




on WLDR and 95.44% on FaceForensics++ datasets. We

compare the performance of the proposed framework with

various models including rules-only, vision-only models as

well as models with rule boosting. The overall contributions

of this paper are summarized as:

• We proposed a novel NeuroSymbolic framework that

combines perception (deep featuers) and rules (knowl-

edge) for robust deepfake detection with extended in-

terpretability.

• We developed a novel set of geometrical features along

with a facial vocabulary, which served as the basis for

generating rules.

• We conducted extensive experiments to assess the ro-

bustness of our proposed framework, including cross-

dataset evaluations and an ablation study.

2. Related Work

In this section, we explore landmark-based detection

methods, leveraging facial landmarks to expose inconsis-

tencies in deepfakes along with deep learning-based so-

lutions, utilizing neural networks to detect subtle anoma-

lies indicative of manipulated media. Additionally, we in-

vestigate rule-based and multimodal approaches, aiming to

enhance deepfake detection through the integration of di-

verse modalities and manual rule formulations. These com-

plementary strategies offer distinct perspectives, potentially

leading to more robust and comprehensive detection capa-

bilities. This section also includes a focused subsection on

rule extraction methods, which aim to derive explainable

rules directly from complex models or through the careful

analysis of deepfake artifacts.

2.1. Deepfake Detection

Landmark Based Detection. Facial landmarks offer

a potent tool in the fight against deepfakes. These key

points, pinpointing features like the eyes, nose, and mouth,

reveal subtle inconsistencies and unnatural distortions that

frequently betray manipulated videos. Deepfake detection

algorithms analyze the relationships between facial land-

marks, examining their positions, movements, and relative

distances. Disruptions to these expected patterns can signal

a deepfake, as human faces adhere to specific proportions

and dynamics. By focusing on these vulnerable areas, facial

landmark analysis helps expose the artificial nature of deep-

fakes, providing a valuable defense against these deceptive

creations. [43, 36, 47] use facial landmarks for detecting

deepfakes.

Deep Learning Based Solutions Deep learning-based so-

lutions are at the forefront of deepfake detection for differ-

ent modalities offering sophisticated methods for combat-

ing these manipulated creations like [15, 31], . These solu-

tions often employ neural networks like Convolutional Neu-

ral Networks (CNNs) that excel at analyzing visual data.

By training on large datasets of both real and deepfake im-

ages/videos, these models implicitly learn anomalies, in-

consistencies, and artifacts that betray the artificial nature

of deepfakes. [14], unusual facial textures [45], or inconsis-

tencies in lighting and reflections [44].

Rule Based Solutions Several solutions have been pro-

posed for creating manual rules for detecting deepfakes

[3, 2]. These rule-based approaches often focus on identi-

fying specific artifacts or inconsistencies that are commonly

introduced during the deepfake generation process.

Multimodal Solutions Deep learning’s ability to continu-

ously learn and adapt makes it especially powerful against

the ever-evolving landscape of deepfake creation tech-

niques. There is also an increased interest in using multi-

modal solutions for detecting deepfakes [30, 12].

Neural + Symbolic Solutions The current literature lacks

an exploration of NeuroSymbolic approaches for detecting

deepfakes. Due to the current limitations of deep learning-

based architectures, there has been increasing interest in

NeuroSymbolic approaches for detecting deepfakes. [9] ex-

plore the possibility of using audio and visual modalities

along with manually formulated rules for detecting deep-

fakes. However, this preliminary work does not cover the

data-driven knowledge/rule extraction and its integration

with deep-learning approach.

2.2. Rule Extraction

Rule-based models (decision trees, etc.) are difficult

to train due to their discrete structure. Heuristics [29]

and search algorithms are used, but may not find optimal

solutions and can be computationally expensive on large

datasets. Bayesian methods [20] improve structure learn-

ing, but scalability and achieving performance comparable

to complex models remain challenges. Ensemble models

(e.g., Random Forests, [5]) outperform rule-based ones, but

their decision-making process can be opaque, hindering in-

terpretability [10]. Attempts to bridge this gap exist, but

often sacrifice accuracy. Gradient-based methods for dis-

crete model training (like STE, [7]) are used in neural net-

work compression, but can have limitations such as requir-

ing gradient information at discrete points. For extracting

rules, we employ [42] that employs the Gradient Grafting

method, which aims to address these issues by utilizing both

discrete and continuous model gradients.

3. Proposed Framework

The proposed framework comprises two distinct net-

works. One network focuses on the extraction and pro-

jection of image patches via a backbone network for deep

facial feature extraction. Meanwhile, the other network is

dedicated to analyzing facial landmarks-based geometry,
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geometry involves precise calculations of specific informa-

tion including the distance between the pupils, the size of

the mouth, or the slope of the eyebrows etc.

Landmarks and Derived Geometric Feature Extraction:

First, we extract facial landmarks, using dlib [18] employ-

ing specialized machine learning models to pinpoint 64

landmark points including the nose tip, eye corners, and lip.

Based on various deepfake types such as face-swap or Lip-

Sync etc., the extracted landmarks are grouped into various

facial parts to develop human understandable vocabulary as

illustrated in Figure 4. Next, we derived a robust feature-

set, by analyzing the relative distances, angles, and areas

formed by these landmarks which provide valuable infor-

mation about the spatial relationships among facial features,

helping to differentiate between genuine and manipulated

faces. The derived facial geometrical features including dis-

tance d, angle An and and area Ar are calculated as:

d =

√

(x1− x2)
2
+ (y1− y2)

2

An = tan−1|(m1 −m2)/(1 +m1m2)|

Ar =
√

s (s− da) (s− db) (s− dc)

where, x, m, and s are the landmark point, line slope, and

semi-perimeter of a triangle to calculate distance d, angle

An and area Ar.

Rules Extraction using RRL We employ Rule-based

Representation Learner (RRL) [42], a classifier designed to

learn interpretable, nonfuzzy rules for representation and

classification automatically. The derived geometrical fea-

tures symbolized with developed vocabulary are given to

RRL along with fake and real labels to generates rules. RRL

employs Gradient Grafting, a novel training method, to op-

timize the discrete model directly. The Logical layers in

RRL learn complex logical rules based on underlying data

representations. Various combination of binarization and

logical layers act as feature learner that fed linear layer to

perform classification. The RRL itself filtered out unneces-

sary logical rules using skip-connections in logical layers.

Further technical details of RRL can be found in [42]. The

learned rules extracted from facial landmarks are also fed to

the fully connected network to extract learned deep features

of the same dimensionality as the dimension of features ex-

tracted from image patches.

3.4. Fusion and Classification Head

The extracted image features and projected rule embed-

dings are concatenated together in the joint space. We also

employ normalization on the concatenated features to have

them on same scale. To process images and rules together

Model Name Type WLDR FF++

CCT [11] z 81.23 77.23

r 86.33 83.12

CaIT [39] z 76.32 84.17

r 84.72 90.17

gMLP [23] z 84.24 87.32

r 93.39 95.44

EANet [8] z 90.31 83.33

r 92.65 87.43

FNet [19] z 86.33 92.73

r 90.32 87.37

ConvMixer [40] z 81.37 92.55

r 83.38 91.48

Token Learner [33] z 82.81 82.46

r 95.84 94.38

MLPMixer [38] z 92.35 85.64

r 96.19 93.26

Table 1. Results on WLDR and FaceForensics++ Datasets z:

models tested without rules, r: Ruleboosted models. Evaluation

matrix is AUC(%).

in a joint space, the image and rule features obtained after

fusion are fed to an MLP Head from where we get binary

classification output. The final logits are given by a fully

connected network. Further, we apply sigmoid function to

the logits for obtaining confidence score for deepfake detec-

tion.

4. Experiments and Results

This section details the experimental setup, datasets, and

results used to analyze the RuleBoost model’s performance.

Analysis includes comparisons with state-of-the-art tech-

niques and evaluation across diverse datasets.

4.1. Datasets and Metrics

In our experiments, we utilize both the FaceForen-

sics++ (FF++) [32] and World Leaders Dataset (WLDR)

[4] datasets to ensure a comprehensive evaluation. For

cross-dataset evaluation, we employ Presidential Deepfakes

Dataset (PresDD) [34]. The employed datasets offer a di-

verse range of manipulation techniques, allowing us to test

the robustness of our detection models across different sce-

narios. We selected distorted facial poses from the exist-

ing WLDR Dataset. While we did not construct a sepa-

rate dataset focused solely on distorted poses, the WLDR

Dataset does include variation in facial expressions and

poses, allowing us to partially assess our method’s perfor-

mance on this challenging subset.

We rely on the Area Under the Curve (AUC) and Accu-

racy (ACC) metrics for the assessment of our models on

full dataset and cross-dataset evaluation, respectively.
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Method DF F2F FS NT

C3D [24] 92.86 88.57 91.79 89.64

XceptionNet-avg [32] 98.93 98.93 99.64 95.00

I3D [6] 92.86 92.86 96.43 90.36

TEI [25] 97.86 97.14 97.50 94.29

FaceNetLSTM [35] 89.00 87.00 90.00 -

DeepRhythm [28] 98.70 98.90 97.80 -

Comotion-35 [41] 95.95 85.35 93.60 88.25

HolisticDFD [31] 98.00 95.00 94.00 96.00

Ruleboost (proposed) 97.00 96.20 95.40 97.80

Table 2. Performance analysis on different subsets of FaceForen-

sics++ c23, DF: Deepfake, F2F: Face2Face, FS: FaceSwap,

NT:Neural Texture. Evaluation matrix is ACC(%).

Testing Subset MT ml [30] AVFNet[12] RB

W - LipSync 83.33 69.32 84.39

W - FaceSwap 75.84 73.98 76.82

W - Imposter 91.66 61.74 84.28

P - full 70.00 78.12 83.62

Table 3. Cross-dataset Evaluation: RB: Ruleboost architecture

trained on FaceForensics++, W: World Leaders Dataset, P:

Presidential Deepfake Detection Dataset. Evaluation matrix is

ACC(%).

4.2. Performance Analysis

The results in Table 1 summarizes the performance of

several deep learning models on two image classification

tasks: WLDR and FF++. The results demonstrate that rule-

boosted models generally outperform their standard coun-

terparts. For the WLDR dataset, MLP Mixerr achieved

the highest AUC of 96.19%, followed closely by Token

Learnerr at 95.84%. This significant improvement for To-

ken Learner highlights the effectiveness of combining rule-

based systems with deep learning approaches. On the FF++

dataset, gMLPr reigned supreme with an AUC of 95.44%,

while CaITr placed second at 90.17%. It’s worth not-

ing that CaITz underperformed relative to other models on

this dataset, suggesting that rule-based enhancements can

be particularly beneficial for certain model architectures or

tasks.

Model d+An d+Ar Ar +An d+An+Ar

SVM 67.40 72.2 80.90 81.30

LR 77.90 78.3 74.50 76.20

DT 86.2 86.6 88.10 89.40

Mixer 95.30 93.20 94.30 96.19
Table 4. Ablation Study of Rules with SVM: Support Vector Ma-

chine, LR: Logistic Regression, DT: Decision Trees, NB: Naive

Bayes. d: Distance-based rules, An: Angle-based rules, Ar: Area-

based rules. Evaluaiton matrix is ACC(%)

Furthermore, the table reveals interesting trends across

the different models. For example, ConvMixer demon-

strates a larger performance boost from rule augmentation

on the WLDR dataset (81.37% to 83.38%) compared to

the FF++ dataset (92.55% to 91.48%). This suggests that

the specific type of image data and the model’s inherent

strengths may influence how much it benefits from rule-

based guidance. Overall, the results highlight the poten-

tial of combining deep learning with rule-based systems to

achieve superior performance on image classification tasks.

We also evaluate the performant Ruleboosted architecture

on the subset of FaceForensics++ dataset as shown in Ta-

ble 2. The evaluated methods include both video-based

architectures (C3D, I3D, TEI) and those utilizing addi-

tional modalities (FaceNetLSTM, DeepRhythm). The pro-

posed Ruleboost method demonstrates competitive accu-

racy across all four deepfake manipulation types (Deepfake,

Face2Face, FaceSwap, Neural Texture).

4.3. Cross Dataset Evaluation

We also perform cross-dataset evaluation as in Table 3

shows the results of a cross-dataset evaluation where the

Ruleboost (RB) architecture, trained on FaceForensics++,

is tested on different image/video manipulation detection

tasks. It’s compared against two other models: MT ml
and AVFNet. The results indicate that RB generally out-

performs the other models across most of the testing sub-

sets. On ”WLD-FaceSwap”, it achieves the highest ac-

curacy of 76.82%, and it has a similarly strong perfor-

mance on ”WLD-LipSync” with 84.39% accuracy. While

MT ml gets the top score on ”WLD-Imposter”, RB still

demonstrates a respectable accuracy. Notably, RB delivers

the most substantial improvement on the ”PDD-full” sub-

set, reaching 83.62% accuracy. These results suggest that

the Ruleboost architecture possesses valuable generaliza-

tion abilities, making it more robust for detecting different

types of image and video manipulations, even those unseen

during its initial training.

4.4. Ablation Study

To perform an ablation study of the proposed ruleboost-

ing approach, we also evaluate the performance of various

models (SVM, Logistic Regression, Decision Trees, and

our proposed Mixer model) using different combinations

of rules: distance-based rules (d), angle-based rules (An),

and area-based rules (Ar). Each column represents a differ-

ent combination of these rules applied to the models. For

this experiments, we used WLDR dataset and the results

are shown in Table 4. The results indicate that the perfor-

mance varies depending on the combination of rules used.

For instance, in the case of the SVM model, using all three

types of rules (d+An+Ar) yields the highest accuracy of

81.30%, while the combination of distance and angle-based
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CCT [11] CaIT [39] gMLP [23] EANet [8] FNet [19] ConvMixer [40] TL [33] MLPMixer [38]

z 54.50 63.20 74.90 69.40 56.80 68.20 67.40 85.40

r 87.40 83.40 86.50 83.30 79.60 89.20 90.40 94.30

Table 5. Performance Analysis on Distorted Facial Poses. z: models tested without rules, r: Ruleboosted models

greater than 61.342, An(LEB22REB21N27) > 33.645
specifies that the angle formed by landmarks LEB22,

REB21, and N27 must be greater than 33.64 degrees,

Ar(REB21LEB22N27) < 306.243 denotes the area

formed by landmarks REB21, LEB22, and N27 must

be less than 306.243 and Ar(N31OLU48J4 < 524.445”

indicates the area formed by landmarks N31, OLU48, and

J4 must be less than 524.44. Similarly, the other rules

can be used to explain the reason for the model decision

for a specific individual. We select rules based on their

effectiveness as depicted by RRL [42] as using all rules in

the framework would be inefficient. Based on empirical

analysis, we only select rules whose support is greater than

0.7 as shown in Figure 5.

Our experimental findings, summarized in Table 5,

demonstrate the potential of incorporating rules into deep

learning (DL) architectures for the detection of deepfake

images, particularly those with facial distortions. The Rule-

boosted models, denoted by r, consistently outperform

their rule-free counterparts, represented by z, across all the

tested architectures. This consistent performance boost un-

derscores the ability of Ruleboost to significantly enhance

the predictive accuracy of DL models when tackling the

challenging problem of deepfake detection.

A particularly noteworthy observation is the substantial im-

provement seen with the MLPMixer architecture. When

Ruleboost is applied, MLPMixer achieves an impressive

overall accuracy of 94.30%, the highest among all evaluated

models. This remarkable performance suggests a strong

compatibility between the MLPMixer’s unique architecture

and the integration of data-driven rules. It highlights the

potential synergy between this type of DL architecture and

the Ruleboost methodology. The superiority of Ruleboosted

models across various architectures emphasizes the versatil-

ity and effectiveness of the proposed architecture for deep-

fake detection. By integrating specific rules into the DL

models, Ruleboost not only enhances accuracy but also pro-

vides a more robust framework for handling the intricacies

of distorted facial images.

5. Conclusion and Future Works

In this paper, we underscore the inherent limitations of

relying solely on deep learning models or data-driven rules

for deepfake detection, particularly in scenarios with atypi-

cal facial poses. The introduction of RuleBoost offers a sig-

nificant step forward, demonstrating the superiority of com-

bining learned visual features with explicit rules. This hy-

brid approach achieves state-of-the-art performance, high-

lighting the importance of adaptability and multifaceted

strategies in combating the evolving threat of deepfakes.

Our analysis further indicates that by addressing the blind

spots of deep learning models, RuleBoost offers a more ro-

bust and reliable framework for deepfake detection.

In future, we plan to extend RuleBoost to multimodal deep-

fake detection. By incorporating audio and video analysis

alongside our current visual approach, we aim to signifi-

cantly enhance RuleBoost’s robustness across diverse deep-

fake scenarios. Our research will focus on exploring opti-

mal integration strategies for these modalities, potentially

including early fusion, late fusion, and hybrid techniques.

Additionally, we may investigate the use of attention mech-

anisms to dynamically focus RuleBoost on the most crucial

aspects of the multimodal data, further refining its detection

capabilities.
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