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Abstract

The proliferation of user-friendly deepfake creation tools
poses a serious challenge, demanding robust and adapt-
able detection strategies. Existing approaches primarily fo-
cus on raw data analysis or identifying learned artifacts or
manual data-driven rules resulting in the mis-classification
of deepfakes with distorted facial poses. These architec-
tures also neglect the potential power of combining learned
visual features with explicit rules.

To address this gap, we introduce RuleBoost, a novel
NeuroSymbolic Al based framework that seamlessly fuses
extracted visual features with automatically learned rules.
Our framework employs a scalable rule-based learning ap-
proach to extract learned rules from facial geometry such
as distance, area, and angle. The extracted rules inte-
grated with deep visual features show promising results
giving state-of-the-art area-under-the-curve of 96.19% and
95.44% on WLDR and FaceForensics++ Datasets respec-
tively, surpassing other deep learning specific methods. To
figure out the difference NeuroSymbolic approach makes,
we also analyze the samples misclassified by traditional
DL-based architectures and correctly classified by Rule-
Boosted architecture. Based on empirical evidence, we con-
clude that DL-based architectures struggle to accurately
detect real and fake samples when facial artifacts lead to
poses that deviate from standard facial positioning, while
RuleBoost exhibits improved performance in the same sce-
nario.

1. Introduction

The proliferation of sophisticated generative algorithms,
including GANs (Generative Adversarial Networks) and
diffusion models, has spawned the unsettling reality of syn-
thetic media, particularly deepfakes. These manipulated
images, videos, and audio recordings pose a potent threat,
wielded by malicious actors to spread misinformation and
sow discord [27, 17, 1]. Open-source tools like "DeepFace-
Lab” and “FaceSwap” empower anyone, regardless of ma-
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Figure 1. Limitation of the existing deepfake detection techniques.
(a) Landmark based approaches are explainable in nature but less
robust where extracted landmark are directly fed into various clas-
sifiers, (b) Deep Learning or Neural Network based approaches
may be robust on given dataset but are neither explainable nor
generalizable, and (c) NeuroSymbolic approaches can boost the
performance of DL architectures with rules to bring interpretabil-
ity and improved generalizability(proposed).
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chine learning expertise, to fabricate deceptively convinc-
ing forgeries. This widespread accessibility, coupled with
the rapid advancement of generative algorithms, creates a
pressing need for robust deepfake detection techniques.
The research community has actively devised techniques
to counteract the threat of media fabrication and the dis-
information spread [26]. Previous efforts employed hand-
crafted features to identify telltale signs in early deepfakes,
such as headpose discrepancies [46], unnatural blinking
[13], and warping artifacts [21]. However, the emergence
of sophisticated generative models like image-video diffu-
sion models demands more nuanced detection approaches.
As in Figure 1, current deepfake detection algorithms
can be broadly classified into three categories: a) landmark-
based methods: where landmarks are extracted from
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Figure 2. Frames in Red Box Represent Distorted Facial Postures that Appear In Real and Manipulated Facial Frames where Facial
Artefacts are Less Visible. e.g. eyes closed, inconsistent artifacts. Deep Learning Models tend to misclassify such samples. The distorted

facial data samples are collected from dataset using facial landmarks.

facial regions or various regions and fed to the classifier
[37, 22], b) Neural Network-based methods: where facial
images are directly fed into the classifiers [48] and, c)
Neuro-symbolic approaches: where the advantages of
neural networks and reasoning are combined. While
promising, existing deepfake detection methods often rely
solely on neural networks, failing to capitalize on the
complementary strengths of explicit knowledge. Neu-
ral networks excel at pattern recognition and capturing
complex relationships within data, but they can struggle
to encode domain-specific knowledge or handle aspects
that are not obvious due to the low volume of the data.
Conversely, well-defined rules derived from hand-crafted
features can efficiently capture specific visual cues or
inconsistencies indicative of deepfakes. By combining
these approaches in a neurosymbolic framework, we
hypothesize that a deepfake detection system can achieve
a more comprehensive and robust representation, leading
to significantly improved performance. This integrated
approach leverages the strengths of both neural networks
and symbolic reasoning, promoting trustworthiness and
explainability by explicitly incorporating expert knowledge.

Our analysis reveals a critical limitation of current deep-
learning architecture as they struggle to classify deepfakes
when presented with images containing unusual or distorted
facial poses sampled in Figure 2. This is because deep
learning models are trained on massive datasets of images,
but these datasets may not encompass the full range of hu-
man facial expressions and poses. As a result, the models
may not have learned the necessary features to accurately
distinguish between genuine facial movements and those
manipulated in a deepfake. This is particularly problematic

for deepfakes that leverage advanced techniques to create
realistic facial expressions on individuals who may never
have made them in real life. In such cases, the lack of train-
ing data on these extreme poses can lead to misclassifica-
tions by the deep learning model.

To address this challenge, we propose RuleBoost, a novel
framework that bridges the gap between the strengths of
deep learning and the power of rule-based knowledge.
RuleBoost seamlessly integrates a set of pre-defined rules
specifically designed to identify visual inconsistencies in-
dicative of deepfakes, particularly those associated with un-
usual facial poses. For extracting rules, we develop a fa-
cial vocabulary for deepfake detection which helps us in
explainability. The rules resulting from vocabulary can
potentially help capture specific patterns, such as unnat-
ural skin texture, inconsistencies in lighting and shadows
across facial features, or illogical eye movements, that
may be difficult for deep-learning models to detect in-
dependently. By incorporating these rule-based checks
alongside the deep learning analysis, RuleBoost enhances
the overall detection accuracy and robustness. Exten-
sive experimentation across diverse deep learning archi-
tectures, including convolutional neural networks (CNNs),
Transformer-based architectures, and patch-based methods,
demonstrates that RuleBoost consistently outperforms ex-
isting methods. This performance improvement is particu-
larly pronounced when presented with deepfakes that lever-
age unconventional facial poses, highlighting the effective-
ness of RuleBoost in addressing this critical limitation. To
check the performance of the proposed architectures, we
perform experiments on the World Leaders Dataset [4] and
FaceForensics++[32]. The proposed boosting architecture
performs state-of-the-art Area-Under-The-Curve of 96.19%
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on WLDR and 95.44% on FaceForensics++ datasets. We
compare the performance of the proposed framework with
various models including rules-only, vision-only models as
well as models with rule boosting. The overall contributions
of this paper are summarized as:

* We proposed a novel NeuroSymbolic framework that
combines perception (deep featuers) and rules (knowl-
edge) for robust deepfake detection with extended in-
terpretability.

* We developed a novel set of geometrical features along
with a facial vocabulary, which served as the basis for
generating rules.

* We conducted extensive experiments to assess the ro-
bustness of our proposed framework, including cross-
dataset evaluations and an ablation study.

2. Related Work

In this section, we explore landmark-based detection
methods, leveraging facial landmarks to expose inconsis-
tencies in deepfakes along with deep learning-based so-
lutions, utilizing neural networks to detect subtle anoma-
lies indicative of manipulated media. Additionally, we in-
vestigate rule-based and multimodal approaches, aiming to
enhance deepfake detection through the integration of di-
verse modalities and manual rule formulations. These com-
plementary strategies offer distinct perspectives, potentially
leading to more robust and comprehensive detection capa-
bilities. This section also includes a focused subsection on
rule extraction methods, which aim to derive explainable
rules directly from complex models or through the careful
analysis of deepfake artifacts.

2.1. Deepfake Detection

Landmark Based Detection. Facial landmarks offer
a potent tool in the fight against deepfakes. These key
points, pinpointing features like the eyes, nose, and mouth,
reveal subtle inconsistencies and unnatural distortions that
frequently betray manipulated videos. Deepfake detection
algorithms analyze the relationships between facial land-
marks, examining their positions, movements, and relative
distances. Disruptions to these expected patterns can signal
a deepfake, as human faces adhere to specific proportions
and dynamics. By focusing on these vulnerable areas, facial
landmark analysis helps expose the artificial nature of deep-
fakes, providing a valuable defense against these deceptive
creations. [43, 36, 47] use facial landmarks for detecting
deepfakes.
Deep Learning Based Solutions Deep learning-based so-
lutions are at the forefront of deepfake detection for differ-
ent modalities offering sophisticated methods for combat-
ing these manipulated creations like [15, 31], . These solu-

tions often employ neural networks like Convolutional Neu-
ral Networks (CNNs) that excel at analyzing visual data.
By training on large datasets of both real and deepfake im-
ages/videos, these models implicitly learn anomalies, in-
consistencies, and artifacts that betray the artificial nature
of deepfakes. [14], unusual facial textures [45], or inconsis-
tencies in lighting and reflections [44].

Rule Based Solutions Several solutions have been pro-
posed for creating manual rules for detecting deepfakes
[3, 2]. These rule-based approaches often focus on identi-
fying specific artifacts or inconsistencies that are commonly
introduced during the deepfake generation process.
Multimodal Solutions Deep learning’s ability to continu-
ously learn and adapt makes it especially powerful against
the ever-evolving landscape of deepfake creation tech-
niques. There is also an increased interest in using multi-
modal solutions for detecting deepfakes [30, 12].

Neural + Symbolic Solutions The current literature lacks
an exploration of NeuroSymbolic approaches for detecting
deepfakes. Due to the current limitations of deep learning-
based architectures, there has been increasing interest in
NeuroSymbolic approaches for detecting deepfakes. [9] ex-
plore the possibility of using audio and visual modalities
along with manually formulated rules for detecting deep-
fakes. However, this preliminary work does not cover the
data-driven knowledge/rule extraction and its integration
with deep-learning approach.

2.2. Rule Extraction

Rule-based models (decision trees, etc.) are difficult
to train due to their discrete structure. Heuristics [29]
and search algorithms are used, but may not find optimal
solutions and can be computationally expensive on large
datasets. Bayesian methods [20] improve structure learn-
ing, but scalability and achieving performance comparable
to complex models remain challenges. Ensemble models
(e.g., Random Forests, [5]) outperform rule-based ones, but
their decision-making process can be opaque, hindering in-
terpretability [10]. Attempts to bridge this gap exist, but
often sacrifice accuracy. Gradient-based methods for dis-
crete model training (like STE, [7]) are used in neural net-
work compression, but can have limitations such as requir-
ing gradient information at discrete points. For extracting
rules, we employ [42] that employs the Gradient Grafting
method, which aims to address these issues by utilizing both
discrete and continuous model gradients.

3. Proposed Framework

The proposed framework comprises two distinct net-
works. One network focuses on the extraction and pro-
jection of image patches via a backbone network for deep
facial feature extraction. Meanwhile, the other network is
dedicated to analyzing facial landmarks-based geometry,
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Figure 3. The proposed framework infuses rules and deep learning
based features and provides prediction using an MLP head.

which are utilized for generating rules. The image fea-
tures and rule projections are integrated and finally passed
through a classification head to determine the authenticity
of a given video. Figure 6 provides a visual representation
of the overall framework.

The proposed rule extraction and fusion framework can
be employed in other domains as well where relevant fea-
tures can be extracted. An example of such an application
can be audio [16] where we can extract various hand-crafted
features and fuse them in DL-based architecture as done in
the next steps.

3.1. Problem Formulation

Existing performant deepfake detectors extract deep fea-
tures from facial crops of images in a binary classification
problem. In this paper, we focus on learning a rule knowl-
edge base that improves the performance of deep learning
model by including relevant facial information. Let assume
a given video X = {x; }, where x; denotes video frames with
face, Go(X), is the proposed framework to make prediction
which includes three parts; the image projector and back-
bone network F; that maps input video frame to a feature
space of R7:*¢ where T} and d are the number of image
patches and feature dimension. While F, maps the input
image to a rule representation of size R(T:t1*4 where d
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(a) Facial Landmarks Groups (b) Derived Vocabulary
Figure 4. Facial vocabulary generation for rules extraction. (a)
grouped landmarks for each facial part and (b) corresponding de-
rived vocabulary for each facial part (same color).

being feature dimension with the help of developed facial
vocabulary. Finally, Fy;, fuses the image and rule rep-
resentations into R(Ti+1)X¢ feature vector and fed it into
classification head C for prediction.

3.2. Image Feature Projection

We extract image features, project them in a space and

do multi-layered processing using a backbone network.
Patch Extraction and Image Projection: We perform
patch extraction as a fundamental step in Vision Trans-
former (ViT) models by dividing an input image z; into
a grid of smaller, fixed-size patches. Each patch is then
flattened and fed into the encoder. This allows the net-
work to capture spatial information without relying on con-
volutional layers, making it computationally efficient and
effective for tasks like image classification. The extracted
patches are projected using a multi-layer perceptron layer.
We also add rotary positional embedding to consider the lo-
cation of individual image patches.
Backbone Network: To extract learned features from
images, we employ a diverse range of architectures de-
signed for effective image representation. These include
mixer [38], attention-based models with token learners [33],
gMLP [8], External Attention [8], FourierNet [19], Com-
pact Convolutional Transformers [11], and ConvMixer [40].
This selection encompasses techniques that excel in cap-
turing global context, modeling long-range dependencies,
and efficiently combining convolutional and self-attention
mechanisms. Additionally, we incorporate rule-based ele-
ments to complement the feature extraction process.

3.3. Facial Geometry-based Rules Extraction and
Validation

We extract learned rules using derived features from fa-
cial geometry. Derived features could potentially provide
richer information than basic landmarks. Analyzing facial
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geometry involves precise calculations of specific informa-
tion including the distance between the pupils, the size of
the mouth, or the slope of the eyebrows etc.

Landmarks and Derived Geometric Feature Extraction:
First, we extract facial landmarks, using dlib [18] employ-
ing specialized machine learning models to pinpoint 64
landmark points including the nose tip, eye corners, and lip.
Based on various deepfake types such as face-swap or Lip-
Sync etc., the extracted landmarks are grouped into various
facial parts to develop human understandable vocabulary as
illustrated in Figure 4. Next, we derived a robust feature-
set, by analyzing the relative distances, angles, and areas
formed by these landmarks which provide valuable infor-
mation about the spatial relationships among facial features,
helping to differentiate between genuine and manipulated
faces. The derived facial geometrical features including dis-
tance d, angle An and and area Ar are calculated as:

d :\/(Xl_ X2)2 + (y1— Y2)2

An = tan=|(my — m2) /(1 + mymy)|

Ar = \/s(sfda) (s—dp) (s —d.)

where, X, m, and s are the landmark point, line slope, and
semi-perimeter of a triangle to calculate distance d, angle
An and area Ar.

Rules Extraction using RRL We employ Rule-based
Representation Learner (RRL) [42], a classifier designed to
learn interpretable, nonfuzzy rules for representation and
classification automatically. The derived geometrical fea-
tures symbolized with developed vocabulary are given to
RRL along with fake and real labels to generates rules. RRL
employs Gradient Grafting, a novel training method, to op-
timize the discrete model directly. The Logical layers in
RRL learn complex logical rules based on underlying data
representations. Various combination of binarization and
logical layers act as feature learner that fed linear layer to
perform classification. The RRL itself filtered out unneces-
sary logical rules using skip-connections in logical layers.
Further technical details of RRL can be found in [42]. The
learned rules extracted from facial landmarks are also fed to
the fully connected network to extract learned deep features
of the same dimensionality as the dimension of features ex-
tracted from image patches.

3.4. Fusion and Classification Head

The extracted image features and projected rule embed-
dings are concatenated together in the joint space. We also
employ normalization on the concatenated features to have
them on same scale. To process images and rules together

Model Name

| Type | WLDR | FF++

CCT [11] X 81.23 | 77.23
® 86.33 | 83.12
CalT [39] Y 76.32 | 84.17
® 84.72 | 90.17
eMLP [23] Y 84.24 | 87.32
® 93.39 | 95.44
EANet [8] Y 90.31 | 83.33
® 92.65 | 87.43
FNet [19] Y 86.33 | 92.73
® 90.32 | 87.37
ConvMixer [40] BY 81.37 | 92.55
® 83.38 | 91.48
Token Learner [33] Y 82.81 82.46
® 95.84 | 94.38
MLPMixer [38] X 92.35 | 85.64
® 96.19 | 93.26

Table 1. Results on WLDR and FaceForensics++ Datasets "X:
models tested without rules, ®: Ruleboosted models. Evaluation
matrix is AUC(%).

in a joint space, the image and rule features obtained after
fusion are fed to an MLP Head from where we get binary
classification output. The final logits are given by a fully
connected network. Further, we apply sigmoid function to
the logits for obtaining confidence score for deepfake detec-
tion.

4. Experiments and Results

This section details the experimental setup, datasets, and
results used to analyze the RuleBoost model’s performance.
Analysis includes comparisons with state-of-the-art tech-
niques and evaluation across diverse datasets.

4.1. Datasets and Metrics

In our experiments, we utilize both the FaceForen-
sics++ (FF++) [32] and World Leaders Dataset (WLDR)
[4] datasets to ensure a comprehensive evaluation. For
cross-dataset evaluation, we employ Presidential Deepfakes
Dataset (PresDD) [34]. The employed datasets offer a di-
verse range of manipulation techniques, allowing us to test
the robustness of our detection models across different sce-
narios. We selected distorted facial poses from the exist-
ing WLDR Dataset. While we did not construct a sepa-
rate dataset focused solely on distorted poses, the WLDR
Dataset does include variation in facial expressions and
poses, allowing us to partially assess our method’s perfor-
mance on this challenging subset.

We rely on the Area Under the Curve (AUC) and Accu-
racy (ACC) metrics for the assessment of our models on
full dataset and cross-dataset evaluation, respectively.

Authorized licensed use limited to: University of Michigan-Flint. Downloaded on June 16,2025 at 18:43:23 UTC from IEEE Xplore. Restrictions apply.



| Method |DF [ F2F |FS [ NT |

C3D [24] 92.86 | 88.57 | 91.79 | 89.64
XceptionNet-avg [32] | 98.93 | 98.93 | 99.64 | 95.00
13D [6] 92.86 | 92.86 | 96.43 | 90.36
TEI [25] 97.86 | 97.14 | 97.50 | 94.29
FaceNetLSTM [35] 89.00 | 87.00 | 90.00 | -

DeepRhythm [28] 98.70 | 98.90 | 97.80 | -

Comotion-35 [41] 95.95 | 85.35 | 93.60 | 88.25
HolisticDFD [31] 98.00 | 95.00 | 94.00 | 96.00
Ruleboost (proposed) | 97.00 | 96.20 | 95.40 | 97.80

Table 2. Performance analysis on different subsets of FaceForen-
sics++ ¢23, DF: Deepfake, F2F: Face2Face, FS: FaceSwap,
NT:Neural Texture. Evaluation matrix is ACC(%).

Testing Subset | MT_ml [30] [ AVENet[12] | RB |

W - LipSync 83.33 69.32 84.39

W - FaceSwap 75.84 73.98 76.82
W - Imposter 91.66 61.74 84.28

P - full 70.00 78.12 83.62

Table 3. Cross-dataset Evaluation: RB: Ruleboost architecture
trained on FaceForensics++, W: World Leaders Dataset, P:
Presidential Deepfake Detection Dataset. Evaluation matrix is
ACC(%).

4.2. Performance Analysis

The results in Table 1 summarizes the performance of
several deep learning models on two image classification
tasks: WLDR and FF++. The results demonstrate that rule-
boosted models generally outperform their standard coun-
terparts. For the WLDR dataset, MLLP Mixer® achieved
the highest AUC of 96.19%, followed closely by Token
Learner®) at 95.84%. This significant improvement for To-
ken Learner highlights the effectiveness of combining rule-
based systems with deep learning approaches. On the FF++
dataset, gMLP® ) reigned supreme with an AUC of 95.44%,
while CalT® placed second at 90.17%. It’s worth not-
ing that CalT"l underperformed relative to other models on
this dataset, suggesting that rule-based enhancements can
be particularly beneficial for certain model architectures or
tasks.

| Model [ d+An | d+Ar [ Ar+An | d+ An+ Ar

SVM 67.40 72.2 80.90 81.30
LR 77.90 78.3 74.50 76.20
DT 86.2 86.6 88.10 89.40
Mixer 95.30 93.20 94.30 96.19

Table 4. Ablation Study of Rules with SVM: Support Vector Ma-
chine, LR: Logistic Regression, DT: Decision Trees, NB: Naive
Bayes. d: Distance-based rules, An: Angle-based rules, Ar: Area-
based rules. Evaluaiton matrix is ACC(%)

Furthermore, the table reveals interesting trends across
the different models. For example, ConvMixer demon-
strates a larger performance boost from rule augmentation
on the WLDR dataset (81.37% to 83.38%) compared to
the FF++ dataset (92.55% to 91.48%). This suggests that
the specific type of image data and the model’s inherent
strengths may influence how much it benefits from rule-
based guidance. Overall, the results highlight the poten-
tial of combining deep learning with rule-based systems to
achieve superior performance on image classification tasks.
We also evaluate the performant Ruleboosted architecture
on the subset of FaceForensics++ dataset as shown in Ta-
ble 2. The evaluated methods include both video-based
architectures (C3D, 13D, TEI) and those utilizing addi-
tional modalities (FaceNetLSTM, DeepRhythm). The pro-
posed Ruleboost method demonstrates competitive accu-
racy across all four deepfake manipulation types (Deepfake,
Face2Face, FaceSwap, Neural Texture).

4.3. Cross Dataset Evaluation

We also perform cross-dataset evaluation as in Table 3
shows the results of a cross-dataset evaluation where the
Ruleboost (RB) architecture, trained on FaceForensics++,
is tested on different image/video manipulation detection
tasks. It’s compared against two other models: MT _ml
and AVFNet. The results indicate that RB generally out-
performs the other models across most of the testing sub-
sets. On “"WLD-FaceSwap”, it achieves the highest ac-
curacy of 76.82%, and it has a similarly strong perfor-
mance on "WLD-LipSync” with 84.39% accuracy. While
MT_ml gets the top score on "WLD-Imposter”, RB still
demonstrates a respectable accuracy. Notably, RB delivers
the most substantial improvement on the "PDD-full” sub-
set, reaching 83.62% accuracy. These results suggest that
the Ruleboost architecture possesses valuable generaliza-
tion abilities, making it more robust for detecting different
types of image and video manipulations, even those unseen
during its initial training.

4.4. Ablation Study

To perform an ablation study of the proposed ruleboost-
ing approach, we also evaluate the performance of various
models (SVM, Logistic Regression, Decision Trees, and
our proposed Mixer model) using different combinations
of rules: distance-based rules (d), angle-based rules (An),
and area-based rules (Ar). Each column represents a differ-
ent combination of these rules applied to the models. For
this experiments, we used WLDR dataset and the results
are shown in Table 4. The results indicate that the perfor-
mance varies depending on the combination of rules used.
For instance, in the case of the SVM model, using all three
types of rules (d + An + Ar) yields the highest accuracy of
81.30%, while the combination of distance and angle-based
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Support | Rule
0.8081 1) An(N3sLFOsLEO,,) > 58.14 & An(NygRE;oN5g ) <22.09 & An(C,O0LU4Cs) <43.28 &
' An(OLLs,CCy) <7291
07595 2) d(N35sCy) > 61.34 & An(LEB,,REB,; N,7) > 33.64 & Ar(REB,,LEB,,N;;) < 306.24 & Ar(Ns,
' OLU4C,) <524.44
1) d(REB4RE3;) > 15.28 & d(LE;;Ny7) > 101.79 & d(N5;RE ) > 22.23 & An(N;;RFO,RFO;) >
0.8148 69.07 & An(REO;N5,C,) > 16.40 & d(C4OLLsg) < 55.37 & AHRE+REB, Ny;) < 174.43 &
An(NpgLE,Nyg) < 14.40 & An(RE;REB,(RE;;) < 30.614
0.709 2) An(REO,REN3;) > 82.84 & An(N3;RFO,RFO;) < 84.36

Figure 5. Example Performant data-driven rules and their support score.

Figure 6. A visual representation of extracted rules of real class
over political identities from WLDR dataset. top row: distance-
based rules, middle row: angle-based rules, bottom row: area-
based rules.

rules (d+ An) results in the lowest accuracy of 67.40%. Lo-
gistic Regression (LR) shows less variation in performance
across different rule combinations, with the highest accu-
racy of 78.3% achieved using distance and area-based rules
(d + Ar). Decision Trees (DT) exhibit improved perfor-
mance with more comprehensive rule sets, achieving the
highest accuracy 89.40% when all three rules are combined.

The proposed Ruleboosted Mixer model consistently
outperforms the LR, DT and SVM-based models across all
rule combinations, with the highest accuracy of 96.20%
achieved when all three rules are used together. This
demonstrates the robustness and effectiveness of the Mixer
model in integrating multiple rule types for enhanced per-
formance.

4.5. Discussion

Our approach focuses on augmenting traditional DL
models with rule-based insights, which can provide comple-
mentary information that pure DL models might overlook.

By incorporating these rules, we aim to bolster the models’
ability to identify subtle discrepancies and anomalies that
are indicative of deepfake manipulation, particularly in sce-
narios where facial images have been intentionally distorted
to evade detection mechanisms. This integration of rule-
based systems with DL models represents a hybrid method-
ology that leverages the strengths of both approaches, po-
tentially leading to more robust and accurate detection sys-
tems.

To further explain the generated rules, let take exam-
ple of rules shown in Figure 5 and their corresponding
vocabulary illustrated in Figure 4. The specified rules
check the facial geometry features formed by land-
marks for specific individual satisfy certain threshold.
The landmark vocabulary (color codes) shows a map-
ping between facial landmark regions (e.g., eyebrows,
eyes, nose, lips) and their corresponding landmark in-
dices/vocabulary. For example, the generated rule 1 from
Figure 5 involves checking specific angles between facial
landmarks (e.g., nose, face-outer region, eyes, lips) such as
An(N3s LFO15LFO14) > 58.14 means N35 represents
a landmark on the nose, and LFOy and LF(Oq4 are
landmarks on the left face’s outer region. The rule states
that the angle between N3sLFOy5 and LFO15LFO14
must be greater than 58.14 degrees for real face. Further,
An(N3gRFE39Nag) states that angle formed by landmarks
Nag, REs3g, and Nog must be less than 22.09 degrees
and "An(JyOLU4sJ5)” specifies the angle formed by
landmarks J,, OLU,s, and J; must be less than 43.28
degrees, "An(OLLggJsJ5)” specifies the angle formed
by landmarks OLLgg, Js, and Jg must be less than
72.91 degrees. In Figure 6, the generated rules for real
class are ploted for better understanding where a specific
region in a face for an individual is clearly highlighted to
contribute in rules generation. Moreover, the provided rule
2 consists of four conditions related to facial distances,
angles, and areas, such as ”d(Ns5Jz > 61.342)” denotes
that the distance between landmarks N3; and Jg must be
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| [ CCT[11] | CaIT [39] | gMLP [23] [ EANet [8] [ FNet [19] | ConvMixer [40] | TL [33] | MLPMixer [38] |

54.50

52 63.20
® | 8740

83.40

74.90
86.50

69.40
83.30

56.80
79.60

68.20
89.20

67.40
90.40

85.40
94.30

Table 5. Performance Analysis on Distorted Facial Poses. YX: models tested without rules, ®: Ruleboosted models

greater than 61.342, An(LEBosREB21No7y) > 33.645
specifies that the angle formed by landmarks LFE B,
REBs;, and No7 must be greater than 33.64 degrees,
Ar(REBy1 LEBosNo7) < 306.243 denotes the area
formed by landmarks RE B3y, LEBsy, and No7 must
be less than 306.243 and Ar(N31OLUsgJs < 524.445”
indicates the area formed by landmarks N3;, OLU,g, and
Jy4 must be less than 524.44. Similarly, the other rules
can be used to explain the reason for the model decision
for a specific individual. We select rules based on their
effectiveness as depicted by RRL [42] as using all rules in
the framework would be inefficient. Based on empirical
analysis, we only select rules whose support is greater than
0.7 as shown in Figure 5.

Our experimental findings, summarized in Table 5,

demonstrate the potential of incorporating rules into deep
learning (DL) architectures for the detection of deepfake
images, particularly those with facial distortions. The Rule-
boosted models, denoted by ®), consistently outperform
their rule-free counterparts, represented by M, across all the
tested architectures. This consistent performance boost un-
derscores the ability of Ruleboost to significantly enhance
the predictive accuracy of DL models when tackling the
challenging problem of deepfake detection.
A particularly noteworthy observation is the substantial im-
provement seen with the MLPMixer architecture. When
Ruleboost is applied, MLPMixer achieves an impressive
overall accuracy of 94.30%, the highest among all evaluated
models. This remarkable performance suggests a strong
compatibility between the MLPMixer’s unique architecture
and the integration of data-driven rules. It highlights the
potential synergy between this type of DL architecture and
the Ruleboost methodology. The superiority of Ruleboosted
models across various architectures emphasizes the versatil-
ity and effectiveness of the proposed architecture for deep-
fake detection. By integrating specific rules into the DL
models, Ruleboost not only enhances accuracy but also pro-
vides a more robust framework for handling the intricacies
of distorted facial images.

5. Conclusion and Future Works

In this paper, we underscore the inherent limitations of
relying solely on deep learning models or data-driven rules
for deepfake detection, particularly in scenarios with atypi-
cal facial poses. The introduction of RuleBoost offers a sig-

nificant step forward, demonstrating the superiority of com-
bining learned visual features with explicit rules. This hy-
brid approach achieves state-of-the-art performance, high-
lighting the importance of adaptability and multifaceted
strategies in combating the evolving threat of deepfakes.
Our analysis further indicates that by addressing the blind
spots of deep learning models, RuleBoost offers a more ro-
bust and reliable framework for deepfake detection.

In future, we plan to extend RuleBoost to multimodal deep-
fake detection. By incorporating audio and video analysis
alongside our current visual approach, we aim to signifi-
cantly enhance RuleBoost’s robustness across diverse deep-
fake scenarios. Our research will focus on exploring opti-
mal integration strategies for these modalities, potentially
including early fusion, late fusion, and hybrid techniques.
Additionally, we may investigate the use of attention mech-
anisms to dynamically focus RuleBoost on the most crucial
aspects of the multimodal data, further refining its detection
capabilities.
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