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ABSTRACT

The increased bandwidth coupled with the large numbers of antennas of several new radio telescope
arrays has resulted in an exponential increase in the amount of data that needs to be recorded and
processed. In many cases, it is necessary to process this data in real time, as the raw data volumes are
too high to be recorded and stored. Due to the ability of graphics processing units (GPUs) to process
data in parallel, GPUs are increasingly used for data-intensive tasks. In most radio astronomy digital
instrumentation (e.g. correlators for spectral imaging, beamforming, pulsar, fast radio burst and SETI
searching), the processing power of modern GPUs is limited by the input/output data rate, not by
the GPU’s computation ability. Techniques for streaming ultra-high-rate data to GPUs, such as those
described in this paper, reduce the number of GPUs and servers needed, and make significant reduc-
tions in the cost, power consumption, size, and complexity of GPU based radio astronomy backends.
In this research, we developed and tested several different techniques to stream data from network
interface cards (NICs) to GPUs. We also developed an open-source UDP/IPv4 400GbE wrapper for
the AMD/Xilinx IP demonstrating high-speed data stream transfer from a field programmable gate
array (FPGA) to GPU.

Keywords: Astronomical techniques, Astronomical instrumentation, Astronomy data acquisition

1. INTRODUCTION

Modern radio telescopes, such as the Square Kilometre Array (SKA)Schilizzi et al. (2007); Dewdney et al. (2009),
the Atacama Large Millimeter /submillimeter Array (ALMA)Brown et al. (2004), Deep Synoptic Array(DSA)Hallinan
et al. (2019); Connor et al. (2022) and MeerKATJonas & MeerKAT Team (2016) generate data at unprecedented
rates, reaching tens to hundreds of terabytes per second. This data needs to be transported from data acquisition
systems to real time processing units. There are different ways to process this data. Traditionally, an application
specific integrated circuit based system, such as the Wideband Interferometric Digital ARchitecture(WIDAR)Carlson
(2000) correlator, would be used. Alternatives include FPGA and more recently FPGA/GPU based hybrid systems.

In radio astronomy, it is typically desirable to process as much frequency bandwidth as possible. High-speed ADCs
are commonly used to process bandwidths of tens to hundreds of GHzJiang et al. (2020). To receive these data
streams, FPGAs with high-speed transceivers are utilized to receive, channelize and then subsequently transfer them
to data processing unitsAlvear et al. (2016); Liu et al. (2021). If these units are housed in a server (as is the case
for CPU or GPU based processing), this is typically done via one or more NICs. Between the NICs and the FPGAs,
high-speed Ethernet switch is also a critical part for the data transportation.

GPUs are renowned for their capacity for parallel processing, making them ideal for the computationally demanding
jobs needed for astronomical data analysis. For instance, Fast Fourier Transforms (FFTs) are utilized in GPUs to



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

2

transform time-domain signals into a frequency-domain representationAdamek et al. (2021). The performance of
GPU-based FFTs is typically much better than CPU-based FFTsAyala et al. (2022). Correlators need to receive and
process data from several stations. The most common correlator implementation is known as the "FX correlator”,
which first channelizes the band using a polyphase filter bank, and then cross-multiplies each antennas channelized
data with every other antenna’s data. The computations can be done in parallel, which is ideal for GPUsClark
et al. (2013). In particular, Tensor-cores on the latest GPUs are special-purpose, matrix-matrix multiplication units
that operate on limited-precision input data, which are good for correlator implementationsRomein (2021). Various
other common elements of a data processing pipeline for radio telescopes (such an interference mitigation, calibration
algorithms, and transient detection via beamforming and de-dispersion) can also be performed on GPUs Akeret et al.
(2017); Agarwal et al. (2020); Yu et al. (2024).

Y
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Figure 1. Diagram of a typical radio astronomy system showing the flow of data from telescopes to data processing centers.
NICs, FPGAs, and GPUs are required to manage high-speed data streams.

Modern GPUs are powerful enough for most radio astronomy data processing applications. However, moving data
between different system components, such as FPGAs to NICs to GPUs is often a limiting step in the data processing
pipeline. Utilizing high-throughput interconnects such as Peripheral Component Interconnect Express (PCle) and
NVIDIA’s “NVLink”Li et al. (2019) along with remote direct memory access (RDMA) technologyKalia et al. (2016)
can mitigate these issues, however, it is still difficult to design, develop and implement a high-performance data
transportation system. Additionally, while there are existing solutions(such as GPUDirect) for transferring large
amounts of data between two GPU servers, the initial ingest (from e.g. an FPGA based system) is typically done via
UDP packets, and is not necessarily able to take advantage of these techniques.

The Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) aims to reduce this hurdle
through the development of open source, general purpose hardware, libraries, tools, and reference instrument de-
signsHickish et al. (2016). These tools enable researchers to implement the high-performance instrumentation needed
to achieve their science goals in a cost effective and timely manner.

The adoption of 400GbE in radio astronomy offers significant improvements in data transmission and processing
capabilities. As radio telescopes collect vast amounts of data, the need for faster, more efficient data handling be-
comes critical. 400GbE provides the necessary bandwidth to accommodate these large data rates, enabling real-time
processing and analysis which are essential for timely discoveries and insights.

This paper outlines our research, beginning with the evaluation of RDMA techniques for bandwidth performance
between NICs and GPUs. We then present the development of a 400GbE core with an FPGA for high-speed
data transfer and an RDMA-based software framework for server-side data reception. This core will be integrated
into the CASPER library, facilitating the rapid development of high-performance instrumentation by other researchers.
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In Section 2, the core hardware components used for this research are listed, and estimates the capability of the
hardware established; The RDMA techniques for transporting high-speed data streams from NICs to GPUs are demon-
strated in Section 3, which includes moving data through the host memory (Section 3.2), and using GPUDirect tech-
nology (Section 3.3, 3.4, 3.5); The implemented 400GbE core and associated test results for data transport from FPGA
to NIC and then to GPUs are given in Section 4; A summary of all results and outlines for future research directions
are provided in Section 5.

2. HARDWARE REQUIREMENTS FOR 400GBE
2.1. System Description

To transfer data from an FPGA to a GPU at 400 Gbps, it is important that all components in the data path are
capable of operating at such speeds. This includes the FPGA, connecting cables, and all elements of the receiving
server system. As RDMA is typically used to transfer high-speed data, RDMA technology should be supported by
the NIC as well. A 400GbE NIC with a 16 lane PCle 5.0 interface is required to support a theoretical maximum of
512 Gb/s between the NIC and other devices (DRAM controller, CPU or GPUs) on the PCle 5.0 bus. A PCle 5.0
motherboard and a PCle 5.0 CPU are also necessary for the high data rate transportation. As DRAM is often used to
transfer data to GPUs, having more DRAM controllers in the CPU will enhance performance. The NIC used for the
tests described in this paper is the NVIDIA MCX75310AAS-NEAT", which supports PCIe 5.0 and 4x100 Gbps/lane;
the CPU is Intel Xeon Silver 4410T?, which contains 80 lanes of PCIe 5.0 and eight DDR5 controllers; the motherboard
is a Gigabyte MS03-CEQ?, which has seven PCle 5.0 slots.

To test packet transfers from the FPGA, we need to be able to implement a 400GbE core on the FPGA board, which
requires high-speed transceivers at a minimum. Because the NIC supports 100Gbps/lane, the FPGA transceivers
should also support 100Gbps/lane. We choose the VPK180* FPGA board based on AMD Versal Premium System on
chip (SoC). Inside the Versal SoC, there are tens of GTM transceivers, which supports up to 112 Gbps when working
in half-density mode.

The majority of GPUs currently on the market support up to PCle 4.0, capable of transfers of at least 200 Gbps.
Therefore, we used two PCle 4.0 GPUs for these tests. GPUs can be broadly classified into two categories: gaming
GPUs and scientific, or compute, GPUs. In Section 3 we compare the effectiveness of various data-moving techniques
when comparing these two types of GPUs. The GPUs we tested are the NVIDIA RTX A6000° and RTX 4070°.

Either copper cables or fiber optic links powered by transceivers are used for Ethernet interconnect. Inexpensive
passive copper cables can be used for shorter distances (less than 3 meters for 400GbE), while fiber optic links, which
can extend several kilometers, are needed for greater distances. In our work, we used copper cables from Fiberstore,
which support the 400GBASE-CR4 interface standard. Table 1 summarizes the hardware used in this work.

2.2. PCle Bandwidth

PCle is a high-speed bus interface standard for connecting the peripheral hardware components of a computer
system. It serves as the critical technology enabling communication between the motherboard and peripherals, such
as GPUs and NICs. The achievable bandwidth for the different PCle versions is shown in Table 2. The above rates
are unidirectional. Full-duplex bidirectional rates are twice the table values.

As the PCle bus is the primary mechanism for data transfer used by majority of devices, including the NICs and
GPUs, it is important to measure the PCle bus bandwidth in order to estimate the maximum performance that is
achievable. Table 1 indicates that the system we built for testing has a bottleneck on GPUs, which have a PCle 4.0
interface, whereas other components support PCle 5.0. To verify we achieve the PCle 4.0 bandwidth, we used the

! https://docs.nvidia.com/networking/display/connectx7vpi/specifications

2 https://www.intel.com/content /www/us/en/products/sku/232388 /intel-xeon-silver-4410t-processor-26-25m-cache-2-70-ghz/
specifications.html

3 https://www.gigabyte.com/Enterprise/Server- Motherboard /MS03- CEO-rev-1x-3x
4 https://www.xilinx.com/products/boards-and-kits /vpk180.html
5 https://www.nvidia.com/en-us/design-visualization /rtx-a6000/

6 https://www.nvidia.com/en-us/geforce/graphics-cards/40-series /rtx-4070-family /



Table 1. Core Hardware for 400GbE Evaluation

Hardware Part Number Specification
CPU Intel Xeon Silver 4410T 80 lanes of PCle 5.0;
8 memory channels of DDR 5
NIC MCX75310AAS-NEAT PCle 5.0;
4 x 100Gbps/lane
Motherboard MS03-CE0 7 x PCle 5.0 slots;
8-Channel DDRS5 slots
FPGA Board VPK180 Transceivers support up to 112Gbps
GPUs RTX A6000/ RTX 4070 PCle 4.0 scientific/gaming GPUs
Copper cables OSFP400-PC015 Suppuzt 0GBASE-CRA;
OSFP-RHS cable for the NIC to NIC test
Copper cables | OSFPFL-400G-QDDPCO01 Support 400EBASE-CRA;
OSFP-RHS to QSFP-DD cable for the FPGA to NIC test

[l

Al sy =

Figure 2. The server we setup for the 400G test, which includes 2 x RTX A6000(RTX 4070) GPUs, a 400G NIC, 8 x DDR5
DIMMSs, a PCle5.0 mother board and a PCle5.0 CPU.

PCle Release Transfer Rate Bandwidth Unidirectional Bandwidth
Version Year (GT/s per lane) (GB/s per lane) (x16 configuration, GB/s)
1.0 2003 2.5 0.250 4.0

2.0 2007 5.0 0.500 8.0

3.0 2010 8.0 0.985 15.75

4.0 2017 16.0 1.969 31.5

5.0 2019 32.0 3.938 63.0

6.0 2022 64.0 7.877 126.0

Table 2. PCle Versions and Their Associated Data Transfer Rates

123

code” provided by NVIDIA to measure GPU bandwidth. The bandwidth performance for the RTX A6000 and RTX
4070 is shown in Figure 3(a) and Figure 3(b), respectively. Despite the substantial transfer rate achieved, this falls

124
significantly short of the theoretical maximum transfer of 256 Gbps. The rates achieved do, however, match those

125

7 https://github.com/liuweiseu /bandwidthtest /blob/master /bandwidthtest.cu
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achieved by NVIDIA with this code . As such, while it may be possible to achieve higher rates with, for example,
other GPU models or drivers, we take this to be the limit of our current configuration for data capture and throughput
testing purposes.

Device: NVIDIA RTX A6000 Device: NVIDIA GeForce RTX 4070
Transfer size (MB): 512 Transfer size (MB): 512
Pageable transfers Pageable transfers
Host to Device bandwidth (GB/s): 8.726530 Host to Device bandwidth (GB/s): 8.172738
Device to Host bandwidth (GB/s): 19.170784 Device to Host bandwidth (GB/s): 15.021167
Pinned transfers Pinned transfers
Host to Device bandwidth (GB/s): 24.979626 Host to Device bandwidth (GB/s): 25.108865
Device to Host bandwidth (GB/s): 26.353208 Device to Host bandwidth (GB/s): 26.303716
(a) RTX A6000 bandwidth performance (b) RTX 4070 bandwidth performance

Figure 3. Measured bandwidth performance of the RTX A6000 and RTX 4070 GPUs over a PCle 4.0 interface. The results
indicate a maximum achievable bandwidth of ~200 Gbps.

2.3. Memory Bandwidth

High-speed data transfer also depends on memory bandwidth, which in this case must have a minimum capacity
of 400 Gbps in order to accommodate simultaneous 400 Gbps data streams. With eight DDR5 DIMMSs operating
at 4800 MHz and an eight DDR5 controller built into the CPU, the memory bandwidth is sufficient. The memory
bandwidth is measured using the Intel Performance Counter Monitor (Intel PCM) tool? and stress-ng'®!!, verifying
that the 8-channel DDR5 memory bandwidth met the requirement for 400 Gbps data transfer (Figure 4).

3. TECHNIQUES FOR DATA TRANSPORTATION FROM NIC TO GPU

Transmission Control Protocol/Internet Protocol (TCP/IP) and RDMA are crucial concepts for high-speed data
transportation. Both techniques are used for data transfer, but they operate in fundamentally different ways and have
distinct performance characteristics. This section discusses the differences between these approaches and showcases
the performance of RDMA techniques using the test setup shown in Figure 5.

3.1. Remote Direct Memory Access

TCP/IP, the fundamental set of communication protocols for the Internet and most local networks, consists of IP,
TCP and UDP (User Datagram Protocol). Because of no buffering requirement, UDP is simpler to implement and
allows for faster overall transmission speeds. In most radio astronomy applications, high-speed data transmission
is in unidirectional, from FPGAs to a data processing center, through a dedicated network. Consequently, UDP is
commonly implemented.

While it is simple to receive UDP streams using a Linux kernel UDP socket, it requires multiple buffer copies and
heavy CPU usage, limiting its throughput. RDMA bypasses the host CPU and kernel, providing a high-throughput
and low-latency network communication. Two outstanding features of RDMA are implemented in comparison to
TCPIP: zero-copy and bypass kernel. The difference between UDP and RDMA is shown in Figure 6. For a 400GbE
network, RDMA technology is essential for optimal performance.

8 https://github.com/NVIDIA /nvbandwidth

9 https://github.com /intel /pcm

10 https://github.com/ColinTanKing /stress-ng

11 For best performance, please hand compile the benchmarks, since out of the box they wouldn’t use the most efficient AVX.
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Figure 4. Memory bandwidth measurement of an 8-channel DDR5 memory configuration using the Intel Performance

Counter Monitor (PCM) tool and stress-ng. The total memory bandwidth achieved is approximately ~1013 Gbps, meeting the
requirements for 400 Gbps data transfer.

Transmitter Receiver

200Gbps

400G Link m >4 4

. — i i

NIC NIC GPU
CcPU CPU 200Gbps

Figure 5. Setup of the 400G test servers used in the experiment. The servers are equipped with 400G NICs and GPUs to
evaluate data transfer performance using various techniques.

Ibverbs (InfiniBand Verbs) is a low-level programming interface specifically made for InfiniBand/RDMA over
Converged Ethernet(RoCE) networks that uses RDMA technology for high-performance network communication.
Developers are able to design applications that demand exceptionally low latency and high throughput because to its
direct access to the RDMA hardware. The OpenFabrics Enterprise Distribution (OFED) includes ibverbs as part of
a broader suite of RDMA-supporting technologies.

For the 400GbE core test, we select RDMA with ibverbs based on performance, compatibility, complexity, and
system upgradeability. The 400GbE core generates UDP packets. On the receiver side, the Queue Pair type created
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Figure 6. Comparison of data transfer processes using UDP and RDMA. The figure highlights the benefits of RDMA,
including zero-copy and kernel bypass, which result in higher throughput and lower latency.

by ibverbs is RawEth, which captures UDP packets via kernel bypass and zero-copy.

3.2. NIC to DRAM to GPU

Data transfers from NIC to GPU via DRAM is a general method compatible with both gaming and scientific GPUs.
For 400GbE applications, a full-duplex memory bandwidth of at least 800 Gbps is required. Our servers meet this
memory bandwidth requirement, as shown in Section 2.3. Figure 7 illustrates the data transfer path from NIC to
GPU through DRAM.

- Transmitter server Receiver server
i

NN NN | - -
DDR CPUE = -= DDR

i wuur T

!

cPUs

NIC

NIC Z4= GPU Z4E GPU
400Gb -
Link

Figure 7. Data transfer path from NIC to GPUs via DRAM. This method utilizes the available memory bandwidth to handle
high-speed data streams. Red dashed lines show the direction of data transfer.

In order to estimate the efficiency of data transfer from a NIC to GPUs via DRAM, a packet generator is developed
on the transmitting server that sends packets using a 400GbE link. The maximum data rate of the packet generator
is ~380 Gbps. As this exceeds the capture code capability, the speed of the generator is artificially limited to ensure
we can the maximum data rate without packet loss. Each packet payload contains a packet sequence counter that
was incremented by one. By examining the packet count sequence on the receiving end, we determine if there is any
packet loss.
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The open Source HASHPIPE framework'?!*MacMahon et al. (2018) is used on the receiving server to capture
packets and verify packet sequence values. Two threads, the network thread and gpu thread, are created in HASH-
PIPE for receiving packets and moving packets to the GPUs. A shared memory buffer of status values is provided by
HASHPIPE for real-time status monitoring. The HASHPIPE framework used in the test is shown in Figure 8.

cuda
stream

gpu kernel
gpu kernel

Figure 8.  Architecture of the HASHPIPE framework used in the data transfer tests. The framework provides separate
network and GPU threads for efficient packet handling, as well as provides real-time thread status monitoring.

net_thread gpu_thread

The ibverbs APIs are used in the network thread and allow for receiving packets at a high data rate. Once the
network thread receive packets from the 400G NIC, they transport the data to shared ring buffers in the host RAM.
Data from the ring buffer were transferred to two GPUs using two CUDA streams in the gpu thread. To determine the
data transfer rate, we measure the amount of time it takes to fill the ring buffer. Additionally, we verify the counter
sequence values in received packets checking for packet loss. The calculated data rate and packet loss are stored in
real time using the status buffer, shown in Figure 9(a)(RTX A6000) and Figure 9(b)(RTX 4070).

— Current Status: Instance @

GPUBKOUT : 17
GPUGBPS : 50.12792
GPUSTAT : w
IBVGBPS :
IBVPKTS :

IBVPPS : 5111066.237

MAXFLOWS : 1€

OUTBLKIN : 17

RPKTLOSS : @

GPUBLKIN : 1
GPUMCNT :
IBVBUFST : 1
IBVIFACE : ens4np@
IBVPKTSZ : 819:

IBVSNIFF :
NETSTAT : running
QUTSTAT : v
TPKTLOSS :

Last update: Sun Oct 13 16:23:00 2024 - Press 'q' to quit, 0-9 to select

— Current Status: Instance @

GPUBKOUT : 10
GPUGBPS : 4
GPUSTAT :
IBVGBPS :
IBVPKTS :
IBVPPS : 50

MAXFLOWS :

OUTBLKIN : 10

RPKTLOSS : @

Last update: Tue Oct 15 14:18:13 2024 -

GPUBLKIN : 10
GPUMCNT : 57329
IBVBUFST :
IBVIFACE :
IBVPKTSZ : 8192
IBVSNIFF : -1
NETSTAT : running
OUTSTAT : waiting
TPKTLOSS : 385010

Press 'q' to quit, 0-9 to select

(a) RTX A6000 bandwidth performance (b) RTX 4070 bandwidth performance

Figure 9. Measured bandwidth performance of the RTX A6000 and RTX 4070 GPUs during the NIC to GPUs via DRAM
test. Results show that the data transfer rate without packet loss is about 360 Gbps. RPKTLOSS shows the real-time packet
loss, which is always zero after the initialization; TPKTLOSS shows the total number of packet loss, which is non-zero during
the initialization, but remains constant after initialization.

3.3. Direct Data Transport from NIC to a Single GPU

GPUs and NICs, both PCle devices, benefit from PCle’s high bandwidth and low latency when RDMA is used. In
order to directly transfer data from NICs to GPUs, specific NICs and GPUs are needed: The NICs and GPUs should
both be able to support RDMA. As we use NVIDIA NICs as well NVIDIA GPUs in this test, GPUDirect technology'*
can be used. GPUDirect allows GPUs to communicate directly with other system parts, bypassing the CPU and
system memory, reducing latency and increasing throughput. Since both Tesla and Quadro GPUs support GPUDirect,

12 https://github.com/david-macmahon /hashpipe
13 https://github.com/liuweiseu/hashpipe-ibverbs-demo.git
1 https://docs.nvidia.com /cuda/gpudirect-rdma,/
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we utilized the RTX A6000 for the GPUDirect test. FigurelO shows the direct data transfer path from NIC to GPU
using GPUDirect. As the PCle limited 10 bandwidth on the GPU is 200Gbps, we initially tested GPUDirect to one
GPU with a 200G link.

- Transmitter server . Receiver server

cPu ? DOR @ CPU|:| DDR m

( - ( "~ PoEBus. . D

1 1 i
1 1 U
\4
NIC > NIC Z4= GPU
¥

200Gb Link i
RTX A6000

Figure 10. Direct data transfer path from NIC to GPU using GPUDirect technology. RDMA transactions reduces latency
by bypassing the CPU and system memory. The link between the two servers is 200G. Red dashed lines shows the direction of
data transfer.)

Packets on the transmitter server are generated using the ibverbs APIs and sent out in bursts to gauge bandwidth
performance. Each burst transfers a total of 12.5 GB data, with each packet sizes to 8192 bytes and a total of
1638400 packets. The receiving server also uses ibverbs to capture and report packet counts. The ibverbs routine
(ibv_poll_cq'®) reports how many packets are received successfully, so the packet loss can be checked by comparing
the number of sent packets and the number of received packets. The RTX A6000 GPU supports PCle 4.0, limit-
ing throughput to 200Gbps. We achieved a maximum data rate of 178Gbps'® without packet loss, as shown in Figurell.

pandwidth: 176.75 >Gbps]

bandwidth: 178.67 Gbps)

pandwidth: 178.77 Gbps|

total recv: 2869405

bandwidth: 178.64 Gbps

total recv: 90964

Bandwidth: 178.89 Gbpq [[total recv: 9830460

Figure 11. Measured bandwidth results of data transfers using GPUDirect to a single GPU on a 200 Gbps link. The maximum
data rate achieved without packet loss is 178 Gbps. The packet loss is checked By comparing the number of sent packets and
received packets. In each test, 1638400 packets are sent and 1638400 packets are received.

3.4. Direct data transport from NIC to two GPUs

As the 400G NIC is capable of supporting two 200Gbps links, and each GPU supports 200Gbps 10 bandwidth, the
capability of streaming to two GPUs simultaneously using GPUDirect was also tested. Figure 12 shows the direct
data transfer path from NIC to two GPUs using GPUDirect.

13 https://www.rdmamojo.com/2013/02/15/ibv_poll_cq/
16 https://github.com/liuweiseu/400GbE_Demo.git
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Transmitter server

cru Z| L oor

( ;

Receiver server
i
crPuzl LI oor AT
-Ili"- iﬂ
0 ¢ ~ PCEBus
1 1 i 1 ¢
1 U U
\4 \4
""" - (1T} (1T}
> NIC “4= GPU 4= GPU
400Gb Link B L=
RTX A6000 RTX A6000

Figure 12. Direct data transfer path from NIC to two GPUs using GPUDirect technology. The link between the two servers
is 400G link. Red dashed lines show the direction of data transfer.

On the transmitter server side, the same code based on ibverbs API mentioned in section 3.3 was used. In this case,
however, the packets contain different source and destination port numbers. On the receiver server side, two receiving
queue pairs with different flow are set for steering the two packet streams to the two GPUs. The resulting throughput

(~180 Gbps)is shown in Figure 13.

Start to recv...

The number of ib devices is 1.
Open IB device successfully.
Create IB resources successfully.
Init IB resources successfully.
Allocate memory on GPU.

Allocate GPU memory successfully!
Pinned GPU memory successfully!
Register memory successfully.

Create flow successfully.

total_recv: 1111412 Bandwidth: 72.837 Gbps
total_recv: 2508005 Bandwidth: 91.527 Gbps
total_recv: 3904828 Bandwidth: 91.542 Gbps!
total_recv: 5300936 Bandwidth: 91.495 Gbps
total_recv: 6698201 Bandwidth: 91.571 Gbps!
total_recv: 8094774 Bandwidth: 91.526 Gbps!
total_recv: 9490545 Bandwidth: 91.473 Gbps!
total_recv: 10886989 |Bandwidth: 91.517 Gbps
total_recv: 12283616 |Bandwidth: 91.529 Gbps
total_recv: 13679394 |Bandwidth: 91.474 Gbps
total_recv: 15074994 |Bandwidth: 91.462 Gbps,

Figure 13. Measured bandwidth results of data transfers to two GPUs using GPUDirect on a 400Gbps link. The maximum

data rate achieved is ~90Gbps x 2.

GPUDirect to GPUO

Start to recv...

The number of ib devices is 1.
Open IB device successfully.
Create IB resources successfully.
Init IB resources successfully.
Allocate memory on GPU.

Allocate GPU memory successfully!
Pinned GPU memory successfully!
Register memory successfully.

GPUDirect to GPU1

Create flow successfully.

total_recv: 780366 Bandwidth: 51.14Z2 Gbps
total_recv: 2176995 Bandwidth: 91.529 Gbps
total_recv: 3573712 Bandwidth: 91.535 Gbps
total_recv: 4969825 Bandwidth: 91.496 Gbps
total_recv: 6366914 Bandwidth: 91.560 Gbps
total_recv: 7763874 Bandwidth: 91.551 Gbps
total_recv: 9159603 Bandwidth: 91.470 Gbps
total_recv: 10555971 |Bandwidth: 91.512 Gbps
total_recv: 11952608 |Bandwidth: 91.530 Gbps
total_recv: 13348517 |Bandwidth: 91.482 Gbps
total_recv: 14744203 Bandwidth: 91.468 Gbps
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218 3.5. Direct Data Transport from two NICs to two GPUs

219 While GPUDirect is based entirely on the PCle bus similarly to RDMA, the performance was more limited, par-
220 ticularly when working with multiple GPUs. Besides measuring the performance of GPUDirect from one NIC to two
21 GPUs, the performance of two pairs of NICs to GPUs with GPUDirect was also tested. The data transfer path is
2 shown in Figure 14, and the result (~276 Gbps) is shown in Figure 15. The improvement in this rate compared to

23 the single 400Gbps NIC suggests that the limitations in data rate transfer of the single NIC to two GPUs are due to
24 the GPUDirect configuration and PCle lanes available in the case of a single NIC.

225

Server with two NICs and two GPUs installed

\ 4 \ 4
"""" NIC | e
S cru | NC j4: GPU
RTX A6000 *** RTX A6000

200Gb Link

Figure 14. Direct data transfer path from two NIC to two GPUs on one server. Both of the two NICs send data to each
other, and use GPUDirect to move the received data to two GPUs. The link is 200G. Red and blue dashed lines shows the
direction of data transfer.

device_id: @ total_recv: 126155002 Bandwidth: [T38-022 Gbps)
Stream 0: total_recv: 128261231 Bandwidth: |138.033 Gbps|
src_mac: a@:88:c2:0d:5e:28 total_recv: 130367194 Bandwidth: |138.016 Gbps|
dst_mac: 94:6d:ae:ac:f8:38 total_recv: 132472978 Bandwidth: |138.004 Gbps
src_ip: 192.168.3.11 total_recv: 134578952 Bandwidth: |138.016 Gbps
dst_ip: 192.168.3.12 total_recv: 136685577 Bandwidth: |138.060 Gbps
src_port: 54277 total_recv: 138791506 Bandwidth: [138.014 Gbps
dst_port: 54277 total_recv: 140897470 Bandwidth: |138.016 Gbps
packet number per group: 512 total_recv: 143003436 Bandwidth: [138.016 Gbps
packet group number: 320000 total_recv: 145108867 Bandwidth: |137.981 Gbps
npkt_row: 1 total_recv: 147214992 Bandwidth: |138.026 Gbps
total_recv: 149320998 Bandwidth: [138.019 Gbps
Start to send... - e total_recv: 151427413 Bandwidth: [138.046 Gbps GPUDirect to GPUO
The number of ib devices is 2. Sending instanceO total_recv: 153533453 Bandwidth: [138.021 Gbps
Open IB device successfully. total_recv: 155639754 Bandwidth: |138.038 Gbps
Create IB resources successfully. total_recv: 157746167 Bandwidth: [138.046 Gbps
Init IB resources successfully. total_recv: 159851841 Bandwidth: |{137.997 Gbps
Register memory successfully. total_recv: 161957222 Bandwidth: 137.978 Gbps
Send pkts successfully. Bandwidth: 123.390 Gbps
root@digilab-receiver:/home/wei/Projects/400GbE_Demo/scripts/test# [] i
| <_rootouisiab-recaver:homelweiProjecis/400GbE_Demolscitshest ssh) O X rootediglab-eceher: homelusiProjectsd00GbE Demaiscipshesi s O]
device_id: 1 total_recv: 126038802 (Bandwidth: 138.320 Gbps )
Stream 0: total_recv: 128148436 |Bandwidth: 138.257 Gbps
src_mac: 94:6d:ae:ac:f8:38 total_recv: 130258513 |Bandwidth: 138.285 Gbps
dst_mac: a0:88:c2:0d:5e:28 total_recv: 132368865 |Bandwidth: 138.304 Gbps
src_ip: 192.168.3.12 total_recv: 134479343 |Bandwidth: 138.312 Gbps
dst_ip: 192.168.3.11 total_recv: 136590015 |Bandwidth: 138.324 Gbps
src_port: 54277 total_recv: 138700173 |Bandwidth: 138.291 Gbps
dst_port: 54277 total_recv: 140810049 |Bandwidth: 138.272 Gbps
packet number per group: 512 total_recv: 142920256 |Bandwidth: 138.294 Gbps
packet group number: 320000 total_recv: 145030458 |Bandwidth: 138.294 Gbps
npkt_row: 1 total_recv: 147139822 |Bandwidth: 138.239 Gbps
total_recv: 149249881 |Bandwidth: 138.285 Gbps
Start to send... total_recv: 151359989 |Bandwidth: 138.288 Gbps iR
The number of ib devices is 2. Sending instance1 total_recv: 153470156 [Bandwidth: 138.292 Gbps GPUDirect to GPU1
Open IB device successfully. N total_recv: 155580350 |Bandwidth: 138.293 Gbps
Create IB resources successfully. total_recv: 157689964 |Bandwidth: 138.256 Gbps
Init IB resources successfully. total_recv: 159799508 Bandwidth: 138.250 Gbps
Register memory successfully. total_recv: 162393557 Bandwidth: 170.003 Gbps
Send pkts successfully. Bandwidth: 94.794 Gbps
root@digilab-receiver:/home/wei/Projects/400GbE_Demo/scripts/test# D i

Figure 15. Measured bandwidth results of data transfers from two NICs to two GPUs using GPUDirect on a 200Gbps(Xx 2)
link. The maximum data rate achieved is ~138Gbps x 2.
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4. 400GBE FPGA CORE

The open source 400GbE FPGA core comprises two primary modules: the UDP packet generation core and the
MAC/PHY core. The UDP packet generation core creates the UDP data packet and inserts the user-defined MAC
address, IP address, port numbers into the packets. The MAC/PHY core, compliant with the IEEE 802.3ck-2022
400Gbps Ethernet standard, interfaces the FPGA with other devices over copper or optical transceiver modules. The
AXI4 bus is used to transport control signals and statistical data. Figure 16 illustrates the core modules.

AXl4 AXl4
Control/Statistics Control/Statistics
Registers Registers

N
UDP Generation Core 400G MAC/PHY Core
J

Figure 16. Block diagram of the 400GbE FPGA core shows the UDP packet generation and MAC/PHY core modules.

4.1. 400GbE Core Implementation
4.1.1. UDP packet generation core

The 400GbE UDP generation core, modified from the CASPER 100G core'”, consists of two submodules: a stream-
ing data module, and a CPU data module.

The streaming data module handles high-speed data transmission and reception to and from the 400G MAC/PHY
core. It obtains MAC, 1P, and port information via the AXI4 bus to produce packets at a high data rate, stored in
registers or the ARP cache. For the TX data path, the module retrieves data from registers or an internal ARP cache,
creates TX packets, and sends them to a TX ring buffer. For the RX data path, received packets are stored in an RX
ring buffer and filtered by an RX filter to remove any unexpected packets with incorrect MAC, IP, or port numbers.
The block diagram of the streaming data module is shown in Figure 17.

-. TX Data Path

' T ‘ Streaming data Framer AXI| Stream
ing Buffe 9

" X

Registers/ARP cache AXi4 Bus
(MAC, IP, Port...)

T :
(7 o ‘
RX Filter AXI| Stream

- RX Data Path

Figure 17. Block diagram of the streaming data module within the 400GbE FPGA core. The module handles high-speed
data transmission and reception, including packet generation and filtering.

17 https://github.com/casper-astro/kutleng_skarab2_bsp_firmware
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The CPU data module sends and receives data to and from a microcontroller implemented in the FPGA. It shares
registers, ARP cache, and the MAC/PHY core with the streaming module. An arbitration module determines which
data to forward to the MAC/PHY core.

4.1.2. MAC/PHY Core

In the 400GbE FPGA core, the MAC/PHY core includes the Physical Coding Sublayer (PCS), Physical Medium
Attachment (PMA), Physical Medium Dependent (PMD) layer, and support for varying numbers of lanes for various
400GbE protocols.

We employ AMD’s (Xilinx) GTM transceivers and 600G channelized multi-rate ethernet subsystem (DCMAC) core.
The DCMAC is a high-performance, flexible, Ethernet-integrated hard IP that targets various networking applications.
The 400GbE, 200GbE, and 100GbE combinations that the core supports allow for a maximum data rate of 600Gbps.
For 400GbE, 200GbE, and 100GbE, it implements all of the 400G PCS operations, including: encoder, scrambler,
alignment marker insertion, and forward error correction (FEC). Additionally, it partially performs the PMA function,
freeing up 8 data lanes (two PCS lanes are consolidated into one) for GTM transceivers to connect to. For our open
source 400GbE core design, the DCMAC core is a good choice because the hard IP on Versal SoC is supported by
AMD with a free license.

With capabilities for up to 56Gbps per lane, the Versal SoC’s GTM transceiver is the highest performing AMD
transceiver. Working in full-density mode or half-density mode, it carries out the remaining PMA functions. For
400GDbE applications, the interface is 400GAUI-8 in full-density mode since each GTM transceiver operates indepen-
dently; in half-density mode, two GTM transceivers cooperate to support 112Gbps per lane. In this scenario, the
interface is 400GAUI-4. Since the NIC in our application supports 400GBASE-CR4, in order to obtain 106 Gbps/lane
X 4 lanes, we must configure the GTM in half density mode. We use two GTM quads to achieve the 400Gbps data
throughput, because each GTM quad contains four GTM transceivers. The MAC/PHY core, based on DCMAC and
GTM transceiver, is shown in Figure 18. The complete FPGA implementation of the 400GbE architecture is shown
in Figure 19.

GTM Quad
Gamn ) A\

GTM transceiver

GTM transceiver —>

A

AAAA
YYVYY

GTM transceiver

A

AAAA
YYVYY

>
>
>
\'

< GTM transceiver —>
16 PCS -
<«—> | Ppcs PMA (Even Channel Active) ~ 400GAUI-4
lanes Interface
AXIS < >
Interface < > < GTM transceiver
< > GTM transceiver —>
< > GTM transceiver
< > < GTM transceiver —>

GTM Quad
DCMAC

Figure 18. Integrated DCMAC core and GTM transceivers in the 400GbE MAC/PHY core. The components work together
to support high-speed Ethernet communication.
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[ Control/Statistics Registers, ARP cache ]

ARB / Streaming Data Path \
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>
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RX Filter Framer
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Figure 19. Complete architecture of the 400GbE FPGA core, illustrating the integration of various modules to achieve
400Gbps data transfer rates.

4.2. FPGA to NIC to GPU through DRAM result

To evaluate bandwidth performance of the 400GbE FPGA core, we developed a packet generation module that is
connected to the 400GbE core. Each packet contains a 16-bit counter for packet loss detection, and the packet rate
can be adjusted to obtain the data rate without packet loss. Using the same HASHPIPE framework-based code as
described in Section 3.2, we monitor the packet loss status and real-time bandwidth measurement. Figure 20 illustrates
the test setup, and Figure 21 shows the actual configuration.

Receiver server

NIC “d= GPU

Figure 20. Diagram showing the setup for the FPGA to NIC to GPU via DRAM data transfer test. The setup includes the
FPGA board, 400G NIC, and GPUs to evaluate data transfer performance.

Before further testing, we confirmed the 400G link between the FPGA and the server with a 400G NIC. Once
configured with the 400GbE firmware, the server indicated an active state at 400G with four active lanes. Figure 22
shows the receiver NIC state.

The GPUs used in this test are two RTX A6000 and two RTX 4070. The clock rate on the FPGA side for generating
packets and clocking the 400G Ethernet core is 390.625MHz, and the bus width of the DCMAC core is 1024 bits, so
the total data rate from the DCMAC core is up to 400Gbps. After adjusting the speed of generating packets, the code
running on the server side can capture the packets at up to ~362 Gbps without packet loss. We observed no packet

loss with data rates up to 362 Gbps. This result is identical as we obtained in Section 3.2. Figure 23 shows the results
of the FPGA to NIC to two GPUs test.
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Figure 21.
and connections used in the experiment.

~$ sudo mlxlink -d mlx5_0 -e -c

Operational Info
State

Physical state
Speed

width

FEC

Loopback Mode
Auto Negotiation

Supported Info
Enabled Link Speed (Ext.)
Supported Cable Speed (Ext.)

The actual setup used for the FPGA to NIC to GPU test. The setup demonstrates the hardware configuration

: Active

: ETH_AN_FSM_ENABLE

1 4006

: 4x

: Standard_RS-FEC - (544,514)
: No Loopback

: FORCE - 400G_4X

: 0x00010000 (400G_4X)
: 0x00013ffe (400G_4X,200G_2X,200G_4X,100G_1

X,100G_2X,100G_4X,50G_1X,506G_2X, 40G, 25G, 160G, 5G, 2.5G, 1G)

Troubleshooting Info

Status Opcode
Group Opcode
Recommendation

Tool Information

Firmware Version
amBER Version
MFT Version

Figure 22.
state and link speed of the connection.

— Current Status: Instance @

GPUBKOUT : 23 GPUBLKIN : 7

0
: N/A
: No issue was observed

: 28.40.1000
3 2
: mft 4.27.0-83

Status indication of the FPGA linked to the 400G NIC at a 400 Gbps data rate. The figure confirms the active

— Current Status: Instance @

(RPKTLOSS :

Last update: Tue Oct 15 13:16:10 2024

(GPUGBPS : 49.922611) GPUMCNT :
GPUSTAT IBVBUFST :
(IBVGBPS : IBVIFACE :
IBVPKTS : IBVPKTSZ :
IBVPPS : 5430898.540 IBVSNIFF :
MAXFLOWS : 16 NETSTAT :
OQUTBLKIN : 23

- Press 'q' to quit, 0-9 to select

GPUBKOUT _: ) GPUBLKIN :
(GPuGBPS : 478) GPUMCNT : 3
GPUSTAT : N IBVBUFST :
(1BV 16) IBVIFACE : ens4np@
IBVPKTS : 21 ) IBVPKTSZ : 8192
IBVPPS : 5430909.416 IBVSNIFF : -1
MAXFLOWS : 16 NETSTAT : running
OUTBLKIN : 20 _OUTSTAT : waiting
(RPKTLOSS : 0) (TPKTLOSS : 102716/
Last update: Tue Oct 15 14:07:42 2024 - Press 'q' to quit, @-9 to select

(a) RTX A6000 FPGA to GPU bandwidth performance (b) RTX 4070 FPGA to GPU bandwidth performance

Figure 23. Test results of the FPGA to NIC to two GPUs data transfer, showing a data rate of 362Gbps without packet loss.
RPKTLOSS shows the real-time packet loss, which is always zero after the initialization; TPKTLOSS shows the total number
of packet loss, which is non-zero during the initialization, but remains constant after initialization. The figure illustrates the
effectiveness of the 400GbE FPGA core in high-speed data transfer.
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4.3. FPGA to GPU Test Result with GPUDirect

As the GPUs we are using in the tests have PCle 4.0 interface with the speed limitation to ~200Gbps, what we
expected is moving data into one GPU at ~200Gbps. To send packets from FPGA to two GPUs with GPUDirect
technology, packets are sent out from FPGA with different source and dest port numbers, and these two kinds of
packets are sent out one by one. On the server side, two queue pairs with differet steer flows are created for directing
the two kinds of packets into two GPUs. Figure 24 shows the test about FPGA to two GPUs with GPUDirect.

FPGA Server
/ Recv Queu Pair-0 \
- T[O[T[O]T [0
Packet-A 18181881818 GPu
Packet-B Plalela e s
. >[>[3[>[>|>
Packet-A 400G Link Y,
Packet-B ;-|
Packet-A ( Recv Queu Pair-1 A
Packet-B
SEERER O
. (BRIBRIER|> 4 OV
Tleelge e
@ @) o | [ [
R, S =

Figure 24. FPGA and server are connected with 400G link. FPGA sends out two kinds of packets with different source and
dest port numbers: Packet-A and Packet-B. The data stream are steered to two queue pairs with different steer flow, and then
sent to two GPUs directly.

If only one receiving queue pair is enabled, half of the data will be sent to one GPU. The bandwidth is about
~180Gbps, which is identical to the result mentioned in section3.3; If both of the two receiving queue pairs are enable,
the one data stream will be split to two data streams, and the data will be sent to two GPUs at the same time directly.
The bandwidth of each data stream is ~90Gbps, and the total bandwidth is ~180Gbps. The results about this test
are shown in Figure 25(a) and figure25(b).

Allocate memory on GPU.

Allocate GPU memory successfully!
Pinned GPU memory successfully!
Register memory successfully.
Create flow successfully.
total_recv: 530154 Bandwidth: 34.744 Gbps
total_recv: 3057615 Bandwidth: 165.639 Gbps
total_recv: 5584760 Bandwidth: 165.618 Gbps
total_recv: 8111901 Bandwidth: 165.619 Gbps
total_recv: 10871648  Bandwidth:

The number of ib devices is 3.
Open IB device successfully.
Create IB resources successfully.
Init IB resources successfully.
Allocate memory on GPU.

Allocate GPU memory successfully!
Pinned GPU memory successfully!
Register memory successfully.
Create flow successfully.

total_recv: 13647187  Bandwidth: total_recv: 814971 Bandwidth: 53.410@ Gbps
total_recv: 16422726  Bandwidth: total_recv: 2211083 Bandwidth: [91.496 Gbps|
total_recv: 19198224  Bandwidth: total_recv: 3607634 Bandwidth: [91.524 Gbps|
total_recv: 21973792 Bandwidth: total_recv: 5004039  Bandwidth: [91.515 Gbps|
total_recv: 24749349 Bandwidth: total_recv: 6400649  Bandwidth: [91.528 Gbps|
total_recv: 27524851  Bandwidth: total_recv: 7796209  Bandwidth: [91.459 Gbps|
total_recv: 30300400  Bandwidth: total_recv: 9192310  Bandwidth: [91.495 Gbps|
total_recv: 10588388  Bandwidth: |[91.493 Gbps|
X (ssh)
dst_ip: 192.168.3.12 2 =
Zrc,portf 5:5;8 Open IB device successfully.
st_port'.ls 8 id: 1 Create IB resources successfully.
:z;;?pz' » gpu-1d: Init IB resources successfully.
disql;le recv: 1 Allocate memory on GPU.
" Allocate GPU memory successfully!
Start to recv... Pinned GPU memory successfully!
The number of ib devices is 3. Register memory successfully.
Open IB device successfully. Create flow successfully. .
Create IB resources successfully. total_recv: 131553 Bandwidth: _8.621 Gbps
Init IB resources successfully. total_recv: 1527580 Bandwidth: [91.490 Gbp:
Allocate memory on GPU. total_recv: 2924165 Bandwidth: [91.527 Gbp:
Allocate GPU memory successfully! total_recv: 4320544 Bandwidth: [91.513 Gbp:
Pinned GPU memory successfully! total_recv: 5716966 Bandwidth: [91.516 Gbp:
Register memory successfully. total_recv: 7113164 Bandwidth: [91.501 Gbp.
Create flow successfully. total_recv: 8508744 Bandwidth: [91.461 Gbp.
total_recv: 9905153 Bandwidth: [91.515 Gbp:
total_recv: 11300900 Bandwidth: [91.472 Gb

(a) GPUDirect from FPGA to GPU (b) GPUDirect from FPGA to GPU with

with one queue pair enabled

two queue pairs enabled

Figure 25. GPUDirect from FPGA to NIC results. If one queue pair is enabled on the receiver side, the bandwidth is about
~180Gbps; if both of the two queue pairs are enabled, bandwidth for each data stream is ~90Gbps, and total is about ~180Gbps.
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5. SUMMARY AND FUTURE WORK

This study examines the bandwidth performance of two RDMA techniques: moving data through DRAM and
GPUDirect, when transferring data from NIC to GPUs. Moving data to GPUs through DRAM can achieve approxi-
mately 180 Gbps to a single GPU without packet loss and about 360 Gbps to two GPUs. With GPUDirect, we can
transfer ~180Gbps to a single GPU, and ~90Gbps x 2 to two GPUs simultaneously. Using two NICs and two GPUs
with GPUDirect can achieve the bandwidth of ~138Gbps x 2. When using GPUDirect to two GPUs from a single
NIC, the data rate was half of that expected. In the case of the dual NICs to dual GPUs the data rate improved,
but was still below that achieved when transferring the data via DRAM. We plan to conduct research on further
high-performance computing methods in the future, including Data Plane Development Kit (DPDK) and Holoscan in
order to compare the performance of these approaches to our current results.

In addition to the server to server tests, a 400GbE FPGA core was developed. As many radio telescopes using a
networked architecture, this allowed the testing of a typical radio astronomy scenario where simple UDP packets were
transmitted to a server. Using this core, data rates of 362 Gbps were transferred without experiencing any packet
loss between the FPGA and two GPUs. Testing with GPUDirect, the 400GbE FPGA core can transfer data at about
180 Gbps to one GPU. This core will be added to the CASPER library, and the test results demonstrate the potential
of RDMA techniques and the FPGA 400GbE core for high data rate applications.
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