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Abstract—In recent years, the proliferation of LEO (Low-
Earth Orbit) satellites and the accumulation of space debris
have made Near-Earth space more and more crowded, and hence
significantly increased the risk of collisions in this space. As a re-
sult, precise orbit prediction becomes essential for LEO satellites
to avoid collision, maintain the right constellation, and perform
normal space operations. Although machine learning(ML)-based
satellite orbit prediction methods have been extensively explored,
most existing methods are trained on simulated/synthetic orbit
data, which essentially assumes a stationary orbit process and
cannot reflect the non-stationary dynamic orbit changes in real-
world LEO satellite constellations that are caused by satellite
flight status adjustment (e.g., for the purpose of collision avoid-
ance). In this study, we propose a novel multi-range (global-
local) self-attention transformer-based ML model, the GloLoSAT
(Global-Local Probsparse Self-Attention Transformer), and train
the model over real-world LEO satellite orbit data crawled from
N2YO.com to give more precise orbit prediction in case of a
series of orbit adjustments. Theoretical analysis demonstrates our
Global-Local Probsparse Self-Attention mechanism can achieve
O(L log(L)) computational complexity with respect to the input
sequence length. Extensive experiments conducted on real satel-
lite orbit tracking datasets demonstrate the efficacy of GloLoSAT
in achieving consistent performance improvements across various
prediction scenarios compared to their counterparts.

Index Terms—LEO Satellite, Orbit Prediction, Transformer,
Long Sequence Time-series Forecasting

I. INTRODUCTION

Traditionally, space exploration has focused on deep space

discovery, such as seeking to identify new astronomical objects

and unravel the secrets of the universe [1]. However, a recent

shift in focus has emerged towards the practical utilization of

near-earth space through low-Earth orbit (LEO) satellites [2].

These satellites, orbiting at altitudes below 2,000 km, are pro-

gressively utilized across a spectrum of applications, including

terrestrial surveillance, global ubiquitous communication, cat-

aclysm surveillance, navigation, and ecological assessment [3].

The Starlink project, for example, currently operates over

5,800 active satellites and has plans to increase this number

upwards to 42,000 in the near future [4]. With the near-

earth space becoming more and more crowded, the swift

deployment and operation of LEO satellites raises potential

risks of collision. To mitigate these risks, there is an urgent

need for more precise LEO satellite orbit prediction to ensure

more effective collision avoidance.

Conventionally, satellite orbit prediction approaches can

be classified into two distinct categories: physics-based

approaches and machine learning (ML)-based approaches.

Physics-based methods, which include general perturbation

methods [5], special perturbation methods [6], and semi-

analytical methods [7], have been studied for many decades.

These methods are based on the classical laws of motion

and principles of gravity, enabling the prediction of satellite

trajectories by solving differential equations of motion, ei-

ther analytically or numerically [8]. However, these methods

cannot consistently yield high-precision orbit predictions for

LEO satellites due to the difficulty in taking into account

a large number of trajectory-perturbing random factors such

as environmental influences like atmospheric drag and forces

of solar radiation, as well as particular satellite attributes,

including mass, shape, and information regarding maneuvers.

Consequently, the prediction errors can be substantial (e.g.,

in the order of hundreds of kilometers), potentially rendering

them less effective for practical applications.

Recently, ML-based approaches have emerged as a com-

plementary framework to traditional physics-based models

in satellite orbit prediction. At a high level, these methods

can be classified into two types: (1) Physics-Enhancing ap-

proaches [9], [10] and (2) Error-Correction approaches [11]–

[14]. In the first type, ML-based methods are often used to

enhance the representation of unmodeled random variables in

physics-based models or serve as solvers for motion-related

differential equations. In the second type, ML models are

specifically trained to characterize prediction errors of physics-

based methods. The predictions generated by the physics-

based approaches are then re-tuned using the error corrections

generated by the trained ML model.

Regardless of their types; however, rather than employ-

ing real orbit data for model training, existing ML-based

approaches often rely on synthetic datasets that are either

entirely simulated based on some space parameters such as

gravity field, solar radiation, and atmosphere model [10],

[13], [15] or calculated from the well-known SGP (Simpli-

fied Perturbations) models, utilizing TLEs (Two-Line Element

sets) or CPFs (Consolidated Prediction Format files) [9],

[11], [14]. A major limitation of these ML-based methods

is that the random processes and factors simulated in their

synthetic/simulated dataset are assumed to be stationary. As

a result, ML models trained on such datasets fail to capture

the non-stationary dynamic orbit changes in real-world LEO

satellite constellations. These changes are due to necessary

satellite status adjustments and maneuvers to maintain the

constellation or avoid collisions, making the accuracy of these
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ML-based methods questionable in real-world scenarios.

In this study, we propose a novel multi-range (global-local)

self-attention transformer-based ML model for accurate LEO

satellite orbit prediction. In contrast to existing ML-based ap-

proaches, the proposed model is trained over real-world LEO

satellite orbit data and is capable of giving more precise orbit

prediction in case of a series of orbit adjustments. In particular,

we first propose a novel web crawler, called N2YO-crawler,

designed to collect real-time satellite orbit tracking data from

N2YO.com, which provides live real-time trajectory tracking

data for over 28,751 objects in outer space, including satellites

and space debris. The data for LEO satellites, such as the 5,814

StartLink satellites and the 628 OneWeb satellites, are updated

every second on this website. N2YO.com is a highly reputable

provider of real-time satellite tracking services. Notably, the

space surveillance data used by N2YO.com are diligently

collected by the US Space Surveillance Network (SSN), which

operates under the rigorous oversight of the US Air Force

Space Command (AFSPC) [16].

Secondly, trained over the real orbit tracking data col-

lected by our N2YO-crawler, we propose a novel three-stage

transformer-based framework for predicting LEO satellite

trajectories, named GloLoSAT. An illustrative overview of

GloLoSAT is provided in Fig. 1. To overcome the limitations

of existing transformer-based LSTF (Long-sequence Time-

series Forecasting) models [17]–[21] that often focus solely

on either global or local context, lacking a comprehensive

view of the input sequence, we introduce an innovative Global-

Local Probsparse Self-Attention mechanism. This mechanism

contains both local and global Probsparse self-attention mod-

ules, enabling GloLoSAT to capture crucial and non-stationary

contextual information at various scales.

The main contributions of this work are four-fold: (i)

We introduce N2YO-crawler, an efficient tool for collecting

and building real-time satellite orbit tracking datasets from

N2YO.com. (ii) We propose a general three-stage transformer-

based framework, GloLoSAT, for predicting LEO satellite tra-

jectories, featuring a Global-Local Probsparse Self-Attention

mechanism that captures both global and local contexts to

handle non-stationary orbit changes, improving prediction

accuracy. (iii) We conduct a theoretical analysis of the Global-

Local Probsparse Self-Attention mechanism, revealing its

computational complexity to be O(L log(L)), highlighting

its scalability and practical application of the mechanism in

tasks that involve long sequences. (iv) We conducted extensive

experiments on our crawled real-world satellite (STARLINK-

30506) orbit dataset, demonstrating our proposed methods

significantly improve the accuracy of LEO satellite orbit pre-

diction, consistently outperforming the counterparts on MGDE

(Mean Geocentric Distance Error) by reducing prediction

errors by up to 60.2% among various practical scenarios.

II. RELATED WORK

A. ML-based Satellites Orbit Prediction

Over the past several years, ML-based approaches have been

recognized as valuable tools to assist conventional physics-

based approaches for satellite orbit prediction. These meth-

ods can be categorized into two distinct types: (1) Physics-

Enhancing approaches. The work presented in [9] introduces

a differentiable SGP4 model called δSGP4, which employs the

neural networks as the solver for the motion-related differential

equations within the conventional SGP4 model. Similarly, the

study in [10] proposes a physics-informed machine learning

algorithm that conceptualizes the orbital trajectory as par-

tial differential equations and utilizes deep neural operators

to capture the system’s dynamics. (2) Error-Correction ap-

proaches. In [11], [12], ensemble learning methods based

on BT (Boosting Tree) algorithms are adopted to identify

patterns in the prediction errors of physics-based models, and

error corrections are then applied to the physics-based orbit

predictions. In [13], [14], the authors employ an SVM (Support

Vector Machine) as the error correction model to learn the

SGP4-based prediction errors and then refine the SGP4-based

orbit prediction based on an error correction frame.

While these ML-based methods significantly contribute to

orbit prediction, they rely on simulated satellite orbit datasets

generated by orbital numerical simulators or simplified per-

turbation models. These datasets lack the full dynamic com-

plexity of actual satellite orbits, making their errors more

pronounced in the increasingly crowded LEO space with

high launch rates and abundant space debris. Considering the

inherent limitations of simulated datasets, one can foresee the

margin of their orbit prediction error will increase progres-

sively. Therefore, it becomes imperative to incorporate real

satellite orbit tracking data into the study of LEO satellite

orbit prediction to strengthen the safety and sustainability of

LEO space activities.

B. Transformer-based LSTF Models

In recent years, inspired by the effectiveness of transform-

ers in CV (Computer Vision tasks) [22] and NLP (Natural

Language Processing [23], there has been increasing interest

in exploring transformer-based models for time-series fore-

casting tasks. In Informer [20], the authors propose an inno-

vative extension of the conventional Transformer architecture

by incorporating the probabilistic sparsity function into the

conventional self-attention module, termed the ProbSparse

Self-Attention mechanism. This design aims to streamline

the complexity inherent in standard self-attention and cross-

attention mechanisms. In FEDformer [21], the authors opt for

applying the Transformer in the frequency domain rather than

the time domain. This strategic shift allows FEDformer to

better capture the global properties of time series data. The

authors of ETSformer [18] introduce a novel approach to time-

series Transformer architecture by replacing the vanilla self-

attention module with exponential smoothing attention and

frequency attention modules, aiming to diminish time com-

plexity. The work Informer(stack) [19] presents a multi-stack

informer architecture within its encoder blocks to broaden

the model’s perspective. The initial stack processes the entire

input sequence. Subsequent stacks then focus on progressively

smaller halves, with the second stack handling the right half
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Fig. 1. Overview of GloLoSAT Framework. The left side illustrates the GloLoSAT framework, consisting of three stages: data preprocessing (framed in blue),
error correction model training (framed in pink), and orbit prediction (framed in purple). On the right side, the error correction model architecture is depicted,
featuring an encoder (left) and a decoder (right). Within the encoder, we replace the standard ProbSparse self-attention modules of vanilla Informer with our
novel Global-Local Probsparse self-attention modules. A 3-layer stack (purple tensor path) captures the entire input sequence, while three 2-layer stacks (blue,
red, and yellow tensor paths) individually process the left, middle, and right thirds of the input sequence. The decoder receives entire input sequences(framed
in purple), processes them using attention mechanisms, and generates predictions(framed in blue) in a real-time, generative manner.

and the third stack processing the left half of the remaining

sequence. The recent work [17] introduces the Fourier-Mixed

Window Attention approach, named FWin-Transformer. This

method segments sequences into shorter spans, applying win-

dow attention layers to these segments, followed by a Fourier

layer to merge all the window attention outputs. The intent is

to enhance the model’s understanding of micro-level details

within the input sequence.

While models like [18], [20] excel at capturing global

context, their reliance on self-attention mechanisms that op-

erate solely on the entire input sequence can overlook local

contexts, fine-grained details, and short-term dependencies.

This limitation may lead to inefficiencies when processing

long sequences. Conversely, [17] emphasizes local spans

with a local-only window approach, but this may limit the

comprehensive capture of the entire input context. Addition-

ally, [19]’s multi-stack architecture aims to balance local and

global contexts but inherently overlooks the left half of the

input sequence, potentially biasing self-attention modules and

affecting forecasting performance.

III. DATASETS

In this section, we first introduce N2YO-crawler. We then

outline the acquisition process for the Real-time satellite orbit

tracking dataset (DReal), TLEs dataset (DTLE), and the

SGP4-based orbit prediction dataset (DSGP4).

A. N2YO-crawler

To dynamically interact with N2YO.com, we use Selenium

as our automated web browser. We then develop a tailored

URL generator for our N2YO-crawler, which accepts Satellite

NORAD IDs and maps them to corresponding real-time orbit

tracking URLs, eliminating the need for manual URL inputs.

we reconfigure N2YO-crawler’s web driver to extract data

from the dynamic ”tabledata” element on N2YO.com, ensuring

focused data acquisition. To avoid delays and missed updates,

we optimize the web driver to retrieve real-time satellite

tracking data without page refreshes. To prevent data loss,

we introduced a csv writer function that transfers data from

RAM to the local hard drive every second, ensuring data

persistence even during large-scale crawls.

B. Real-time Satellite Orbit Tracking Dataset Collection

To construct our real orbit tracking dataset DReal, we first

utilize N2YO-crawler to gather data from N2YO.com over an

11-day period, from December 8, 2023, at 17:01:06 UTC to

December 19, 2023, at 14:16:16 UTC, resulting in 940,511

data points. It is also important to notice that during this

period, our target satellite, STARLINK-30506, executed two

maneuvers: one on December 16, 2023, at 18:02:09 UTC

and another on December 18, 2023, at 05:13:32 UTC. Each

collected data point initially comprised 14 features, including

NORAD ID, Local Time, UTC, latitude, longitude, Altitude

[Km], Altitude [Mi], Speed [Km/s], Speed [Mi/s], Azimuth,

Elevation, Right Ascension, Declination, and Local Sidereal

Time. Noting that the values of the last five features are contin-

gent on the data collector’s IP location, and to concentrate on

the satellite trajectory prediction task, we trimmed our dataset

to include only five essential features: UTC, Altitude [Mi],

latitude, longitude, and Altitude [Km]. This data trimming was

performed to ensure that the data set is specifically relevant

to satellite trajectories and is independent of the geographical

location of the data collector.
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To further facilitate the learning process for the LSTF,

we augmented each record with four additional attributes:

sintime, costime, index, and sinindex. According to [24], the

inclusion of these features can provide a consistent distance

measure for time-related variables, capturing periodicity and

removing discontinuities, thus potentially aiding the model in

learning time-based patterns. Precisely, the values of sintime

and costime are computed by applying the sine function to

the corresponding date, represented as the number of seconds

since January 1, 1970, 00:00:00 UTC. The index is a sequential

identifier, commencing with 1 for the first record. The sinindex

is derived by applying the sine function to the index.

C. Other Datasets Collection

Following the methods used in [14], we build the TLEs

dataset (DTLE) by collecting TLEs from the Space-Track.com

website throughout December 8, 2023, to December 19,

2023, collecting 30 TLEs. We then constructed an SGP4-

based orbit prediction dataset (DSGP4) through a two-step

process. First, we generate orbital position predictions using

the SGP4 model [25] with the most recent TLEs from DTLE ,

ensuring each prediction utilized the most current TLE for

its corresponding timeframe. Second, since SGP4 outputs are

in the TEME (True Equator Mean Equinox) frame [26],

which differs from N2YO.com’s geodetic coordinates, we use

Astropy to convert TEME values to geodetic coordinates.

IV. PROPOSED METHOD: GLOLOSAT

This section defines the task, details the GloLoSAT’s three

stages, analyzes the computational complexity of the Global-

Local Probsparse Self-Attention Mechanism, and describes

architecture variants of the error correction model.

A. Task Definition

In this paper, the real orbit tracking dataset (DReal), TLE

dataset (DTLE), and SGP4-based orbit prediction dataset

(DSGP4) for the satellite STARLINK-30506 are used. It is

imperative to notice that the original trajectory values (such

as altitude, longitude, and latitude) in DReal exhibit near

periodic behavior, presenting challenges for ML models be-

cause the statistical properties of these series, such as mean or

variance, change over time. In order to address this learning

challenge, instead of directly learning the satellite trajectories,

our proposed method attempts to learn the error between

the trajectories predicted by the SGP4 model and the actual

trajectories provided by N2YO. This error turns out to be less

periodic but more stochastic and, hence, more learnable by

our ML model. Hence, our primary objective is to improve

the accuracy of predicting the aforementioned errors, thereby

enhancing the accuracy of orbit predictions.

B. Data Preprocessing Stage

We first introduce the notations. The datapoint in DReal at a

given time ti is denoted as GEOXReal(ti), where GEO means

the last three features of the datapoint are in the geodetic co-

ordinate frame. The datapoint in DSGP4 at time ti is denoted

as GEOX̂SGP4(ti). We define De as the SGP4 prediction

error dataset, which incorporates the positional discrepancies

between DReal and DSGP4. Similarly, the datapoint in De at

time ti is denoted as GEOXe(ti).
The GloLoSAT begins with a data preprocessing stage.

Initially, it takes the datasets DReal and DSGP4 as input ,

and subsequently constructs the SGP4 prediction error dataset

De by calculating the positional discrepancies between DReal

and DSGP4. Specifically, the computation is detailed by the

following equation:

GEOXe(ti) =
GEOXReal(ti)−GEOX̂SGP4(ti) ∀ti ∈ T, (1)

where T is the set of timestamps for which data points exist

in both DReal and DSGP4. It is essential to recognize that

both DReal and DSGP4 encompass three geodetic attributes:

latitude, longitude, and altitude[Km]. These common at-

tributes are leveraged to evaluate the positional discrepancies,

thereby constituting the error dataset De. In particular, this

error dataset De retains the structural integrity of DReal,

substituting the values of the three geodetic features with

the respective positional differences, while the values of the

remaining features remain consistent with those in DReal.

Following the acquisition of the error dataset, De is partitioned

into distinct subsets to support the subsequent stages. Specifi-

cally, the initial 75% of De is allocated for the training dataset,

10% is reserved for the validation dataset, and the remaining

15% is dedicated to the evaluation of orbit prediction accuracy.

C. Error Correction Model Training Stage

We introduce a multi-range self-attention mechanism for the

error correction model in the GloLoSAT framework, trained

on dataset De to characterize SGP4-based prediction errors.

This mechanism enables the model to provide a multi-scope

perspective on the input sequence. Specifically, our proposed

model is inspired by Informer. We modify Informer’s encoder

block’s Probsparse self-attention module, replacing it with our

Global-Local Probsparse self-attention modules.

A. Global-Local Probsparse Self-Attention Mechanism.

Our proposed Global-Local Probsparse self-attention mech-

anism, as depicted on the right-hand side in Fig. 1, enables the

model to have a multi-scale perspective on input sequence pro-

cessing by capturing both global and local contexts, surpassing

the capabilities of its predecessor, which primarily focused

on either global or local information. Specifically, the global

Probsparse self-attention module is configured to capture the

entire sequence input, while the local Probsparse self-attention

modules are intended to concentrate on distinct segments of

the sequence input. In the following, we will define some

notations and present a formal modeling of the Global-Local

Probsparse self-attention mechanism, along with an analysis

of its computational complexity.

Notations: The time sequence starting at t and concluding

at t+∆ is represented by the notation (t : t+∆). The sequence

input for the encoder is denoted as X(t : t+∆) ∈ R
LIn×dem ,

where LIn = ∆ represents the input sequence length, and dem
denotes the embedded dimension of the model. The queries

94

Authorized licensed use limited to: Auburn University. Downloaded on June 16,2025 at 17:55:28 UTC from IEEE Xplore.  Restrictions apply. 



(Q), keys(K) , and values(V ) for the input sequence are then

defined as Q = X(t : t+∆)WQ+bQ; K = X(t : t+∆)WK+
bK , V = X(t : t + ∆)WV + bV , where WQ,WK ,WV ∈
R
dem×dem , and bQ, bK , bV ∈ R

LIn×dem .

Global Probsparse Self-attention: The global Probsparse

self-attention mechanism is designed to capture the entire se-

quence input. Utilizing the ProbSparse Self-attention formula

in [20], the calculation of it is defined as:

Attentiong(Qg,Kg, Vg) = softmax

(
Q̄gK

¦
g√

dem

)
Vg, (2)

where Qg,Kg, Vg ∈ R
LIn×dem represent the queries, keys,

and values for the entire sequence input, and Q̄g ∈ R
u×dem

represents a filtered sparse matrix comprising the top u Qgs

selected based on the sparsity measurement formula [20]. The

selection parameter u is defined by the equation u = c·lnLIn,

where c is a constant sampling factor. The sparsity measure-

ment formula is given by:

M(qi,K) = ln

LIn∑

j=1

e
qik

¦
j√
d − 1

LIn

LIn∑

j=1

qik
¦

j√
d
, (3)

where the qi, kj represent the ith and jth row in Q,K

respectively.

Local Probsparse Self-attention: Since our local Prob-

sparse self-attention modules are tailored to focus on dis-

tinct segments of the sequence input, we divide the entire

input X(t : t + ∆) into N subsequences: X(t : t + ∆l),
X(t+∆l : t+2∆l),..., X(t+(n−1)∆l : t+n∆l), where ∆l

stands for each local subsequence input length. Consequently,

the queries, keys, and values are also segmented accordingly:

Q = [Ql1 , Ql2 , ..., QlN ]¦; K = [Kl1 ,Kl2 , ...,KlN ]¦, V =
[Vl1 , Vl2 , ..., VlN ]¦. Thus, by using the ProbSparse Self-

attention formula Eq.(3), we compute local Probsparse self-

attention for each subsequence as follows:

Attentionli(Qli ,Kli , Vli) = softmax

(
Q̄liK

¦

li√
dem

)
Vli , (4)

where Qli ,Kli , Vli ∈ R
LIn/N×dem signifying the queries,

keys, and values for the ith subsequence input, and the

filtered sparse matrix Q̄li ∈ R
m×dem contains the top m Qlis

selected based on the sparsity measurement formula Eq.(3).
The parameter m is controlled by the relation m = c · ln

(
L
N

)
.

Global-Local Probsparse Self-Attention: After computing

the local Probsparse self-attention and the global Probsparse

self-attention for the input sequence, we concatenate these

attentions to form the Global-Local Probsparse Self-Attention:

Attentiongl(Q,K, V ) =




Attentiong(Qg,Kg, Vg)
Attentionl1(Ql1 ,Kl1 , Vl1)

...

AttentionlN (QlN ,KlN , VlN )


 . (5)

Computational Complexity: Given a sequence input X(t :
t + ∆) ∈ R

L×dem , the computational complexity of Global-

Local Probsparse Self-Attention is as follows:

O (Attentiongl(Q,K, V )) = O (L log(L)) . (6)

Proof: for the computational complexity of Global-Local

Probsparse Self-Attention

O (Attentiongl(Q,K, V )) = O (Attentiong(Qg,Kg, Vg))

+
N∑

i=1

O (Attentionli(Qli ,Kli , Vli)) (7)

By applying the time complexity formula of ProbSparse At-

tention [20] to Eq.(7), we obtain:

RHS of Eq.(7) = O (L log(L)) +
∑N

i=1 O
(
L
N
log( L

N
)
)

(8)

= O (L log(L)) +N ×O
(
L
N
log
(
L
N

))
(9)

= O (L log(L)) +O
(
L log

(
L
N

))
(10)

RHS of Eq.(10) ≤ 2O (L log(L)) = O (L log(L)) . (11)

It is clear that Informer’s Probsparse Self-Attention mech-

anism exhibits computational complexity on the order of

O(L log(L)), which aligns with our proposed Global-Local

Probsparse Self-Attention mechanism. This indicates that our

method can achieve processing efficiency similar to that of

Informer while also enhancing the model’s ability to capture

global and local context.

D. Architecture Variants

For the error correction models, we build two vari-

ants of GloLoSAT, denoted as GloLoSAT-OF (Orbital Fea-

tures Focused) and GloLoSAT-TL (Triple Independent). The

GloLoSAT-OF variant is achieved by modifying the final

FCN (fully connected layer) of the original GloLoSAT so

that it only outputs orbit errors under three essential orbital

features: latitude, longitude, and altitude[Km]. In contrast, the

GloLoSAT-TL variant adopts a more fine-grained approach.

Specifically, it is composed of three separate models. Each

model diverges from the conventional methods that predict all

features concurrently. Instead, their final FCN layer is modified

to predict orbit errors under each orbital feature independently.

As a result, this approach yields three specialized models, each

uniquely responsible for predicting latitude errors, longitude

errors, and altitude errors[Km] respectively. These individual

predictions are then synthesized to generate the final satel-

lite orbit error corrections. Following a similar modification

strategy, we also introduce two variants for Informer [20] and

Informer(stack) [19], respectively: Informer-OF, Informer-TL,

Informer(stack)-OF, and Informer(stack)-TL.

E. Orbit Prediction Stage

As illustrated on the left-hand side in Fig. 1, the final stage

generates the final satellite orbit prediction by integrating the

error corrections with the corresponding SGP4 predictions.

Specifically, this process first leverages the trained error model

to process an input sequence GEOXe(ti : ti+∆1), where ∆1

represents the length of the input sequence and obtains the

predicted errors GEOX̂e(ti +∆1 : ti +∆1 +∆2), where ∆2

indicating the size of the prediction window. The resulting

orbit prediction is then calculated by:

GEOÔ(ti +∆1 : ti +∆1 +∆2) =
GEOX̂e(ti +∆1 : ti +∆1 +∆2)+
GEOXSGP4(ti +∆1 : ti +∆1 +∆2).

(12)
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V. EXPERIMENT

A. Baselines

To evaluate our proposed method, we have selected four

previous models with two relevant categories as baselines. The

first category consists of the SGP4 mathematical orbital prop-

agation model [27], used for direct satellite orbit prediction.

The second category comprises three time-series forecasting

models: LSTM [28], Informer [20], and Informer(stack) [19].

These models are employed as error correction models within

our proposed approach. Here are the key configurations for

each model in the second category. The LSTM is parameter-

ized with n hidden = 128, n layers = 2, dropout = 0.2,

optimizer = Adam, epochs = 20, earlystopping = 5, and

lr = 1e−4. The Informer is structured with a 2-layer encoder

and a 1-layer decoder. It is trained with dropout = 0.05,

optimizer = Adam, epochs = 20, earlystopping = 5, lr =
1e−4, and embedded dimension = 512. The Informer(stack)

mirrors the Informer’s configurations, but its encoder is com-

posed of three stacks with 3, 2, and 1 layers, respectively.

B. Experiment Training Settings

In this study, we conduct a comparative analysis of our

proposed method against established baseline models within

three practical satellite orbit forecasting scenarios.

(1) Short-Term Prediction: In this scenario, the models are

trained on the error dataset De, leveraging the preceding 300-

second of trajectories to forecast the forthcoming 60-second

trajectories with 1-second intervals. This setting is designed

to potentially enable near-real-time updates on satellite posi-

tioning, which can be beneficial for urgent collision avoidance

measures and ensuring the satellite remains within its intended

orbit promptly.

(2) Long-Term Prediction: In this scenario, the models

are also trained on the De but are tasked with utilizing the

prior 300-second trajectories to predict the next 720-second

trajectories with 1-second intervals. This scenario is crafted

with the intention of possibly assisting in enhancing the

scheduling of communication windows, ground station passes,

and the management of satellite power and thermal conditions.

(3) Extended Long-Term Prediction: In this scenario,

the models are trained on a modified dataset DeEL, derived

by uniformly sampling one data point per minute from De.

Specifically, during the data preprocessing phase, once De

is obtained, it undergoes a selection process to form DeEL

before being divided into training, validation, and testing

partitions. The training objective here is to predict 720-minute

trajectories into the future with 1-minute intervals based on 60-

minute historical trajectories. This setting is especially relevant

for LEO satellites, aligning with NASA’s Spacecraft Con-

junction Assessment and Collision Avoidance Best Practices

Handbook [29], which states that TLEs of LEO satellites

with perigee heights under 500 km are updated thrice daily,

while other LEO satellites are updated at least once per day.

Additionally, the observations from the Space-Track website

also imply that updates for certain LEO satellites, such as

Starlink satellites, occur about twice daily. Thus, a half-day

prediction interval is practical for long-period LEO satellite

orbit prediction, aligning with the typical TLE update fre-

quency. This predictive setting is designed to provide operators

with advanced notice to support proactive decision-making for

satellite maneuvers, resource allocation, and communication

scheduling.

C. Model Parameters

For both GloLoSAT-OF and GloLoSAT-TL, their encoders

consist of one 3-layer stack and three 2-layer stacks. Specif-

ically, the 3-layer stack captures the entire input sequence,

while the three 2-layer stacks individually handle the left,

middle, and right thirds of the input sequence. Both models

include a 1-layer decoder. Model optimization is performed

using the Adam optimizer, initialized with a learning rate of

1e−4, which undergoes a tenfold reduction every two epochs

over a total of 20 epochs. Additionally, a dropout rate of

0.05 and an early stopping parameter of 5 are implemented.

The parameter configurations for the Informer-OF, Informer-

TL, Informer(stack)-OF, and Informer(stack)-TL mirror those

of their corresponding baseline models. Furthermore, for all

prediction tasks, including the baseline models, the batch size

is set to 50 for Short-Term and Long-Term scenarios and 16

for the Extended Long-Term Prediction scenario.

D. Experiment Evaluation Settings

To assess the efficacy of our proposed method for satellite

orbit prediction, we analyzed the experiment outcomes of all

evaluated models within the ECEF ( Earth-centered and Earth-

fixed) coordinate system [30], which is a non-inertial reference

framework that synchronizes with the Earth’s rotation and

is one of the most widely adopted coordinate systems for

satellite positioning and orbit prediction. To ensure a rigorous

and equitable comparison, we selected the evaluation period

for all prediction scenarios from 2023/12/17 23:05:01 to

2023/12/19 05:05:00. Upon collating the prediction outcomes

from each model, we apply the coordinate transformation

function provided by pyproj library to both the actual and pre-

dicted orbits, facilitating the conversion of latitude, longitude,

and altitude values into their corresponding representations

within the ECEF system. We then use a set of performance

metrics to measure the accuracy and reliability of each method.

These metrics include Root Mean Square Error (RMSR),

Mean Absolute Error (MAE), and Mean Geocentric Distance

Error (MGDE), the latter being computed as MGDE =
1
n

∑n

i=1

√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2, where n is

the number of observations, (xi, yi, zi) and (x̂i, ŷi, ẑi) are the

actual and predicted values respectively for the ith observation.

All of the ML-based models are implemented using PyTorch

and are trained and tested on GeForce RTX 4090 ×6.

E. Experiment Results and Analysis

The experimental results for each orbit prediction method

across three different prediction settings are summarized in

Table I through III, with the best results in bold.

Performance Comparison With Baselines. The observation

of our experiment results shows that our proposed methods
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TABLE I
THE PERFORMANCE RESULTS ON THE SHORT-TERM PREDICTION TASK.‡

MEANS OUR PROPOSED MODEL.

Short-Term Prediction (ECEF, unit in meters)

Metric MAE RMSE MGDE

SGP4 321.989 417.923 637.902

LSTM + SGP4 324.264 422.208 642.029

Informer + SGP4 535.77 648.83 1039.76

Informer(stack) + SGP4 545.47 658.43 1056.71

‡ Informer-OF + SGP4 295.924 403.545 583.802

‡ Informer(stack)-OF + SGP4 303.149 420.524 595.315

‡ GloLoSAT-OF + SGP4 273.481 526.086 540.527

‡ Informer-TL + SGP4 260.285 355.646 510.162

‡ Informer(stack)-TL + SGP4 264.407 365.838 520.202

‡ GloLoSAT-TL + SGP4 253.732 346.548 495.715

TABLE II
THE PERFORMANCE RESULTS ON THE LONG-TERM PREDICTION TASK. ‡

MEANS OUR PROPOSED MODEL.

Long-term Prediction (ECEF, unit in meters)

Metric MAE RMSE MGDE

SGP4 321.989 417.923 637.902

LSTM + SGP4 326.446 425.655 644.288

Informer + SGP4 639.434 751.176 1228.982

Informer(stack) + SGP4 578.423 690.78 1117.3

‡ Informer-OF + SGP4 283.445 386.59 557.269

‡ Informer(stack)-OF + SGP4 308.734 411.637 610.936

‡ GloLoSAT-OF + SGP4 265.856 385.471 522.81

‡ Informer-TL + SGP4 253.576 346.116 495.361

‡ Informer(stack)-TL + SGP4 256.685 373.633 503.23

‡ GloLoSAT-TL + SGP4 250.898 341.99 489.712

improve the accuracy of satellite orbit prediction under various

scenarios compared with the baselines. Our proposed models

outperform the SGP4 on MGDE by decreasing the errors up

to 22.3% (in Table I: Short-Term Prediction), 23.2% (in Table

II: Long-term Prediction), and 18.9% (in Table III: Extended

Long-Term Prediction). This implies that the positional dis-

crepancies between DSGP4 and DREAL are learnable, and our

proposed methods make a positive contribution to the orbit

prediction problems. Additionally, when compared to tradi-

tional multivariate time-series forecasting models combined

with SGP4, such as LSTM + SGP4, Informer + SGP4, and

Informer(stack) + SGP4, our proposed models show a potential

reduction in MGDE by up to 53.1%, 60.2%, and 58.9%

for short-term, long-term, and extended long-term predictions,

respectively. This observation underscores the importance of

the output feature dimensionality in the final FCN layer for

time-series forecasting tasks. Specifically, the original LSTM,

Informer, and Informer(stack) models generate outputs for an

extensive range of features, which may lead to a dispersion

of focus on many task-irrelevant features, such as sintime,

costime, index, sinindex, and Altitude [Mi]. Conversely, our

proposed models are tailored to prioritize key orbital features:

latitude, longitude, and altitude [Km]. By concentrating on

these orbital features, our models can minimize the dilution

of attention across less relevant features, thereby leading to

more accurate predictions.

Performance Comparison Between Different Self-attention

Mechanisms. The results across tables I through III show

TABLE III
THE PERFORMANCE RESULTS ON THE EXTENDED LONG-TERM

PREDICTION TASK. ‡ MEANS OUR PROPOSED MODEL.

Extended Long-Term Prediction(ECEF, unit in meters)

Metric MAE RMSE MGDE

SGP4 320.575 413.403 634.079

LSTM + SGP4 642.56 806.622 1251.47

Informer + SGP4 543.92 692.17 1057.39

Informer(stack) + SGP4 632.319 788.58 1207.04

‡ Informer-OF + SGP4 302.785 405.393 596.42

‡ Informer(stack)-OF + SGP4 309.561 411.01 606.83

‡ GloLoSAT-OF + SGP4 297.427 398.955 585.484

‡ Informer-TL + SGP4 268.486 363.218 526.142

‡ Informer(stack)-TL + SGP4 276.9 372.576 543.207

‡ GloLoSAT-TL + SGP4 262.916 355.085 514.392

that our Global-Local Probsparse Self-Attention-based orbit

prediction methods outperform their counterparts in all tested

prediction scenarios. The GloLoSAT-TL + SGP4 method

exhibits improvements over the Informer-TL + SGP4 and

Informer(stack)-TL + SGP4 methods, with a decrease in

MGDE by up to 4.7%, 2.7%, and 5.3% for Short-Term, Long-

Term, and Extended Long-Term Prediction scenarios, respec-

tively, as shown in Tables I to III. Similarly, the GloLoSAT-

OF + SGP4 method exhibits better performance compared to

the Informer-OF + SGP4 and Informer(stack)-OF + SGP4

methods, achieving a reduction in MGDE by up to 9.2%,

15.8%, and 3.5% for short-term, long-term, and extended long-

term predictions, respectively. These improvements underscore

the essential role of the input sequence range in enhancing the

self-attention module’s efficacy. The Informer model processes

only the input sequence’s global range, potentially limiting its

local contextual understanding. The Informer(stack) utilizes

a tiered approach, where the first stack processes the global

input sequence, the second stack addresses the right half

slices of the input sequence, and the third stack focuses on

the subsequent half slices, potentially overlooking the left

half slices of the entire input. On the contrary, our proposed

GloLoSAT, with its Global-Local Probsparse Self-Attention

modules, is designed to fully encompass both global and local

sequence inputs. Specifically, the global module captures the

entire sequence, while the three local modules focus on the

left, middle, and right thirds of the input sequence, leading to

a more nuanced contextual understanding and improved orbit

prediction accuracy.

Performance Comparison Between Architectural Variants.

The results presented in Tables I through III demonstrate that

Triple Independent variants perform better than Orbital Fea-

tures Focused counterparts in various orbit prediction scenar-

ios. Informer-TL + SGP4 outperforms Informer-OF + SGP4

on MGDE by decreasing 12.6% for Short-Term Prediction,

11.1% for Long-Term Prediction, and 11.8% for Extended

Long-Term Prediction. Informer(stack)-TL + SGP4 achieves

a decrease in MGDE by 12.6% for Short-Term Prediction,

17.6% for Long-Term Prediction, and 10.5% for Extended

Long-Term Prediction when compared to Informer(stack)-OF

+ SGP4. Additionally, GloLoSAT-TL + SGP4 also shows
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improved performance over GloLoSAT-OF + SGP4, with

MGDE reductions of 8.3% for Short-Term Prediction, 6.3%

for Long-Term Prediction, and 12.1% for Extended Long-Term

Prediction. These observations demonstrate the benefits of a

more fine-grained approach adopted by the Triple Independent

variants, where the final FCN layer is restructured to predict

orbit errors for each orbital feature independently, thereby

maximizing the use of additional information from other input

features to enhance prediction accuracy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we attempt to address LEO satellite orbit

prediction using real satellite orbit tracking data. Our approach

primarily concentrates on mitigating the orbit prediction errors

that arise from traditional physics-based models by imple-

menting an ML-based error correction framework. We intro-

duce N2YO-crawler for high-integrity, real-time data collec-

tion and present GloLoSAT, a novel three-stage transformer-

based framework for real-time LEO satellite orbit prediction.

To overcome the limitations of existing methods that focus

only on global or local contexts, we propose a Global-Local

Probsparse Self-Attention mechanism within the GloLoSAT

framework, capturing both contexts with computational ef-

ficiency of O(L log(L)). Extensive experiments demonstrate

GloLoSAT’s effectiveness in reducing SGP4 prediction errors

and improving orbit prediction performance. We note that this

study focuses on applying the ML-based approach to the orbit

prediction of a single satellite. In our future work, we plan

to extend the proposed ML-model to the orbit prediction of

multiple satellites in the same constellation, which will enable

the routing research in the mobile ad hoc network formed by

the constellation.
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