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ABSTRACT

In conventional statistical and machine learning methods, it is typically assumed that the test data are
identically distributed with the training data. However, this assumption does not always hold, especially in
applicationswhere the target population are notwell-represented in the training data. This is a notable issue
in health-related studies, where specioc ethnic populations may be underrepresented, posing a signiocant
challenge for researchers aiming to make statistical inferences about these minority groups. In this work,
we present a novel approach to addressing this challenge in linear regression models. We organize the
model parameters for all the sub-populations into a tensor. By studying a structured tensor completion
problem, we can achieve robust domain generalization, that is, learning about sub-populations with limited
or no available data. Our method novelly leverages the structure of group labels and it can produce
more reliable and interpretable generalization results. We establish rigorous theoretical guarantees for the
proposedmethodanddemonstrate itsminimaxoptimality. To validate the efectiveness of our approach,we
conduct extensive numerical experiments and a real data study focused on diabetes prediction for multiple
subgroups, comparing our results with those obtained using other existing methods. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Conventional machine learning methods typically assume that
the test data, sampled from a target distribution, are well-
represented in the training domains. However, inmany practical
scenarios, data from the target domains can be scarce or
completely unseen during the training phase. A prominent
example of this occurs in biomedical research: diferent clinical
centers may employ varied medical devices and serve diverse
patient demographics, leading to signiocant discrepancies
between the training and test distributions (Zhang et al. 2023).
Such scenarios introduce multiple levels of heterogeneity
between the test and training domains, causing the test data
distributed diferently from the training data. To address this
challenge, the oeld of domain generalization has emerged. Also
referred to as out-of-distribution generalization or zero-shot
domain adaptation, domain generalization aims at developing
models that can efectively generalize to new and even unseen
populations that are not represented in the training domains
(Wang et al. 2022; Zhou et al. 2022).

Domain generalization has attracted signiocant attention
from various disciplines, including computer vision, healthcare,
and biological studies (Hendrycks et al. 2021; Lotfollahi et al.
2021; Shario-Noghabi et al. 2021). Consider a typical example
where the goal is to train a classiocation model to distinguish
between cats and dogs based on images. If the training data
consists of images in cartoon or painting styles, while the test
data comprises real photos, there is a clear divergence between
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the style features in the training and test domains. In such
cases, a classiocation rule trained on the artistic images may
not perform well when applied to real photos. In health-related
studies, this issue becomes even more critical. Populations
with diferent demographic features, such as gender and race,
may exhibit distinct biological mechanisms underlying diseases
(Woodward et al. 2022). For instance, the polygenic risk score
(PRS) for schizophrenia showed signiocant variation among
ancestral groups with substantially higher scores observed
in African subjects compared to European subjects from
HapMap (Curtis 2018). Moreover, certain sub-populations may
be underrepresented in medical databases, exacerbating the
challenge of ensuring that predictive models, trained on well-
represented groups, are generalizable and beneocial to those
underrepresented populations. This underscores the urgent
need for reliable domain generalization methods.

1.1. Main Results

In this work, we consider a multi-task linear regression frame-
work. Suppose that we have observations (x�

i , yi, g
�
i ), for i =

1, . . . ,N, where xi ∈ R
p represents the vector of covariates,

yi ∈ R is the response, and g i ∈ G is a q-dimensional group,
task, or environment index.Without loss of generality, the whole
set of group indices can be expressed as G = [p1] ◦ · · · ◦ [pq],
where <◦= denotes the Cartesian product. For example, a two-
dimensional (q = 2) group index might comprise gender and
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2 S. LI AND L. ZHANG

race indicators. If g i = g i′ , then the ith and i′th individuals
belong to the same group.

For each group, we consider the following linear model:

E[yi|xi, g i = g] = x�
i β(g), ∀g ∈ G, (1)

where β(g) ∈ R
p denotes the coeocient vector for group g.

However, data is available only for a subset of groups. Denote the
indices of observed groups by O for O ⊆ G. Let n(g) represent
the sample size for group g. By deonition, n(g) > 0 for each
g ∈ O, and n(g) = 0 for each g /∈ O. If g is the gender and race
indicator, thenO may contain well-represented groups and G \
O main contain underrepresented groups. Our primary objec-
tive is to establish prediction rules for some unseen domains
g /∈ O.

We propose to organize the coeocient vectors from multiple
groups as a high-order tensor and develop new tensor comple-
tion methods tailored for domain generalization. Notably, our
coeocient tensor presents structured missing patterns, which
is diferent from commonly studied random missing tensor
completion scenarios. To this end, we present a novel algorithm
named <TensorDG=, which stands for Tensor completion-based
algorithm for Domain Generalization. We further establish the
convergence rates of our proposal and show that it is mini-
max optimal for estimating {β(g)}g∈G in tensor Frobenius norm
under mild conditions. Additionally, we introduce 8TensorTL=,
which extends our core methodology for transfer learning when
the target domain possesses limited samples.

We highlight two key features of our proposal. First, it
leverages the group structures rather than simply labeling the
observed groups as 1, . . . , |O| as in many existing works on
multi-task learning and domain generalization. This structural
information is helpful for understanding the similarity of
diferent domains and further sheds light on devising more
explainable and reliable domain generalization methods.
Second, our proposal has solid theoretical guarantees and
enjoysminimax optimality undermild conditions.Moreover, by
employing the rank determination techniques (Han, Chen, and
Zhang 2022), practitioners can ascertain the degree to which the
model may be misspecioed, adding another layer of reliability
to the method.

1.2. Related Literature

Multi-task learning. Recently, multi-task regression and trans-
fer learning have been widely studied in various models (Du
et al. 2020; Lee et al. 2021; Li, Cai, and Li 2022). Many existing
works follow the idea to orst estimate some shared representa-
tions based on all the training samples and then calibrate the
model using the data from the target domain. Our framework
in (1) reduces to the multi-task learning problem when G = O,
that is, all the domains have some training data available. We
focus on the more challenging scenario where O � G, that
is, some target domains are not observed at all. Therefore, the
multi-task learningmethods cannot be directly used for domain
generalization. An example and further comparisons are given
in (4).

Domain generalization. Existing literature has studied identi-
fying causal features for domain generalization, that is, the fea-

tures that are responsible for the outcome but are independent
of the unmeasured confounders in each domain. Identiocation
of causal features has been connected with the estimation of
invariant representations (Bühlmann 2020). Rojas-Carulla et al.
(2018) propose methods to ond invariant representations for
domain generalizationwithout theoretical guarantees. Chen and
Bühlmann (2020) propose new estimands with theoretical guar-
antees under linear structural equation models. Poster et al.
(2021) investigate so-called stable blankets for domain gener-
alization but the proposed algorithm does not have theoretical
guarantees.

Beyond the causal framework, other popular domain gen-
eralization methods include Maximin estimator, self-training,
and invariant risk minimization. To name a few, distributionally
robust optimization (Volpi et al. 2018; Sagawa et al. 2019) or
Maximin estimator (Meinshausen and Bühlmann 2015; Guo
2023) minimizes the max prediction errors among the training
groups. Kumar, Ma, and Liang (2020) study the theoretical
properties of self-training with gradual shivs. Baktashmotlagh
et al. (2013) propose a domain invariant projection approach by
extracting the information that is invariant across the source and
target domains but it lacks theoretical guarantees.Wimalawarne,
Sugiyama, and Tomioka (2014), Li et al. (2017), and Feng,
Han, and Du (2021) use the low-rank matrix or tensor for
domain generalization in deep neural networks. However,
these methods are either purely empirical or computationally
demanding, lacking of statistical optimality guarantee with
eocient algorithms. In the realm of invariant predictors,
Arjovsky et al. (2019) introduce invariant risk minimization,
with extended discussions available in Rosenfeld, Ravikumar,
and Risteski (2020), Zhou et al. (2022), and Fan et al. (2023).
In contrast to our work, the works mentioned above do
not consider the structural information of group labels and
the generalizability is simply based on model assumptions.
Our model leverages the structure of group indices which
better explains why and how the model generalizes. It is also
possible to diagnose whether our model assumptions fail
or not.

Tensor completion. Our work is also closely related to tensor
estimation and completion, which has signiocantly advanced
in recent years (Bi et al. 2021). Montanari and Sun (2018)
study tensor completion with random missing patterns in the
noiseless setting. When having noisy entries, Zhang (2019)
study tensor completion under low-rank assumptions with
structural missing. Xia, Yuan, and Zhang (2021) study noisy
tensor completion with random missing patterns under low-
rank assumptions. The tensor completion problem can also be
rewritten as a tensor regression model whose design consists
of indicator functions. Chen, Raskutti, and Yuan (2019) study
projected gradient descent for tensor regression and Zhang et al.
(2020) propose a minimax optimal method for low-rank tensor
regression with independent Gaussian designs. Mu et al. (2014)
and Raskutti, Yuan, and Chen (2019) study tensor recovery
with convex regularizers without and with noises, respectively.
From the application perspective, tensor models have been
widely used in recommender systems and modeling biomedical
image data (Adomavicius and Tuzhilin 2010; Zhou, Li, and Zhu
2013).
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1.3. Organization and Notation

In the rest of this article, we introduce the low-rank tensor
model for multi-task regression in Section 2. In Section 3, we
present the rationale of the proposed method and introduce
the formal algorithm. We provide theoretical guarantees for
the proposed method in Section 4 and discuss extensions of
the main proposal in Section 5. In Section 6, we demonstrate
the numerical performance of our proposals. In Section 7, we
apply the proposed method to predict diabetes for people in
diferent age and education groups. We conclude this article
with discussions in Section 8. The proofs are all given in the
supplementary materials.

For a generic matrix T ∈ R
p1×p2 , let ‖T‖2 denote its spec-

tral norm, ‖T‖2,∞ denote maxj≤p2 ‖T.,j‖2, and ‖T‖∞,2 denote
maxj≤p1 ‖Tj,.‖2. For a generic semi-positive deonite matrix � ∈
R

m×m, let �k(�), �max(�), �min(�), and Tr(�) denote the
kth, largest, smallest singular values, and trace of�, respectively.
For a generic tensorM ∈ Rp1×···×pq , let ‖M‖�2 denote the vec-
torized �2-norm ofM, which is also known as tensor Frobenius
norm. For a generic set A, let |A| denote the cardinality of A.
Let a ∨ b denote max{a, b} and a ∧ b denote min{a, b}. We use
c, c0, c1, . . . to denote generic constants which can be diferent
in diferent statements. Let an = O(bn) and an � bn denote
|an/bn| ≤ c for some constant c when n is large enough.

2. Set-Up and Data GenerationModel

In this section, we outline the basic concepts related to the low-
rank tensor model and establish its connection with the domain
generalization problem.

2.1. Low-Rank TensorModel

Invoking Section 1.1, the observed data can be reshaped as

(X(g), y(g)) ∈ R
n(g)×(p+1), where each row corresponds to a

sample (x�
i , yi) with group label g i = g for each g ∈ O. For

each g /∈ O, let x(g) and y(g) denote the design and response
variables generated from the oracle model for domain g.

Condition 1 (Data generating process). Suppose that

y
(g)
i = (x

(g)
i )�β(g) + ε

(g)
i , i ∈ [n(g)], ∀g ∈ O,

E[y(g)|x(g)] = (x(g))�β(g), ∀g ∈ G \ O, (2)

where ε
(g)
i are the independent random noises such that

E[ε(g)
i |x(g)

i ] = 0 for each g ∈ O. We assume that ε
(g)
i is

independent of ε
(g′)
i′ for any g 
= g′ ∈ O, i ∈ [n(g)], i′ ∈ [n(g′)].

Each group in G has distinct model parameters β(g). The
noises in diferent domains are independent. For the unseen
groups g ∈ G \O, we only make assumptions on the conditional
mean models as there are no samples.

We arrange the regression coeocients {β(g)}g∈G into a tensor
β(G) ∈ Rp×p1×p2×···×pq such that

{β(G)}j,i1,...,iq = β
(Gi1,...,iq )

j = β
(i1,...,iq)

j .

That is, the orst mode of β(G) represents the regression coeo-
cients and the remaining q modes represent group indices. We
refer to the orst mode of β(G) as the <coeocient mode= and the
last qmodes as the <group modes=.

Denote the Tucker rank of tensor β(G) as (r0, r1, · · · , rq),
where rt can be unknown a priori. The Tucker rank is deoned
based on matrix unfolding. Speciocally, the unfolding Mt[X ]
maps a tensor X ∈ R

h0×···×hq into a matrix Mt[X ] ∈
R

ht×(
∏

0≤s 
=t≤q hs) such that

(Mt[X ])it ,j = Xi0,i1,...,iq , for j = 1 +
∑

0≤l≤q,l 
=t

(il − 1)Jl and

Jl =
∏

0≤m≤l−1,m
=t

hm. (3)

The Tucker rank (r0, r1, . . . , rq) is deoned such that rank
(Mt[β(G)]) = rt . We illustrate the implications of the low-
rankness in the following example.

If q = 2, the order-3 tensor β(G) can be unfolded as

M0[β(G)] =
(
β(1,1) · · · β(p1,p2)

)
∈ Rp×(p1p2),

M1[β(G)] =

⎛
¿

(β(1,1))� . . . (β(1,p2))�

. . .

(β(p1,1))� . . . (β(p1,p2))�

À
⎠ ,

M2[β(G)] =

⎛
¿

(β(1,1))� . . . (β(p1,1))�

. . .

(β(1,p2))� . . . (β(p1,p2))�

À
⎠ . (4)

The low-rank nature of M0[β(G)] implies that β(g) = B∗α(g)

for some basis matrix B∗ ∈ R
p×r0 and a latent score vector

α(g) ∈ Rr0 . Similar low-rank assumptions for linear coeocients
have been adopted by Du et al. (2020) and Tripuraneni, Jin,
and Jordan (2021) in the context of transfer learning for linear
models. As α(g) is task-specioc, it needs to be learned based
on a certain amount of target data. In domain generalization,
however, α(g) cannot be directly estimated when there are no
samples available from the target domain g. Fortunately, the
low Tucker rank structure suggests that the matricesM1[β(G)]
and M2[β(G)] also possess a low-rank nature. Such a correla-
tion structure among diferent groups enables the possibility of
domain generalization or zero-shot learning.

While we focus on the Tucker rank, another commonmetric
of tensor rank is the canonical polyadic (CP) rank (Hitchcock
1927). Let us denote the CP rank of β(G) as R(β(G)). It holds
that max0≤t≤q rt ≤ R(β(G)) ≤

∏q
t=0 rt/(max0≤t≤q rt). As a

result, a tensor with low CP rank will imply a low Tucker rank
structure. Hence, we focus on the Tucker rank characterization
in this work.

Additionally, we deone the mode product as follows. Let
X ∈ R

h0×···×hq denote a generic (q + 1)-order tensor. For
Et ∈ Rht×mt and t = 0, . . . , q, the tth mode product X ×t Et ∈
R

h0×···×ht−1×mt×ht+1×···×hq is deoned as

{X ×t Et}i0,i1,...,iq =
ht∑

s=1

{X }i0,...,it−1,s,it+1,...,iq{Et}s,it

for i0 ∈ [h0], . . . , iq ∈ [hq] and it ∈ [mt].
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2.2. Observed Group Structures

To recover the tensor β(G), the observed groups O need to
contain some crucial elements. For t = 1, . . . , q, the arm set for
mode t is deoned as

At = ◦
1≤k
=t≤q

Sk such that Sk ⊆ [pk] and

S1 ◦ · · · ◦ St−1 ◦ [pt] ◦ St+1 ◦ · · · ◦ Sq ⊆ O, (5)

where At is a (q − 1)-dimensional set. For example, if a ∈
A1, then (1, a�), . . . , (p1, a

�) are all elements of O, that is,
(1, a�), . . . , (p1, a

�) are all observed groups. To ease our nota-
tion, forAt deoned in (5), we denote the product S1 ◦· · ·◦St−1 ◦
[pt] ◦ St+1 ◦ · · · ◦ Sq asAt ◦t [pt]. Further, we deone the body set
as

� = ◦
1≤t≤q

�t such that �t ⊆ [pt] and � ⊆ O. (6)

As a consequence, it holds that

O ⊇ � ∪ (A1 ◦1 [p1]) ∪ · · · ∪ (Aq ◦q [pq]). (7)

That is, the observed groups should consist of a body set and q
arm sets (Figure 1). Without loss of generality, we assumeAt ⊆
�−t for �−t = ◦

1≤s 
=t≤q
�s. Otherwise, if At ⊃ �−t , then we

can treat At ◦t �t as the body set which is larger than � and
Condition 2 sequel is easier to be satisoed.

To summarize, the missing data pattern described in (7) is
structural, distinguishing it from missing at random. Xia, Yuan,
and Zhang (2021) studies minimax optimal tensor completion
methods with missing completely at random (MCAR) among
many others. TheMCAR assumption cannot be directly applied
in our problem, given that β(G) has no missingness in the 0th
mode (Figure 1).

3. Method

We orst outline the rationale of our proposal based on Tucker
decomposition in Section 3.1. The formal algorithm is provided
in Section 3.2.

3.1. Rationale from Tucker Decomposition

For S = S1 ◦ · · · ◦ Sq with St ⊆ [pt], t = 1, . . . , q, let

β(S) = {β(G)}S1,...,Sq,. ∈ R|S1|×···×|Sq|×p. We make the follow-
ing assumption on the whole tensor.

Condition 2 (Overall low-rank structure). The tensor β(G) has
Tucker rank (r0, r1, . . . , rq) and (7) holds. Moreover,Mt[β(�)]
and Mt[β(At ◦t �t)] both have rank rt for t = 1, . . . , q with
onite q, andM0[β(�)] has rank r0.

Under Condition 2, our target tensor β(G) has a Tucker
decomposition

β(G) = β(�) ×0 R0 ×1 R1 ×2 · · · ×q Rq ∈ Rp×p1×···×pq , (8)

where R0 ∈ Rp×p and Rt ∈ R|�t |×pt , t = 1, . . . , q are computed
based on β(At ◦t [pt]) as in the forthcoming (9). Hence, the
full tensor can be recovered by using a subset of groups O

satisfying (7), which only involves a small number of groups. As
Condition 2 can be violated in practice, wewill discuss themodel
diagnostics at the end of Section 4. In the supplement (Section
A.1), we provide a suocient condition which guarantees Condi-
tion 2 when the group indices are randomly revealed.

Wenowprovidemore details aboutRt in (8). For t = 1, . . . , q,

letωt = |�t| and at = |At|. Deone B(jo)
t = M�

t [β(At ◦t �t)] ∈
R

(atp)×ωt as the joint measurements for mode t and B
(ar)
t =

M�
t [β(At ◦t [pt])] ∈ R

(atp)×pt as the arm measurements for

mode t. For t = 0, especially, we deone B
(jo)
0 = B

(ar)
0 =

(β(g1) . . . β(g|O|))� ∈ R|O|×p such that {g1, . . . g|O|} = O. In

words, B
(jo)
0 is a matrix consisting of the coeocient vectors of all

the observed groups. Then (8) holds with

Rt = (B
(jo)
t )†B

(ar)
t ∈ Rωt×pt and

R0 = (B
(jo)
0 )†B

(ar)
0 ∈ Rp×p, (9)

where the notation A† denotes the pseudo-inverse of a matrix
A. Condition 2 guarantees that {Rt}qt=0 are well-deoned and
estimable. Indeed, we use β(At ◦t �t) instead of β(�) to realize
Rt because the deonition of At guarantees that At ◦t [pt] ⊆ O

but �−t ◦t [pt] 
⊆ O in general. In fact, Rt also lives in a low-

dimensional subspace. Consider the SVD of B
(jo)
t = Ut�tV

�
t .

By (9), we have the following relationships

VtV
�
t Rt = Vt�

−1
t U�

t B
(ar)
t = Rt , t = 0, . . . , q. (11)

Figure 1. A graphical illustration of the coeocient tensor β(G). In the upper plane, the blue squares correspond to the group indices inO, the orange and yellow squares
correspond to the group indices inAt ◦t [pt], t = 1, 2, and the green squares correspond to the group indices in�.
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Algorithm 1: TensorDG: Domain Generalization via Tensor Completion

Input: {X(g), y(g)}g∈O , body set �, arm setsAt , t = 1, . . . , q.

Output: β̂(G) ∈ Rp×p1×···×pq .

Step 0: Sample splitting. For each g ∈ O, split the samples into two disjoint folds such that I
(g)
1 ∪ I

(g)
2 = [n(g)] and

|I(g)1 | ≈ |I(g)2 |. Let (X̃(g), ỹ(g)) ∈ R|I(g)1 |×(p+1) and (X̊(g), ẙ(g)) ∈ R|I(g)2 |×(p+1) denote the observations within orst and
second folds, respectively.
Step 1: Estimation of the rank and basis for each mode. For t = 0, . . . , q, estimate r̃t and Ṽt via Algorithm 2 with input

{X̃(g), ỹ(g)}g∈O .

Step 2: Estimate 	t . For each g ∈ O, compute β̃
(g) = {(X̃(g))�X̃(g)}−1(X̃(g))�ỹ(g) and β̊

(g) = {(X̊(g))�X̊(g)}−1(X̊(g))�ẙ(g).
formode t = 1, . . . , q do

Unfold B̃
(jo)
t = M�

t [β̃(At ◦t �t)] ∈ R(|At |p)×ωt , B̊
(jo)
t = M�

t [β̊(At ◦t �t)] ∈ R(|At |p)×ωt , and B̊
(ar)
t = M�

t [β̊(At ◦t [pt])] ∈ R(|At |p)×pt .
Compute

	̂t = (Ṽ�
t (̃B

(jo)
t )�B̊

(jo)
t Ṽt)

−1(̃B
(jo)
t Ṽt)

�B̊(ar)
t ∈ Rr̃t×pt . (10)

end

For t = 0, unfold B̃0 = M�
0 [β̃(O)] ∈ R|O|×p, B̊0 = M�

0 [β̊(O)] ∈ R|O|×p and compute

	̂0 = (Ṽ�
0 B̃

�
0 B̊0Ṽ0)

−1(̃B0Ṽ0)
�B̊0 ∈ Rr̃0×p0 .

Step 3: Tensor completion. Compute

β̂(G) = (β̊(�) ×q
t=0 Ṽt) ×q

t=0 	̂t .

That is, Rt lies in the linear subspace spanned by Vt . Together
with (8), we have

β(G) = β(�) ×0 V0V
�
0 ×q

t=1 VtV
�
t Rt

= (β(�) ×q
t=0 Vt) ×q

t=0 	t , (12)

where 	0 = V�
0 ∈ R

r0×p and 	t = V�
t Rt ∈ R

rt×pt , t =
1, . . . , q. We see from (12) that to recover the whole tensor, it
suoces to estimate β(�) ×q

t=0 Vt ∈ Rr0×r1···×rq and 	t for t =
0, . . . , q, which has degree of freedom

∏q
t=0 rt+

∑q
t=0(pt−rt)rt ,

where we use the convention p0 = p. Indeed, β(�) ×q
t=0 Vt is

always referred to as the core tensor (Zhang and Xia 2018) as it
is the smallest possible tensor containing the coeocients of each
mode and	t can be viewed asmultiplying coeocients for the tth
direction and it spans the subspace of tthmode.Wewill propose
an algorithm to estimate the core tensor and {	t}qt=0 in the next
subsection.

Remark 1. Model (8) is also related to the tensor factor models
(Han et al. 2020; Chen, Yang, and Zhang 2022), which have
been studied in high-dimensional tensor time series. Using the
terminology in factor models, 	t are the loading matrices and
β(�) ×q

t=0 Vt is the tensor of factors. In the time series applica-
tions, the observed data always form a complete tensor which is
diferent from our setting.

3.2. Proposed Algorithm

Wenowdevise an algorithm to estimateβ(G) based on (12). Our
proposal has three main steps. The orst step is to estimate the
low-dimensional subspaceVt for t = 0, . . . , q. Then we estimate
	t based on (9) and (11). Finally, we assemble the estimated
tensor based on (12). The proposal, termed as TensorDG, is

presented in Algorithm 1. Algorithm 1 starts with a sample-
splitting step, which is mainly for technical convenience. Similar
approaches have also been used in other works to derive theo-
retical guarantees for tensor estimation and completion (Zhang
et al. 2020).

In Step 1, Algorithm 1 estimates Vt by Ṽt using half of the
samples via Algorithm 2. Algorithm 2 is motivated by the fact
thatVt is the column space of
t = {Mt[β(�)]}�Mt[β(�)]/|�−t|.
The proposed estimate 
̃t of 
t is based on the least square
estimates of β(g), g ∈ � and the last term of its expression
further corrects the bias caused by the product of OLS estimates.
The rank r̃t is estimated as the number of signiocantly nonzero
eigenvalues of 
̃t . The threshold level λt is chosen based on
the concentration properties of 
̃t . Determination of the tensor
rank can also be based on information criteria (Han, Chen, and
Zhang 2022).

In Step 2, we obtain estimates of β(g), g ∈ O based on two
disjoint sets of samples. Then we estimate 	t by a least-square
type of estimate 	̂t using the deonition of 	t below (12). In Step
3, thewhole tensor is assembled according to (12) with the afore-
mentioned estimates. Thanks to the structural missing patterns,
we are able to achieve completion in one round. Moreover, each
step involves convex optimizations, which are computationally
eocient.

Our method exhibits two primary distinctions from existing
tensor completionmethods, such as the Crossmethod proposed
in Zhang (2019), which also employs decomposition (8). First,
in the standard tensor completion problem, the sample for each
element of the oracle tensor is independent and unbiased. In
contrast, in the domain generalization problem under consid-
eration, we need to ot regression models for each domain.
The produced OLS estimates therefore exhibit correlated errors,
which need to be calibrated as detailed in Algorithm 2. Second,
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Algorithm 2: SVD for mode t.

Input: {X̃(g), ỹ(g)}g∈O .

Output: Estimated rank r̃t and basis Ṽt ∈ Rωt×r̃t .

For each g ∈ O, let ñ(g) = |I(g)1 | and compute �̃(g) = (X̃(g))�X̃(g)/ñ(g),

β̃
(g) = {�̃(g)}−1(X̃(g))�ỹ(g)/ñ(g) and σ̃ 2

g = ‖ỹ(g) − X̃(g)β̃
(g)‖22

ñ(g) − p
. (13)

- If t = 0, let B̃0 = M�
0 [β̃(O)] ∈ R|O|×p. Perform eigen decomposition for


̃0 = 1

|O| B̃
�
0 B̃0 − 1

|O|
∑

g∈O
(�̃(g))−1

σ̃ 2
g

ñ(g)
= V̊0�̊0V̊

�
0 ∈ Rp×p.

Let r̃0 =
∑p

k=1 1((�̊0)k,k ≥ λ0) and Ṽ0 = {V̊0}.,1:r̃0 ∈ Rp×r̃0 , where λ0 = Cλ

√
‖
̃0‖2(p + log n̄)/(n̄|O|) for

n̄ =
∑

g∈O ñ(g)/|O|.
- If t ≥ 1, let B̃t = M�

t [β̃(�)] ∈ R|�−t |p×ωt . Deone


̃t = 1

|�−t|
B̃�
t B̃t − 1

|�−t|
Diag(ṽ) = V̊t�̊tV̊

�
t ∈ Rωt×ωt ,

where Diag(ṽ) is a diagonal matrix with {Diag(ṽ)}j,j = ṽj and ṽj =
∑

g∈�,gt=(�t)j
Tr({�̃(g)}−1)

σ̃ 2
g

ñ(g) . Let

r̃t =
∑ωt

k=1 1((�̊t)k,k ≥ λt) and Ṽt = {V̊t}.,1:r̃t ∈ Rωt×r̃t , where λt = Cλ

√
‖
̃t‖2(ωt + log n̄)/(n̄|�−t|).

for tensor β(G), the 0th mode is not exchangeable with other q
groupmodes. This distinction arises because β(g) represents the
smallest unit of interest in domain generalization, and it is either
observed or missed in its entirety. Consequently, the dimension
reduction approach we adopt for the 0th mode difers from
the strategies employed for the remaining q modes. Another
related work is Simchowitz, Gupta, and Zhang (2023), which
studies combinatorial distribution shivs, that is, the training and
test data distributions difer signiocantly due to diferences in
the combinations of features. The diference is that they have
one source and one target distribution but we have multiple

source and target distributions. Moreover, we allow x
(g)
i to be

continuous, making the analysis very diferent.

4. Theoretical Properties

In this section, we provide theoretical guarantees for Algo-
rithm 1. We orst state the main assumptions.

Condition 3 (Distribution of observed data). For each g ∈ O,

x
(g)
i , i = 1, . . . , n(g), is independent sub-Gaussian with mean

zero and covariancematrix�(g), where c1 ≤ ming∈O �min(�
(g)) ≤

maxg∈O �max(�
(g)) ≤ c2 for some positive constants c1

and c2. For each g ∈ O, n(g) � n and the noise ε
(g)
i is

independent sub-Gaussian with mean zero and variance σ 2
g and

maxg∈O σ 2
g ≤ σ̄ 2 < ∞. For each g ∈ G\O, x

(g)
i , i = 1, . . . , n(g),

is independent sub-Gaussian with mean zero and covariance
matrix �(g) with maxg∈G\O �max(�

(g)) ≤ c2.

Condition 3 assumes sub-Gaussian designs and sub-Gaussian

errors. Heterogeneous distributions for both x
(g)
i and ε

(g)
i are

allowed. The assumption that n(g) � n is a simplioed scenario
for technical convenience and has been commonly considered
in the multi-task learning literature (Guo et al. 2011; Du et al.
2020; Tripuraneni, Jin, and Jordan 2021). The sub-Gaussian
assumption on the covariates X(g), g ∈ G \ O are only used
to establish prediction error bounds for the unseen groups and
they are not used in the training phase. Condition 3 also assumes
that n(g) � n for simplicity. In practice, it could be the case that
nmin := ming∈O n(g) � n̄. In this case, the performance of
TensorDG can depend on nmin. Hence, one can remove the
groups with only a few samples fromO for a faster convergence
rate. Speciocally, let Õ denote the set of groups with n(g) > 0.
We would like to ond O ⊆ Õ such that O contains important
structural information so that Condition 2 is satisoed and nmin

is not too small.
Our analysis allows (pt , rt), t = 0, . . . , q to go to inonity

but p ≤ c1n for some small enough constant c1. This low-
dimensional assumption guarantees the regularity of the least
square estimates of each group. In Section E of the supplements,
we discuss possible extensions of the proposed methods to the
high-dimensional setting. For t = 1, . . . , q, deone


t = 1

|�−t|
{Mt[β(�)]}�Mt[β(�)] ∈ Rωt×ωt ,


0 = 1

|O| {B
(jo)
0 }�B(jo)

0 ∈ Rp×p. (14)

Deone e∗ = min0≤t≤q �rt (
t) and e∗ = max0≤t≤q �max(
t).

Condition 4 (Eigenvalue conditions). For 
t deoned in (14),
assume that for some large enough constant C > 2Cλ,

e∗ ≥ Cσ̄ max{max1≤t≤q

√
e∗(ωt+log n)

n|�−t | ,
√

e∗p
n|O| }. Moreover,
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assume that �r0(B
(jo)
0 ) ≥ C′σ̄

√
p+log n

n and �rt (B
(jo)
t ) ≥

C′σ̄ max{
√

rt+log n
n ,�

1/2
max(B

(jo)
t )(

rt+log n
n )1/4}, t = 1, . . . , q, for

some large enough constant C′.

Condition 4 can be viewed as an assumption on the condition

numbers for B
(jo)
t and 
t , t = 0, . . . , q. Note that the condition

numbers are allowed to go to inonity as n → ∞.

4.1. Upper Bounds for the Generalization Errors

We orst establish the estimation accuracy of subspace esti-
mation in Step 1 of Algorithm 1. For two orthonormal
matrices A ∈ R

p1×p2 and B ∈ R
p1×p2 , let sin θ(A,B) :=

‖Diag(sin(arccos(λ1)), . . . , sin(arccos(λr)))‖2, where λ1 ≥
· · · ≥ λp1∧p2 are the singular values of A

�B.

Lemma 1 (Subspace estimation for each mode). Suppose that
Conditions 1–4 hold. If p(log |O| + log n) ≤ c1n with small
enough constant c1, then for any 1 ≤ t ≤ q,

sin θ(Ṽt ,Vt) ≤ c2σ̄

e∗

√
e∗(ωt + log n)

n|�−t|
, r̃t = rt

with probability at least 1 − exp{−c2 log n}. Moreover, with
probability at least 1 − exp{−c2 log n},

sin θ(Ṽ0,V0) ≤ c2σ̄

e∗

√
e∗(p + log n)

n|O| , r̃0 = r0.

Lemma 1 provides the convergence rate of Ṽt for Vt , t =
0, . . . , q under given conditions. For each 1 ≤ t ≤ q, we use
n|�−t| samples to estimate Vt , loosely speaking. The condition
p(log |O| + log n) ≤ c1n guarantees that ming∈O �min(�̃

(g)) is
bounded away from zero with high probability.

In the following theorem, we provide formal upper bounds
for our proposal. For t = 0, . . . , q, let 	̃t = (V�

t Ṽt)
−1	t . Let

CR = max1≤t≤q ‖Rt‖2,∞ ∨ 1 and C̄R = max1≤t≤q ‖Rt‖2 ∨ 1.

Let ρt = ‖Mt[β(�)]‖2/�rt (B
(jo)
t ) for t = 1, . . . , q and ρ0 =

min1≤t≤q ‖M0[β(�−t ◦t [pt])]‖2/�r0(M0[β(At ◦t [pt])]). In
the simple case whereAt = �−t , ρt is the condition number for
the matrix Mt[β(�)] for t = 1, . . . , q and ρ0 is the minimum
condition number for the matrix M0[β(�−t ◦t [pt])], t =
1, . . . , q.

Theorem 1 (Domain generalization bounds in tensor Frobenius
norm). Assume Conditions 1–4. Suppose that p(log |O| +
log n) ≤ c1n, ωt ≤ c1

√
n|�−t|,

∑q
t=1

√
pt+log n

�2
rt

(B
(jo)
t )n

≤ c1 for

some small enough constant c1, and max0≤t≤q ρt ≤ C <

∞. Then for any oxed η � log n, with probability at least
1 − exp{−c2 log n} − c3 exp{−c4η}

‖β̂(G) − β(G)‖�2 ∨
√√√√

∑

g∈G

1

n(g)
‖X(g)(β̂

(g) − β(g))‖22

� C̄
q−1
R

q∑

t=1

√
(C̄2

Rrt + pt + C̄2
Rη)rt

n

+ C̄
q−1
R

√
(p + η)r0

n

+ C̄
q
R

√∏q
t=0 rt + η

n
. (15)

Theorem1 provides an upper bound for the estimation errors
in all the environments including the unseen ones. The general-
ization error is decomposed into three main sources. The orst
component is the estimation error of 	̂t for t = 1, . . . , q. The
second component comes from the estimation of 	̂0, which is
the dimension reduction for the 0th mode and has no missing-
ness. The third term comes from the noise in the estimated core
tensor.

To further understand this result, if C̄R ≤ c1 < ∞, η �

min0≤t≤q pt ∧ (
∏q

t=0 rt), and rt ≤ c2pt for some c2 < 1, and,
then the upper bound in (15) can be rewritten as

q∑

t=1

√
rt(pt − rt)

n
+

√
(p − r0)r0

n
+

√∏q
t=0 rt

n
. (16)

It is known that the degree of freedom for a tensor with rank
(r0, r1, . . . , rq) is

∑q
t=0 rt(pt − rt) +

∏q
t=0 rt . Loosely speaking,

the upper bound in (16) shows that the estimation error of
β̂(G) is equivalent to estimating all the essential parameters with
the observed samples. From the perspective of tensor comple-
tion, Theorem 2 in Zhang (2019) considers the case that each
observed element in the tensor has one independent sample
and its upper bound involves the raw noises. The result (15)
is a probabilistic bound and it is more general because, in the
current case, each observed element in the tensor corresponds
to a regression model with n(g) � n independent samples.

In the following, we present a counterpart of Theorem 1

with respect to the max norm. Let ρ′
t = maxg∈G ‖β(g)‖2

�rt (B
(jo)
t )/

√
|At |

for

t = 1, . . . , q and ρ′
0 = maxg∈G ‖β(g)‖2

�r0 (B
(jo)
0 )/

√
|O|

.

Theorem 2 (Domain generalization bounds in max norm).
Assume Conditions 1–4 hold. Assume that p(log |G| + log n) ≤
c1n, ωt ≤ c1

√
n|�−t|,

∑q
t=1

√
rt+log n

n�2
rt

(B
(jo)
t )

≤ c1

√
r0+log n∏q
t=0 rt+log n

∧
1

max1≤t≤q
√

ω−t
, and max0≤t≤q ρ′

t ≤ C, then with probability at

least 1 − exp{−c2 log n},

max
g∈G

‖β̂(g) − β(g)‖2 ∨ max
g∈G

1√
n(g)

‖X(g)(β̂
(g) − β(g))‖2

�

q∑

t=1

√
ωt(C

2
Rrt + log n)

atn

+
√
p + log n

|O|n + C
q
R

√
r0 + log |G| + log n

n
. (17)

The results in max norm (17) can be more useful in the
domain generalization setting. The three terms in the upper
bound also correspond to the three sources of errors as in
Theorem 1. The term log |G| appears in the upper bound as
we take maximum over all the groups in G. The quantities ρ′

0
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and ρ′
t are constants if β(g), g ∈ � are independent sub-

Gaussian and ‖β(g)‖2 � ‖β(g′)‖2 for all g, g′ ∈ G. We see
that the rate in max norm can be slower than the rate in tensor

Frobenius norm divided by

√∏q
t=1 pt . Especially, the last term

in (17) does not show the aggregation efects across multiple
groups. In noisy matrix completion setting, the optimal entry-
wise estimation rate has no aggregation efect either (Chen et al.
2019) and our tensor completion results can be understood
analogously. Nevertheless, the rate in (17) can still be faster than
the meta-learning method (Tripuraneni, Jin, and Jordan 2021)
if n � n(g∗).

4.2. Minimax Lower Bound

In this section, we provide minimax lower bound results for the
current problem. Let β(G) ∈ R

p×p1×···×pq be the coeocient
tensor corresponding to a set of group G. We consider the
following parameter space


(r, C̄R) =
{
β(G) ∈ Rp×p1×···×pq : rank(Mk[β(G)])

= rank(Mk[β(�)]) ≤ rk, k = 0, . . . , q,

max
1≤t≤q

‖Rt‖2 ≤ C̄R, max
0≤t≤q

ρt ≤ C

}
,

where r = (r0, . . . , rq) and C is some large enough constant. We
present the minimax lower bound result below.

Theorem 3 (Minimax lower bound in tensor Frobenius norm).
Assume Conditions 2 and 3, pt ≥ 3rt , 4rt ≤

∏
t′ 
=t rt′ , rt ≥ 2 for

t = 0, . . . , q, and q is onite. There exists some positive constant
c1 such that

inf
β̂(G)

sup
β(G)∈
(r,C̄R)

P

(
‖β̂(G) − β(G)‖�2 ≥ c1C̄

q−1
R

q∑

t=1

√
ptrt

n

+c1C̄
q−1
R

√
pr0

n
+ c1C̄

q−1
R

√∏q
t=0 rt

n

À
⎠ ≥ 1/4.

Compared with the rate in (15) of Theorem 1, we see that the
proposed algorithm is minimax rate optimal in the parameter
space 
(r, C̄R) when C̄R = O(1) or C̄R

∏q
t=1 rt = O(p). A

simple example in which C̄R = O(1) is that Rt = Vt for
Vt ∈ Opt ,rt = {V ∈ Rpt×rt : V�V = Irt }.

To summarize, TensorDG enjoys both computational eo-
ciency and estimation accuracy if the low-rank tensor model
holds. However, our proposal could fail if Condition 2 is not
satisoed. In practice, Condition 2 can be diagnosed to some
extent. For instance, one can determine whether the rank of
Mt[β(At ◦t �t)] equals the rank of Mt[β(At ◦t [pt])] based
on the information criterion or the eigen-ratio criterion (Han,
Chen, andZhang 2022). If they are not equal, thenCondition 2 is
violated. Such tests can answer the important question whether
the model is generalizable based on the observed data, which
concerns the reliability of a domain generalization method. In
contrast, there seems no direct way to verify the generalizability
of some other frameworks such as the invariant causal models.

5. Extensions

In this section, we extend the main methodology to handle
transfer learning tasks. We present the extensions to high-
dimensional scenarios in Section E of the supplements.

TensorDG has demonstrated the capability to estimate β(g)

even if n(g) = 0 by leveraging the low-rank tensor structure. In
real-world scenarios, it is also common to have a limited number
of samples available from the target domain. Speciocally, for
a given target domain g∗, it oven holds that 0 < n(g∗) �∑

g∈O n(g). In this situation, we would like to harness the n(g∗)

samples from the target domain. Li, Cai, and Li (2022), Tian and
Feng (2022), and Li et al. (2023) have studied transfer learning
with sparsity-based similarity characterizations among many
others. Du et al. (2020), Tripuraneni, Jin, and Jordan (2021),
Chua, Lei, and Lee (2021), Duan and Wang (2023), Tian, Gu,
and Feng (2023) and other works consider transfer learningwith
low-rank similarity assumptions on M0[β(G)]. Ghosh et al.
(2020) and Kong et al. (2020) consider clustered multi-task
learning in the settingwhere diferent groups or sub-populations
may come from the same task, which can also be modeled using
the low-rank similarity assumptions onM0[β(G)].

In transfer learning, avoiding negative transfer is a critical
concern. Negative transfer occurs when the assumed similarity
between the source and target tasks fails, which could lead to a
deterioration in the performance of transfer learning compared
to only using target data. To address this concern, we relax
(2) to account for an additional level of model heterogeneity.
Speciocally, we assume

y
(g)
i = (x

(g)
i )�β(g) + ε

(g)
i , i ∈ [n(g)], ∀g ∈ O \ {g∗}

y
(g∗)
i = (x

(g∗)
i )�γ (g∗) + ε

(g∗)
i , i ∈ [n(g∗)],

γ (g∗) = β(g∗) + δ(g∗), (18)

where {β(g)}g∈O belongs to the tensor β(G) satisfying Condi-

tion 2 and δ(g∗) ∈ R
p represents a unique direction of β(g∗).

The magnitude of δ(g∗) also denotes the level of misspeciocation
of the low-rank tensor model. To estimate γ (g∗), we use the
oracle Trans-Lasso (Li, Cai, and Li 2022) based on the TensorDG
estimate of β(g∗).

Theorem 4 (Estimation and prediciton errors of TensorTL).
Assume the Conditions of Theorem 2 and model (18). For
λg∗ ≥ c0

√
log p/n(g∗) with a large enough constant c0, it holds

that with probability at least 1−exp{−c1 log p}−exp{−c2 log n},

‖γ̂ (g∗) − γ (g∗)‖2 ∨ 1√
n(g∗)

‖X(g∗)(γ̂
(g∗) − γ (g∗))‖2

�

q∑

t=1

√
C2
Rrt + log n

atn

+
√
p + log n

|O|n + C
q
R

√
r0 + log n

n
+

√
‖δ(g∗)‖0 log p

n(g∗) .

In Theorem 4, we establish the convergence rate of Algo-
rithm 3. The orst three terms in the right-hand-side is the upper

bound for the TensorDG estimate ‖β̂(g∗) − β(g∗)‖2. The last
term comes from the estimation of the bias δ(g∗). Recall that
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Algorithm 3: TensorTL: Transfer learning based on Algorithm 1

Input: TensorDG estimate β̂
(g∗) = {β̂(G)}.,g∗

1 ,...,g
∗
q
and target samples (X(g∗), y(g∗)).

Output: γ̂ (g∗).
Step 1: For a tuning parameter λg∗ > 0, compute

δ̂
(g∗) = argmin

δ∈Rp

{
1

n(g∗) ‖y
(g∗) − X(g∗)β̂

(g∗) − X(g∗)δ‖22 + λg∗‖δ‖1
}
,

Step 2: Output γ̂ (g∗) = β̂
(g∗) + δ̂

(g∗)
.

Figure 2. Boxplots of the square-root of AL2E based on Maximin (dashed brown), OLS (solid blue), and TensorDG (bold solid magenta) in experiments (a), (b), and (c).

the single-task OLS estimator has a convergence rate of order
p/n(g∗). Under the mild conditions that CR = O(1) and r0 +
log n + ‖δ(g∗)‖0 log p � p, the TensorTL estimate γ̂

(g∗) has
a faster convergence rate than the OLS. This condition indeed

requires that the misspecioed parameter δ(g∗) is sparse, that
is, the misspeciocation level is relatively low. We can further
compare TensorTL with the methods based on the low-rank
similarity assumptions without tensor structures. For instance,

Tripuraneni, Jin, and Jordan (2021) considers δ(g∗) = 0 and
the convergence rate of their method is of order

√
pr0/(n|O|) +√

r0/n(g∗) using our notation. We see that when n(g∗) � n,
the TensorTL estimate can have faster rate of convergence for

δ(g∗) = 0.

6. Numerical Experiments

We evaluate the performance of our proposals in domain gener-
alization and transfer learning in comparison to some existing
methods.

6.1. Domain Generalization Performance

We orst evaluate the dependence of domain generalization
errors on |At|, |�t|, and rt . For a generic estimator β̂(G),
deone its Average �2-Error (AL2E) as ‖β̂(G) − β(G)‖�2/

√
|G|

and its Average Domain Generalization Errors (ADGE) as

ADGE =
√∑

g∈Oc ‖β̂(g) − β(g)‖22/|Oc|.
We compare the performance of TensorDG, single-task OLS,

and Maximin estimator. It is known that sample splitting can
result in ineocient use of samples.We evaluate diferent versions

of sample splitting and ond that the most efective version is
to all the samples in all the steps of Algorithm 1. To com-
pute single-task OLS, we generate n(g) samples for group g if
g /∈ O. In contrast, TensorDG and Maximin only use samples
inO.

The default setting in our simulation is n(g) = 300 for each
g ∈ O , q = 2, (p0, p1, p2) = (80, 10, 15), rt = 4, r0 = 2rt , and
|At| = |�t| = 6 for t = 1, 2. In experiment (a), we consider
rt ∈ {2, 4, 6} and set other parameters as default. In experiment
(b), we consider |At| ∈ {4, 6, 8} and set other parameters as
default. In experiment (c), we consider |�t| ∈ {4, 6, 8} and set
other parameters as default. The average �2-error of TensorDG,
single-task OLS, and Maximin estimator are given in Figure 2.
Each setting is replicated with 500 Monte Carlo experiments.
We see that the average estimation error of TensorDG increases
as rt increases and decreases as |At| or |�t| increases, which
aligns with our theoretical analysis. In Figure 3, we see that Ten-
sorDG has the smallest average domain generalization errors.
The single-task OLS has larger errors as it only uses n(g) samples
from group g and its estimation accuracy is invariant to rt ,
|At|, and |�t|. The Maximin estimator has the largest domain
generalization errors in these settings. One reason is that the
success of Maximin requires that the parameters of test domains
fall in the simplex formed by the parameters of the training
domains. However, such assumptions may not be true in the
current setting.

6.2. Transfer Learning Performance

Next, we evaluate the performance of TensorTL for transfer
learning tasks. For comparison, we consider a modiocation
of Meta-LM-MoM proposed in Tripuraneni, Jin, and Jordan
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Figure 3. Boxplots of the square-root of ADGE based on Maximin (dashed brown), OLS (solid blue), and TensorDG (bold solid magenta) in experiments (a), (b), and (c).

Figure 4. Boxplots of TLE based on Meta-LM* (dashed brown), Meta2-LM* (solid green), OLS(solid blue), and TensorTL (bold solid magenta) in experiments (a), (b), and (c)

with ‖δ(g∗)‖0 = 0.

Figure 5. Boxplots of TLE based onMeta-LM* (dashed brown), Meta2-LM* (solid green), OLS (solid blue), and TensorTL (bold solid magenta) in experiments (a), (b), and (c)

with ‖δ(g∗)‖0 = 3.

(2021), which estimates the linear subspace ofM0[β(G)] based
on Method-of-Moments (MoM). We modify the original Meta-
LM-MoM by changing the MoM step to our proposed Algo-
rithm 2 because we ond that our proposal can signiocantly
improve the estimation accuracy overMoM.We call this transfer
learning method <Meta-LM*=. We also consider <Meta2-LM*=
which adds a bias-correction step to <Meta-LM*=. The detailed
implementation is given in Section G.1 in the supplementary
oles. We consider same setting as in Section 6.1 except that
n(g) = 150 for g ∈ Oc. This setup is due to in transfer
learning settings, the data from the target domain is always very

limited. For γ (g∗) deoned in (18), we consider ‖δ(g∗)‖0 ∈ {0, 3},
respectively. If δ

(g∗)
j 
= 0, we simulate δ

(g∗)
j ∼ N(0, 0.25)

independently. We report the boxplot of its Transfer Learning

Error (TLE) ‖b̂(g∗)−γ (g∗)‖2 for all g∗ ∈ Oc for a generic estimate

of γ (g∗), b̂
(g∗)

.
From Figure 4, we see that Meta-LM*, Meta2-LM*, and Ten-

sorTL improve over single-task OLS when the low-rank tensor
model is correctly specioed. Meta-LM* and Meta2-LM* have
slightly larger estimation errors than TensorTL in most settings.
This is because its accuracy relies on n(g∗) which is relatively
small in these experiments. In contrast, the performance of
TensorTL is not limited byn(g∗) when δ(g∗) = 0 byTheorem4. In
Figure 5, we consider the case where the low-rank tensor model
is mis-specioed. We see that Meta-LM* is worse than Meta2-
LM* and TensorTL. This demonstrates the efectiveness of the
bias-correction step in TensorTL.
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7. Real Data Application

We apply the proposed methods to the Diabetes Health Indica-
tors Dataset, which contains the data collected from the Behav-
ioral Risk Factor Surveillance System, a health-related telephone
survey, collected by the U.S. Centers for Disease Control and
Prevention in 2015. This dataset has 70,692 samples and 22
covariates. The goal is to predict whether an individual has dia-
betes or not. The data is publicly available at https://www.kaggle.
com/datasets/alexteboul/diabetes-health-indicators-dataset.

We consider two-dimensional group indices g = (j, k), where
j = 1, . . . , 12 denotes the age group of an individual and
k = 1, . . . , 5 denotes the education level of an individual. The
original data has 13 age groups and 6 education levels. As the
lowest age group and the lowest education group contain few
observations, we combine the orst and second age group and
combine the lowest two education levels. This formulation leads
to a multi-task classiocation problem with |G| = 12 × 5 = 60
and p = 19.We deoneO as the set of groups whose group size is
larger than 100. The missing patterns are displayed in Figure 6.

For each g ∈ G \ O, we use a random half of the samples,

denoted as N
(g)
tr , for training if necessary and the other half of

the samples N
(g)
te as the test data. For the domain generaliza-

tion task, we compare the performance of single-task logistic

Figure 6. Group structure in the diabetes prediction dataset. Red circles: groups
in the arm and body sets. Blue circles: groups in O but not used in the arm
and body sets. Black circles: groups not in O. Speciocally, the body set is � =
{6, 7, 8, 9, 10, 11, 12} × {3, 4, 5}. The arm sets are A1 = {3, 4, 5} and A2 =
{6, 7, 8, 9, 10, 11, 12}.

regression, Maximin, and TensorDG. The single-task logistic
performs �1-penalized logistic regression based on samples in

N
(g)
tr for each g /∈ O. For Maximin and TensorDG, we replace

the least squares with �1-penalized logistic regression and they
are trained solely based on the samples in O. For the trans-
fer learning task, we compare the performance of single-task
logistic, Meta-Logistic, Meta2-Logistic, and TensorTL, where
Meta-Logistic and Meta2-Logistic are analogous to Meta-LM*
andMeta2-LM*, respectively, except that the linear regression is
replaced by �1-penalized logistic regression.

For each estimate b and group g, we evaluate the average
classiocation error over the domains g ∈ G \ O based on the
test samples.

ACE(b, g) = 1

|N (g)
te |

∑

i∈N (g)
te

|y(g)
i − 1(b�x

(g)
i > 0.5)|.

The classiocation results are reported in Figure 7. We see
that TensorDG has signiocant improvement over Maximin for
domain generalization. It is also better than the benchmark
method, single-task logistic regression. TensorTL also improves
Meta-Logistic and Meta2-Logistic for transfer learning. We also
diagnose the low-rank assumption (Condition 2) in the supple-
ment (Section H) and the results show that the is no obvious
violation of the low-rank tensor assumption.

8. Discussion

We study domain generalization and transfer learning with
multi-dimensional group indices in linear models. Based on
a low-rank tensor model, we develop rate optimal methods
for domain generalization. The proposed framework can be
extended to deal with binary or categorical outcomes based on
other machine learning methods. As deep neural networks have
shown signiocant successes in practice, a direction of interest
is to extend the current model to deep neural nets where each
layer of neural networks across diferent domains forms a low-
rank tensor. The technical tools developed in this article can
potentially apply to these cases to facilitate developing domain
generalization in neural networks and other machine learning
methods with provable guarantees.

Figure 7. Boxplots of ACEs for groups in Oc in the domain generalization setting (left) and transfer learning setting (right) based on diferent methods for diabetes
prediction.
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Supplementary Materials

Supplement to <Multi-dimensional domain generalization with low-rank
structures=. In the Supplementary Materials, we provide the proofs of theo-
rems and further results on simulations and data applications.
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