

Modulation of Thermospheric Circulation by Lower-Thermospheric Winter-to-Summer Circulation: The Atmosphere Gear Effect

Jack C. Wang^{1,2}, Jia Yue^{1,2}, Wenbin Wang³, Liying Qian³

¹Catholic University of America, Washington, DC, USA

²NASA Goddard Space Flight Center, Greenbelt, MD, USA

³High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA

Key Points:

- The lower-thermospheric circulation enhances the circulation in the summer thermosphere and strengthens upwelling in higher latitudes.
- Including the lower-thermospheric circulation in the model improves agreement with observed semi-annual oscillation in mass density.
- This study reveals a new coupling pathway, “atmospheric gear effect”, linking the lower and upper atmosphere.

15 **Abstract**

16 This study investigates the impact of the lower-thermospheric winter-to-summer circu-
 17 lation on the thermosphere's thermal structure and meridional circulation. Using NCAR
 18 TIE-GCM, we compare simulations with and without the lower-thermospheric circula-
 19 tion, finding that its inclusion enhances summer-to-winter thermospheric circulation by
 20 40% in the summer hemisphere but decelerates it in the winter thermosphere. Meanwhile,
 21 vertical wind exhibits stronger upward motion poleward of $\pm 30^\circ$ latitude above 10^{-6} hPa
 22 (~ 174 km) when lower-thermospheric circulation is incorporated. This dynamic coupling
 23 functions as an atmospheric “gear mechanism”, accelerating momentum and energy trans-
 24 fer to higher altitudes. Including lower-thermospheric circulation improves agreement
 25 between the nudged run and NRLMSIS 2.1 in intra-annual variability (IAV) of mass den-
 26 sity. This suggests lower-thermospheric circulation is a key factor in modulating IAV in
 27 the coupled thermosphere-ionosphere system. This study reveals a new coupling mech-
 28 anism between the lower atmosphere, thermosphere, and ionosphere, with significant im-
 29 plications for understanding upper-atmospheric dynamics and improving space weather
 30 models.

31 **Plain Language Summary**

32 We explore how meridional circulation in the lower thermosphere affects the cou-
 33 pled thermosphere-ionosphere system. A narrow lower-thermospheric winter-to-summer
 34 circulation, driven by tides and gravity waves from lower atmosphere, is absent in mod-
 35 els with a lower boundary above the mesopause. Through a numerical sensitivity exper-
 36 iment, we found that incorporating lower-thermospheric circulation into TIE-GCM via
 37 nudging (or Newtonian relaxation) strengthens summer thermospheric circulation by about
 38 40% but decelerates it in the winter hemisphere. To maintain mass continuity, additional
 39 upwelling occurs poleward of $\pm 30^\circ$ latitude above 10^{-6} hPa (~ 174 km) when lower-thermospheric
 40 circulation is included. This interaction acts as a “gear mechanism”, facilitating energy
 41 and momentum transfer across atmospheric layers. We also found that lower-thermospheric
 42 circulation influences intra-annual variations in thermospheric mass density, improving
 43 agreement with the empirical model NRLMSIS 2.1. This study highlights the key con-
 44 nection between the lower and upper atmosphere, revealing a new coupling pathway. Our
 45 findings have practical implications for atmospheric and space weather research, partic-
 46 ularly in improving thermospheric density modeling, which is crucial for satellite oper-

47 autions, mitigating drag-related risks, and supporting collision avoidance. Moreover, it
 48 underscores the importance of accurately representing lower-atmospheric dynamics in
 49 upper-atmosphere models to advance predictive modeling of thermosphere-ionosphere
 50 interactions.

51 **1 Introduction**

52 The mesosphere and lower thermosphere (MLT) span approximately 50–110 km
 53 altitude. Within the MLT, wave forcing from gravity waves (GWs) in the mesosphere,
 54 as well as tides and GWs in the lower thermosphere along with Coriolis force drive merid-
 55 ional circulations (Holton & Alexander, 2000; J. C. Wang et al., 2022). The meridional
 56 circulations are mainly pole-to-pole during solstices. In the mesosphere, the meridional
 57 wind flows from the summer to the winter hemisphere, but the flow reverses to winter-
 58 to-summer in the lower thermosphere. This winter-to-summer lower-thermospheric cir-
 59 culation is a consequence of a balance between the Coriolis force and the zonal momen-
 60 tum forcing associated with dissipation of tides and inertia gravity waves (GWs) (e.g.,
 61 J. C. Wang et al., 2022). Note that mesoscale GWs with the zonal wavenumber larger
 62 than 30 cannot be fully resolved in the model simulations in J. C. Wang et al. (2022),
 63 because these waves are too small to be resolved and therefore strongly dissipated by nu-
 64 matical diffusion. This deficiency may lead to a weaker meridional circulation in the model
 65 simulation compared to the observations. The lower-thermospheric circulation is virtu-
 66 ally absent in models where the lower boundary is located above the mesopause (e.g.,
 67 Qian & Yue, 2017; Malhotra et al., 2022; Forbes et al., 2024).

68 Above the lower-thermospheric circulation, the meridional circulation reverses di-
 69 rection once again, flowing from summer to winter in the middle-to-upper thermosphere
 70 (hereafter referred to as the thermospheric circulation, ranging from \sim 150 km to 500 km).
 71 This thermospheric circulation is primarily driven by the pressure gradient force, which
 72 results from the hemispheric asymmetry in solar heating due to the obliquity of the ce-
 73 lestial body (Dickinson et al., 1977; Roble et al., 1987). The pressure gradient force, which
 74 varies both spatially and temporally, is mainly balanced by ion drag, the Coriolis force,
 75 and viscosity (Hsu et al., 2016).

76 Vertical advection by the lower-thermospheric circulation modulates the atomic oxy-
 77 gen (O) budget around the base of the thermosphere and causes a hemispheric asym-

78 metry of O profile during the solstices (J. C. Wang et al., 2023). Vertical transport pro-
79 cess of O in the MLT has a crucial impact on the coupled ionosphere and thermosphere
80 system (e.g., Yamazaki & Richmond, 2013; Siskind et al., 2014; Qian & Yue, 2017). Once
81 the abundance of O is modulated at lower altitudes, its net effect can propagate into higher
82 altitudes and alter the electron and neutral densities in the coupled system of the iono-
83 sphere and thermosphere (Bates, 1959; Yamazaki & Richmond, 2013; Qian & Yue, 2017).

84 In the mesosphere, to maintain mass continuity, vertical wind must adjust to bal-
85 ance changes in the meridional wind. The adjustments in vertical wind lead to changes
86 in the meridional temperature gradient and the vertical gradient of zonally-averaged zonal
87 wind, ensuring that the thermal wind balance remains valid in the presence of wave forc-
88 ing and diabatic heating (Holton & Hakim, 2013). This dynamical adjustment results
89 in temperatures at the winter mesopause being warmer than radiative equilibrium and
90 cooler at the summer mesopause due to adiabatic heating and cooling, respectively. These
91 processes also contribute to the observed hemispheric asymmetry in mesopause height,
92 as reported by SABER observations (Xu et al., 2007; N. Wang et al., 2022). Similar to
93 the mesospheric circulation, recent model simulations demonstrate that the changes in
94 the vertical wind associated with the thermospheric circulation produce additional adi-
95 abatic heating/cooling and modify the thermospheric thermal structure (Forbes et al.,
96 2024). Likewise, adiabatic heating and cooling via vertical displacement, associated with
97 the lower-thermospheric circulation, should be able to modulate the thermal structure.
98 However, the impact of this adiabatic heating and cooling is challenging to observe and
99 distinguish from diabatic heating, such as Joule heating and heat conduction, due to the
100 sparse coverage of profiles in both local time and spatial distribution available to probe
101 this region of the atmosphere (Mlynczak et al., 2021). Recent work has addressed this
102 challenge by quantifying adiabatic cooling and warming in the mesosphere and lower ther-
103 mosphere using SABER CO₂ VMR vertical displacements, revealing a distinct yet pre-
104 viously overlooked layer of adiabatic warming (cooling) in the summer (winter) lower ther-
105 mosphere (Yue & Wang, 2025).

106 The primary objective of this study is to investigate how the lower-thermospheric
107 winter-to-summer circulation influences the thermal structure of the thermosphere and,
108 consequently, the thermospheric circulation. Our results indicate that, when the lower-
109 thermospheric circulation is incorporated into the model (nudged run), the thermospheric
110 circulation above is enhanced by 40% in the summer hemisphere but decelerated in the

111 winter thermosphere compared to the base run without lower thermospheric circulation.
 112 Incorporating the lower-thermospheric circulation in the model simulation induces ad-
 113 dditional upwelling in the higher latitudes of the thermosphere, which, in turn, improves
 114 the intra-annual variation (IAV) in thermospheric mass density in the nudged run. This
 115 result indicates that the lower-thermospheric circulation may play a key role in modu-
 116 lating both the amplitude and phase of the IAV in thermospheric mass density. This study
 117 proposes a new coupling mechanism between the lower and upper thermosphere, based
 118 on first-principles modeling. Because the lower thermosphere is controlled by waves from
 119 below, this study demonstrates a new lower atmosphere-thermosphere-ionosphere cou-
 120 pling pathway.

121 2 Modeling approach

122 The NCAR TIE-GCM is a three-dimensional model that represents the coupled
 123 thermosphere and ionosphere system, incorporating self-consistent electrodynamics. It
 124 solves three-dimensional equations governing ion and neutral momentum, energy, and
 125 continuity on constant pressure levels. In this study, version 3.0 of the TIE-GCM is uti-
 126 lized. The spatial grid resolution is 2.5° in both latitude and longitude, with a vertical
 127 resolution of one-quarter scale height. The model's lower boundary is located around 97
 128 km altitude (at $z = z_{\text{bot}} = -7$, where $z = \ln \frac{p_0}{p}$ and $p_0 = 5 \times 10^{-7}$ hPa). The current
 129 version of TIE-GCM offers three configurations for the upper boundary. For this study,
 130 the upper boundary is set at $z = 9$, which corresponds to approximately 700 km alti-
 131 tude under solar minimum conditions.

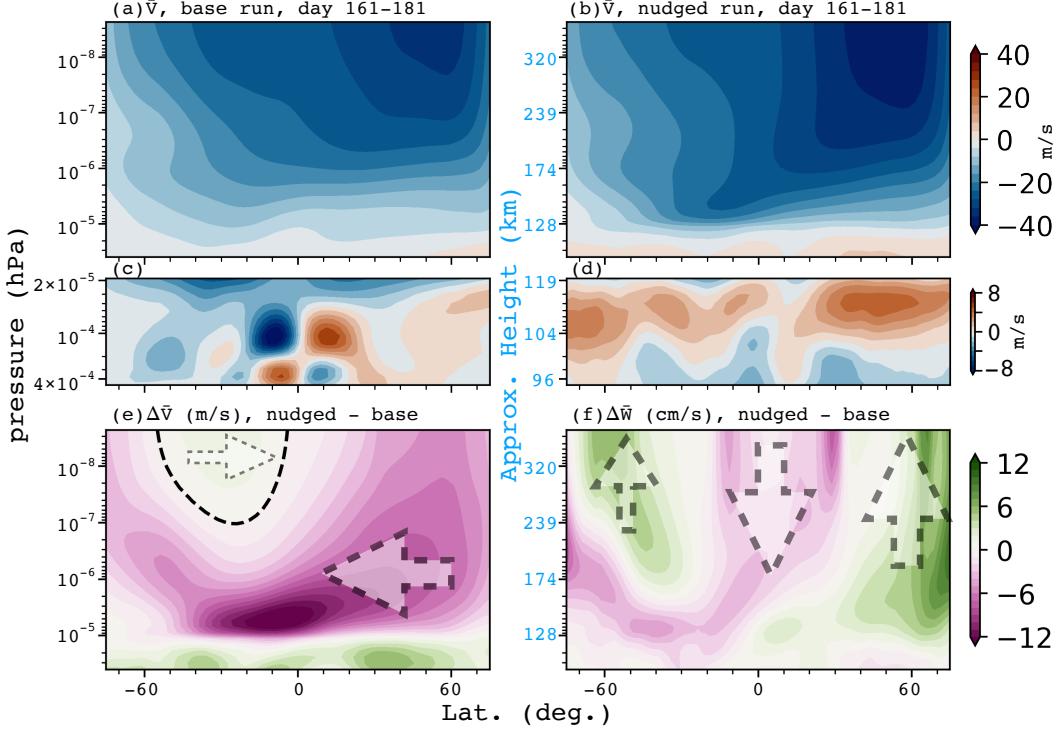
132 The lower-thermospheric circulation is driven by resolved wave forcing, including
 133 tides and inertia GWs from the lower atmosphere (J. C. Wang et al., 2022). The lower-
 134 thermospheric circulation cannot be internally generated in the TIE-GCM, as migrat-
 135 ing and non-migrating tidal perturbations are specified at the lower boundary (~ 97 km)
 136 by the Global Scale Wave Model (GSWM; Hagan & Forbes, 2002, 2003). This config-
 137 uration is referred to as the *base run* throughout the remainder of the manuscript.

138 To assess the impact of the lower-thermospheric circulation on the thermosphere,
 139 a sensitivity experiment is performed using the nudging technique (Siskind & Drob, 2014;
 140 Maute et al., 2015; J. C. Wang et al., 2017; Jones, Drob, et al., 2018), referred to as the
 141 *nudged run*. Nudging could help compensate for missing physics (e.g., GW forcing) com-

142 pared to a fully self-consistent model (Ren et al., 2011; Siskind & Drob, 2014). In the
 143 nudged run, horizontal winds, temperature, and geopotential height (Z) are constrained
 144 at every model time step between the lower boundary ($z_{\text{bot}} = -7$) and $z = -3$ ($p \approx$
 145 10^{-5} hPa or ~ 128 km) using 3-hour output from 2009 simulations in the Specified Dy-
 146 namics configuration of the Whole Atmosphere Community Climate Model eXtended
 147 (SD-WACCMX) version 6.2 (J. Liu et al., 2018; H.-L. Liu et al., 2018). The meridional
 148 wind from SD-WACCMX, validated against TIMED Doppler Interferometer (TIDI) ob-
 149 servations, shows qualitative agreement but is $\sim 50\%$ weaker partially due to underes-
 150 timated sub-grid GW forcing (J. C. Wang et al., 2022). Consequently, the modulation
 151 of thermospheric circulation by the lower-thermospheric circulation in this study rep-
 152 resents a lower limit, as stronger wave forcing would enhance the lower-thermospheric
 153 circulation and its impact on the thermospheric circulation.

154 However, some limitations remain. First, only one-way upward coupling is consid-
 155 ered, but this does not affect our findings since the focus is on how lower-thermospheric
 156 circulation modulates thermospheric circulation. Second, discontinuities may occur at
 157 the model interface (e.g., Siskind & Drob, 2014; J. C. Wang et al., 2017; Jones, Drob,
 158 et al., 2018), which we mitigate using a vertical weighting function, $\zeta(z) = \exp(-(z - z_{\text{bot}})/0.8)$,
 159 ensuring a smooth transition. Above $z = -3$, the model is essentially free-running. A
 160 similar approach was used by Siskind and Drob (2014). Results from the nudged and base
 161 runs will be compared to quantify the impact of the lower-thermospheric circulation on
 162 the thermosphere.

163 Each model run is executed over the course of one year under solar minimum con-
 164 ditions, with a same upper boundary condition: $F_{10.7} = 70$, crosstail potential = 30 kV,
 165 and hemispheric power = 18 GW. The eddy-diffusion coefficient (K_{zz}) in both runs is
 166 time- and location-invariant. When comparing the tidal structure and the divergence of
 167 momentum flux between the nudged and base runs, we found that the difference in the
 168 momentum budget due to tidal dissipation is negligible over seasonal timescales. The
 169 change in meridional circulation between the nudged and base runs is primarily due to
 170 differences in the background atmosphere, as will be demonstrated in the following sec-
 171 tion.


172 **3 Results**

173 Figures 1a to d show the diurnally and zonally averaged meridional wind (\bar{V}) in
 174 the thermosphere during the June solstice of the year 2009 from the base and nudged
 175 runs. A similar but opposite feature of \bar{V} during the December solstice is illustrated in
 176 Figure S1 in the supplement. The solstices are selected for this analysis because the ther-
 177 mospheric circulation is significantly stronger during solstices compared to equinoxes.
 178 During the equinoxes, both lower and upper thermospheric circulations transition be-
 179 tween the summer and winter state, resulting in a relatively weaker magnitude of large-
 180 scale \bar{V} throughout the thermosphere (Gan et al., 2024). The meridional wind predom-
 181 inantly moves from the summer to the winter hemisphere above 2×10^{-5} hPa (~ 119 km)
 182 (Figures 1a and b). This summer-to-winter thermospheric circulation is primarily driven
 183 by the pressure gradient force resulting from the seasonal difference in solar radiation.
 184 The magnitude of \bar{V} can reach around 40 m/s in the upper thermosphere.

185 \bar{V} in the lower thermosphere is considerably weaker than at higher altitudes; there-
 186 fore, it is plotted on different contour scales in Figures 1c and 1d. In the base run, the
 187 lower-thermospheric circulation is virtually absent (Figure 1c). Instead, a cell-like struc-
 188 ture with poleward flow on both sides of the equator appears around 10^{-4} hPa, mainly
 189 induced by the dissipation of the migrating diurnal tide (Yamazaki & Richmond, 2013).
 190 In the nudged run, the magnitude of the winter-to-summer meridional wind reaches up
 191 to 6 m/s between 6×10^{-5} and 2×10^{-5} hPa (Figure 1d).

192 When the lower-thermospheric winter-to-summer circulation is imposed in the model,
 193 the summer-to-winter thermospheric circulation strengthens by up to 12 m/s or 40% be-
 194 tween 10^{-5} and 10^{-6} hPa (roughly between 128 km to ~ 174 km) and 30° S to 15° N lat-
 195 itude, as shown in Figure 1e. The increase in meridional wind extends up to 10^{-9} hPa
 196 (~ 415 km) in the summer hemisphere, likely because the imposed lower-thermospheric
 197 circulation has a larger magnitude in the summer hemisphere. However, an additional
 198 clockwise circulation is induced in the winter thermosphere, opposing the summer-to-
 199 winter circulation, between 50° S and 10° S latitude above 10^{-7} hPa (~ 239 km).

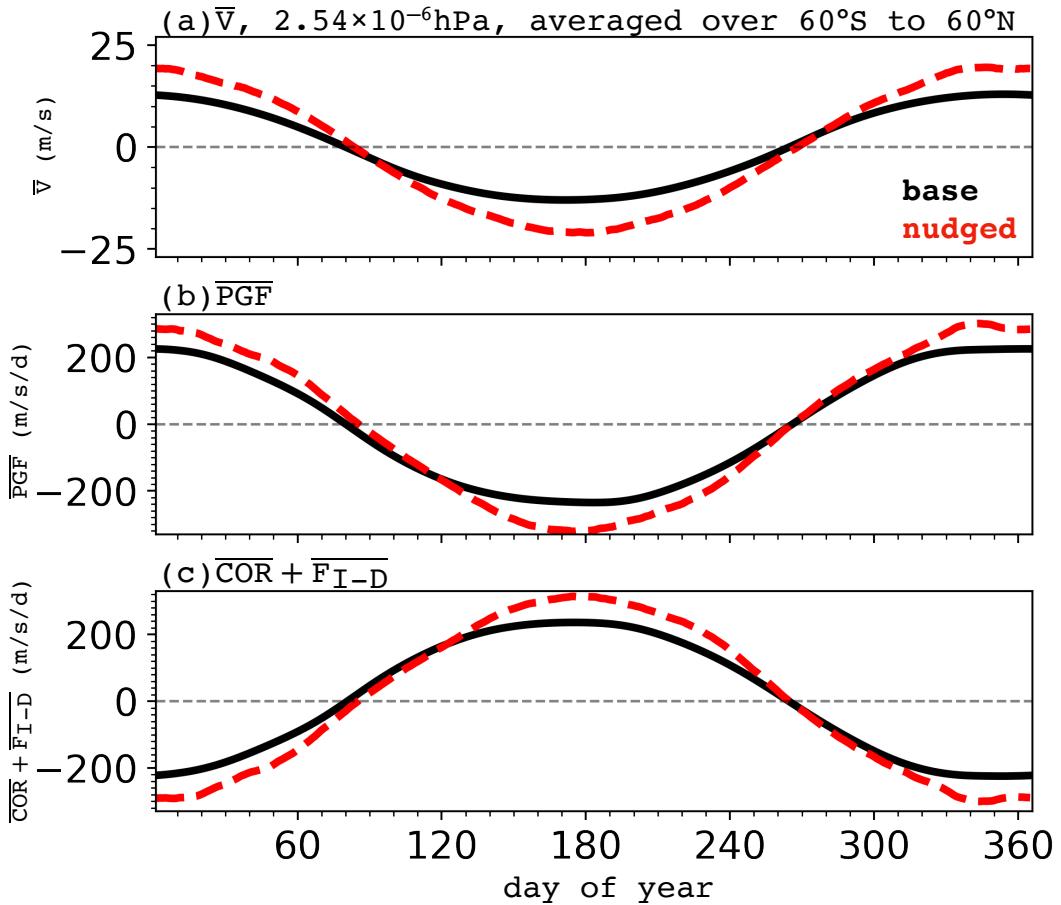
200 Figure 1f illustrates the change in mean vertical wind ($\Delta \bar{W}$) between the nudged
 201 and base runs. A notable feature is the enhanced upward motion poleward of $\pm 30^{\circ}$ lat-
 202 itude above $\sim 10^{-7}$ hPa (239 km) during the solstices (Figures 1f and S1f). This induced

Figure 1. (a-d) \bar{V} as a function of pressure level and latitude from (a and c) the base run, (b and d) the nudged run on the June Solstice. Contour level is 4 m/s in Figures 1a and 1b, and 1 m/s in Figures 1c and 1d. Positive is northward. (e-f) The differences in (e) \bar{V} and (f) \bar{W} between the nudged run and the base run. The contour interval is 1 m/s in Figure 1e and 1 cm/s in Figure 1f. Arrows in Figures 1e and 1f indicate the direction of change in meridional and vertical wind. The dashed line in Figure 1e indicates where the difference equals zero. The analysis is averaged over days 161 to 181 of the year 2009. \bar{V} and \bar{W} represent the diurnally and zonally averaged meridional and vertical winds, respectively.

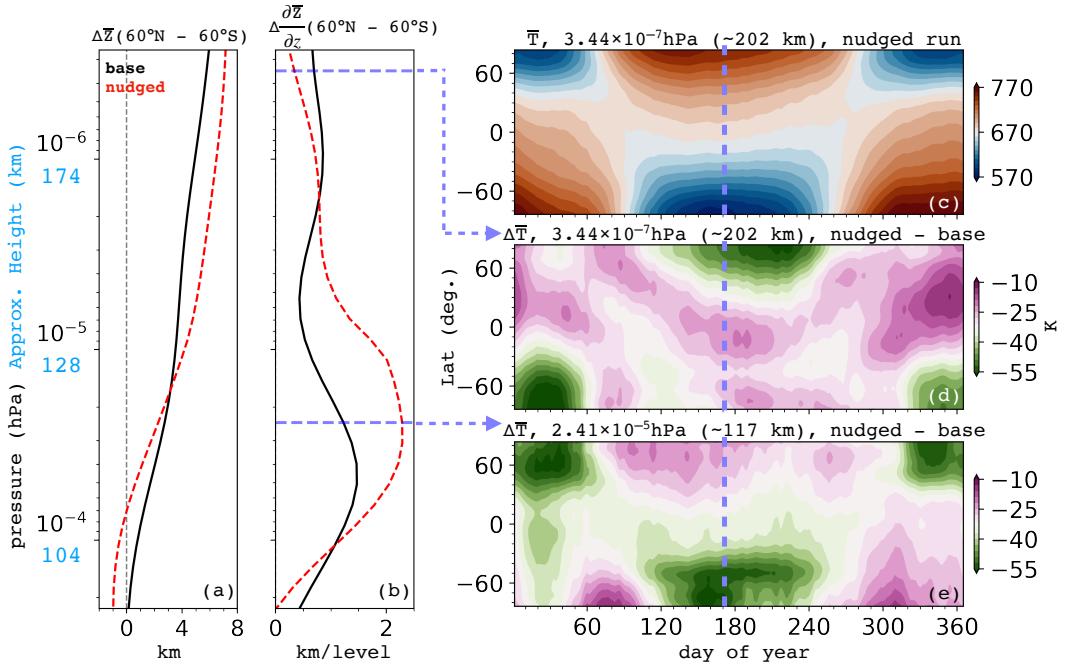
upwelling influences seasonal variation and latitudinal distribution of composition. This topic will be further explored in Section 4.

The magnitude and direction of \bar{V} in the thermosphere are primarily regulated by the pressure gradient force, Coriolis force, ion and viscous drag, and wave forcing. When viscous drag and wave forcing are negligible in the lower atmosphere, the horizontal wind ultimately reaches geostrophic balance. In this balanced state, the geostrophic wind is purely zonal for diurnally and zonally averaged flow by definition (Andrews & McIntyre, 1976). However, geostrophic balance is not achieved in the stratosphere or higher altitudes, where wave forcing, molecular viscosity, and/or ion drag, are strong enough to al-

212 low a mean meridional circulation (Dickinson et al., 1975, 1977; Hsu et al., 2016). In this
 213 section, a term analysis is performed to identify the dominant forces driving changes in
 214 the thermospheric meridional wind when lower-thermospheric circulation is introduced
 215 into the model. Figure 2a shows \bar{V} averaged over $\pm 60^\circ$ latitude at 2.54×10^{-6} hPa (~ 153
 216 km) from the base and nudged runs, with the corresponding pressure gradient force in
 217 Figure 2b and the combined Coriolis and ion drag forces in Figure 2c. Individual term
 218 of Coriolis and ion drag forces is illustrated in Figure S2 in the supplement. The increase
 219 in the pressure gradient force in the nudged run clearly alters \bar{V} , while the Coriolis and
 220 ion drag forces adjust in magnitude to balance this change. Hsu et al. (2016) demonstrated
 221 that ion drag and viscosity can sufficiently cause the horizontal wind to rotate toward
 222 the pressure gradient force.


223 Geopotential is the vertical integral of neutral temperature, meaning that changes
 224 in the thermal structure modify the geopotential at the same level or higher, ultimately
 225 leading to adjustments in \bar{V} . An analysis of the mean temperature structure is conducted
 226 to illustrate how the thermal structure, influenced by adiabatic heating and cooling from
 227 vertical wind changes due to lower-thermospheric circulation, impacts the meridional mo-
 228 mentum budget.

229 The acceleration by the pressure gradient force in \bar{V} is determined by $\frac{g}{a} \frac{\partial Z}{\partial \phi}$, where
 230 Z denotes the geopotential height, a and ϕ are the radius and latitude of the Earth. g
 231 is the acceleration of gravity at the lower boundary of the model. In the TIE-GCM, the
 232 geopotential height is calculated from the hydrostatic equation by integrating the scale
 233 height (H) vertically from the model lower boundary to the given pressure level,


$$Z(z) = \int_{z_{\text{bot}}}^z H dz = \int_{z_{\text{bot}}}^z \frac{R^* T_n}{\bar{m} g} dz \quad (1)$$

234 where z is the pressure interface, $z = \ln(p_0/p)$. The reference pressure $p_0 = 5 \times 10^{-7}$ hPa,
 235 and p represents isobaric surface. z_{bot} is the model lower boundary, where z_{bot} is equal
 236 to -7. R^* is the specific gas constant. T_n is the neutral temperature. \bar{m} denotes the mean
 237 molecular weight.

238 Figure 3a shows the difference in geopotential height between 60°N and 60°S , serv-
 239 ing as a proxy for the latitudinal gradient of geopotential height. Below 6.5×10^{-5} hPa,
 240 the geopotential height is higher in the Southern hemisphere in the nudged run, a fea-

Figure 2. (a) \bar{V} at 2.54×10^{-6} hPa (~ 153 km) from (red dashed line) the nudged run and (black line) the base run. Positive is northward. (b) Diurnally- and zonally-averaged pressure gradient force in the meridional direction at 2.54×10^{-6} hPa in a unit of m/s/day. (c) Similar to (b) but for the sum of the diurnally- and zonally-averaged Coriolis force and ion drag force in the meridional direction.

Figure 3. (a) Profile of the difference in the diurnally- and zonally-averaged geopotential height between 60°N and 60°S from (red dashed line) the nudged run and (black line) the base run. (b) Similar to (a) but for vertical gradient difference between 60°N and 60°S. The analysis is averaged between 2009 day 161 to 181, centered at day 171 indicated as the blue dashed line in Figures (c)-(e). (c) Diurnally- and zonally-averaged neutral temperature at 3.44×10^{-7} hPa (~ 202 km) from the nudged run. (d) Similar to (c) but for the difference between the nudged and base run. (e) Similar to (d) but for the difference at 2.41×10^{-5} hPa (~ 117 km).

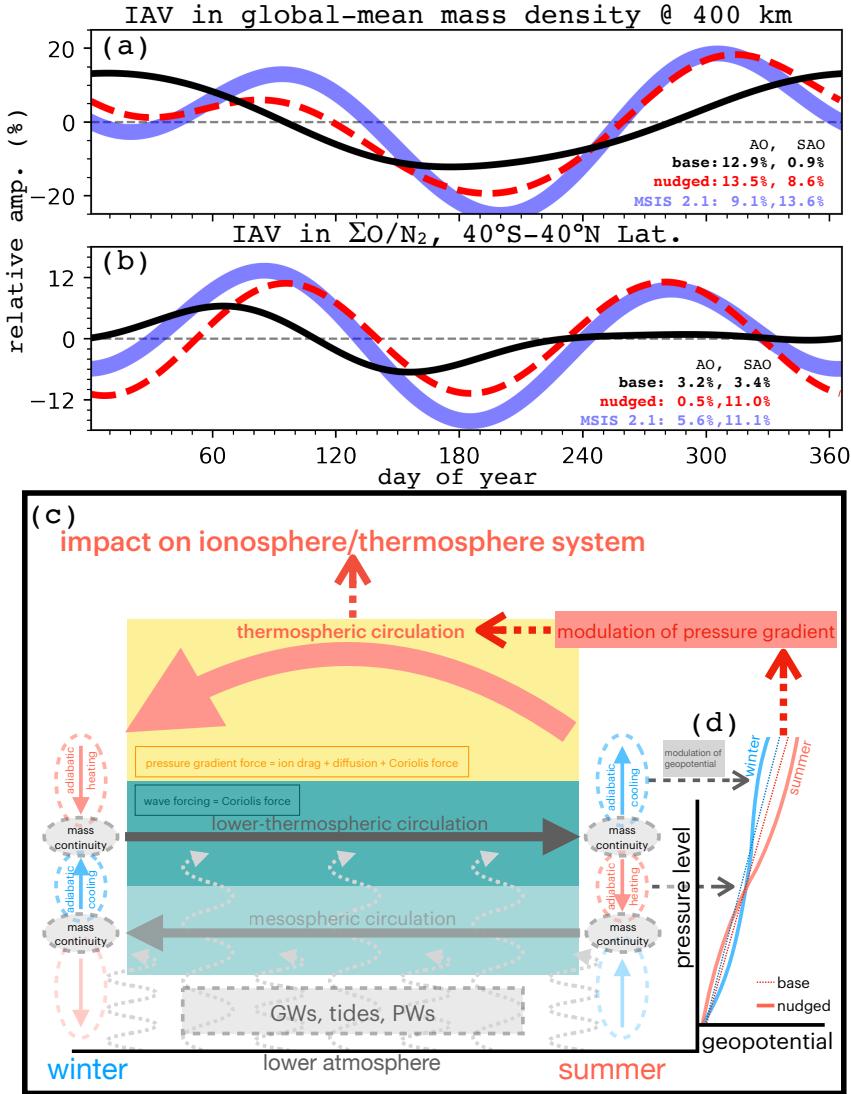

ture absent in the base run. This reversal of the summer-to-winter geopotential difference is linked to the temperature structure between the model's lower boundary and 6.5×10^{-5} hPa. In the base run, the temperature and geopotential height at the lower boundary ($z = -7$) are specified by migrating and non-migrating tides from the GSWM, with a constant background temperature of 181 K and a geopotential height of 96.37229 km. In contrast, the nudged run shows a sharp decrease in geopotential height and temperature in the Northern hemisphere at the lower boundary (figure not shown), associated with the cold summer mesopause, a well-known feature in the middle atmosphere (Holton, 1983; Garcia, 1989).

Figure 3b shows the difference in the vertical gradient of geopotential height between 60°N and 60°S . The latitudinal gradient of geopotential height increases more rapidly with altitude in the nudged run due to a stronger latitudinal temperature gradient toward the summer hemisphere between 10^{-4} and 2×10^{-6} hPa (see Equation 1 and Figure 3e). Consequently, the summer-to-winter geopotential height difference is greater in the nudged run compared to the base run above 1.8×10^{-5} hPa. This trend affects scale height and geopotential height, creating a stronger pressure gradient force directed toward the winter hemisphere.

The latitudinal temperature gradient below the lower-thermospheric circulation points more strongly toward the summer hemisphere in the nudged run. However, above the lower-thermospheric circulation, it reverses toward the winter pole (Figures 3d and e). This suggests that changes in vertical wind in the nudged run, as shown in Figure 1f, lead to additional adiabatic heating and cooling, modifying the temperature structure. The global-average neutral temperature in the nudged run is about 20 K cooler than in the base run, but this difference does not affect the simulated meridional wind, as it is the horizontal gradient of temperature, rather than the absolute value, that drives wind changes (Andrews et al., 1987).

4 Impact on thermospheric mass density

As examined earlier, the induced $\Delta\bar{W}$ associated with the lower-thermospheric circulation is generally upwelling in both hemispheres of the upper thermosphere during solstices (Figure 1f and S1f). The changes in $\Delta\bar{W}$ impacts the seasonal variation of the composition and its latitudinal distribution. Figures 4a and b show, when the lower-thermospheric

Figure 4. Intra-annual variation (IAV) in (a) globally-averaged mass density at 400 km altitude, (b) Column-integrated O/N₂ ratio ($\Sigma O/N_2$) averaged between $\pm 40^\circ$ latitude, showing percentage changes relative to the annual average. (black solid) the base run, (red dashed) the nudged run, and (blue) NRLMSIS 2.1. The amplitudes of annual and semi-annual variations (AO and SAO) for each run are provided in the bottom right corner of the figure. (c) Schematic of a latitude-pressure cross-section showing the coupling between winter-to-summer lower-thermospheric and summer-to-winter thermospheric circulations. Solid arrows indicate net meridional air motion, while a dashed arrow represents modulating processes. Red and blue dashed circles mark regions of adiabatic heating (downwelling) and cooling (upwelling) linked to meridional mass continuity. Wavy arrows depict upward-propagating gravity waves, tides, and planetary waves, with their dissipation driving mesospheric and lower-thermospheric circulations in the cyan and dark cyan-shaded regions, respectively, indicating opposing wave forcing directions in the mesosphere and lower thermosphere. (d) Schematic of geopotential height as a function of pressure level, with red denoting the summer hemisphere and blue representing the winter hemisphere from (solid) the nudged run and (dashed) base run.

272 circulation is nudged in the TIE-GCM, a better agreement for the simulated semi-annual
 273 oscillation (SAO) in mass density and column-integrated O/N₂ ratio (Σ O/N₂) can be
 274 achieved compared to that in the base run. The amplitude of the SAO in the global-averaged
 275 mass density at 400 km is about 8.6% in the nudged run, showing a better agreement
 276 with the result in the NRLMSIS 2.1 (US Naval Research Laboratory Mass Spectrom-
 277 eter Incoherent Scatter radar, Emmert et al., 2021, 2022), where the relative amplitude
 278 is about 13.6% in the MSIS 2.1. On the other hand, the SAO is virtually absent in the
 279 base run (0.9%). The annual variation can reach 13.5% in the nudged run, where the am-
 280 plitude of the annual oscillation (AO) is about 9.1% in magnitude in the MSIS 2.1.

281 The IAV in Σ O/N₂ (Figure 4b) is analyzed over $\pm 40^\circ$ latitude for comparison with
 282 satellite observations (Strickland et al., 2004; Qian et al., 2009; Yue et al., 2019; Gan et
 283 al., 2023, 2024). In the base run, seasonal variation is weak, particularly in the second
 284 half of the year. The nudged run resolves the SAO well, with two similar minima around
 285 the solstices, closely aligned with MSIS 2.1. However, the AO is nearly absent, while MSIS
 286 2.1 shows a deeper June solstice minimum. Satellite observations also indicate that AO
 287 as a key feature of “global-mean” Σ O/N₂ (Qian et al., 2009; Yue et al., 2019). Note that
 288 “global-mean” here refers to the globally averaged values over the available local times
 289 and maximum latitude covered by the field of view of the given instrument. The spa-
 290 tial and temporal coverage of the observations is not uniformly distributed, which may
 291 introduce aliasing effects. These results in Figures 4a and b suggest that lower-thermospheric
 292 circulation plays a crucial role in modulating IAV in thermospheric mass density, but ad-
 293 dditional mechanisms must also contribute to controlling the IAV in Σ O/N₂. The discrep-
 294 ency between the simulations and observations warrants further investigation. In addi-
 295 tion to achieving a better agreement in the global-mean Σ O/N₂, the imposed lower-thermospheric
 296 circulation also mitigates the well-known thermospheric winter “anomaly” in the TIE-
 297 GCM simulation — namely, the positive bias in Σ O/N₂ between model simulations and
 298 observations in the winter hemisphere (e.g., Qian & Yue, 2017) (Figure S3 in the sup-
 299 plement).

300 The schematic in Figures 4c and d illustrates how the lower-thermospheric circu-
 301 lation couples with the circulation in the thermosphere and thermospheric mass density.
 302 Wave forcing from the lower atmosphere drives the lower-thermospheric winter-to-summer
 303 circulation, including contributions from tides and GWs. Note that planetary wave (PW)
 304 forcing can also modulate the lower-thermospheric circulation during strong PW events

(e.g., Yue & Wang, 2014; Gan et al., 2018; Oberheide et al., 2020; Orsolini et al., 2022; Gasperini et al., 2023). The lower-thermospheric circulation is accompanied by upwelling (downwelling) above and downwelling (upwelling) below in the summer (winter) hemisphere to maintain mass continuity. Adiabatic heating and cooling, associated with the additional vertical wind in the nudged run, result in a thermal structure that is warmer (cooler) in the summer (winter) hemisphere below the lower-thermospheric circulation compared to the base run.

The geopotential height is calculated from the hydrostatic equation by vertically integrating the temperature. Changes in the temperature distribution below influence the geopotential height structure above. This dynamical response enhances the latitudinal gradient of geopotential height in the nudged run above the lower-thermospheric circulation. The increased latitudinal gradient of the geopotential height produces a stronger pressure gradient force in the meridional momentum budget above 1.8×10^{-5} hPa. When the nudging terms taper off above the lower-thermospheric circulation in the simulation, which is comparable to the reduction in lower-atmospheric wave forcing above the lower thermosphere, the pressure gradient force efficiently strengthens the summer-to-winter thermospheric circulation between 10^{-5} and 10^{-6} hPa (128 km to 174 km).

Our results demonstrate that the lower-thermospheric circulation modifies the energy budget through adiabatic heating and cooling via changes in vertical wind. Consequently, the thermodynamic balance couples back to the momentum forcing of the pressure gradient, enhancing the summer-to-winter thermospheric circulation. This dynamic and thermodynamic coupling between the lower-thermospheric and thermospheric circulations functions as an atmospheric “gear mechanism”. The concept of the “atmospheric gear mechanism” describes how the lower-thermospheric circulation acts as a driver that accelerates the transfer of momentum and energy to higher altitudes by inducing changes in vertical wind. This process resembles a mechanical gear system, where the motion in one layer of the atmosphere amplifies movement in an adjacent layer. This coupling pathway influences the thermospheric dynamics and contributes to the overall redistribution of energy both horizontally and vertically.

The simulated SAO in mass density and $\Sigma O/N_2$ in the nudged run achieves a better agreement with MSIS 2.1, suggesting processes associated with the lower-thermospheric circulation may be an efficient mechanism to modulate the IAV in the coupled ionosphere

337 and thermosphere system (Emmert, 2015; Lean et al., 2016). Because the lower-thermospheric
 338 circulation is mainly controlled by the zonal momentum forcing originating from the lower
 339 atmospheric waves, this study demonstrates another new lower atmosphere-thermosphere-
 340 ionosphere coupling pathway.

341 **5 Discussion**

342 Resolving lower-thermospheric circulation from first principles in thermosphere-ionosphere
 343 general circulation models (GCMs) remains challenging due to inadequately resolved,
 344 parameterized, or missing wave forcing from the lower atmosphere (Qian & Yue, 2017;
 345 Malhotra et al., 2022; J. C. Wang et al., 2022). This limitation may hinder these mod-
 346 els' ability to accurately reproduce realistic IAV in the thermosphere and ionosphere (e.g.,
 347 Qian et al., 2009; Jones et al., 2017; Salinas et al., 2020; Malhotra et al., 2022). The TIE-
 348 GCM has a long-standing issue to replicate observed IAV features (Qian et al., 2009).
 349 To address this, a seasonally varying K_{zz} has been imposed at the model's lower bound-
 350 ary (e.g., Qian et al., 2009), but this remains an *ad-hoc* approach that compensates for
 351 missing mixing and vertical transport processes (Qian et al., 2013; Qian & Yue, 2017).
 352 Salinas et al. (2016) further showed that K_{zz} values derived from SABER CO₂ obser-
 353 vations exhibit much smaller seasonal variation than in Qian et al. (2009). While this
 354 study applies a constant K_{zz} to isolate the impact of the lower-thermospheric circula-
 355 tion, seasonal K_{zz} variations may still influence neutral density and $\Sigma O/N_2$.

356 Our result suggests including a more realistic lower-thermospheric circulation in
 357 the TIE-GCM could reasonably explain the missing physics in the TIE-GCM when con-
 358 sidering the mixing and vertical transporting processes that regulate the IAV in ther-
 359 mospheric mass density. Note that, although the lower thermospheric circulation in SD-
 360 WACCMX may be underestimated due to the absence of subgrid-scale GW forcing (J. C. Wang
 361 et al., 2022), comparing the model results with and without the lower-thermospheric cir-
 362 culation in TIE-GCM still provides valuable insights. This comparison allows for a fun-
 363 damental understanding of the dynamics that couple the lower-thermospheric circula-
 364 tion with the thermospheric circulation. As demonstrated in Ren et al. (2011) and this
 365 study, constraining the horizontal winds and temperature in the lower thermosphere with
 366 a more realistic representation may be an solution to improve the IAV in the thermo-
 367 sphere, and in turn, the ionosphere in the GCMs without the lower atmosphere and GW
 368 parameterization.

369 H. Liu et al. (2024) suggested that thermospheric compositional structure can be
370 modulated by circulation changes due to varying GW forcing at higher altitudes, as shown
371 through high- and low-resolution WACCM-X simulations. A similar pathway likely ex-
372 ists to modify thermospheric compositional structure if, as demonstrated in this study,
373 lower-thermospheric circulation modulates thermospheric circulation. This provides an
374 additional plausible explanation for the improved representation of IAV in thermospheric
375 mass density observed in the nudged run, along with the vertical transport of atomic O
376 linked to lower-thermospheric circulation near the base of the thermosphere (e.g., J. C. Wang
377 et al., 2023). Note that, changes in the lower-thermospheric circulation alter background
378 wind and temperature profiles, directly influencing the filtering of GWs that propagate
379 into the thermosphere (Fritts & Alexander, 2003). Meanwhile, dissipating primary GWs
380 can further excite secondary GWs (Vadas et al., 2018). These combined effects should
381 also impact thermospheric circulation and energy distribution and will be further assessed
382 in future studies.

383 The result in Figure 4a contradicts the conclusion of Jones, Emmert, et al. (2018),
384 who used the NCAR thermosphere-ionosphere-mesosphere-electrodynamics general cir-
385 culation model (TIME-GCM), an expanded version of TIE-GCM with a lower bound-
386 ary near 30 km. Jones, Emmert, et al. (2018) proposed that SAO in the IT system arises
387 naturally from variations in interhemispheric atomic oxygen transport via solar-driven
388 thermospheric circulation due to Earth's obliquity. Our findings align with Qian et al.
389 (2009), showing that SAO in thermospheric mass density is absent in TIE-GCM's first
390 principles, even with seasonal variation in solar-driven thermospheric circulation. The
391 lower atmosphere is likely to play a role in influencing the transport of atmospheric mass
392 and, consequently, composition. Addressing this discrepancy is beyond this paper's scope
393 and warrants further investigation.

394 Our results align with dynamics described by Smith et al. (2019), showing inter-
395 hemispheric and "upward" coupling from the winter stratosphere to the summer meso-
396 sphere through wave-forcing-induced changes in meridional circulation. This process, sim-
397 ilar to the atmospheric gear mechanism, leads to global changes in thermal structure through
398 adiabatic heating and cooling associated with changes in vertical wind. Interhemispheric
399 coupling through meridional circulation has been observationally verified by stratospheric
400 ozone and MLT-region CO₂ data (Randel, 1993; N. Wang et al., 2022), providing a solid
401 observational basis supporting the mechanisms proposed herein.

402 Similarly, sudden stratospheric warmings (SSWs) influence thermosphere-ionosphere
 403 dynamics (e.g., Yamazaki et al., 2015; Laskar et al., 2019; Oberheide et al., 2020; Jones
 404 et al., 2020; Orsolini et al., 2022), with lower-thermospheric circulation reversals affect-
 405 ing composition and propagating effects into the thermosphere. Jones et al. (2020) showed
 406 this variability can impact plasma populations in the topside ionosphere and plasmas-
 407 phere, with broader implications for inner magnetospheric plasma density.

408 The “atmospheric gear mechanism” underscores intricate thermospheric coupling,
 409 with implications for upper atmospheric science. Incorporating lower-thermospheric cir-
 410 culation in models can improve quiet-time thermospheric conditions and ultimately sim-
 411 ulations of geomagnetic storm responses. Similar couplings may exist in other planetary
 412 atmospheres but remain poorly understood due to limited observations (e.g., Showman
 413 et al., 2010).

414 Currently, no observational evidence directly links lower-thermospheric circulation
 415 to the thermospheric summer-to-winter circulation between 100-300 km. Satellite ob-
 416 servations of horizontal winds and O in the mesosphere and thermosphere, with suffi-
 417 cient spatial and temporal coverage, are needed to validate these interactions. While this
 418 study focuses on seasonal-scale thermospheric circulation, shorter-term variability may
 419 also impact the thermosphere-ionosphere system, as shown numerically by Forbes et al.
 420 (2024). The upcoming DYNAMIC and GDC satellite missions will provide critical multi-
 421 satellite observations on sub-weekly timescales, helping to resolve these open questions.

422 6 Closing remarks

423 In conclusion, our sensitivity study demonstrates that the lower-thermospheric cir-
 424 culation significantly impacts the thermospheric dynamics by modifying the meridional
 425 circulation above. The results suggest that adiabatic heating and cooling processes, driven
 426 by vertical wind, regulate thermal and momentum structures, strengthening the summer-
 427 to-winter circulation in the summer thermosphere and enhancing upwelling at higher lat-
 428 itudes. This circulation coupling further alters the seasonal variation of thermospheric
 429 composition. This finding reveals a new coupling mechanism, atmospheric “gear effect”,
 430 between the lower and upper thermosphere, highlighting the critical role of lower-atmospheric
 431 processes in shaping thermospheric behavior. This process functions like a mechanical
 432 gear system, where motion in one atmospheric layer amplifies movement in adjacent lay-

433 ers. The interaction of thermal gradients and pressure gradients forms a critical coupling
 434 pathway that enhances the upper thermospheric circulation.

435 From a practical perspective, these findings have implications for improving pre-
 436 dictions of thermospheric density, a critical factor for satellite drag estimation and or-
 437 bital maintenance. The improved representation of IAV in thermospheric mass density
 438 provides insights into the previously unresolved discrepancies in TIE-GCM simulations,
 439 enabling accurate modeling of thermospheric quiet-time conditions. Such advancements
 440 provide a baseline for studying storm-time responses, including the generation of iono-
 441 spheric irregularities that affect communication and navigation systems.

442 Since the lower-thermospheric circulation is controlled by wave forcing from the lower
 443 atmosphere, this study establishes a new coupling pathway linking the lower atmosphere,
 444 thermosphere, and ionosphere through enhanced representation of wave forcing and merid-
 445 ional circulation in the MLT region. This advancement improves the accuracy of mod-
 446 els and facilitates better forecasts of space weather events, ultimately aiding satellite op-
 447 erations and mitigating risks posed by thermospheric and ionospheric disturbances. These
 448 results underscore the importance of incorporating lower-atmospheric processes into fu-
 449 ture atmospheric and space weather models.

450 7 Open Research

451 TIE-GCM version 3.0 source code can be downloaded from the copy of its Github
 452 public repository on Zenodo (NCAR High Altitude Observatory, 2025). SD-WACCMX
 453 and the input files are publicly available through a public GitHub repository, <https://github.com/ESCOMP/CESM>. TIE-GCM model output pertinent to this paper can be found
 454 via J. C. Wang (2025).

456 Acknowledgments

457 This research is supported by NSF Awards AGS-2140031, AGS-2409172, and NASA God-
 458 dard Space Flight Center through the Cooperative Agreement 80NSSC21M0180 to Catholic
 459 University, Partnership for Heliophysics and Space Environment Research (PHaSER).
 460 This work is also supported in part by NASA grants 80NSSC20K1350, 80NSSC20K0189,
 461 80NSSC20K0721, and 80NSSC21K1315, and by NASA DRIVE Science Center for Geospace
 462 Storms (CGS) grant 80NSSC22M0163. J.C. Wang acknowledges Dr. Hanli Liu from NCAR/HAO

463 and Dr. Huixin Liu from Kyushu University for their helpful discussions, and Drs. Hao-
 464 nan Wu and Dong Lin from NCAR/HAO for their assistance. The National Center for
 465 Atmospheric Research is a major facility sponsored by the National Science Foundation
 466 under Cooperative Agreement No. 1852977. The scientific color maps (<https://doi.org/10.5281/zenodo.1243862>;
 467 Crameri et al., 2020; Crameri, 2023) are used in figures herein to prevent visual distor-
 468 tion of the data and exclusion of readers with color-vision deficiencies. The authors thank
 469 the editor and the reviewers for their careful reading of the manuscript; their comments
 470 considerably improved its quality.

471 **References**

472 Andrews, D. G., Leovy, C. B., & Holton, J. R. (1987). *Middle atmosphere dynamics*.
 473 Academic press.

474 Andrews, D. G., & McIntyre, M. E. (1976, November). Planetary Waves in Hor-
 475 izontal and Vertical Shear: The Generalized Eliassen-Palm Relation and the
 476 Mean Zonal Acceleration. *Journal of the Atmospheric Sciences*, 33(11), 2031–
 477 2048. Retrieved from <http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281976%29033%3C2031%3APWIHAV%3E2.0.CO%3B2> (1021 cita-
 478 tions (Semantic Scholar/DOI) [2025-01-03] ISBN: 0022492815200469) doi:
 479 [10.1175/1520-0469\(1976\)033%3APWIHAV%3E2.0.CO%3B2](https://doi.org/10.1175/1520-0469(1976)033%3APWIHAV%3E2.0.CO%3B2)

480 Bates, D. R. (1959). Some problems concerning the terrestrial atmosphere
 481 above about the 100 km level. *Proceedings of the Royal Society of London.*
 482 *Series A. Mathematical and Physical Sciences*, 253(1275), 451–462. Retrieved from
 483 <https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1959.0207> (155 citations (Semantic Scholar/DOI) [2024-11-15]
 484 tex.eprint: <https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1959.0207> doi: 10.1098/rspa.1959.0207

485 Crameri, F. (2023, June). *Scientific colour maps*. Zenodo. Retrieved from <https://doi.org/10.5281/zenodo.8035877> doi: 10.5281/zenodo.8035877

486 Crameri, F., Shephard, G. E., & Heron, P. J. (2020). The misuse of colour in sci-
 487 ence communication. *Nature Communications*, 11(1), 1–10. Retrieved from
 488 <https://dx.doi.org/10.1038/s41467-020-19160-7> (11 citations (Semantic
 489 Scholar/DOI) [2024-11-15] 21 citations (Semantic Scholar/DOI) [2024-11-15]
 490 Publisher: Springer US) doi: 10.1038/s41467-020-19160-7

495 Dickinson, R. E., Ridley, E. C., & Roble, R. G. (1975). Meridional circulation in
496 the thermosphere i. Equinox conditions. *Journal of Atmospheric Sciences*,
497 32(9), 1737 – 1754. Retrieved from https://journals.ametsoc.org/view/journals/atsc/32/9/1520-0469_1975_032_1737_mcitti_2_0_co_2.xml (13
498 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1175/1520-0469(1975)
499 032<1737:MCITTI>2.0.CO;2

500

501 Dickinson, R. E., Ridley, E. C., & Roble, R. G. (1977, January). Meridional circu-
502 lation in the thermosphere. II. Solstice conditions. *Journal of Atmospheric Sci-
503 ences*, 34(1), 178–192. (39 citations (Semantic Scholar/DOI) [2024-11-15] 10
504 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1175/1520-0469(1977)
505 034<0178:MCITTI>2.0.CO;2

506 Emmert, J. T. (2015). Thermospheric mass density: A review. *Advances in Space
507 Research*, 56(5), 773–824. Retrieved from <http://dx.doi.org/10.1016/j.asr.2015.05.038>
508 doi: 10.1016/j.asr.2015.05.038

509 Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak,
510 M. G., ... Yuan, T. (2021, March). NRLMSIS 2.0: A Whole-Atmosphere Em-
511 pirical Model of Temperature and Neutral Species Densities. *Earth and Space
512 Science*, 8(3). Retrieved 2022-08-19, from <https://onlinelibrary.wiley.com/doi/10.1029/2020EA001321> (176 citations (Semantic Scholar/DOI)
513 [2024-11-16]) doi: 10.1029/2020EA001321

514

515 Emmert, J. T., Jones, M., Siskind, D. E., Drob, D. P., Picone, J. M., Stevens,
516 M. H., ... Pérot, K. (2022, October). NRLMSIS 2.1: An Empiri-
517 cal Model of Nitric Oxide Incorporated Into MSIS. *Journal of Geo-
518 physical Research: Space Physics*, 127(10). Retrieved 2022-11-23, from
519 <https://onlinelibrary.wiley.com/doi/10.1029/2022JA030896> doi:
520 10.1029/2022JA030896

521 Forbes, J. M., Zhang, X., Maute, A., & Cullens, C. (2024, March). Responses of
522 the Mean Thermosphere Circulation, O/N₂ Ratio and Ne to Solar and Mag-
523 netospheric Forcing From Above and Tidal Forcing From Below. *Journal of
524 Geophysical Research: Space Physics*, 129(3), e2024JA032449. Retrieved 2024-
525 04-29, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JA032449> (37 citations (Semantic Scholar/DOI) [2024-11-15] 179 cita-
526 tions (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1029/2024JA032449

527

528 Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects
529 in the middle atmosphere. *Reviews of Geophysics*, 41(1), 1–64. (2254
530 citations (Semantic Scholar/DOI) [2025-01-03] ISBN: 8755-1209) doi:
531 10.1029/2001RG000106

532 Gan, Q., Oberheide, J., & Pedatella, N. M. (2018, September). Sources, Sinks,
533 and Propagation Characteristics of the Quasi 6-Day Wave and Its Impact
534 on the Residual Mean Circulation. *Journal of Geophysical Research: At-*
535 *mospheres*, 123(17), 9152–9170. Retrieved from <http://doi.wiley.com/10.1029/2018JD028553> (32 citations (Semantic Scholar/DOI) [2024-11-16])
536 doi: 10.1029/2018JD028553

538 Gan, Q., Qian, L., Pedatella, N. M., & Eastes, R. W. (2024, December). Equinox
539 Transitions of Thermosphere O/N2 and Meridional Circulation in the North-
540 ern Hemisphere as Observed by NASA’s GOLD and ICON Missions. *Geo-*
541 *physical Research Letters*, 51(24), e2024GL111810. Retrieved 2025-01-
542 13, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL111810> (0 citations (Semantic Scholar/DOI) [2025-01-13]) doi:
543 10.1029/2024GL111810

545 Gan, Q., Qian, L., Pedatella, N. M., Wu, Y., Correira, J., Wang, W., ... Eastes,
546 R. W. (2023, February). GOLD Synoptic Observations of Thermospheric
547 Annual and Semiannual Variations in Composition During Solar Minimum
548 Years. *Geophysical Research Letters*, 50(4). Retrieved 2023-03-23, from
549 <https://onlinelibrary.wiley.com/doi/10.1029/2022GL101215> (254
550 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1029/2022GL101215

551 Garcia, R. R. (1989). Dynamics, radiation, and photochemistry
552 in the mesosphere: Implications for the formation of noctilucent
553 clouds. *Journal of Geophysical Research: Atmospheres*, 94(D12),
554 14605–14615. Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD12p14605> (tex.eprint:
555 <https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JD094iD12p14605>)
556 doi: <https://doi.org/10.1029/JD094iD12p14605>

558 Gasperini, F., Jr, M. J., Harding, B. J., & Immel, T. J. (2023, April). Direct
559 Observational Evidence of Altered Mesosphere Lower Thermosphere Mean
560 Circulation From a Major Sudden Stratospheric Warming. *Geophysical Re-*

561 *search Letters*, 50(7). (283 citations (Semantic Scholar/DOI) [2024-11-15]) doi:
562 10.1029/2022GL102579

563 Hagan, M. E., & Forbes, J. M. (2002). Migrating and nonmigrating diurnal
564 tides in the middle and upper atmosphere excited by tropospheric latent
565 heat release. *Journal of Geophysical Research Atmospheres*, 107(24), 1–15.
566 (17 citations (Semantic Scholar/DOI) [2024-11-15] ISBN: 0148-0227) doi:
567 10.1029/2001JD001236

568 Hagan, M. E., & Forbes, J. M. (2003, February). Migrating and nonmigrating
569 semidiurnal tides in the upper atmosphere excited by tropospheric latent heat
570 release. *Journal of Geophysical Research: Space Physics*, 108(A2), 4754. Re-
571 trieved from <http://doi.wiley.com/10.1029/2001JD001236> (21 citations
572 (Semantic Scholar/DOI) [2024-11-15] 27 citations (Semantic Scholar/DOI)
573 [2024-11-15] ISBN: 0148-0227) doi: 10.1029/2002JA009466

574 Holton, J. R. (1983, October). The Influence of Gravity Wave Breaking on the
575 General Circulation of the Middle Atmosphere. *Journal of the Atmospheric
576 Sciences*, 40(10), 2497–2507. Retrieved from [http://journals.ametsoc.org/doi/10.1175/1520-0469\(1983\)040%3C2497:TIQGWB%3E2.0.CO;2](http://journals.ametsoc.org/doi/10.1175/1520-0469(1983)040%3C2497:TIQGWB%3E2.0.CO;2) (643 ci-
577 tations (Semantic Scholar/DOI) [2024-11-15] ISBN: 9781626239777) doi:
578 10.1175/1520-0469(1983)040<2497:TIQGWB>2.0.CO;2

580 Holton, J. R., & Alexander, M. J. (2000). The role of waves in the transport circu-
581 lation of the middle atmosphere. In *Atmospheric science across the stratopause*
582 (pp. 21–35). American Geophysical Union (AGU). Retrieved from <http://doi.wiley.com/10.1029/GM123p0021>

584 Holton, J. R., & Hakim, G. J. (2013). *An Introduction to Dynamic Meteorology*.
585 Elsevier. Retrieved from <https://linkinghub.elsevier.com/retrieve/pii/C20090633948> doi: 10.1016/C2009-0-63394-8

587 Hsu, V. W., Thayer, J. P., Wang, W., & Burns, A. (2016). New insights into the
588 complex interplay between drag forces and its thermospheric consequences.
589 *Journal of Geophysical Research: Space Physics*, 121(10), 10,417–10,430. (24
590 citations (Semantic Scholar/DOI) [2025-01-03]) doi: 10.1002/2016JA023058

591 Jones, M., Drob, D. P., Siskind, D. E., McCormack, J. P., Maute, A., McDonald,
592 S. E., & Dymond, K. F. (2018, December). Evaluating Different Techniques
593 for Constraining Lower Atmospheric Variability in an Upper Atmosphere

594 General Circulation Model: A Case Study During the 2010 Sudden Strato-
595 spheric Warming. *Journal of Advances in Modeling Earth Systems*, 10(12),
596 2018MS001440. (22 citations (Semantic Scholar/DOI) [2024-11-15] 30 citations
597 (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1029/2018MS001440

598 Jones, M., Emmert, J. T., Drob, D. P., Picone, J. M., & Meier, R. R. (2018). Origins
599 of the Thermosphere-Ionosphere Semiannual Oscillation: Reformulating
600 the “Thermospheric Spoon” Mechanism. *Journal of Geophysical Research: Space
601 Physics*, 123(1), 931–954. (33 citations (Semantic Scholar/DOI) [2025-01-03]) doi:
602 10.1002/2017JA024861

603 Jones, M., Emmert, J. T., Drob, D. P., & Siskind, D. E. (2017). Middle atmosphere
604 dynamical sources of the semiannual oscillation in the thermosphere and iono-
605 sphere. *Geophysical Research Letters*, 44(1), 12–21. (1 citations (Semantic
606 Scholar/DOI) [2024-11-15] 11 citations (Semantic Scholar/DOI) [2024-11-15] 31
607 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1002/2016GL071741

608 Jones, M., Siskind, D. E., Drob, D. P., McCormack, J. P., Emmert, J. T., Dhadly,
609 M. S., ... Jacobi, C. (2020, October). Coupling From the Middle Atmos-
610 sphere to the Exobase: Dynamical Disturbance Effects on Light Chemical
611 Species. *Journal of Geophysical Research: Space Physics*, 125(10). Retrieved
612 2022-11-28, from <https://onlinelibrary.wiley.com/doi/10.1029/2020JA028331> (31 citations (Semantic Scholar/DOI) [2024-11-15]) doi:
613 10.1029/2020JA028331

614 Laskar, F. I., McCormack, J. P., Chau, J. L., Pallamraju, D., Hoffmann, P., &
615 Singh, R. P. (2019). Interhemispheric Meridional Circulation During Sud-
616 den Stratospheric Warming. *Journal of Geophysical Research: Space Physics*,
617 124(8), 7112–7122. (26 citations (Semantic Scholar/DOI) [2025-01-03]) doi:
618 10.1029/2018JA026424

619 Lean, J. L., Meier, R. R., Picone, J. M., Sassi, F., Emmert, J. T., & Richards,
620 P. G. (2016, October). Ionospheric total electron content: Spatial patterns
621 of variability. *Journal of Geophysical Research: Space Physics*, 121(10). Retrieved
622 2024-04-29, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2016JA023210> (42 citations (Semantic Scholar/DOI) [2025-01-03])
623 doi: 10.1002/2016JA023210

624 Liu, H., Lauritzen, P. H., & Vitt, F. (2024, February). Impacts of Gravity
625

627 Waves on the Thermospheric Circulation and Composition. *Geophysical Research Letters*, 51(3), e2023GL107453. Retrieved 2024-02-09, from
 628 <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL107453>
 629 doi: 10.1029/2023GL107453

631 Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., ... Wang, W. (2018, February). Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM-X 2.0). *Journal of Advances in Modeling Earth Systems*, 10(2), 381–402. Retrieved from <http://doi.wiley.com/10.1002/2017MS001232> (252 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1002/2017MS001232

638 Liu, J., Liu, H., Wang, W., Burns, A. G., Wu, Q., Gan, Q., ... Schreiner, W. S. (2018, February). First Results From the Ionospheric Extension of WACCM-X During the Deep Solar Minimum Year of 2008. *Journal of Geophysical Research: Space Physics*, 123(2), 1534–1553. Retrieved 2022-08-11, from <https://onlinelibrary.wiley.com/doi/10.1002/2017JA025010> (55 citations (Semantic Scholar/DOI) [2025-01-03]) doi: 10.1002/2017JA025010

644 Malhotra, G., Ridley, A. J., & Jones, M. (2022, February). Impacts of Lower Thermospheric Atomic Oxygen and Dynamics on the Thermospheric Semianual Oscillation Using GITM and WACCM-X. *Journal of Geophysical Research: Space Physics*, 127(2). Retrieved 2022-04-01, from <https://onlinelibrary.wiley.com/doi/10.1029/2021JA029320> (2 citations (Semantic Scholar/DOI) [2025-01-03]) doi: 10.1029/2021JA029320

650 Maute, A., Hagan, M. E., Yudin, V., Liu, H., & Yizengaw, E. (2015, June). Causes of the longitudinal differences in the equatorial vertical $E \times B$ drift during the 2013 SSW period as simulated by the TIME-GCM. *Journal of Geophysical Research: Space Physics*, 120(6), 5117–5136. Retrieved 2021-10-14, from <https://onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021126> (27 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1002/2015JA021126

656 Mlynczak, M., Yue, J., McCormack, J., Liebermann, R., & Livesey, N. (2021, March). An Observational Gap at the Edge of Space. *Eos*, 102. Retrieved 2024-10-03, from <https://eos.org/opinions/an-observational-gap-at-the-edge-of-space> (9 citations (Semantic Scholar/DOI) [2024-11-15]) doi:

660 10.1029/2021EO155494

661 NCAR High Altitude Observatory. (2025, April). *TIEGCM v3.0*. Zenodo. doi: 10
662 .5281/zenodo.15214471

663 Oberheide, J., Pedatella, N. M., Gan, Q., Kumari, K., Burns, A. G., & Eastes,
664 R. W. (2020). Thermospheric Composition O/N 2 Response to an Altered
665 Meridional Mean Circulation During Sudden Stratospheric Warmings Observed
666 by GOLD. *Geophysical Research Letters*, 47(1), 1–7. (49 citations (Semantic
667 Scholar/DOI) [2024-11-15] 38 citations (Semantic Scholar/DOI) [2024-11-15])
668 doi: 10.1029/2019GL086313

669 Orsolini, Y. J., Zhang, J., & Limpasuvan, V. (2022, October). Abrupt Change
670 in the Lower Thermospheric Mean Meridional Circulation During Sud-
671 den Stratospheric Warmings and Its Impact on Trace Species. *Journal of*
672 *Geophysical Research: Atmospheres*, 127(20). Retrieved 2023-01-24, from
673 <https://onlinelibrary.wiley.com/doi/10.1029/2022JD037050> (80 cita-
674 tions (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1029/2022JD037050

675 Qian, L., Burns, A. G., Solomon, S. C., & Wang, W. (2013, May). An-
676 nual/semiannual variation of the ionosphere. *Geophysical Research Let-
677 ters*, 40(10), 1928–1933. Retrieved 2024-04-29, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1002/grl.50448> (21 citations (Se-
678 mantic Scholar/DOI) [2024-11-15]) doi: 10.1002/grl.50448

680 Qian, L., Solomon, S. C., & Kane, T. J. (2009). Seasonal variation of thermospheric
681 density and composition. *Journal of Geophysical Research: Space Physics*,
682 114(1), 1–15. (4 citations (Semantic Scholar/DOI) [2024-11-15] ISBN: 978-84-
683 942134-8-9) doi: 10.1029/2008JA013643

684 Qian, L., & Yue, J. (2017). Impact of the lower thermospheric winter-to-summer
685 residual circulation on thermospheric composition. *Geophysical Research Let-
686 ters*, 44(9), 3971–3979. (28 citations (Semantic Scholar/DOI) [2025-01-03])
687 doi: 10.1002/2017GL073361

688 Randel, W. J. (1993). Global variations of zonal mean ozone during stratospheric
689 warming events. *Journal of Atmospheric Sciences*, 50(19), 3308 – 3321. Re-
690 trieved from https://journals.ametsoc.org/view/journals/atsc/50/19/1520-0469_1993_050_3308_gvozmo_2_0_co_2.xml (11 citations (Semantic
691 Scholar/DOI) [2024-11-15] 14 citations (Semantic Scholar/DOI) [2024-11-15])

693 Place: Boston MA, USA Publisher: American Meteorological Society) doi:
 694 10.1175/1520-0469(1993)050<3308:GVOZMO>2.0.CO;2

695 Ren, S., Polavarapu, S., Beagley, S. R., Nezlin, Y., & Rochon, Y. J. (2011). The
 696 impact of gravity wave drag on mesospheric analyses of the 2006 strato-
 697 spheric major warming. *Journal of Geophysical Research Atmospheres*,
 698 116(19), 1–18. (22 citations (Semantic Scholar/DOI) [2024-11-15]) doi:
 699 10.1029/2011JD015943

700 Roble, R. G., Ridley, E. C., & Dickinson, R. E. (1987). On the global mean
 701 structure of the thermosphere. *Journal of Geophysical Research*, 92(A8),
 702 8745. Retrieved 2022-11-05, from <http://doi.wiley.com/10.1029/JA092iA08p08745> (278 citations (Semantic Scholar/DOI) [2024-11-16]) doi:
 703 10.1029/JA092iA08p08745

704 Salinas, C. C. J. H., Chang, L. C., Liang, M., Yue, J., Qian, L., Gan, Q., ...
 705 Mlynczak, M. (2020, March). Local-Time Variabilities of March Equinox
 706 Daytime SABER CO₂ in the Upper Mesosphere and Lower Thermosphere
 707 Region. *Journal of Geophysical Research: Space Physics*, 125(3). Retrieved
 708 2022-04-16, from <https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027039> (27 citations (Semantic Scholar/DOI) [2024-11-15]) doi:
 709 10.1029/2019JA027039

710 Salinas, C. C. J. H., Chang, L. C., Liang, M.-C., Yue, J., Russell, J., & Mlynczak,
 711 M. (2016, December). Impacts of SABER CO₂-based eddy diffusion coef-
 712 ficients in the lower thermosphere on the ionosphere/thermosphere. *Journal
 713 of Geophysical Research: Space Physics*, 121(12), 12,080–12,092. Retrieved
 714 from <http://doi.wiley.com/10.1002/2016JA023161> (18 citations (Semantic
 715 Scholar/DOI) [2024-11-15] 43 citations (Semantic Scholar/DOI) [2024-11-15]
 716 ISBN: 2169-9402) doi: 10.1002/2016JA023161

717 Showman, A. P., Cho, J. Y. K., & Menou, K. (2010). Atmospheric circulation of
 718 exoplanets. In S. Seager (Ed.), *Exoplanets* (pp. 471–516). (tex.adsnote: Pro-
 719 vided by the SAO/NASA Astrophysics Data System) doi: 10.48550/arXiv.0911
 720 .3170

721 Siskind, D. E., & Drob, D. P. (2014). Use of NOGAPS-ALPHA as a Bottom Bound-
 722 ary for the NCAR/TIEGCM. *Modeling the Ionosphere-Thermosphere System*,
 723 9780875904, 171–180. (9 citations (Semantic Scholar/DOI) [2025-01-03] ISBN:
 724 9780875904)

9781118704417) doi: 10.1002/9781118704417.ch15

726 Siskind, D. E., Drob, D. P., Dymond, K. F., & McCormack, J. P. (2014, February). Simulations of the effects of vertical transport on the thermosphere and
727 ionosphere using two coupled models. *Journal of Geophysical Research: Space
728 Physics*, 119(2), 1172–1185. Retrieved from <http://doi.wiley.com/10.1002/2013JA019116> (41 citations (Semantic Scholar/DOI) [2025-01-03] ISBN: 9780273725596) doi: 10.1002/2013JA019116

731 Smith, A. K., Pedatella, N. M., & Mullen, Z. K. (2019, March). Interhemispheric
732 Coupling Mechanisms in the Middle Atmosphere of WACCM6. *Journal of the Atmospheric
733 Sciences*, 77(3), 1101–1118. Retrieved from
734 <https://journals.ametsoc.org/jas/article/77/3/1101/345896/Interhemispheric-Coupling-Mechanisms-in-the-Middle> (25 citations
735 (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1175/JAS-D-19-0253.1

738 Strickland, D. J., Meier, R. R., Walterscheid, R. L., Craven, J. D., Christensen,
739 A. B., Paxton, L. J., ... Crowley, G. (2004, January). Quiet-time seasonal
740 behavior of the thermosphere seen in the far ultraviolet dayglow. *Journal of
741 Geophysical Research: Space Physics*, 109(A1), 2003JA010220. Retrieved 2025-
742 01-27, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2003JA010220> (102 citations (Semantic Scholar/DOI) [2025-01-27]) doi:
743 10.1029/2003JA010220

745 Vadas, S. L., Zhao, J., Chu, X., & Becker, E. (2018, September). The Excitation of
746 Secondary Gravity Waves From Local Body Forces: Theory and Observation.
747 *Journal of Geophysical Research: Atmospheres*, 123(17), 9296–9325. Retrieved
748 2022-07-31, from <http://doi.wiley.com/10.1029/2017JD027970> (107
749 citations (Semantic Scholar/DOI) [2025-01-03]) doi: 10.1029/2017JD027970

751 Wang, J. C. (2025, April). *Dataset for "modulation of thermospheric circulation by
752 lower-thermospheric winter-to- summer circulation: The atmospheric gear ef-
753 fect" (wang et al., 2025)*. Zenodo. Retrieved from <https://doi.org/10.5281/zenodo.15205002> doi: 10.5281/zenodo.15205002

755 Wang, J. C., Chang, L. C., Yue, J., Wang, W., & Siskind, D. E. (2017, May). The
756 quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA.
757 *Journal of Geophysical Research: Space Physics*, 122(5), 5709–5732. Retrieved
758 from <http://doi.wiley.com/10.1002/2016JA023745> (23 citations (Semantic

759 Scholar/DOI) [2024-11-16]) doi: 10.1002/2016JA023745

760 Wang, J. C., Yue, J., Wang, W., Qian, L., Jones, M., & Wang, N. (2023, November).
761 The Lower Thermospheric Winter-To-Summer Meridional Circulation: 2. Impact on Atomic Oxygen.
762 *Journal of Geophysical Research: Space Physics*, 128(11), e2023JA031684. Retrieved 2023-11-05, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JA031684> (0 citations (Semantic Scholar/DOI) [2024-11-16]) doi: 10.1029/2023JA031684

763 Wang, J. C., Yue, J., Wang, W., Qian, L., Wu, Q., & Wang, N. (2022, December).
764 The Lower Thermospheric Winter-To-Summer Meridional Circulation: 1. Driving
765 Mechanism. *Journal of Geophysical Research: Space Physics*, 127(12). Retrieved 2022-12-01, from <https://onlinelibrary.wiley.com/doi/10.1029/2022JA030948> (22 citations (Semantic Scholar/DOI) [2024-11-15]) doi:
766 10.1029/2022JA030948

767 Wang, N., Qian, L., Yue, J., Wang, W., Mlynczak, M. G., & Russell, J. M. (2022,
768 February). Climatology of Mesosphere and Lower Thermosphere Residual
769 Circulations and Mesopause Height Derived From SABER Observations. *Journal
770 of Geophysical Research: Atmospheres*, 127(4). Retrieved 2022-02-25, from <https://onlinelibrary.wiley.com/doi/10.1029/2021JD035666> (10
771 citations (Semantic Scholar/DOI) [2024-11-16]) doi: 10.1029/2021JD035666

772 Xu, J., Liu, H., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., ... Mlynczak,
773 M. G. (2007, May). Mesopause structure from Thermosphere, Ionosphere,
774 Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the Atmosphere
775 Using Broadband Emission Radiometry (SABER) observations. *Journal of
776 Geophysical Research: Atmospheres*, 112(D9), 2006JD007711. Retrieved 2024-
777 10-03, from <https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2006JD007711> (95 citations (Semantic Scholar/DOI) [2025-01-03]) doi:
778 10.1029/2006JD007711

779 Yamazaki, Y., Kosch, M. J., & Emmert, J. T. (2015). Evidence for strato-
780 spheric sudden warming effects on the upper thermosphere derived from
781 satellite orbital decay data during 1967-2013. *Geophysical Research Letters*,
782 42(15), 6180–6188. (28 citations (Semantic Scholar/DOI) [2025-01-03]) doi:
783 10.1002/2015GL065395

784 Yamazaki, Y., & Richmond, A. D. (2013, September). A theory of ionospheric re-

792 response to upward-propagating tides: Electrodynamic effects and tidal mixing
793 effects. *Journal of Geophysical Research: Space Physics*, 118(9), 5891–5905.
794 Retrieved 2014-11-13, from <http://doi.wiley.com/10.1002/jgra.50487> (85
795 citations (Semantic Scholar/DOI) [2024-11-15]) doi: 10.1002/jgra.50487

796 Yue, J., Jian, Y., Wang, W., Meier, R., Burns, A., Qian, L., ... Mlynczak, M.
797 (2019, April). Annual and Semiannual Oscillations of Thermospheric Com-
798 position in TIMED/GUVI Limb Measurements. *Journal of Geophys-
799 ical Research: Space Physics*, 2019JA026544. Retrieved 2022-01-11, from
800 <https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JA026544>
801 (125 citations (Semantic Scholar/DOI) [2024-11-15] 40 citations (Semantic
802 Scholar/DOI) [2024-11-15]) doi: 10.1029/2019JA026544

803 Yue, J., & Wang, N. (2025, April). Estimation of adiabatic cooling and warm-
804 ing in the mesosphere and lower thermosphere. *Journal of Atmospheric
805 and Solar-Terrestrial Physics*, 269, 106492. Retrieved 2025-04-12, from
806 <https://linkinghub.elsevier.com/retrieve/pii/S1364682625000768>
807 doi: 10.1016/j.jastp.2025.106492

808 Yue, J., & Wang, W. (2014, March). Changes of thermospheric composition
809 and ionospheric density caused by quasi 2 day wave dissipation. *Journal of
810 Geophysical Research: Space Physics*, 119(3), 2069–2078. Retrieved from
811 <http://doi.wiley.com/10.1002/2013JA019725> (41 citations (Semantic
812 Scholar/DOI) [2024-11-15]) doi: 10.1002/2013JA019725