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Abstract—In recent years, the proliferation of LEO (Low-
Earth Orbit) satellites and the accumulation of space debris
have made Near-Earth space more and more crowded, and hence
significantly increased the risk of collisions in this space. As a re-
sult, precise orbit prediction becomes essential for LEO satellites
to avoid collision, maintain the right constellation, and perform
normal space operations. Although machine learning(ML)-based
satellite orbit prediction methods have been extensively explored,
most existing methods are trained on simulated/synthetic orbit
data, which essentially assumes a stationary orbit process and
cannot reflect the non-stationary dynamic orbit changes in real-
world LEO satellite constellations that are caused by satellite
flight status adjustment (e.g., for the purpose of collision avoid-
ance). In this study, we propose a novel multi-range (global-
local) self-attention transformer-based ML model, the GloLoSAT
(Global-Local Probsparse Self-Attention Transformer), and train
the model over real-world LEO satellite orbit data crawled from
N2YO.com to give more precise orbit prediction in case of a
series of orbit adjustments. Theoretical analysis demonstrates our
Global-Local Probsparse Self-Attention mechanism can achieve
O(Llog(L)) computational complexity with respect to the input
sequence length. Extensive experiments conducted on real satel-
lite orbit tracking datasets demonstrate the efficacy of GloLoSAT
in achieving consistent performance improvements across various
prediction scenarios compared to their counterparts.

Index Terms—LEO Satellite, Orbit Prediction, Transformer,
Long Sequence Time-series Forecasting

I. INTRODUCTION

Traditionally, space exploration has focused on deep space
discovery, such as seeking to identify new astronomical objects
and unravel the secrets of the universe [1]. However, a recent
shift in focus has emerged towards the practical utilization of
near-earth space through low-Earth orbit (LEO) satellites [2].
These satellites, orbiting at altitudes below 2,000 km, are pro-
gressively utilized across a spectrum of applications, including
terrestrial surveillance, global ubiquitous communication, cat-
aclysm surveillance, navigation, and ecological assessment [3].
The Starlink project, for example, currently operates over
5,800 active satellites and has plans to increase this number
upwards to 42,000 in the near future [4]. With the near-
earth space becoming more and more crowded, the swift
deployment and operation of LEO satellites raises potential
risks of collision. To mitigate these risks, there is an urgent
need for more precise LEO satellite orbit prediction to ensure
more effective collision avoidance.

Conventionally, satellite orbit prediction approaches can
be classified into two distinct categories: physics-based
approaches and machine learning (ML)-based approaches.

Physics-based methods, which include general perturbation
methods [5], special perturbation methods [6], and semi-
analytical methods [7], have been studied for many decades.
These methods are based on the classical laws of motion
and principles of gravity, enabling the prediction of satellite
trajectories by solving differential equations of motion, ei-
ther analytically or numerically [8]. However, these methods
cannot consistently yield high-precision orbit predictions for
LEO satellites due to the difficulty in taking into account
a large number of trajectory-perturbing random factors such
as environmental influences like atmospheric drag and forces
of solar radiation, as well as particular satellite attributes,
including mass, shape, and information regarding maneuvers.
Consequently, the prediction errors can be substantial (e.g.,
in the order of hundreds of kilometers), potentially rendering
them less effective for practical applications.

Recently, ML-based approaches have emerged as a com-
plementary framework to traditional physics-based models
in satellite orbit prediction. At a high level, these methods
can be classified into two types: (1) Physics-Enhancing ap-
proaches [9], [10] and (2) Error-Correction approaches [11]—
[14]. In the first type, ML-based methods are often used to
enhance the representation of unmodeled random variables in
physics-based models or serve as solvers for motion-related
differential equations. In the second type, ML models are
specifically trained to characterize prediction errors of physics-
based methods. The predictions generated by the physics-
based approaches are then re-tuned using the error corrections
generated by the trained ML model.

Regardless of their types; however, rather than employ-
ing real orbit data for model training, existing ML-based
approaches often rely on synthetic datasets that are either
entirely simulated based on some space parameters such as
gravity field, solar radiation, and atmosphere model [10],
[13], [15] or calculated from the well-known SGP (Simpli-
fied Perturbations) models, utilizing TLEs (Two-Line Element
sets) or CPFs (Consolidated Prediction Format files) [9],
[11], [14]. A major limitation of these ML-based methods
is that the random processes and factors simulated in their
synthetic/simulated dataset are assumed to be stationary. As
a result, ML models trained on such datasets fail to capture
the non-stationary dynamic orbit changes in real-world LEO
satellite constellations. These changes are due to necessary
satellite status adjustments and maneuvers to maintain the
constellation or avoid collisions, making the accuracy of these
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ML-based methods questionable in real-world scenarios.

In this study, we propose a novel multi-range (global-local)
self-attention transformer-based ML model for accurate LEO
satellite orbit prediction. In contrast to existing ML-based ap-
proaches, the proposed model is trained over real-world LEO
satellite orbit data and is capable of giving more precise orbit
prediction in case of a series of orbit adjustments. In particular,
we first propose a novel web crawler, called N2YO-crawler,
designed to collect real-time satellite orbit tracking data from
N2YO.com, which provides live real-time trajectory tracking
data for over 28,751 objects in outer space, including satellites
and space debris. The data for LEO satellites, such as the 5,814
StartLink satellites and the 628 OneWeb satellites, are updated
every second on this website. N2YO.com is a highly reputable
provider of real-time satellite tracking services. Notably, the
space surveillance data used by N2YO.com are diligently
collected by the US Space Surveillance Network (SSN), which
operates under the rigorous oversight of the US Air Force
Space Command (AFSPC) [16].

Secondly, trained over the real orbit tracking data col-
lected by our N2YO-crawler, we propose a novel three-stage
transformer-based framework for predicting LEO satellite
trajectories, named GloLoSAT. An illustrative overview of
GloLoSAT is provided in Fig. 1. To overcome the limitations
of existing transformer-based LSTF (Long-sequence Time-
series Forecasting) models [17]-[21] that often focus solely
on either global or local context, lacking a comprehensive
view of the input sequence, we introduce an innovative Global-
Local Probsparse Self-Attention mechanism. This mechanism
contains both local and global Probsparse self-attention mod-
ules, enabling GloLoSAT to capture crucial and non-stationary
contextual information at various scales.

The main contributions of this work are four-fold: (i)
We introduce N2YO-crawler, an efficient tool for collecting
and building real-time satellite orbit tracking datasets from
N2YO.com. (ii) We propose a general three-stage transformer-
based framework, GloLoSAT, for predicting LEO satellite tra-
jectories, featuring a Global-Local Probsparse Self-Attention
mechanism that captures both global and local contexts to
handle non-stationary orbit changes, improving prediction
accuracy. (iii) We conduct a theoretical analysis of the Global-
Local Probsparse Self-Attention mechanism, revealing its
computational complexity to be O(Llog(L)), highlighting
its scalability and practical application of the mechanism in
tasks that involve long sequences. (iv) We conducted extensive
experiments on our crawled real-world satellite (STARLINK-
30506) orbit dataset, demonstrating our proposed methods
significantly improve the accuracy of LEO satellite orbit pre-
diction, consistently outperforming the counterparts on MGDE
(Mean Geocentric Distance Error) by reducing prediction
errors by up to 60.2% among various practical scenarios.

II. RELATED WORK
A. ML-based Satellites Orbit Prediction

Over the past several years, ML-based approaches have been
recognized as valuable tools to assist conventional physics-
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based approaches for satellite orbit prediction. These meth-
ods can be categorized into two distinct types: (1) Physics-
Enhancing approaches. The work presented in [9] introduces
a differentiable SGP4 model called §SGP4, which employs the
neural networks as the solver for the motion-related differential
equations within the conventional SGP4 model. Similarly, the
study in [10] proposes a physics-informed machine learning
algorithm that conceptualizes the orbital trajectory as par-
tial differential equations and utilizes deep neural operators
to capture the system’s dynamics. (2) Error-Correction ap-
proaches. In [11], [12], ensemble learning methods based
on BT (Boosting Tree) algorithms are adopted to identify
patterns in the prediction errors of physics-based models, and
error corrections are then applied to the physics-based orbit
predictions. In [13], [14], the authors employ an SVM (Support
Vector Machine) as the error correction model to learn the
SGP4-based prediction errors and then refine the SGP4-based
orbit prediction based on an error correction frame.

While these ML-based methods significantly contribute to
orbit prediction, they rely on simulated satellite orbit datasets
generated by orbital numerical simulators or simplified per-
turbation models. These datasets lack the full dynamic com-
plexity of actual satellite orbits, making their errors more
pronounced in the increasingly crowded LEO space with
high launch rates and abundant space debris. Considering the
inherent limitations of simulated datasets, one can foresee the
margin of their orbit prediction error will increase progres-
sively. Therefore, it becomes imperative to incorporate real
satellite orbit tracking data into the study of LEO satellite
orbit prediction to strengthen the safety and sustainability of
LEO space activities.

B. Transformer-based LSTF Models

In recent years, inspired by the effectiveness of transform-
ers in CV (Computer Vision tasks) [22] and NLP (Natural
Language Processing [23], there has been increasing interest
in exploring transformer-based models for time-series fore-
casting tasks. In Informer [20], the authors propose an inno-
vative extension of the conventional Transformer architecture
by incorporating the probabilistic sparsity function into the
conventional self-attention module, termed the ProbSparse
Self-Attention mechanism. This design aims to streamline
the complexity inherent in standard self-attention and cross-
attention mechanisms. In FEDformer [21], the authors opt for
applying the Transformer in the frequency domain rather than
the time domain. This strategic shift allows FEDformer to
better capture the global properties of time series data. The
authors of ETSformer [18] introduce a novel approach to time-
series Transformer architecture by replacing the vanilla self-
attention module with exponential smoothing attention and
frequency attention modules, aiming to diminish time com-
plexity. The work Informer(stack) [19] presents a multi-stack
informer architecture within its encoder blocks to broaden
the model’s perspective. The initial stack processes the entire
input sequence. Subsequent stacks then focus on progressively
smaller halves, with the second stack handling the right half
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Fig. 1. Overview of GloLoSAT Framework. The left side illustrates the GloLoSAT framework, consisting of three stages: data preprocessing (framed in blue),
error correction model training (framed in pink), and orbit prediction (framed in purple). On the right side, the error correction model architecture is depicted,
featuring an encoder (left) and a decoder (right). Within the encoder, we replace the standard ProbSparse self-attention modules of vanilla Informer with our
novel Global-Local Probsparse self-attention modules. A 3-layer stack (purple tensor path) captures the entire input sequence, while three 2-layer stacks (blue,
red, and yellow tensor paths) individually process the left, middle, and right thirds of the input sequence. The decoder receives entire input sequences(framed
in purple), processes them using attention mechanisms, and generates predictions(framed in blue) in a real-time, generative manner.

and the third stack processing the left half of the remaining
sequence. The recent work [17] introduces the Fourier-Mixed
Window Attention approach, named FWin-Transformer. This
method segments sequences into shorter spans, applying win-
dow attention layers to these segments, followed by a Fourier
layer to merge all the window attention outputs. The intent is
to enhance the model’s understanding of micro-level details
within the input sequence.

While models like [18], [20] excel at capturing global
context, their reliance on self-attention mechanisms that op-
erate solely on the entire input sequence can overlook local
contexts, fine-grained details, and short-term dependencies.
This limitation may lead to inefficiencies when processing
long sequences. Conversely, [17] emphasizes local spans
with a local-only window approach, but this may limit the
comprehensive capture of the entire input context. Addition-
ally, [19]’s multi-stack architecture aims to balance local and
global contexts but inherently overlooks the left half of the
input sequence, potentially biasing self-attention modules and
affecting forecasting performance.

III. DATASETS

In this section, we first introduce N2YO-crawler. We then
outline the acquisition process for the Real-time satellite orbit
tracking dataset (Dpgeqr), TLEs dataset (Drpp), and the
SGP4-based orbit prediction dataset (Dsgpa).

A. N2YO-crawler

To dynamically interact with N2YO.com, we use Selenium
as our automated web browser. We then develop a tailored
URL generator for our N2YO-crawler, which accepts Satellite
NORAD IDs and maps them to corresponding real-time orbit
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tracking URLs, eliminating the need for manual URL inputs.
we reconfigure N2YO-crawler’s web driver to extract data
from the dynamic “tabledata” element on N2YO.com, ensuring
focused data acquisition. To avoid delays and missed updates,
we optimize the web driver to retrieve real-time satellite
tracking data without page refreshes. To prevent data loss,
we introduced a csv_writer function that transfers data from
RAM to the local hard drive every second, ensuring data
persistence even during large-scale crawls.

B. Real-time Satellite Orbit Tracking Dataset Collection

To construct our real orbit tracking dataset Dp.q;, we first
utilize N2YO-crawler to gather data from N2YO.com over an
11-day period, from December 8, 2023, at 17:01:06 UTC to
December 19, 2023, at 14:16:16 UTC, resulting in 940,511
data points. It is also important to notice that during this
period, our target satellite, STARLINK-30506, executed two
maneuvers: one on December 16, 2023, at 18:02:09 UTC
and another on December 18, 2023, at 05:13:32 UTC. Each
collected data point initially comprised 14 features, including
NORAD ID, Local Time, UTC, latitude, longitude, Altitude
[Km], Altitude [Mi], Speed [Km/s], Speed [Mi/s], Azimuth,
Elevation, Right Ascension, Declination, and Local Sidereal
Time. Noting that the values of the last five features are contin-
gent on the data collector’s IP location, and to concentrate on
the satellite trajectory prediction task, we trimmed our dataset
to include only five essential features: UTC, Altitude [Mi],
latitude, longitude, and Altitude [Km]. This data trimming was
performed to ensure that the data set is specifically relevant
to satellite trajectories and is independent of the geographical
location of the data collector.
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To further facilitate the learning process for the LSTEF,
we augmented each record with four additional attributes:
sintime, costime, index, and sinindex. According to [24], the
inclusion of these features can provide a consistent distance
measure for time-related variables, capturing periodicity and
removing discontinuities, thus potentially aiding the model in
learning time-based patterns. Precisely, the values of sintime
and costime are computed by applying the sine function to
the corresponding date, represented as the number of seconds
since January 1, 1970, 00:00:00 UTC. The index is a sequential
identifier, commencing with 1 for the first record. The sinindex
is derived by applying the sine function to the index.

C. Other Datasets Collection

Following the methods used in [14], we build the TLEs
dataset (D7 g) by collecting TLEs from the Space-Track.com
website throughout December 8, 2023, to December 19,
2023, collecting 30 TLEs. We then constructed an SGP4-
based orbit prediction dataset (Dgsgps) through a two-step
process. First, we generate orbital position predictions using
the SGP4 model [25] with the most recent TLEs from Dt g,
ensuring each prediction utilized the most current TLE for
its corresponding timeframe. Second, since SGP4 outputs are
in the TEME (True Equator Mean Equinox) frame [26],
which differs from N2YO.com’s geodetic coordinates, we use
Astropy to convert TEME values to geodetic coordinates.

IV. PROPOSED METHOD: GLOLOSAT

This section defines the task, details the GloLoSAT’s three
stages, analyzes the computational complexity of the Global-
Local Probsparse Self-Attention Mechanism, and describes
architecture variants of the error correction model.

A. Task Definition

In this paper, the real orbit tracking dataset (Dgeq;), TLE
dataset (Drrp), and SGP4-based orbit prediction dataset
(Dggpa) for the satellite STARLINK-30506 are used. It is
imperative to notice that the original trajectory values (such
as altitude, longitude, and latitude) in Dpg., exhibit near
periodic behavior, presenting challenges for ML models be-
cause the statistical properties of these series, such as mean or
variance, change over time. In order to address this learning
challenge, instead of directly learning the satellite trajectories,
our proposed method attempts to learn the error between
the trajectories predicted by the SGP4 model and the actual
trajectories provided by N2YO. This error turns out to be less
periodic but more stochastic and, hence, more learnable by
our ML model. Hence, our primary objective is to improve
the accuracy of predicting the aforementioned errors, thereby
enhancing the accuracy of orbit predictions.

B. Data Preprocessing Stage

We first introduce the notations. The datapoint in Dp.,; at a
given time ¢; is denoted as “¥© X r.q;(t;), where GEO means
the last three features of the datapoint are in the geodetic co-
ordinate frame. The datapoint in Dggp4 at time ¢; is denoted
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as GEO)?SGP4(ti). We define D, as the SGP4 prediction
error dataset, which incorporates the positional discrepancies
between Dge, and Dgsgps. Similarly, the datapoint in D at
time ¢; is denoted as SEO X, (t,).

The GIloLoSAT begins with a data preprocessing stage.
Initially, it takes the datasets Dgey and Dsgps as input ,
and subsequently constructs the SGP4 prediction error dataset
D, by calculating the positional discrepancies between Dgey
and Dsggps. Specifically, the computation is detailed by the
following equation:

GEO X, (t;) = PO Xpea(t;) — “FO Xsapa(t:) Vi € T, (1)

where T is the set of timestamps for which data points exist
in both Dgey and Dsgps. It is essential to recognize that
both Dpgcq and Dggps encompass three geodetic attributes:
latitude, longitude, and altitude[K'm|. These common at-
tributes are leveraged to evaluate the positional discrepancies,
thereby constituting the error dataset D.. In particular, this
error dataset D, retains the structural integrity of Dpgeqr,
substituting the values of the three geodetic features with
the respective positional differences, while the values of the
remaining features remain consistent with those in Dpgeg-
Following the acquisition of the error dataset, D, is partitioned
into distinct subsets to support the subsequent stages. Specifi-
cally, the initial 75% of D is allocated for the training dataset,
10% is reserved for the validation dataset, and the remaining
15% is dedicated to the evaluation of orbit prediction accuracy.

C. Error Correction Model Training Stage

We introduce a multi-range self-attention mechanism for the
error correction model in the GloLoSAT framework, trained
on dataset D, to characterize SGP4-based prediction errors.
This mechanism enables the model to provide a multi-scope
perspective on the input sequence. Specifically, our proposed
model is inspired by Informer. We modify Informer’s encoder
block’s Probsparse self-attention module, replacing it with our
Global-Local Probsparse self-attention modules.

A. Global-Local Probsparse Self-Attention Mechanism.

Our proposed Global-Local Probsparse self-attention mech-
anism, as depicted on the right-hand side in Fig. 1, enables the
model to have a multi-scale perspective on input sequence pro-
cessing by capturing both global and local contexts, surpassing
the capabilities of its predecessor, which primarily focused
on either global or local information. Specifically, the global
Probsparse self-attention module is configured to capture the
entire sequence input, while the local Probsparse self-attention
modules are intended to concentrate on distinct segments of
the sequence input. In the following, we will define some
notations and present a formal modeling of the Global-Local
Probsparse self-attention mechanism, along with an analysis
of its computational complexity.

Notations: The time sequence starting at ¢ and concluding
at t+A is represented by the notation (¢ : t+A). The sequence
input for the encoder is denoted as X (¢ : t + A) € REinXdem
where Ly, = A represents the input sequence length, and d.,,
denotes the embedded dimension of the model. The queries
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(Q), keys(K) , and values(V') for the input sequence are then
definedas Q = X (¢t : t+A)Wo+bg; K = X (L : t+A) Wi+
b, V = X(t 4+ A)WV + by, where WQ,WK,WV S
Rdem*dem - and bg, by, by € RLnXdem

Global Probsparse Self-attention: The global Probsparse
self-attention mechanism is designed to capture the entire se-
quence input. Utilizing the ProbSparse Self-attention formula
in [20], the calculation of it is defined as:

V dem

where Qg, K4,V € REanXdem represent the queries, keys,
and values for the entire sequence input, and Q, € R**dem
represents a filtered sparse matrix comprising the top u Qs
selected based on the sparsity measurement formula [20]. The
selection parameter v is defined by the equation v = c-1n L,
where c is a constant sampling factor. The sparsity measure-
ment formula is given by:

. QuKy
Attentiony (Qg, Ky, V) = softmax Ve, (@

Lin 4 kT Lin

ane Vi — g

where the ¢;,k; represent the ith and jth row in Q,K
respectively.

Local Probsparse Self-attention: Since our local Prob-
sparse self-attention modules are tailored to focus on dis-
tinct segments of the sequence input, we divide the entire
input X(¢ : ¢t + A) into N subsequences: X (¢ : t + A;),
X(t+Ap: t+24)),..., X(t+(n—1)A; : t+nl;), where A
stands for each local subsequence input length. Consequently,
the queries, keys, and values are also segmented accordingly:
Q = [Ql1>le7 -~-7QZN]T; K = [Kanlm "'7K1N]T7 V =
(Viy, Vig, s Viy] 7. Thus, by using the ProbSparse Self-
attention formula Eq.(3), we compute local Probsparse self-
attention for each subsequence as follows:

Quky ) Vi, (@)

qsz

1(q:, K 3)

Lln

Videm

where Q,, K;,, V), € REm/~Xdem sjonifying the queries,
keys, and values for the ith subsequence input, and the
filtered sparse matrix @Q;, € R™*4em contains the top m Qs
selected based on the sparsity measurement formula Eq.(3).
The parameter m is controlled by the relation m = ¢-In ().

Global-Local Probsparse Self-Attention: After computing
the local Probsparse self-attention and the global Probsparse
self-attention for the input sequence, we concatenate these
attentions to form the Global-Local Probsparse Self-Attention:

Attentiong (Qg, Iy, V)
Attention;, (Qq,, K1, Vi)

Attentiony, (Qy,, K, , Vi,) = softmax (

Attentiong (Q, K, V) = : ®)
Attention; , (Q1, Kiy, Viy)

Computational Complexity: Given a sequence input X (¢ :

t + A) € REXdem | the computational complexity of Global-
Local Probsparse Self-Attention is as follows:
O (Attentiony (Q, K, V)) = O (Llog(L)) . (6)
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Proof: for the computational complexity of Global-Local
Probsparse Self-Attention
O (Attentiong (Q, K, V')) = O (Attentiong (Qg, Ky, Vy))
N
+ZO (Attentiony, (Qy,, K3, Vi,)) (7)

i=1

By applying the time complexity formula of ProbSparse At-
tention [20] to Eq.(7), we obtain:

RHS of Eq.(7) = O (Llog(L)) + X1, O (% g(%)) (®)
=0 (Llog(L))+ N x O (£1og (%)) 9)

=0 (Llog(L)) + O (Llo (£)) (10)

RHS of Eq.(10) < 20 (Llog(L)) = O (Llog(L)). (11)
O

It is clear that Informer’s Probsparse Self-Attention mech-
anism exhibits computational complexity on the order of
O(Llog(L)), which aligns with our proposed Global-Local
Probsparse Self-Attention mechanism. This indicates that our
method can achieve processing efficiency similar to that of
Informer while also enhancing the model’s ability to capture
global and local context.

D. Architecture Variants

For the error correction models, we build two vari-
ants of GloLoSAT, denoted as GloLoSAT-OF (Orbital Fea-
tures Focused) and GloLoSAT-TL (Triple Independent). The
GloLoSAT-OF variant is achieved by modifying the final
FCN (fully connected layer) of the original GloLoSAT so
that it only outputs orbit errors under three essential orbital
features: latitude, longitude, and altitude[Km]. In contrast, the
GloLoSAT-TL variant adopts a more fine-grained approach.
Specifically, it is composed of three separate models. Each
model diverges from the conventional methods that predict all
features concurrently. Instead, their final FCN layer is modified
to predict orbit errors under each orbital feature independently.
As aresult, this approach yields three specialized models, each
uniquely responsible for predicting latitude errors, longitude
errors, and altitude errors[ Km] respectively. These individual
predictions are then synthesized to generate the final satel-
lite orbit error corrections. Following a similar modification
strategy, we also introduce two variants for Informer [20] and
Informer(stack) [19], respectively: Informer-OF, Informer-TL,
Informer(stack)-OF, and Informer(stack)-TL.

E. Orbit Prediction Stage

As illustrated on the left-hand side in Fig. 1, the final stage
generates the final satellite orbit prediction by integrating the
error corrections with the corresponding SGP4 predictions.
Specifically, this process first leverages the trained error model
to process an input sequence “FO X (¢, : t; + A1), where Ay
represents the length of the input sequence and obtains the
predicted errors GEOXe(ti + Ayt + A+ Ay), where Ay
indicating the size of the prediction window. The resulting
orbit prediction is then calculated by:

GEOO(t; + Ay i s+ Ay + Ag) = FFOX (1 + Ay i b + Ay + Ao)+

V 12
CEO X gapa(ti + A1t t; 4+ Aq 4+ Ay). (12)
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V. EXPERIMENT
A. Baselines

To evaluate our proposed method, we have selected four
previous models with two relevant categories as baselines. The
first category consists of the SGP4 mathematical orbital prop-
agation model [27], used for direct satellite orbit prediction.
The second category comprises three time-series forecasting
models: LSTM [28], Informer [20], and Informer(stack) [19].
These models are employed as error correction models within
our proposed approach. Here are the key configurations for
each model in the second category. The LSTM is parameter-
ized with n_hidden = 128, n_layers = 2, dropout = 0.2,
optimizer = Adam, epochs = 20, earlystopping = 5, and
Ir = 1le~*. The Informer is structured with a 2-layer encoder
and a I-layer decoder. It is trained with dropout = 0.05,
optimizer = Adam, epochs = 20, earlystopping = 5, lr =
le~, and embedded dimension = 512. The Informer(stack)
mirrors the Informer’s configurations, but its encoder is com-
posed of three stacks with 3, 2, and 1 layers, respectively.

B. Experiment Training Settings

In this study, we conduct a comparative analysis of our
proposed method against established baseline models within
three practical satellite orbit forecasting scenarios.

(1) Short-Term Prediction: In this scenario, the models are
trained on the error dataset De, leveraging the preceding 300-
second of trajectories to forecast the forthcoming 60-second
trajectories with 1-second intervals. This setting is designed
to potentially enable near-real-time updates on satellite posi-
tioning, which can be beneficial for urgent collision avoidance
measures and ensuring the satellite remains within its intended
orbit promptly.

(2) Long-Term Prediction: In this scenario, the models
are also trained on the D, but are tasked with utilizing the
prior 300-second trajectories to predict the next 720-second
trajectories with 1-second intervals. This scenario is crafted
with the intention of possibly assisting in enhancing the
scheduling of communication windows, ground station passes,
and the management of satellite power and thermal conditions.

(3) Extended Long-Term Prediction: In this scenario,
the models are trained on a modified dataset Dogy,, derived
by uniformly sampling one data point per minute from D..
Specifically, during the data preprocessing phase, once D,
is obtained, it undergoes a selection process to form D.gr,
before being divided into training, validation, and testing
partitions. The training objective here is to predict 720-minute
trajectories into the future with 1-minute intervals based on 60-
minute historical trajectories. This setting is especially relevant
for LEO satellites, aligning with NASA’s Spacecraft Con-
junction Assessment and Collision Avoidance Best Practices
Handbook [29], which states that TLEs of LEO satellites
with perigee heights under 500 km are updated thrice daily,
while other LEO satellites are updated at least once per day.
Additionally, the observations from the Space-Track website
also imply that updates for certain LEO satellites, such as
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Starlink satellites, occur about twice daily. Thus, a half-day
prediction interval is practical for long-period LEO satellite
orbit prediction, aligning with the typical TLE update fre-
quency. This predictive setting is designed to provide operators
with advanced notice to support proactive decision-making for
satellite maneuvers, resource allocation, and communication
scheduling.

C. Model Parameters

For both GloLoSAT-OF and GloLoSAT-TL, their encoders
consist of one 3-layer stack and three 2-layer stacks. Specif-
ically, the 3-layer stack captures the entire input sequence,
while the three 2-layer stacks individually handle the left,
middle, and right thirds of the input sequence. Both models
include a I-layer decoder. Model optimization is performed
using the Adam optimizer, initialized with a learning rate of
le~*, which undergoes a tenfold reduction every two epochs
over a total of 20 epochs. Additionally, a dropout rate of
0.05 and an early stopping parameter of 5 are implemented.
The parameter configurations for the Informer-OF, Informer-
TL, Informer(stack)-OF, and Informer(stack)-TL mirror those
of their corresponding baseline models. Furthermore, for all
prediction tasks, including the baseline models, the batch size
is set to 50 for Short-Term and Long-Term scenarios and 16
for the Extended Long-Term Prediction scenario.

D. Experiment Evaluation Settings

To assess the efficacy of our proposed method for satellite
orbit prediction, we analyzed the experiment outcomes of all
evaluated models within the ECEF ( Earth-centered and Earth-
fixed) coordinate system [30], which is a non-inertial reference
framework that synchronizes with the Earth’s rotation and
is one of the most widely adopted coordinate systems for
satellite positioning and orbit prediction. To ensure a rigorous
and equitable comparison, we selected the evaluation period
for all prediction scenarios from 2023/12/17 23:05:01 to
2023/12/19 05:05:00. Upon collating the prediction outcomes
from each model, we apply the coordinate transformation
function provided by pyproj library to both the actual and pre-
dicted orbits, facilitating the conversion of latitude, longitude,
and altitude values into their corresponding representations
within the ECEF system. We then use a set of performance
metrics to measure the accuracy and reliability of each method.
These metrics include Root Mean Square Error (RMSR),
Mean Absolute Error (MAE), and Mean Geocentric Distance
Error (MGDE), the latter being computed as M GDE
IS V(@i — 2%+ (yi — 9:)2 + (2i — 2)%, where n is
the number of observations, (x;,;, z;) and (&;,J;, 2;) are the
actual and predicted values respectively for the ith observation.
All of the ML-based models are implemented using PyTorch
and are trained and tested on GeForce RTX 4090 x6.

E. Experiment Results and Analysis

The experimental results for each orbit prediction method
across three different prediction settings are summarized in
Table I through III, with the best results in bold.
Performance Comparison With Baselines. The observation
of our experiment results shows that our proposed methods
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TABLE 1
THE PERFORMANCE RESULTS ON THE SHORT-TERM PREDICTION TASK.}
MEANS OUR PROPOSED MODEL.

Short-Term Prediction (ECEF, unit in meters)
Metric MAE RMSE MGDE
SGP4 321.989 | 417.923 | 637.902
LSTM + SGP4 324.264 | 422.208 | 642.029
Informer + SGP4 535.77 648.83 1039.76
Informer(stack) + SGP4 545.47 658.43 1056.71
1 Informer-OF + SGP4 295.924 | 403.545 | 583.802
Informer(stack)-OF + SGP4 | 303.149 | 420.524 | 595.315
GloLoSAT-OF + SGP4 273.481 | 526.086 | 540.527
Informer-TL + SGP4 260.285 | 355.646 | 510.162
1 Informer(stack)-TL + SGP4 | 264.407 | 365.838 | 520.202
1 GloLoSAT-TL + SGP4 253.732 | 346.548 | 495.715
TABLE II

THE PERFORMANCE RESULTS ON THE LONG-TERM PREDICTION TASK.
MEANS OUR PROPOSED MODEL.

Long-term Prediction (ECEF, unit in meters)

Metric MAE RMSE MGDE
SGP4 321.989 | 417.923 | 637.902
LSTM + SGP4 326.446 | 425.655 | 644.288
Informer + SGP4 639.434 | 751.176 | 1228.982
Informer(stack) + SGP4 578.423 | 690.78 1117.3
1 Informer-OF + SGP4 283.445 | 386.59 557.269
1 Informer(stack)-OF + SGP4 | 308.734 | 411.637 | 610.936

GloLoSAT-OF + SGP4 265.856 | 385.471 | 522.81

Informer-TL + SGP4 253.576 | 346.116 | 495.361

Informer(stack)-TL + SGP4 | 256.685 | 373.633 | 503.23
1 GloLoSAT-TL + SGP4 250.898 | 341.99 489.712

improve the accuracy of satellite orbit prediction under various
scenarios compared with the baselines. Our proposed models
outperform the SGP4 on MGDE by decreasing the errors up
to 22.3% (in Table I: Short-Term Prediction), 23.2% (in Table
II: Long-term Prediction), and 18.9% (in Table III: Extended
Long-Term Prediction). This implies that the positional dis-
crepancies between Dggpg and Dgp 41, are learnable, and our
proposed methods make a positive contribution to the orbit
prediction problems. Additionally, when compared to tradi-
tional multivariate time-series forecasting models combined
with SGP4, such as LSTM + SGP4, Informer + SGP4, and
Informer(stack) + SGP4, our proposed models show a potential
reduction in MGDE by up to 53.1%, 60.2%, and 58.9%
for short-term, long-term, and extended long-term predictions,
respectively. This observation underscores the importance of
the output feature dimensionality in the final FCN layer for
time-series forecasting tasks. Specifically, the original LSTM,
Informer, and Informer(stack) models generate outputs for an
extensive range of features, which may lead to a dispersion
of focus on many task-irrelevant features, such as sintime,
costime, index, sinindex, and Altitude [Mi]. Conversely, our
proposed models are tailored to prioritize key orbital features:
latitude, longitude, and altitude [Km]. By concentrating on
these orbital features, our models can minimize the dilution
of attention across less relevant features, thereby leading to
more accurate predictions.

Performance Comparison Between Different Self-attention
Mechanisms. The results across tables I through III show
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TABLE III
THE PERFORMANCE RESULTS ON THE EXTENDED LONG-TERM
PREDICTION TASK. { MEANS OUR PROPOSED MODEL.

Extended Long-Term Prediction(ECEF, unit in meters)
Metric MAE RMSE MGDE
SGP4 320.575 | 413.403 | 634.079
LSTM + SGP4 642.56 806.622 | 1251.47
Informer + SGP4 543.92 692.17 1057.39
Informer(stack) + SGP4 632.319 | 788.58 1207.04

Informer-OF + SGP4 302.785 | 405.393 | 596.42
Informer(stack)-OF + SGP4 | 309.561 | 411.01 606.83
GloLoSAT-OF + SGP4 297.427 | 398.955 | 585.484
Informer-TL + SGP4 268.486 | 363.218 | 526.142
Informer(stack)-TL + SGP4 | 276.9 372.576 | 543.207
GloLoSAT-TL + SGP4 262.916 | 355.085 | 514.392

that our Global-Local Probsparse Self-Attention-based orbit
prediction methods outperform their counterparts in all tested
prediction scenarios. The GloLoSAT-TL + SGP4 method
exhibits improvements over the Informer-TL + SGP4 and
Informer(stack)-TL + SGP4 methods, with a decrease in
MGDE by up to 4.7%, 2.7%, and 5.3% for Short-Term, Long-
Term, and Extended Long-Term Prediction scenarios, respec-
tively, as shown in Tables I to III. Similarly, the GloLoSAT-
OF + SGP4 method exhibits better performance compared to
the Informer-OF + SGP4 and Informer(stack)-OF + SGP4
methods, achieving a reduction in MGDE by up to 9.2%,
15.8%, and 3.5% for short-term, long-term, and extended long-
term predictions, respectively. These improvements underscore
the essential role of the input sequence range in enhancing the
self-attention module’s efficacy. The Informer model processes
only the input sequence’s global range, potentially limiting its
local contextual understanding. The Informer(stack) utilizes
a tiered approach, where the first stack processes the global
input sequence, the second stack addresses the right half
slices of the input sequence, and the third stack focuses on
the subsequent half slices, potentially overlooking the left
half slices of the entire input. On the contrary, our proposed
GloLoSAT, with its Global-Local Probsparse Self-Attention
modules, is designed to fully encompass both global and local
sequence inputs. Specifically, the global module captures the
entire sequence, while the three local modules focus on the
left, middle, and right thirds of the input sequence, leading to
a more nuanced contextual understanding and improved orbit
prediction accuracy.

Performance Comparison Between Architectural Variants.
The results presented in Tables I through III demonstrate that
Triple Independent variants perform better than Orbital Fea-
tures Focused counterparts in various orbit prediction scenar-
ios. Informer-TL + SGP4 outperforms Informer-OF + SGP4
on MGDE by decreasing 12.6% for Short-Term Prediction,
11.1% for Long-Term Prediction, and 11.8% for Extended
Long-Term Prediction. Informer(stack)-TL + SGP4 achieves
a decrease in MGDE by 12.6% for Short-Term Prediction,
17.6% for Long-Term Prediction, and 10.5% for Extended
Long-Term Prediction when compared to Informer(stack)-OF
+ SGP4. Additionally, GloLoSAT-TL + SGP4 also shows
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improved performance over GloLoSAT-OF + SGP4, with
MGDE reductions of 8.3% for Short-Term Prediction, 6.3%
for Long-Term Prediction, and 12.1% for Extended Long-Term
Prediction. These observations demonstrate the benefits of a
more fine-grained approach adopted by the Triple Independent
variants, where the final FCN layer is restructured to predict
orbit errors for each orbital feature independently, thereby
maximizing the use of additional information from other input
features to enhance prediction accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we attempt to address LEO satellite orbit
prediction using real satellite orbit tracking data. Our approach
primarily concentrates on mitigating the orbit prediction errors
that arise from traditional physics-based models by imple-
menting an ML-based error correction framework. We intro-
duce N2YO-crawler for high-integrity, real-time data collec-
tion and present GloLoSAT, a novel three-stage transformer-
based framework for real-time LEO satellite orbit prediction.
To overcome the limitations of existing methods that focus
only on global or local contexts, we propose a Global-Local
Probsparse Self-Attention mechanism within the GloLoSAT
framework, capturing both contexts with computational ef-
ficiency of O(Llog(L)). Extensive experiments demonstrate
GloLoSAT’s effectiveness in reducing SGP4 prediction errors
and improving orbit prediction performance. We note that this
study focuses on applying the ML-based approach to the orbit
prediction of a single satellite. In our future work, we plan
to extend the proposed ML-model to the orbit prediction of
multiple satellites in the same constellation, which will enable
the routing research in the mobile ad hoc network formed by

the constellation.
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