariant set {gPg~! | g € G}.

LetQ € {gPg~! | g € G}. By Proposition 4.14, it suffices to show that Q is not Conradian. First, if
Q = gPg~! for some g € G then Q ¢ CLO(G) by (ii). On the other hand, if Q is an accumulation
point of {gPg~! | g € G}, then as LO(G) and LO(H) are metrizable and r is continuous, r(Q) is
an accumulation point of {gPg~! N H | g € G}. But as this set is closed, we must have QN H =
gPg~ n H for some g € G, which again forces Q € CLO(G) by (ii). O

We recall the basics of knot groups. Recall that given a knot K C S3, the knot group of K is the
fundamental group 7, (S \ N(K)), where N(K) denotes a tubular neighborhood of K. As 3(N(K))
is a torus, 77, ((N(K))) = Z @ Z, and it is a classical fact that inclusion i : (N(K)) — S* \ N(K)
induces an injective homomorphism i, : 7,(3(N(K))) — 7,(S* \ N(K)). To simplify notation, we
write 77(K) for the knot group of K. It is straightforward to check that the first homology group
H,(S*\ N(K)) = Z,as such there is an abelianization map ¢, : 7(K) — Z for every knot K in S>.
The subgroup i, (7t (0(N(K)))) admits a choice of basis {u, A} satisfying ¢, (1) = 1and ¢, (1) = 0.

Lemma 5.9. Suppose that K is a knot in S3, that p,q are integers with p # 0, and that < is
any left-ordering of m(K). If there exists g € w(K) such that (uPA9)" < g for all n € Z, then < is
not Conradian.

Proof. Suppose that < is a Conradian left-ordering of 7(K). As 7(K) is finitely generated, there
exists a maximal <-convex subgroup C that is normal in 7(K) and such that 7(K)/C is abelian
and the natural quotient ordering of 7(K)/C is Archimedean [10, Proposition 9.19]. As such, the
quotient map 7(K) — m(K)/C can be identified with the abelianization map ¢, : 7#(K) — Z,and
the inherited ordering of 7(K)/C can be identified with the natural ordering of Z (up to possibly
reversing the ordering) [10, Problem 9.20]. Therefore, if < is a Conradian ordering of 7(K), then
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@ap - m(K) — Z is an order-preserving map, in the sense that g < h implies ¢, (g) < ¢, (h) for
all g, h € n(K).

Therefore, if (uPAT)" < g for all n € Z, then ¢, (UPAD)") = np < ¢, (g) for all n € Z. This
cannot happen. O

We next need a detailed analysis of the possible orderings of Z @ Z in order to use the results
of [4].

Identifying Z @ Z with the integer lattice points in R? and choosing a = (a;,a,) € R? \ {(0,0)},
there are two canonical positive cones in LO(Z @ Z) determined by a if Z—; is irrational, they are:

Pr ={(m,n) | aym + ayn > 0}and P, ={(m,n) | a;m + a,n < 0}.

If % is rational, then there are four associated positive cones, they are:
2

P¥* ={(m,n) | aym + ayn > 0 or there exists ¢ > 0 such that (—a,, a,) = (cn,cm)}
P;_ = {(m,n) | aym + a,n > 0 or there exists ¢ < 0 such that (—a,, a;) = (cn,cm)}
P;+ ={(m,n) | aym + a,n < 0 or there exists ¢ > 0 such that (—a,, a;) = (cn,cm)}

P~ ={(m,n) | aym + a,n < 0 or there exists ¢ < 0 such that (—a,, a;) = (cn,cm)}.

Moreover, every P € LO(Z @ Z) arises from a choice of a € R? and one of these construc-
tions above. Thus, every P € LO(Z @ Z) has associated to it a slope, which is the element o =
[(—a,,a,)] € P(R?)-we say that P detects the slope a (note that this is precisely the slope of the
line that divides R? into two halves, one containing only positive elements of Z @ Z and the other
containing only negative elements of Z @ Z). Moreover, we are taking the equivalence class of
(—a,, a;) in the projectivization of R? because each P € LO(Z @ Z) can be written in exactly two
different ways, for example, as P,'J* and PZ, for some choice of a € R2.

Lemma 5.10. Suppose that P € LO(Z & Z) detects [(p, q)], where p,q are integers. Then in the
associated ordering < of Z @ Z, the subgroup {((p, q)) is convex.

Proof. 1t suffices to show that if (0,0) < (a, b) < (np, nq) for some n € Z then (a,b) = (kp, kq)
for some k € Z. To show this, suppose that P = P(J:;_p), the other cases are similar.

Then (a, b) € P implies ag — pb > 0, or there exists ¢ > 0 such that (p, q) = c(a, b). If the latter
holds, we are done. The former, on the other hand, leads to a contradiction: As (a, b) < (np, nq)
also holds, then (np — a,nq — b) € P, which implies (np — a)q — (nq — b)p > 0 or pb — aq > 0.
This proves the lemma. Ul

Now, given aknot K C S3,let H denote the subgroup {(u,1) C 7(K)and r : LO(n(K)) — LO(H)
denote the restriction map. The authors of [4] define a slope a € P(H ® R) to be order-detected if
there exists a positive cone P € LO(r(K)) such that r(gPg~!) detects « for all ¢ € 7(K). Note that
the subgroup H is isomorphic to Z @ Z, so P(H ® R) can be identified with the projectivization
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of R? and H can be identified with the integer lattice points, meaning that a typical slope arising
from one of these lattice points is of the form [uPA?] for p,q € Z.

A Seifert surface for a knot K C S® is an orientable surface = C S3 such that % = K. Denoting
the genus of a surface X by ¢g(X), we define the genus of a knot K to be

9(K) = min{g(Z) | Z is a Seifert surface for K}.
The only knot K for which ¢g(K) = 0 is the unknot, for all other knots g(K) > 0.

Proof of Theorem 1.3. According to [4, Corollary 1.4], if K is a nontrivial knot in S3, then the slope
[129®)=11] is order-detected. Correspondingly, using H to denote the subgroup (u, 1) € 7(K) and
r: LO(m(K)) — LO(H) the restriction map, there is a positive cone P C 7(K) such that r(¢Pg~")
detects [u29®)-11] for all ¢ € 7(K). But then if we write a = u~'129K)~1 this means r(gPg~') €
{Pr+,Pt= P, P "} forall g € 7(K), so that r({gPg~" | g € m(K)}) is finite, and hence closed in
LO(H).

Moreover, suppose Q € LO(7(K)) satisfies r(Q) € {P}*,P/~,P_*,P_~}. Then by Lemma 5.10
the ordering associated to Q must satisfy (u?9%)~1A)" < y for all n € 7, as (u29%)~11) is convex
with respect to the ordering determined by r(Q) and u & (u29)~11). As K is nontrivial, g(K) > 0
and so 2¢g(K) — 1 # 0. It therefore follows from Lemma 5.9 that Q ¢ CLO(7(K)).

That E,,(7(K)) is not smooth now follows from Proposition 5.8. O

6 | SHORT EXACT SEQUENCES

One of the main tools used in [6], and in many arguments in this paper, is short exact sequences
of left-orderable groups. In this section, we give a general analysis of such methods in terms of
equivariant maps.

Suppose that

1-K5G3Hg-1

is a short exact sequence of left-orderable groups. Then both LO(K) and LO(H) come equipped
with a natural G-action, as follows. If ¢ € G and P € LO(H), define g - P = q(g)Pq(g)~!. On the
other hand, if P € LO(K), we will use ¢, € Aut(K) to denote the automorphism of K defined by
¢, (k) = gkg~' andset g - P = ¢ (P).

Recall that a subgroup H of G is called absolutely convex if H is convex relative to every left-
ordering of G.

Proposition 6.1. Suppose that
i q
1o K->G->H->1

is a short exact sequence of countable groups, and set X = LO(K) X LO(H). If we equip X with the
diagonal G-action defined by

9‘(PK’PH)=(9‘PK,9‘PH)
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and let Eg denote the resulting equivalence relation, then Eé < E,(G). If K is absolutely convex,
then EX =p E;,(G).

Proof. First, we note that as the actions of G on LO(H) and LO(K) are by homeomorphisms, each
of EIC“;O(H) and EEO(K) is a countable Borel equivalence relation. As all our groups are countable,
Eé{ is also a countable Borel equivalence relation.

Next, define a map 6 : X — LO(G) by 6(P, Q) = i(P) U g~'(Q). Note that 6 is continuous and
hence Borel, in fact this is a Borel reduction. This follows from the observation that g - (P,Q) =
(P’Q") if and only if gP¢g~! = P’ and q(¢)Qq(g)~! = Q’, which happens if and only if

g(iP)U g H Qg™ = gi(P)g U gg Qg = i(PHu g HQ).

If K is absolutely convex, then every positive cone P; € LO(G) is of the form i(Pgx) U g~ *(Py),
and so the the map 06 is surjective. In this case, 6 admits an inverse that is also a Borel
reduction. O

‘We next make a general observation to be used in combination with the previous result.

Proposition 6.2. Suppose that X,Y are each equipped with a Borel G-action for some countable
group G. Let EéXY denote the countable equivalence relation arising from the diagonal action g -
(x,y)=(g-x,9-y) on X XY, assume that it is Borel. If there exists a G-equivariant Borel map
6: X — Y then B} <z Ex.

Proof. Define a Borel reduction ¢ : X — X XY by ¢(x) = (x,6(x)). Suppose that g - x; = x, for
some x;, X, € X. Then

9-$0x1) =g - (x1,0(x1)) = (g - X1, 9 - 80x1)) = (x2,6(g - X1)) = (x,0(x,)) = $(x,).

Conversely, if g - $(x;) = ¢(x,) then (g - x;, g - 6(x;)) = (x,,6(x,)) and so g - x; = x, from the
first component. ]

Proposition 6.3. Suppose that

15K5G3H-1

is a short exact sequence of left-orderable groups.

(1) Ifthere exists a G-equivariant map 6 : LO(K) — LO(H), then E,,(K) < E,,(G).
(2) Ifthere exists a G-equivariant map 6 : LO(H) — LO(K), then E|,(H) < E,,(G).

Proof. This follows immediately from Propositions 6.1 and 6.2. O
Corollary 6.4. Suppose that

15K5G3H-1

is a short exact sequence of left-orderable groups. Then:

(1) ifK admits positive cone P such that gPg~! = P for all g € G, then E,,(H) <z E,(G);
(2) if H is bi-orderable, then E|,(K) <g E|,(G).
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Proof. In both cases above, we can apply the previous proposition taking 6 to be a constant
map. Ol

A corollary of this last proof already appears as [6, Proposition 3.4], where the G-equivariant
map used in that proposition is chosen to be a constant map.
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