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Abstract. The classical Minkowski problem for convex bodies has deeply influenced the devel-
opment of differential geometry. During the past several decades, abundant mathematical theories
have been developed for studying the solutions of the Minkowski problem; however, the numerical so-
lution of this problem has been largely left behind, with only a few methods available to achieve that
goal. In this article, focusing on the two-dimensional Minkowski problem with Dirichlet boundary
conditions, we introduce two solution methods, both based on operator-splitting. One of these two
methods deals directly with the Dirichlet condition, while the other one uses an approximation \`a la
Robin of this Dirichlet condition. The relaxation of the Dirichlet condition makes the second method
better suited than the first one to treat those situations where the Minkowski equation (of Monge--
Amp\`ere type) and the Dirichlet condition are not compatible. Both methods are generalizations of
the solution method for the canonical Monge--Amp\`ere equation discussed by Glowinski et al. [J. Sci.
Comput., 81 (2019), pp. 2271--2302]; as such they take advantage of a divergence formulation of the
Minkowski problem, which makes it well suited to both a mixed finite-element approximation and
the time-discretization via an operator-splitting scheme of an associated initial value problem. Our
methodology can be easily implemented on convex domains of rather general shape (with curved
boundaries, possibly). The numerical experiments validate both methods, showing that if one uses
continuous piecewise affine finite-element approximations of the solution of the Minkowski problem
and of its three second order derivatives, these two methods provide nearly second-order accuracy
for the L2 and L\infty norms of the approximation error, where the Minkowski--Dirichlet problem is
assumed to have a smooth solution. One can easily extend the methods discussed in this article to
address the solution of three-dimensional Minkowski problems.

Key words. operator-splitting methods, Minkowski problem, Monge--Amp\`ere equation, mixed
finite element methods
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1. Introduction. The Minkowski problem (named after Hermann Minkowski
(1864--1909)) is an important problem in differential geometry. It asks for the con-
struction of a compact surface S as boundary of a convex bounded domain, know-
ing its Gaussian curvature. Given a compact strictly convex hypersurface S in the
d--dimensional real space Rd, the Gauss map G is a diffeomorphism from S to the
unit sphere Sd - 1 of Rd. Map G is defined by G(x) = n(x)\forall x\in S, where n(x) denotes
the unit outward normal of S at x. Accordingly, the Gauss--Kronecker curvature K
is the Jacobian of the Gauss map. Minkowski stated that one has

\ast Submitted to the journal's Numerical Algorithms for Scientific Computing section July 31, 2023;
accepted for publication (in revised form) May 28, 2024; published electronically October 8, 2024.

https://doi.org/10.1137/23M1590779
Funding: The first author was partially supported by National Natural Science Foundation of

China grants 12201530, HKRGC ECS 22302123, and HKBU 179356. The second author was partially
supported by the Hong Kong RGC under grant 16302223. The third author was partially funded by
NSF 2012046, 2152011, and 2309534.

\dagger Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (haoliu@
hkbu.edu.hk).

\ddagger Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water
Bay, Hong Kong (masyleung@ust.hk).

\S Department of Mathematics and Department of CMSE, Michigan State University, East Lansing,
MI 48824 USA (jqian@msu.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3230

D
ow

nl
oa

de
d 

10
/2

6/
24

 to
 3

5.
8.

11
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/23M1590779
mailto:haoliu@hkbu.edu.hk
mailto:haoliu@hkbu.edu.hk
mailto:masyleung@ust.hk
mailto:jqian@msu.edu


OPERATOR SPLITTING FOR MINKOWSKI A3231\int 
Sn - 1

x(K(G - 1(x))) - 1d\sigma (x) = 0,(1.1)

where \sigma is the Lebesgue measure on Sd - 1. Conversely, Minkowski posed the following
(inverse) problem: Suppose that f is a strictly positive function defined over Sd - 1

verifying
\int 
Sn - 1 xf(x)d\sigma (x) = 0; can one find a hypersurface S having 1/f as Gaussian

curvature? In [41, 42], Minkowski discussed the existence and uniqueness of solutions
to the above inverse problem. For d= 2, the solution regularity was proved by Lewy
[33, 34], Nirenberg [44], and Pogorelov [45], while, for d > 2, the solution regularity
was analyzed by Cheng and Yau [11] and Pogorelov [46].

Despite being around for more than a century and being one of the most impor-
tant problems in differential geometry, not much was done concerning the numerical
solution of the Minkowski problem. The earliest attempt we could find was discussed
in [36, 37], two publications dedicated to the solution of a related problem---namely,
reconstructing a shape from extended Gaussian images. In [31], after generalizing
Minkowski's proof, Lamberg converted the Minkowski problem into an optimization
one, the resulting algorithm solving a polyhedral version of the Minkowski problem.
In [32], Lamberg introduced an algorithm based on Minkowski's isoperimetric inequal-
ity, leading to an approximate Minkowski problem taking place in a finite-dimensional
function space spanned by truncated spherical harmonic series. In a more recent pub-
lication [10], Cheng designed a level-set based finite-difference PDE method to drive
an implicitly defined surface towards shapes arising from the Minkowski problem.

In all the above-cited works the hypersurface is supposed to be closed. Actu-
ally, another type of Minkowski problem is the Minkowski--Dirichlet problem. For
the Minkowski--Dirichlet problem, one supposes that the hypersurface is open and
bounded, with a Dirichlet condition imposed on its boundary. The well-posedness of
this problem has been addressed by many authors: For example, Bakelman [3], Lions
[35], and Urbas [50, 51, 52] have proved the existence and uniqueness of a solution.
Trudinger and Urbas [48] proved a necessary and sufficient condition for the classical
solvability of the Minkowski--Dirichlet problem. Recently, in [30] Hamfelt designed
a monotone finite-difference method to solve the Minkowski--Dirichlet problem; since
the method relies on wide stencils, it is advantageous for those situations where, due
to the lack of classical solutions, one looks for viscosity solutions.

Here, we propose two new methods for the numerical solution of the Minkowski--
Dirichlet problem in dimension d= 2. The first method, well suited to problems with
classical solutions, imposes the Dirichlet condition in a strong sense. On the other
hand, the second method imposes the Dirichlet condition in a least-squares sense
(via a quadratic penalty technique), making it appropriate for those situations where,
due to data incompatibility, the Minkowski--Dirichlet problem has no solution. Of
course, the second method has also the ability to capture classical solutions, if such
solutions do exist. The Minkowski problem we will look at can be described as follows:
Let \Omega be a bounded domain of Rd and K be a positive function defined over \Omega , and
let g be a function defined on the boundary \partial \Omega ; can one find a function u defined
over \Omega and verifying u| \partial \Omega = g, such that K is the Gauss curvature of the graph of u
(a surface in Rd+1)? In partial differential equation form, the above Minkowski--
Dirichlet problem reads as follows:\left\{   

det(D2u)

(1 + | \nabla u| 2)1+d/2
=K in \Omega ,

u= g on \partial \Omega .

(1.2)
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A3232 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

The partial differential equation in (1.2) belongs to a family of Monge--Amp\`ere equa-
tions. The simplest element of this family is clearly the following canonical Monge--
Amp\`ere equation:

det(D2u) = f in \Omega .(1.3)

Equation (1.3) is elliptic if f > 0. The above Monge--Amper\`ere equation (1.3) is a
fully nonlinear second order partial differential equation; it has been drawing a lot
of attention lately, mostly because of its relations with optimal transport problems
(other applications are described in, e.g., [19]; see also the references therein). During
the past three decades, a variety of methods have been designed to solve numeri-
cally equation (1.3), completed by boundary conditions (mostly Dirichlet's) (some
of these methods are described in the review article [19]). As expected, most of
these methods focus on the two--dimensional Monge--Amp\`ere equation and cover a
large variety of approaches. Combinations of (mixed) finite-element approximations
and augmented Lagrangian or least-squares formulations have been applied to the
solution of (1.3) and related fully nonlinear elliptic equations such as Pucci's (see
[4, 8, 13, 15, 14, 17, 18, 16, 26, 29, 25, 43, 9, 19] for details). Alternative finite-
difference and finite-element methods have been developed for these fully nonlinear
elliptic equations as well; see [1, 5, 6, 7, 21, 20, 40, 47, 28, 38, 19]; this list is far from
complete.

The main goal of this article is to extend to problem (1.2) (assuming d=2),
the operator-splitting based methods developed in [28, 38] for the solution of (1.3)
(completed by Dirichlet conditions) in dimensions 2 and 3 and in [27, 39] for the
eigenvalue problems of (1.3). Following [28, 38], the first step in that direction is to
take advantage of a divergence formulation of problem (1.2), which is better suited
to finite-element approximations. The second step is to decouple (in some sense) dif-
ferential operators and nonlinearities by introducing as additional unknown functions
p=D2u (as done in [27, 38]) and s=\nabla u (which was not necessary in [27, 38]). At the
end of the second step, one has replaced the highly nonlinear scalar Minkowski equa-
tion by an equivalent system of linear and nonlinear equations for u,p, and s, whose
formalism is simpler. In the third step, we associate an initial value problem with
the above system and use operator-splitting to time-discretize the above initial value
problem, in order to capture its steady state solution(s). We use simple finite-element
approximations of mixed type to implement the above methodology: indeed, we use
finite-element spaces of continuous piecewise affine functions to approximate u and
its three second-order derivatives, making our methods well suited to solve problem
(1.2) on domains \Omega with curved boundaries.

As mentioned above we will develop two new methods for the solution of problem
(1.2). These two methods are very close to each other; the first one deals directly with
the boundary condition u = g on \partial \Omega , while the second one imposes the boundary
condition in a least-squares sense.

This article is organized as follows: In section 2, we state some theoretical results
on the existence and uniqueness of solutions to the Minkowski--Dirichlet problem (1.2).
In section 3, we provide the divergence formulation of problem (1.2) and associate with
it two initial value problems, which differ in the way the Dirichlet boundary condition
is treated. The time discretization of these two initial value problems by operator-
splitting is discussed in section 4, followed by their finite-element space discretization
in section 5. We address in section 6 the initialization of the two above algorithms. In
section 7, we report the results of numerical experiments validating our methodology.
Section 8 concludes the article.
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OPERATOR SPLITTING FOR MINKOWSKI A3233

2. Problem formulation, existence, uniqueness, and regularity results.
We defined the Minkowski problem in section 1. In this article, we will focus on the
numerical solution of the Minkowski--Dirichlet problem (1.2), assuming that d = 2
(2-D). A first step to that goal is to rewrite (1.2) as\Biggl\{ 

det(D2u) =K(1 + | \nabla u| 2)1+d/2 in \Omega ,

u= g on \partial \Omega ,
(2.1)

a Monge--Amp\`ere-type formulation better suited for numerical solution. In (2.1), K

(> 0) is the prescribed curvature and D2u= ( \partial 2u
\partial xi\partial xj

)1\leq i,j\leq d is the Hessian matrix of
function u.

To put our computational investigations into perspective, we recall some classical
results concerning the existence, uniqueness, and regularity of classical solutions to
problem (2.1). In [48], one proves the following results about existence and uniqueness.

Theorem 2.1. Suppose that in (2.1), \Omega is a uniformly bounded convex domain
of Rd, its boundary \partial \Omega having C1,1-regularity. Then, problem (2.1) has, for any
g \in C1,1(\=\Omega ), a unique solution in C2(\Omega )\cap C0,1(\=\Omega ) if and only if\int 

\Omega 

Kdx<\omega d,(2.2)

and

K = 0 on \partial \Omega .(2.3)

The constant \omega d in (2.2) is given by \omega d =
\int 
Rd

d\xi 
(1+| \xi | 2)1+d/2 (implying \omega 2 = \pi and

\omega 3 = 4\pi /3); actually, \omega d is the volume of the unit ball of Rd.

Condition (2.3) is required to make sure that a solution exists for arbitrary g. It
is proved in [48] that if K does not vanish on the boundary, one can find a smooth
function g such that problem (2.1) has no solution.

In [50, 51, 52], one discusses regularity of the solution in the critical case defined
by \int 

\Omega 

Kdx= \omega d,(2.4)

where the following results are proved.

Theorem 2.2. Let \Omega be a uniformly convex domain of Rd with a C2,1 smooth
boundary and K be a positive C2 smooth function verifying (2.4). If u is a solution
of the Minkowski--Dirichlet problem (2.1), then

(i) u\in C0,1/2(\Omega );
(ii) the graph of u is C2,\alpha -smooth for some \alpha \in (0,1);
(iii) u| \partial \Omega is C1,\alpha -smooth;
(iv) if \partial \Omega is Ck+1,\alpha and K \in Ck - 1,\alpha with k \geq 2, then the graph of u is Ck+1,\alpha -

smooth and u| \partial \Omega is Ck+1,\alpha -smooth.

See [49] for more details on the solution of the Minkowski problem.
Some of the conditions in the above two theorems are rather restrictive and/or

not easy to verify. Nevertheless, the results they are reporting are very useful from
two perspectives: on one hand, they suggest test problems, where we know in advance
that solutions exist; on the other hand, they also suggest some other examples, where
the answer to existence will be indicated by the results of our computations. Finally,
we will also consider test problems with known solutions so as to check how fast and
how accurately our methods recover them.
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A3234 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

3. Divergence formulations of the 2-D Minkowski problem and relax-
ation by penalty of the Dirichlet condition.

3.1. Synopsis. There are cases where the data K and g do not allow the exis-
tence of classical smooth solutions to problem (2.1). In [30], one introduces a notion
of viscosity solution to problem (2.1), with the solution satisfying the generalized
Monge--Amp\`ere equation in [2], but not necessarily the Dirichlet condition. In the
following subsections, we will consider two divergence formulations of problem (2.1)
in dimension two to enforce the Dirichlet condition. The first formulation keeps the
Dirichlet condition as it is and is well suited to those situations where problem (2.1)
has classical solutions. On the other hand, the second formulation makes use of a
penalty to relax the Dirichlet condition; for large values of the penalty parameter,
one recovers accurately classical solutions if such solutions do exist, or generalized
solutions in the absence of classical solutions.

3.2. A first divergence formulation of the 2-D Minkowski--Dirichlet
problem. If d = 2, problem (2.1) enjoys the following equivalent formulation
(in the sense of distributions):\Biggl\{ 

 - \nabla \cdot 
\bigl( 
cof(D2u)\nabla u

\bigr) 
+ 2K(1 + | \nabla u| 2)2 = 0 in \Omega ,

u= g on \partial \Omega ,
(3.1)

where matrix cof(D2u) is the cofactor matrix of Hessian D2u, that is,

cof(D2u) =

\Biggl( 
\partial 2u
\partial x2

2
 - \partial 2u
\partial x1\partial x2

 - \partial 2u
\partial x1\partial x2

\partial 2u
\partial x2

1

\Biggr) 
.

Problem (3.1) is equivalent to\left\{         

\Biggl\{ 
 - \nabla \cdot (cof(p)\nabla u) + 2K(1 + | s| 2)2 = 0 in \Omega ,

u= g on \partial \Omega ,

p - D2u= 0 in \Omega ,

s=\nabla u in \Omega .

(3.2)

In order to avoid possible difficulties at those points of \=\Omega where K may vanish, we
approximate system (3.2) by\left\{         

\Biggl\{ 
 - \nabla \cdot ((\varepsilon I+ cof(p))\nabla u) + 2K(1 + | s| 2)2 = 0 in \Omega ,

u| \partial \Omega = g on \Omega ,

p - D2u= 0,

s - \nabla u= 0,

(3.3)

with \varepsilon a small positive parameter. We successfully used this type of regularization
in [28] for the solution of the canonical Monge--Amp\`ere equation (1.3) completed by
Dirichlet boundary conditions. In practice, we will use a piecewise linear finite-element
basis and take \varepsilon of the order of h2, h being a space discretization step. Such a choice
makes the scheme stable while providing optimal second-order accuracy.

To solve system (3.3) we are going to associate with it the following initial value
problem:
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OPERATOR SPLITTING FOR MINKOWSKI A3235\left\{                     

\left\{   
\partial u

\partial t
 - \nabla \cdot ((\varepsilon I+ cof(p))\nabla u) + 2K(1 + | s| 2)2 = 0 in \Omega \times (0,+\infty ),

u| \partial \Omega = g on \partial \Omega \times (0,+\infty ),

\partial p

\partial t
+ \gamma 1

\bigl( 
p - D2u

\bigr) 
= 0 in \Omega \times (0,+\infty ),

\partial s

\partial t
+ \gamma 2 (s - \nabla u) = 0 in \Omega \times (0,+\infty ),

(u(0),p(0), s(0)) = (u0,p0, s0),

(3.4)

which will be time-discretized by operator-splitting (in section 4.1). In (3.4), \gamma 1 and
\gamma 2 are two positive coefficients chosen so that the smooth modes of p and s evolve in
time roughly at the same speed as that of u. Roughly speaking, the evolution speed of
u is controlled by the eigenvalue of  - \nabla 2u and the eigenvalue of p\approx D2u. According
to (2.1), if the eigenvalues of D2u are close to each other, then they are in the order
of

\surd 
K. Following [28], we advocate defining \gamma 1 and \gamma 2 by

\gamma 1 = \beta 1\lambda 0
\bigl( 
\varepsilon +

\surd 
\alpha 
\bigr) 
,

\gamma 2 = \beta 2\lambda 0
\bigl( 
\varepsilon +

\surd 
\alpha 
\bigr) 
,

where \lambda 0 is the smallest eigenvalue of operator  - \nabla 2 in H1
0 (\Omega ), \alpha is the lower bound

of K, and \beta 1 and \beta 2 are two constants of order one.
We comment in passing that we have used and will continue to use the notation

\phi (t) for the function x \rightarrow \phi (x, t). In section 6, we will discuss the initialization of
system (3.4).

3.3. A divergence formulation of the 2-D Minkowski--Dirichlet problem
with relaxation of the boundary condition. Theorem 2.1 implies that problem
(2.1) may have no solution, unless function K belongs to a very specific class of
functions. In order to deal with such no-solution scenarios as well as we can, we are
going to relax the boundary condition u = g using a penalty technique of the least-
squares type. If problem (2.1) has a classical solution, we expect to recover it when
the penalty parameter converges to +\infty .

The simplest way to proceed is to start from the following variational formulation
verified (formally) by any solution u of problem (2.1):\left\{       

u\in H1(\Omega ),\int 
\Omega 

(cof(D2u)\nabla u) \cdot \nabla vdx+ 2

\int 
\Omega 

K(1 + | \nabla u| 2)2 v dx= 0 \forall v \in H1
0 (\Omega ),

u= g on \partial \Omega .

(3.5)

In order to relax the Dirichlet boundary condition, we are going to apply to problem
(3.5) the well-known penalty method discussed in [23, 24] to approximate Dirichlet's
problems for linear second-order elliptic operators by Robin's ones.

Let \kappa be a positive constant. We (formally) approximate the variational problem
(3.5) by \left\{       

u\in H1(\Omega ),\int 
\Omega 

(cof(D2u)\nabla u) \cdot \nabla vdx+ 2

\int 
\Omega 

K(1 + | \nabla u| 2)2vdx

+ \kappa 
\int 
\partial \Omega 

(u - g)vd\Gamma = 0 \forall v \in H1(\Omega ),

(3.6)

where coefficient \kappa acts as a weight, controlling the level of penalization. Some remarks
are in order.
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A3236 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

Remark 3.1. Let us consider the functional j2 :H
1(\Omega )\rightarrow R defined by

j2(v) =
\kappa 

2

\int 
\partial \Omega 

| v - g| 2d\Gamma \forall v \in H1(\Omega ).

Functional j2 is convex and C\infty over H1(\Omega ), its differential Dj2(v) at v being given
by

\langle Dj2(v),w\rangle = \kappa 

\int 
\partial \Omega 

(v - g)wd\Gamma \forall v,w \in H1(\Omega ),(3.7)

where \langle \cdot , \cdot \rangle denotes a duality pairing between (H1(\Omega ))\prime (the dual space of H1(\Omega ))
and H1(\Omega ). Consequently, we can identify Dj2(u) with \kappa (u| \partial \Omega  - g) and replace
\kappa 
\int 
\partial \Omega 

(u - g)vd\Gamma in (3.6) by \langle Dj2(u), v\rangle .
Remark 3.2. If a function u is a solution of the nonlinear variational problem (3.6),

it is also a solution (in the sense of distributions) of the following (fully nonlinear)
boundary value problem:\left\{    - \nabla \cdot (cof(D2u)\nabla u) + 2K(1 + | \nabla u| 2)2 = 0 in \Omega ,

1

\kappa 
(cof(D2u)\nabla u) \cdot n+ u= g on \partial \Omega ,

(3.8)

where, in (3.8), n denotes the unit outward normal vector at \partial \Omega . The boundary
condition in (3.8) is a (nonlinear) Robin boundary condition. When \kappa \rightarrow +\infty , prob-
lem (3.8) ``converges"" (formally) to problem (2.1), justifying our second divergence
formulation of problem (2.1).

Remark 3.3. A natural alternative to problem (3.6) is the one described by\left\{       
u\in H1(\Omega ),\int 
\Omega 

(cof(D2u)\nabla u) \cdot \nabla vdx+ 2

\int 
\Omega 

K(1 + | \nabla u| 2)2vdx

+ \langle \partial j1(u), v\rangle = 0 \forall v \in H1(\Omega ),

(3.9)

where, in (3.9), \partial j1(u) is the subdifferential at u of the convex Lipschitz continuous
functional j1 :H

1(\Omega )\rightarrow R, defined by

j1(v) = \kappa 

\int 
\partial \Omega 

| v - g| d\Gamma \forall v \in H1(\Omega ).

This type of L1 functional is very common in nonsmooth mechanics and increasingly
popular in data science as shown by various chapters of [29].

Proceeding as in section 3.2, we associate with (3.6) the semivariational system\left\{                     

\left\{           
u\in H1(\Omega ),\int 
\Omega 

\biggl( 
(
1

2
\varepsilon I+ cof(p))\nabla u

\biggr) 
\cdot \nabla vdx +

\int 
\Omega 

1

2
\varepsilon \nabla u \cdot \nabla vdx

+2

\int 
\Omega 

K(1 + | s| 2)2vdx + \kappa 

\int 
\partial \Omega 

(u - g)vd\Gamma = 0 \forall v \in H1(\Omega ),

p - D2u= 0,

s - \nabla u= 0,

(3.10)

where in the second row,
\int 
\Omega 
( 12\varepsilon I)\nabla u \cdot \nabla vdx +

\int 
\Omega 

1
2\varepsilon \nabla u \cdot \nabla vdx(=

\int 
\Omega 
\varepsilon \nabla u \cdot \nabla vdx) is

the regularization term with a role similar to \nabla \cdot ((\varepsilon I)\nabla u) in (3.3). The next step
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OPERATOR SPLITTING FOR MINKOWSKI A3237

is to associate with (3.10) an initial value problem, as we have done with (3.3) in
section 3.2. The initial value problem reads as\left\{                               

\left\{           
u(t)\in H1(\Omega ), \forall t > 0,\int 
\Omega 

\partial u

\partial t
vdx +

\int 
\Omega 

\biggl[ 
1

2
\varepsilon I + cof(p)

\biggr] 
\nabla u \cdot \nabla vdx+

\int 
\Omega 

1

2
\varepsilon \nabla u \cdot \nabla vdx

+ 2

\int 
\Omega 

K(1 + | s| 2)2vdx+ \kappa 

\int 
\partial \Omega 

(u - g)vd\Gamma = 0 \forall v \in H1(\Omega ),

\partial p

\partial t
+ \gamma 1(p - D2u) = 0 in \Omega \times (0,+\infty ),

\partial s

\partial t
+ \gamma 2(s - \nabla u) = 0 in \Omega \times (0,+\infty ),

(u(0),p(0), s(0)) = (u0,p0, s0).

(3.11)

As in section 3.2, we advocate taking

\gamma 1 = \beta 1\lambda 0
\bigl( 
\varepsilon +

\surd 
\alpha 
\bigr) 
,

\gamma 2 = \beta 2\lambda 0
\bigl( 
\varepsilon +

\surd 
\alpha 
\bigr) 
.

In section 6, we will discuss the initialization of system (3.11).
The main difference between (3.4) and (3.11) is how the boundary condition is

implemented. Problem (3.4) enforces the Dirichlet boundary condition in a pointwise
manner, while (3.11) enforces the Dirichlet boundary condition in a weak sense so
that pointwise mismatch is allowed.

4. Discretization of the initial value problems (3.4) and (3.11) by
operator-splitting. In this section, we are going to apply the Lie scheme to the
time-discretization of the initial value problems (3.4) and (3.11); see [29] for details
on the Lie scheme. In our splitting strategy, each evolution step is split into several
fractional steps so that at each fractional step, we only focus on a few operators and
update each variable implicitly and independently instead of solving a large system
including all variables simultaneously. Another benefit is that with this strategy, p
and s are updated using the already updated u, which, in general, will improve the
convergence behavior of the algorithm.

In the following, let \Delta t (> 0) denote a time-discretization step, tn = n\Delta t, and let
(un,pn, sn) denote an approximation of (u,p, s) at t= tn.

4.1. Time discretization of the initial value problem (3.4). The Lie-
scheme we employ here is a variant of the one we used in [28] to solve the Monge--
Amp\`ere equation (1.2) completed by a Dirichlet boundary condition. It reads as

(u0,p0, s0) = (u0,p0, s0).(4.1)

For n\geq 0, (un,pn, sn)\rightarrow (un+1/2,pn+1/2, sn+1/2)\rightarrow (un+1,pn+1, sn+1) as follows.
The first fractional step. Solve\left\{                       

\left\{   
\partial u

\partial t
 - \nabla \cdot [(\varepsilon I+ cof(pn))\nabla u] + 2K(1 + | sn| 2)2 = 0 in \Omega \times (tn, tn+1),

u= g on \partial \Omega \times (tn, tn+1),

\partial p

\partial t
= 0 in \Omega \times (tn, tn+1),

\partial s

\partial t
= 0 in \Omega \times (tn, tn+1),

(u,p, s)(tn) = (un,pn, sn),

(4.2)
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A3238 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

and set

un+1/2 = u(tn+1), pn+1/2 = p(tn+1)(= pn), sn+1/2 = s(tn+1)(= sn).(4.3)

The second fractional step. Solve\left\{                   

\partial u

\partial t
= 0 in \Omega \times (tn, tn+1),

\partial p

\partial t
+ \gamma 1(p - D2un+1/2) = 0 in \Omega \times (tn, tn+1),

\partial s

\partial t
+ \gamma 2(s - \nabla un+1/2) = 0 in \Omega \times (tn, tn+1),

(u,p, s)(tn) = (un+1/2,pn+1/2, sn+1/2),

(4.4)

and set

un+1 = u(tn+1)(= un+1/2), pn+1 = P+

\bigl[ 
p(tn+1)

\bigr] 
, sn+1 = s(tn+1).(4.5)

In (4.5), P+(\cdot ) is a (kind of) projection operator which maps the space of the 2\times 2
symmetric matrices onto the closed cone of the 2\times 2 symmetric positive semidefinite
matrices; we will return to operator P+ in section 5.6.

We still need to solve the initial value problems that one encounters in (4.2) and
(4.4). There is no difficulty with (4.4) since the three initial value problems it contains
have closed-form solutions, leading to\left\{     

u(tn+1) = un+1/2,

p(tn+1) = e - \gamma 1\Delta tpn +
\bigl( 
1 - e - \gamma 1\Delta t

\bigr) 
D2un+1,

s(tn+1) = e - \gamma 2\Delta tsn +
\bigl( 
1 - e - \gamma 2\Delta t

\bigr) 
\nabla un+1.

It remains to solve the parabolic problem (4.2); for its solution, we advocate
performing just one step of the backward Euler scheme, which enables us to use a
relatively large time step while keeping the algorithm stable. We obtain then\left\{   

un+1  - un

\Delta t
 - \nabla \cdot 

\bigl[ 
(\varepsilon I+ cof(pn))\nabla un+1

\bigr] 
+ 2K(1 + | sn| 2)2 = 0 in \Omega ,

un+1 = g on \partial \Omega ,

a (relatively) simple Dirichlet problem for a linear self-adjoint second-order strongly
elliptic operator with variable coefficients, well-suited to finite-element approximations
as we shall see in section 5.

Collecting the above results, we will employ the following time-discretization
scheme to solve the initial value problem (3.4):

(u0,p0, s0) = (u0,p0, s0).(4.6)

For n\geq 0, (un,pn, sn)\rightarrow (un+1,pn+1, sn+1) as follows.
Solve\left\{   

un+1  - un

\Delta t
 - \nabla \cdot 

\bigl[ 
(\varepsilon I+ cof(pn))\nabla un+1

\bigr] 
+ 2K(1 + | sn| 2)2 = 0 in \Omega ,

un+1 = g on \partial \Omega ,
(4.7)

and compute \Biggl\{ 
pn+1 = P+

\bigl[ 
e - \gamma 1\Delta tpn +

\bigl( 
1 - e - \gamma 1\Delta t

\bigr) 
D2un+1

\bigr] 
,

sn+1 = e - \gamma 2\Delta tsn +
\bigl( 
1 - e - \gamma 2\Delta t

\bigr) 
\nabla un+1.

(4.8)
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OPERATOR SPLITTING FOR MINKOWSKI A3239

4.2. Time discretization of the initial value problem (3.11). As expected,
there are many commonalities between the ways we discretize systems (3.4) and (3.11);
we will take advantage of them. The major difference is that it is much easier to
operate directly on the variational formulation of the Monge--Amp\`ere part of the
problem so as to avoid dealing explicitly with the complicated Robin condition we
visualized in (3.8). Denote the updated boundary condition at tn by gn. The Lie
scheme we are going to use reads as

(u0,p0, s0, g0) = (u0,p0, s0, g).(4.9)

For n\geq 0, (un,pn, sn, gn)\rightarrow (un+1/3,pn+1/3, sn+1/3, gn+1/3)\rightarrow 
\rightarrow (un+2/3,pn+2/3, sn+2/3, gn+2/3)\rightarrow (un+1,pn+1, sn+1, gn+1),

where we outline the three fractional steps as the following.
The first fractional step. Solve\left\{                                   

\left\{               

u(t)\in H1(\Omega ) \forall t\in (tn, tn+1),\int 
\Omega 

\partial u

\partial t
(t)vdx+

\int 
\Omega 

\Bigl[ \Bigl( \varepsilon 
2
I+ cof(p(t))

\Bigr) 
\nabla u(t)

\Bigr] 
\cdot \nabla vdx

+2

\int 
\Omega 

K(1 + | s(t)| 2)2dx= 0 in \Omega \times (tn, tn+1) \forall v \in H1
0 (\Omega ),

u= gn on \partial \Omega \times (tn, tn+1),
\partial p

\partial t
= 0 in \Omega \times (tn, tn+1),

\partial s

\partial t
= 0 in \Omega \times (tn, tn+1),

(u,p, s)(tn) = (un,pn, sn),

(4.10)

and set

un+1/3 = u(tn+1), pn+1/3 = p(tn+1), sn+1/3 = s(tn+1), gn+1/3 = gn.(4.11)

The second fractional step. Solve\left\{                 

\partial u

\partial t
= 0 in \Omega \times (tn, tn+1) in \Omega \times (tn, tn+1),

\partial p

\partial t
+ \gamma 1(p - D2un+1/3) = 0 in \Omega \times (tn, tn+1),

\partial s

\partial t
+ \gamma 2(s - \nabla un+1/3) = 0 in \Omega \times (tn, tn+1),

(u,p, s)(tn) = (un+1/3,pn+1/3, sn+1/3),

(4.12)

and set

un+2/3 = u(tn+1), pn+2/3 = P+

\bigl[ 
p(tn+1)

\bigr] 
, sn+2/3 = s(tn+1), gn+2/3 = gn+1/3.

(4.13)

The third fractional step. Solve\left\{                           

\left\{       
u\in H1(\Omega ),\int 
\Omega 

\partial u

\partial t
(t)vdx+

\varepsilon 

2

\int 
\Omega 

\nabla u(t) \cdot \nabla vdx+ \kappa 

\int 
\partial \Omega 

(u(t) - g)vd\Gamma = 0

\forall v \in H1(\Omega ),
\partial p

\partial t
= 0 in \Omega \times (tn, tn+1),

\partial s

\partial t
= 0 in \Omega \times (tn, tn+1),

(u,p, s)(tn) = (un+2/3,pn+2/3, sn+2/3),

(4.14)
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and set

un+1 = u(tn+1),pn+1 = P+

\bigl[ 
p(tn+1)

\bigr] 
, sn+1 = s(tn+1), gn+1 = un+1| \partial \Omega .(4.15)

Assuming that one uses just one step of the backward Euler scheme to solve the
parabolic problem in (4.10) and (4.14), the Lie scheme (4.9)--(4.15) reduces to the
following variant of scheme (4.6)--(4.8):

(u0,p0, s0, g0) = (u0,p0, s0, g).(4.16)

For n\geq 0, (un,pn, sn, gn)\rightarrow un+1/2 \rightarrow (un+1,pn+1, sn+1, gn+1) as follows.
Solve \left\{               

un+1/2 \in H1(\Omega ),\int 
\Omega 

un+1/2  - un

\Delta t
+

\int 
\Omega 

\Bigl[ \Bigl( \varepsilon 
2
I+ cof(pn)

\Bigr) 
\nabla un+1/2

\Bigr] 
\cdot \nabla vdx

+2

\int 
\Omega 

K(1 + | sn| 2)2vdx= 0 \forall v \in H1
0 (\Omega ),

un+1/2 = gn on \partial \Omega ,

(4.17)

and compute \left\{                         

pn+1 = P+

\bigl[ 
e - \gamma 1\Delta tpn +

\bigl( 
1 - e - \gamma 1\Delta t

\bigr) 
D2un+1/2

\bigr] 
,

sn+1 = e - \gamma 2\Delta tsn +
\bigl( 
1 - e - \gamma 2\Delta t

\bigr) 
\nabla un+1/2,\left\{           

u\in H1(\Omega ),\int 
\Omega 

un+1  - un+1/2

\Delta t
vdx+

\varepsilon 

2

\int 
\Omega 

\nabla un+1 \cdot \nabla vdx

+\kappa 

\int 
\partial \Omega 

(un+1  - gn)vd\Gamma = 0 \forall v \in H1(\Omega ),

gn+1 = un+1| \partial \Omega .

(4.18)

5. Finite elements for the new operator-splitting scheme. The divergence
form strongly suggests that we apply a finite-element method to implement (4.7)--
(4.8) and (4.17)--(4.18). Here we choose a mixed finite-element method: we use the
same function space to approximate u, \nabla u, D2u, s, and p. Since we will choose basis
functions to be piecewise affine functions, the resulting approximations are continuous
piecewise affine on \Omega .

5.1. Finite-element spaces. Let \scrT h be the triangulation of the domain \Omega , and
let h denote the maximum edge length of the triangles in \scrT h. Let \Sigma h = \{ Qj\} Nh

j=1 be
the collection of vertices in \scrT h, where Qi denotes a typical vertex. We define the first
finite-element space as

Vh =
\bigl\{ 
v| v \in C0

\bigl( 
\=\Omega 
\bigr) 
, v| T \in P1 \forall T \in \scrT h

\bigr\} 
,(5.1)

where P1 denotes the space of polynomials with degree no larger than 1.
Accordingly, we associate each vertex Qj with a shape function wj such that

wj \in Vh,wj(Qj) = 1,wj(Qk) = 0 \forall k= 1, . . . ,Nh, k \not = j,

where the support of wj , denoted \theta j , is the union of triangles that have the same
common vertex Qj , and we denote the area of \theta j by | \theta j | . The set \scrB = \{ wj\} Nh

j=1 forms
a collection of basis functions of Vh. In other words, we have
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OPERATOR SPLITTING FOR MINKOWSKI A3241

v=

Nh\sum 
j=1

v(Qj)wj \forall v \in Vh.

In addition, we define

Vgh = \{ v| v \in Vh, v(Qj) = g(Qj) \forall Qj \in \Sigma h \cap \partial \Omega \} ,(5.2)

where g can be any function which is C0 on \partial \Omega . When g= 0, we have that

V0h = Vh \cap H1
0 .

Meanwhile, we define the following vector-valued spaces:

Rh =
\bigl\{ 
r| r\in V 2\times 1

h

\bigr\} 
,

Qh =
\bigl\{ 
q| q\in V 2\times 2

h , q= qT
\bigr\} 
,

so that we can use functions in Rh to approximate \nabla u and s and use functions in Qh

to approximate D2u and p.

5.2. Approximations of the two first-order derivatives of \bfitu . For any v \in 
Vh, we denote the first-order derivative approximation \partial v

\partial xi
of v by Dih(v) for i= 1,2,

and this approximate derivative operator is defined in the following weak sense:\int 
\Omega 

Dih(v)wdx=

\int 
\Omega 

\partial v

\partial xi
wdx, i= 1,2, \forall w \in H1(\Omega ).(5.3)

Since \Omega is partitioned by the triangulation \scrT h, we restrict the test functions w to be
in Vh so that we only need to test the above integral against those basis functions wk
for k= 1,2, . . . ,Nh. Since wk is only supported on \theta k, we have\Biggl\{ 

Dih(v)\in Vh \forall i= 1,2,

Dih(v)(Qk) =
3

| \theta k| 
\int 
\theta k

\partial v
\partial xi

wkdx \forall k= 1,2, . . . ,Nh.
(5.4)

We remark in passing that on a regular mesh such as the one shown in Figure 1(a),
(5.4) recovers the central-difference approximation at an interior node and one-sided
approximation at a boundary node in a finite-difference method based on this mesh.

In some problems, \nabla u has singularities on \Omega . One challenging situation is when
the singularities appear on the boundary. The approximation at nodes near the
boundary can blow up, especially when the gradient of the exact solution blows up
at the boundary of a computational domain, such as a semisphere. To resolve this
problem, we need to regularize the approximation of \nabla u. One possible way is to adopt
the idea from [28, 8], which is used to approximate the second-order derivative:\left\{   Dih(v)\in H1

0 ,

\varepsilon 1

\int 
\Omega 

\nabla Dih \cdot \nabla wdx+
\int 
\Omega 

Dih(v)wdx=

\int 
\Omega 

\partial v

\partial xi
wdx, i= 1,2, \forall w \in H1

0 (\Omega ).
(5.5)

The error of the regularized approximation can be larger than that of the direct
approximation, but it is more robust. Moreover, we have

lim
\epsilon 1,h\rightarrow 0

Dih(v) =
\partial v

\partial xi
in L2(\Omega ).
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5.3. Approximations of second-order derivatives of \bfitu . The general idea
to approximate the second-order derivatives is similar to the one used in [22, 12, 28].
For completeness, we mention the details here.

For any v \in Vh, we denote the approximations of \partial 2v
\partial xi\partial xj

by D2
ijh(v) for i, j = 1,2,

so that the approximate operator D2
ijh(v) of second-order derivatives is defined in the

following weak sense: \int 
\Omega 

D2
ijh(v)wkdx=

\int 
\Omega 

\partial 2v

\partial xi\partial xj
wkdx.(5.6)

To resolve the right-hand side of (5.6), we apply the divergence theorem,

\int 
\Omega 

\partial 2v

\partial xi\partial xj
wdx=

1

2

\int 
\partial \Omega 

\biggl( 
\partial v

\partial xi
nj +

\partial v

\partial xj
ni

\biggr) 
wd(\partial \Omega ) - 1

2

\int 
\Omega 

\biggl( 
\partial v

\partial xi

\partial w

\partial xj
+

\partial v

\partial xj

\partial w

\partial xi

\biggr) 
dx,

(5.7)

where n= (n1, n2) is the outward normal direction along \partial \Omega . The above approxima-
tion is accurate at interior nodes, but the approximation error is large at nodes on
the boundary. For example, consider the approximate derivative operator D2

11h on
a regular mesh of the unit square; after some derivation, we can show that there is
always one node at one of the corners of the unit square such that D2

11h(v) = 0 at
that node, no matter what form v takes.

To deal with this issue, we treat interior nodes and boundary nodes separately. Let
\Sigma 0h = \{ Qk\} N0

k=1 denote the set of interior nodes in \Omega , where we assume that the first
N0 nodes of \Sigma h are in the interior of \Omega . It follows that we have \Sigma h\cap \partial \Omega = \{ Qk\} Nh

k=N0+1.
For k= 1,2, . . . ,N0, the approximation of (5.6)--(5.7) reduces to\int 

\Omega 

D2
ijh(v)wkdx= - 1

2

\int 
\Omega 

\biggl( 
\partial v

\partial xi

\partial wk
\partial xj

+
\partial v

\partial xj

\partial wk
\partial xi

\biggr) 
dx.(5.8)

To treat nodes on the boundary, the work in [8] used the zero Dirichlet boundary
condition for the operator D2

ijh, i, j = 1,2, though the boundary value is not needed
in the resulting algorithm. In comparison with the numerical method in [8], ours
are different in that the boundary value of D2

ijh is crucial for our splitting algorithm.
Specifically, in (4.7)--(4.8) we need boundary values to update p, which is in turn used
to compute the divergence operator and to update u. Therefore, we need a better
treatment of the boundary nodes.

Here we adopt a strategy from [28, 38] to treat boundary nodes by committing a
``variational crime."" First, we impose the zero Neumann boundary condition

\partial D2
ijh(v)

\partial n
= 0.(5.9)

Multiplying (5.9) by wk for k=N0 + 1, . . . ,Nh and integrating along \partial \Omega , we get

0 =

\int 
\partial \Omega 

\partial D2
ijh(v)

\partial n
wkd(\partial \Omega )=

\int 
\Omega 

\nabla \cdot 
\bigl( 
\nabla D2

ijh(v)wk
\bigr) 
dx

=

\int 
\Omega 

\nabla 2D2
ijh(v)wkdx+

\int 
\Omega 

\nabla D2
ijh(v) \cdot \nabla wkdx.(5.10)

If D2
ijh(v) is harmonic, implying that \nabla 2D2

ijh(v) = 0, then we have\int 
\Omega 

\nabla D2
ijh(v) \cdot \nabla wkdx= 0.(5.11)
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OPERATOR SPLITTING FOR MINKOWSKI A3243

In our algorithm, although D2
ijh is only piecewise harmonic, we still use (5.11) to

update boundary values, which is the so-called variational crime. In either approxi-
mation (5.6)--(5.7) or approximation (5.8) and (5.11), since wk is only supported on
\theta k, the integration domain can be replaced by \theta k if the test function is wk. Under
certain conditions, a rough derivation shows that the variational crime introduces an
error to (5.10) of O(h). Since D2

ijh(v) \in Vh, \nabla D2
ijh(v) is piecewise constant over \Omega .

For any T \in \scrT h, let \nu be one of its edges. Along \nu , \nabla 2D2
ijh(v) is a Dirac-\delta function

multiplied by a factor (the difference of the values of \nabla D2
ijh(v) over the two triangles

having \nu as the common boundary). In the interior of T , \nabla 2D2
ijh(v) is 0. Thus\int 

\Omega 

\nabla 2D2
ijh(v)wkdx=

\sum 
T\in \theta k

\int 
\nu \in \partial T

\nabla 2D2
ijh(v)wkdx=O(h)

if \nabla D2
ijh(v) is bounded by a constant.

In our numerical experiments, with the regularization mechanism introduced be-
low, the accuracy by (5.8) and (5.11) is similar to that by (5.6)--(5.7), but (5.8) and
(5.11) make the algorithm more robust. It is worth mentioning that as implemented in
[28] both approximations work for two-dimensional Monge--Amp\`ere equations; how-
ever, as shown in [38], only the approximation based on the variational crime works
for three-dimensional Monge--Amp\`ere equations.

As reported in [8, 28, 38], if we directly use the above approximations, the perfor-
mance of our algorithm depends on triangulations; in the worst case, on a symmetric
mesh as shown in Figure 1(b), our algorithm does not converge. To obtain an algo-
rithm which is robust for all kinds of meshes, we need to regularize the problem by
adding some viscosity to our formulation of second-order derivatives.

As a first approach of regularization, we incorporate a local regularization term
into the weak definition of second-order derivatives at interior nodes:\left\{                     

\forall i, j = 1,2, \forall v \in Vh, D2
ijh(v)\in Vh and

C
\sum 
T\in \scrT k

h

| T | 
\int 
T

\nabla D2
ijh(v) \cdot \nabla wkdx+

\int 
\theta k

D2
ijh(v)wkdx

= - 1

2

\int 
\theta k

\biggl[ 
\partial v

\partial xi

\partial wk
\partial xj

+
\partial v

\partial xj

\partial wk
\partial xi

\biggr] 
dx \forall k= 1, . . . ,N0h,\int 

\theta k

\nabla D2
ijh(v) \cdot \nabla wkdx= 0 \forall k=N0h + 1, . . . ,Nh,

(5.12)

where C is a positive constant of order 1, and \scrT k
h is the set of all triangles with the

common vertex Qk.
If all triangles in \scrT h are of a similar size, (5.12) can be slightly simplified to be\left\{                   

\forall i, j = 1,2, \forall v \in Vh,D2
ijh(v)\in Vh and

\varepsilon 1

\int 
\theta k

\nabla D2
ijh(v) \cdot \nabla wkdx+

\int 
\theta k

D2
ijh(v)wkdx

= - 1

2

\int 
\theta k

\biggl[ 
\partial v

\partial xi

\partial wk
\partial xj

+
\partial v

\partial xj

\partial wk
\partial xi

\biggr] 
dx \forall k= 1, . . . ,N0h,\int 

\theta k

\nabla D2
ijh(v) \cdot \nabla wkdx= 0 \forall k=N0h + 1, . . . ,Nh,

(5.13)

where \varepsilon 1 is of order O(h2).
As a second approach of regularization, we incorporate a double-regularization

mechanism into our weak formulation of second-order derivatives. Assuming that
\psi \in H2, we consider the following linear elliptic variational problem:
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\left\{   p
\varepsilon 
ij \in H1

0 (\Omega ),

\varepsilon 1

\int 
\Omega 

\nabla p\varepsilon ij \cdot \nabla \phi dx+
\int 
\Omega 

p\varepsilon ij\phi dx= - 1

2

\int 
\Omega 

\biggl[ 
\partial \psi 

\partial xi

\partial \phi 

\partial xj
+
\partial \psi 

\partial xj

\partial \phi 

\partial xi

\biggr] 
dx \forall \phi \in H1

0 (\Omega ),

(5.14)

which yields the following relations in the weak sense:

lim
\varepsilon 1\rightarrow 0

p\varepsilon ij =
\partial 2\psi 

\partial xi\partial xj
in L2(\Omega ),(5.15)

and \left\{    - \varepsilon 1\nabla 2p\varepsilon ij + p\varepsilon ij =
\partial 2\psi 

\partial xi\partial xj
in \Omega ,

p\varepsilon ij = 0 on \partial \Omega .

(5.16)

Since, as reported in [28], this approximation is not effective in treating the zero-
Dirichlet boundary condition, we apply the following correction step:\left\{    - \varepsilon 1\nabla 2\~p\varepsilon ij + \~p\varepsilon ij = p\varepsilon ij in \Omega ,

\partial \~p\varepsilon ij
\partial n

= 0 on \partial \Omega ,
(5.17)

whose variational formulation reads as\left\{   \~p\varepsilon ij \in H1(\Omega ),

\varepsilon 1

\int 
\Omega 

\nabla \~p\varepsilon ij \cdot \nabla \phi dx+
\int 
\Omega 

\~p\varepsilon ij\phi dx=

\int 
\Omega 

p\varepsilon ij\phi dx \forall \phi \in H1(\Omega ).
(5.18)

It follows that \~p\varepsilon ij verifies lim\varepsilon \rightarrow 0 \~p
\varepsilon 
ij =

\partial 2\psi 
\partial xi\partial xj

in L2(\Omega ), and \~p\varepsilon ij \in H4(\Omega ).

Consequently, the discrete analogue D2
ijh(v) of \partial 2v

\partial xi\partial xj
(1 \leq i, j \leq 2) can be com-

puted in the following way.
Solve

\left\{           
pij \in V0h,

C
\sum 
T\in \scrT k

h

| T | 
\int 
T

\nabla pij \cdot \nabla wkdx+
| \theta k| 
3
pij(Qk) = - 1

2

\int 
\theta k

\biggl[ 
\partial v

\partial xi

\partial wk
\partial xj

+
\partial v

\partial xj

\partial wk
\partial xi

\biggr] 
dx

\forall k= 1, . . . ,N0h,

(5.19)

and then \left\{           
D2
ijh(v)\in Vh,

C
\sum 
T\in \scrT k

h

| T | 
\int 
T

\nabla D2
ijh(v) \cdot \nabla wkdx+

| \theta k| 
3
D2
ijh(v)(Qk) =

| \theta k| 
3
pij(Qk)

\forall k= 1, . . . ,Nh,

(5.20)

where C is a constant of order 1. Similar to the first approach of regularization, if all
triangles in \scrT h are of a similar size, we can replace C

\sum 
T\in \scrT k

h
| T | in (5.19) and (5.20)

by \epsilon 1 that is of order O(h2).
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5.4. Implementation of scheme (4.6)--(4.8). We give a fully discretized ana-
logue of scheme (4.6)--(4.8) as follows.

Initialize

u0 = u0 \in Vh,p0 = p0 \in Qh, s
0 = s0 \in Rh.(5.21)

For n\geq 0, proceed with \{ un,pn, sn\} \rightarrow \{ un+1,pn+1, sn+1\} as follows.
Solve \left\{           

un+1 \in Vgh,\int 
\Omega 

un+1vdx+\Delta t

\int 
\Omega 

(\varepsilon I+ cof(pn))\nabla un+1 \cdot \nabla vdx

=

\int 
\Omega 

unvdx - 2\Delta tK

\int 
\Omega 

(1 + | sn| 2)2dx \forall v \in V0h,

(5.22)

and compute pn+1 and sn+1 via

\left\{               

\forall k= 1, . . . ,Nh,

\alpha = e - \gamma 1\Delta t,

pn+
1
2 (Qk) = \alpha pn(Qk) + (1 - \alpha )

\Biggl( 
D2

11h(u
n+1)(Qk) D2

12h(u
n+1)(Qk)

D2
12h(u

n+1)(Qk) D2
22h(u

n+1)(Qk)

\Biggr) 
,

pn+1(Qk) = P+

\bigl[ 
pn+1/2(Qk)

\bigr] 

(5.23)

and \left\{     
\forall k= 1, . . . ,Nh,

sn+1(Qk) = e - \gamma 2\Delta tsn(Qk) +
\bigl( 
1 - e - \gamma 2\Delta t

\bigr) \Biggl( D1h(u
n+1(Qk)

D2h(u
n+1(Qk)

\Biggr) 
.

(5.24)

Here, all integrations in (5.22) are computed by the trapezoidal rule. In (5.23) and
(5.24), D1

ih for i= 1,2 are computed using (5.5) or (5.3); D2
ijh(u

n+1) for i, j = 1,2 are
computed by approximation (5.12) or (5.19)--(5.20).

5.5. Implementation of scheme (4.16)--(4.18). The discretized analogue of
scheme (4.6)--(4.8) can be written as follows.

Initialize

u0 = u0 \in Vh, p0 = p0 \in Qh, s
0 = s0 \in Rh, g

0 = g.(5.25)

For n\geq 0, proceed with \{ un,pn, sn\} \rightarrow \{ un+1,pn+1, sn+1\} as follows.
Solve \left\{           

un+1/2 \in Vgnh,\int 
\Omega 

un+1/2vdx+\Delta t

\int 
\Omega 

(\varepsilon I+ cof(pn))\nabla un+1/2 \cdot \nabla vdx

=

\int 
\Omega 

unvdx - 2\Delta tK

\int 
\Omega 

(1 + | sn| 2)2dx \forall v \in Vgnh.

(5.26)
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Compute pn+1 and sn+1 via

\left\{               

\forall k= 1, . . . ,Nh,

\alpha = e - \gamma 1\Delta t,

pn+
1
2 (Qk) = \alpha pn(Qk) + (1 - \alpha )

\Biggl( 
D2

11h

\bigl( 
un+1/2

\bigr) 
(Qk) D2

12h

\bigl( 
un+1/2

\bigr) 
(Qk)

D2
12h

\bigl( 
un+1/2

\bigr) 
(Qk) D2

22h

\bigl( 
un+1/2

\bigr) 
(Qk)

\Biggr) 
,

pn+1(Qk) = P+

\bigl[ 
pn+1/2(Qk)

\bigr] 

(5.27)

and \left\{     
\forall k= 1, . . . ,Nh,

sn+1(Qk) = e - \gamma 2\Delta tsn(Qk) +
\bigl( 
1 - e - \gamma 2\Delta t

\bigr) \Biggl( D1h(u
n+1/2(Qk)

D2h(u
n+1/2(Qk)

\Biggr) 
.

(5.28)

Compute \left\{           
un+1 \in Vh,\int 
\Omega 

un+1vdx+\Delta t\varepsilon 

\int 
\Omega 

\nabla un+1 \cdot \nabla vdx+\Delta t

\int 
\partial \Omega 

un+1vdx

=

\int 
\Omega 

un+1/2vdx+\Delta t\varepsilon 

\int 
\partial \Omega 

gvdx \forall v \in Vh

(5.29)

and update

gn+1 = un+1| \partial \Omega .(5.30)

All integrations in (5.26) and (5.29) are computed by the trapezoidal rule. In (5.27)
and (5.28), D1

ih for i= 1,2 are computed using (5.5) or (5.3); D2
ijh(u

n+1) for i, j = 1,2
are computed by approximation (5.12) or (5.19)--(5.20).

5.6. The projection operator \bfitP +(\cdot ). Since we want to find a convex solution
u, we need to have some mechanism to enforce convexity in our algorithm. There are
many possible approaches to handling the issue.

One particular approach that we discuss here is to modify one of the finite-element
components, p, after each iteration so that the modified p satisfies some convexity-
related properties. Since the Hessian matrix of a convex function is semipositive
definite and we expect p to converge to the Hessian matrix of the exact solution u\ast ,
which is convex, it is reasonable to force p to be semipositive definite; therefore, we
introduce a spectral projection operator to achieve this, and P+(\cdot ) is such a projector
in our algorithm.

Let A be a symmetric 2\times 2 matrix. Assume that A has a spectral decomposition,
A= S\Lambda S - 1, where the columns of S are the eigenvectors of A and \Lambda = (\lambda 1 0

0 \lambda 2
). We

define the spectral projector operator P+(\cdot ) as

P+(A) = S

\biggl( 
\lambda +1 0
0 \lambda +2

\biggr) 
S - 1,

where \lambda +i = max\{ \lambda i,0\} for i = 1,2. The effect of P+(A) is to project A onto the
cone consisting of semipositive definite matrices. This projection during each iteration
makes (4.7) an elliptic PDE of u.

Another possible approach is to choose a convex initial condition, which will be
discussed in the next section.
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6. Initialization.

6.1. Initial condition for scheme (4.6)--(4.8). To initialize u0 and p0 for
scheme (4.6)--(4.8), we solve the standard Monge--Amp\`ere equation\Biggl\{ 

det(D2u0) =K,

u0 = g on \partial \Omega .
(6.1)

We will deal with (6.1) by adopting the method in [28], which solves the following
initial value problem to steady state:\left\{         

\left\{   
\partial u

\partial t
 - \nabla \cdot ((\varepsilon I+ cof(p))\nabla u) + 2K = 0,

u= g on \partial \Omega ,

\partial p

\partial t
+ \gamma (p - D2u) = 0.

(6.2)

Let \{ u\ast ,p\ast \} be the steady state of (6.2). Accordingly, we set u0 = u\ast , p0 =D2u\ast ,
and s = Du\ast as the initial condition for our scheme (4.6)--(4.8). Therefore, our
algorithm can be summarized as a two-stage method.

Stage 1. In the algorithm in [28], set \varepsilon = \varepsilon 1 = h2 and dt= 2h2. Solve (6.2) until
\| un+1  - un\| 2 < tol to get u0. Compute p0 =D2u0 and s0 =Du0.

Stage 2. With the initial condition u0, p0, and s0, solve (4.6)--(4.8) to steady
state.

6.2. Initial condition for scheme (4.16)--(4.18). When we use scheme
(4.16)--(4.18), the boundary value of the computed solution does not satisfy the given
boundary condition, so the initial condition used for scheme (4.6)--(4.8) may not help.
To initialize scheme (4.16)--(4.18), we use the initial condition used to solve (6.2) in
[28]: \Biggl\{ 

\nabla 2u0 = 2\lambda 
\surd 
K,

u0| \partial \Omega = g,
(6.3)

where \lambda (> 0) is of order O(1).

7. Numerical experiments. In this section, we carry out a variety of numerical
experiments in different settings to demonstrate the performance of scheme (4.6)--(4.8)
and scheme (4.16)--(4.18). Four different meshes, as shown in Figure 1, will be used
in our experiments: (a) regular meshes on a unit square, (b) symmetric meshes on a
unit square, (c) unstructured meshes on a unit square, and (d) unstructured meshes

Fig. 1. Four meshes for two different domains used in our numerical experiments. (a) A regular
mesh on a square. (b) A (highly) symmetric mesh on a square. (c) An anisotropic unstructured
mesh on a square. (d) An anisotropic unstructured mesh on a half-unit disk.
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on a half-unit disk. In all of our experiments, in Stage 1 of our algorithm, we use the
method in [28] to initialize the iteration of our algorithm, where we use tol= h2.

There are several parameters in our algorithm: \gamma 1 and \gamma 2 (defined in section 3.2), \varepsilon 
(regularization parameter in the PDE (3.3)), \varepsilon 1 (regularization parameter in the first-
order and second-order derivative approximations in sections 5.2 and 5.3), and time
step \Delta t. In general, when a smooth solution exists, our algorithm is not sensitive
to the choice of parameters. Setting \varepsilon and \varepsilon 1 in the order of h2 and \beta 1 and \beta 2
(in the formulas of \gamma 1 and \gamma 2) of O(1) makes the algorithm stable. The time step \Delta t
determines how fast our algorithm converges. Our algorithm converges as long as \Delta t is
small enough and other parameters are set as mentioned above. A large \Delta t will make
our algorithm converge faster, but it may destroy the stability. In our experiments,
setting \Delta t in the order of h2 makes our algorithm yield reasonable results. For some
problems with singular solutions or derivatives blowing up along boundaries, we will
take both \varepsilon and \varepsilon 1 to be a larger value and take \Delta t to be a smaller value in order to
stabilize the algorithm.

Without specification, we choose \Delta t = 2h2 and \varepsilon = \varepsilon 1 = h2 in both Stages 1
and 2 of our algorithm. For examples with compatible boundary condition, scheme
(4.6)--(4.8) is used. For examples with incompatible boundary condition, scheme
(4.16)--(4.18) is used. We also compare the numerical solutions by both schemes on
some examples. Without specification, stopping criterion \| un+1  - un\| 2 < 10 - 6 and
scheme (4.6)--(4.8) are used. This stopping criterion is selected so that our algorithm
converges on all meshes. This criterion may be demanding for some coarse meshes, as
many iterations are not necessary. Nevertheless, our current setting does not affect
the demonstration of the performance of our proposed algorithms. A more practical
way is to set the stopping criterion depending on h. Additional numerical results are
presented in the supplementary materials (M159077 SM.pdf [local/web 2.41MB]).

7.1. Example 1. For the first example, we choose the exact solution u\ast as a
quadratic function,

u\ast = \alpha (x1  - 0.5)2 + (x2  - 0.5)2/\alpha ,(7.1)

so that the Gauss curvature K = 4
1+4\alpha (x1 - 0.5)2+ 4

\alpha (x2 - 0.5)2
and the boundary condition

g= u\ast | \partial \Omega , where \alpha is a positive constant.
Since the solution of this example is smooth, we use (5.4) to approximate the

first-order derivatives. In the first test, we choose \alpha = 1 so that u\ast represents a family
of concentric circles which vary isotropically.

With the second-order derivatives approximated by (5.13) and scheme (4.6)--(4.8),
the graphs and convergence histories of numerical solutions on different meshes are
shown in Figure 2.The numbers of iterations and accuracy orders are shown in Table 1,
where the accuracy orders in the L2 and L\infty norms are in general larger than 1.5.
Stopping criterion \| un+1  - un\| < 10 - 9 is used. Since the time step is in the order of
h2, we expect that the rate of convergence is close to 2. In Table 1, the rate is around
1.8, which is slightly better than our expectation.

With the second-order derivatives approximated by (5.19) and (5.20) and scheme
(4.6)--(4.8), we can use a less demanding stopping criterion. Here we use \| un+1  - 
un\| < 10 - 7. The numbers of iterations, the errors of approximation, and the rates
of convergence on regular and symmetric meshes of the unit square are shown in
Table 2, which demonstrates that, in general, our algorithm with approximation (5.19)
and (5.20) is first-order accurate, and in comparison with the results based on the
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Fig. 2. (Test problem (7.1) with \alpha = 1. Scheme (4.6)--(4.8).) Graphs of the computed solutions
and the related convergence history. Row 1: Regular triangulation of the unit square. Row 2:
Symmetric triangulation of the unit square. Row 3: Unstructured anisotropic triangulation of the
unit square. Row 4: Unstructured anisotropic triangulation of a half-unit disk. The second-order
derivatives are approximated by (5.13).

approximation (5.13), the errors based on the approximation (5.19) and (5.20) are
larger and the convergence rates are smaller.

For comparison, we also show the results by scheme (4.16)--(4.18) with the second-
order derivatives approximated by (5.13). Since the boundary condition is compatible,
we use a large \kappa = 500. The number of iterations and accuracy orders are shown in
Table 3. Its efficiency and accuracy are similar to that of scheme (4.16)--(4.18). If \kappa 
goes to infinity, scheme (4.16)--(4.18) has an additional stabilization (diffusion) term
which provides larger error but extra robustness---the same as what is observed by
comparing Table 1(a) and Table 3.

Since the exact solution is a quadratic function, its second-order derivatives are
constants so that the zero Neumann boundary condition on these derivatives is exact.
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Table 1
(Test problem (7.1) with \alpha = 1. Scheme (4.6)--(4.8).) Numbers of iterations necessary for con-

vergence, approximation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. (c) Unstructured anisotropic triangulation of the
unit square. (d) Unstructured anisotropic triangulation of the half-unit disk. The second-order
derivatives are approximated by (5.13).

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 193 9.88\times 10 - 10 6.06\times 10 - 4 9.86\times 10 - 4

(a) 1/20 606 9.81\times 10 - 10 1.66\times 10 - 4 1.87 2.73\times 10 - 4 1.85
1/40 2064 9.96\times 10 - 10 4.34\times 10 - 5 1.94 7.11\times 10 - 5 1.94

1/80 7577 9.99\times 10 - 10 1.05\times 10 - 5 2.05 1.73\times 10 - 5 2.04

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 305 9.99\times 10 - 10 1.37\times 10 - 3 2.64\times 10 - 3

(b) 1/20 1021 9.99\times 10 - 10 3.53\times 10 - 4 1.96 6.88\times 10 - 4 1.94

1/40 3961 9.99\times 10 - 10 8.98\times 10 - 5 1.97 1.75\times 10 - 4 1.98

1/80 14259 9.99\times 10 - 10 2.16\times 10 - 5 2.06 4.24\times 10 - 5 2.05

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 180 9.38\times 10 - 10 5.70\times 10 - 4 2.04\times 10 - 3

(c) 1/20 591 9.80\times 10 - 10 1.90\times 10 - 4 1.59 5.99\times 10 - 4 1.77
1/40 2080 9.97\times 10 - 10 5.27\times 10 - 5 1.85 1.57\times 10 - 4 1.93

1/80 7690 9.99\times 10 - 10 1.42\times 10 - 5 1.89 6.22\times 10 - 5 1.34

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 111 8.49\times 10 - 10 6.10\times 10 - 4 1.20\times 10 - 3

(d) 1/20 374 9.97\times 10 - 10 1.65\times 10 - 4 1.89 4.55\times 10 - 4 1.40

1/40 1221 9.93\times 10 - 10 3.61\times 10 - 5 2.20 1.03\times 10 - 4 2.14
1/80 4765 9.97\times 10 - 10 8.73\times 10 - 6 2.05 3.54\times 10 - 5 1.54

Table 2
(Test problem (7.1) with \alpha = 1. Scheme (4.6)--(4.8).) Numbers of iterations necessary for con-

vergence, approximation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. The second-order derivatives are approximated by
(5.19)--(5.20).

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 266 9.50\times 10 - 8 1.01\times 10 - 1 1.22\times 10 - 1

(a) 1/20 512 9.87\times 10 - 8 4.02\times 10 - 2 1.33 4.63\times 10 - 2 1.40

1/40 1432 9.99\times 10 - 8 1.82\times 10 - 2 1.14 2.13\times 10 - 2 1.12

1/80 4529 9.99\times 10 - 8 8.73\times 10 - 3 1.06 1.03\times 10 - 2 1.05

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 471 9.57\times 10 - 8 8.24\times 10 - 2 9.74\times 10 - 2

(b) 1/20 782 9.95\times 10 - 8 3.46\times 10 - 2 1.25 3.97\times 10 - 2 1.29
1/40 2581 9.99\times 10 - 8 1.60\times 10 - 2 1.11 1.80\times 10 - 2 1.14

1/80 7690 9.99\times 10 - 8 7.78\times 10 - 3 1.04 8.56\times 10 - 3 1.07

Table 3
(Test problem (7.1) with \alpha = 1. Scheme (4.16)--(4.18).) Numbers of iterations necessary for

convergence, approximation errors, and accuracy orders. The second-order derivatives are approxi-
mated by (5.13).

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 198 9.78\times 10 - 10 1.88\times 10 - 3 2.75\times 10 - 3

1/20 604 9.80\times 10 - 10 3.72\times 10 - 4 2.34 5.91\times 10 - 4 2.22

1/40 2057 9.92\times 10 - 10 8.86\times 10 - 5 2.07 1.44\times 10 - 4 2.04
1/80 7566 9.99\times 10 - 10 2.14\times 10 - 5 2.05 3.53\times 10 - 5 2.03
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Fig. 3. (Test problem (7.1). Scheme (4.6)--(4.8).) (a) With \alpha = 1, \varepsilon 1 = \varepsilon 2 = 0 in both stages,
the convergence history on the regular triangulation of the unit square. The second-order derivatives
are approximated by (5.13). (b)--(c) The graph of the computed solution and the convergence history
on the regular triangulation of the unit square. The second-order derivatives are approximated by
(5.13).

Table 4
(Test problem (7.1) with \alpha = 2. Scheme (4.6)--(4.8).) Numbers of iterations necessary for

convergence, approximation errors, and accuracy orders on the regular triangulation of the unit
square. The second-order derivatives are approximated by (5.13).

h Iterations \| un+1  - un\| L2 norm rate L\infty norm rate

1/10 309 9.67\times 10 - 10 5.01\times 10 - 4 8.07\times 10 - 4

1/20 938 9.93\times 10 - 10 1.32\times 10 - 4 1.92 2.12\times 10 - 4 1.93
1/40 2982 9.97\times 10 - 10 3.38\times 10 - 5 2.01 5.39\times 10 - 5 1.98

1/80 14565 9.99\times 10 - 11 8.51\times 10 - 6 1.99 1.36\times 10 - 5 1.99

With \varepsilon = \varepsilon 1 = 0 and h= 1/40, the convergence history of scheme (4.6)--(4.8) is shown
in Figure 3(a). We can see that although approximation (5.13) is a kind of variational
crime, the error decreases to machine precision.

In the second test, we choose \alpha = 2 so that u\ast represents a family of concentric
ellipses which vary anisotropically. We apply our algorithm to this problem on the
unit square with regular meshes. The number of iterations necessary to satisfy the
stopping criterion and the corresponding approximation error accuracy is shown in
Table 4. The graph of the computed solution and the related convergence history are
shown in Figure 3(b)--(c).

7.2. Example 2. In the second example, we consider a problem with the exact
solution

u= - 
\sqrt{} 
1 - x21  - x22,(7.2)

which is a part of the unit sphere, and the corresponding Gauss curvature is con-
stant: K = 1. The computational domain is chosen to be half of the unit disk,
\Omega = \{ (x1, x2) | x1 \geq 0, x21 + x22 \leq 1\} . Accordingly, the boundary condition is given as

g=

\Biggl\{ 
0, x1 > 0,

 - 
\sqrt{} 
1 - x22, x1 = 0.

(7.3)

This problem is interesting since the gradient of the exact solution along the
boundary where x1 > 0 is infinite (a more challenging problem is solved in the sup-
plementary materials section SM1.3). This problem is also solved in [30]. Since
the first-order derivatives are infinite along a part of the boundary, we have to use

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

6/
24

 to
 3

5.
8.

11
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



A3252 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

(a) (b)

0 1000 2000 3000

number of iterations

-20

-15

-10

-5

0

lo
g
(e

rr
o
r)

(c) (d)

0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

h=1/16

h=1/32

h=1/64

exact

0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

h=1/16

h=1/32

h=1/64

exact

Fig. 4. (Test problem (7.2). Scheme (4.6)--(4.8)) (a) The graph of the solution with h = 1/64,
where the second-order derivatives are approximated by (5.13). (b) The convergence history of
(a). (c)--(d) Graphs of the restrictions of the numerical solutions to the line x1 = 0 with different
h's. (c) The second-order derivatives approximated by (5.13) and (d) the second-order derivatives
approximated by (5.19)--(5.20).

the regularized approximation (5.5) for the first-order derivatives; otherwise our so-
lution will blow up. We use \varepsilon = h, \varepsilon 1 = h2, \Delta t = h2, and the stopping criterion
\| un+1  - un\| 2 < 10 - 6. Figure 4(a)--(b) shows the graph of the numerical solution for
h = 1/64 and the related convergence history with second-order derivatives approx-
imated by (5.13). The cross sections of the numerical solutions along the boundary
x1 = 0 with second-order derivatives approximated by (5.13) or (5.19)--(5.20) are
shown in Figure 4(c)--(d), and the convergence of numerical solutions using both ap-
proximations is clearly observed.

To further quantify both approximations of second-order derivatives, we show
the numbers of iterations, the L2- and L\infty -errors, and their corresponding rates of
convergence in Table 5(a) and (b). In Table 5, we can see that both approximations of
the second-order derivatives behave reasonably well. Although the algorithm equipped
with approximation (5.19)--(5.20) produces smaller errors than the one equipped with
(5.13), the algorithm with approximation (5.13) is more stable as its convergence
rate is uniformly about 0.5. As a comparison, we also list the L\infty -errors and related
convergence rates from [30] in Table 5(c). When the mesh is fine enough, our algorithm
equipped with either approximation produces smaller L\infty -errors than that of [30].

7.3. Example 3. We end this section by considering a problem with no classical
solution. The curvature is a constant in \Omega :

K = 1/2 in \Omega ,(7.4)

where \Omega = [0,1]2. We use the boundary condition g = 0 on \partial \Omega . This problem has
no classical solution since det(D2u) vanishes on \partial \Omega . In other words, this problem is
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Table 5
(Test problem (7.2). Scheme (4.6)--(4.8).) Numbers of iterations, approximation errors, and

accuracy orders with the second-order derivatives approximated by (a) (5.13) and (b) (5.19)--(5.20).
(c) shows the L\infty errors and accuracy orders from [30].

h Iteration \| un+1  - un\| 2 L2 error rate L\infty error rate

1/16 177 9.57\times 10 - 7 9.79\times 10 - 2 1.69\times 10 - 1

(a) 1/32 791 9.98\times 10 - 7 5.61\times 10 - 2 0.80 1.19\times 10 - 1 0.51

1/64 3360 9.97\times 10 - 7 3.12\times 10 - 2 0.85 8.39\times 10 - 2 0.50

1/128 17273 9.99\times 10 - 7 1.55\times 10 - 2 1.01 5.86\times 10 - 2 0.52

h Iteration \| un+1  - un\| 2 L2 error rate L\infty error rate

1/16 236 9.72\times 10 - 7 2.86\times 10 - 2 7.40\times 10 - 2

(b) 1/32 1179 9.98\times 10 - 7 1.13\times 10 - 2 1.34 4.53\times 10 - 2 0.71
1/64 5261 9.95\times 10 - 7 7.33\times 10 - 3 0.62 4.12\times 10 - 2 0.14

h L\infty error rate

1/16 1.61\times 10 - 1

(c) 1/32 1.28\times 10 - 1 0.33
1/64 1.09\times 10 - 1 0.23

1/128 8.80\times 10 - 2 0.31

Table 6
(Test problem (7.4). Scheme (4.6)--(4.8).) Numbers of iterations, iteration errors, and minimum

values. The second-order derivatives are approximated by (a) (5.13) and (b) (5.19)--(5.20).

h Iter. \| un+1  - un\| 2 \| pn  - D2un\| 2 \| \bfp n - \bfD 2un\| 2
\| \bfp n\| 2

min \| pn  - D2un\| 2 in.

1/20 177 9.62\times 10 - 7 4.44\times 10 - 2 2.35\times 10 - 2 -0.1192 3.28\times 10 - 3

(a) 1/40 672 9.72\times 10 - 7 1.80\times 10 - 1 7.26\times 10 - 2 -0.1263 5.98\times 10 - 3

1/80 2149 9.98\times 10 - 7 4.94\times 10 - 1 1.67\times 10 - 1 -0.1305 9.41\times 10 - 3

h Iter. \| un+1  - un\| 2 \| pn  - D2un\| 2 \| \bfp n - \bfD 2un\| 2
\| \bfp n\| 2

min \| pn  - D2un\| 2 in.

1/20 246 9.88\times 10 - 7 4.60\times 10 - 3 2.43\times 10 - 3 -0.1345 7.47\times 10 - 4

(b) 1/40 695 9.88\times 10 - 7 7.53\times 10 - 2 2.43\times 10 - 2 -0.1359 4.77\times 10 - 3

1/80 2468 9.99\times 10 - 7 3.52\times 10 - 1 6.82\times 10 - 2 -0.1376 6.54\times 10 - 3

incompatible. In our experiment, we first use scheme (4.6)--(4.8) with \varepsilon = \varepsilon 1 = \varepsilon 2 = h2

and \Delta t= 2h2. The second-order derivatives are approximated by (5.13). The number
of iterations, convergence errors, and minimum values are shown in Table 6. The
graphs and contour of the numerical solution with h = 1/80 are shown in Figure 5,
row 1. The comparisons of the restriction of the numerical solution with different h
along x1 = 1/2 and x1 = x2 are shown in Figure 5, row 2. Our solution is smooth and
almost convex, except for the region near the corners of the domain.

Then we use scheme (4.16)--(4.18) with \varepsilon = \varepsilon 1 = \varepsilon 2 = h2 and \Delta t = 8h2 to solve
it. With h = 1/80, the graph and contour of the computed solution are shown in
Figure 5, row 3. We can see that the boundary value of the computed solution is
no longer constant. At the middle segment on each edge, its value is away from 0
to be compatible with its interior value. The comparisons of the restriction of the
numerical solution with different h along x1 = 1/2 and x1 = x2 are shown in the fourth
row of Figure 5. Compared to the graph in the second row of Figure 5, we observe
the deviation of the boundary value from 0. The same problem is solved on an ellipse
domain in the supplementary materials section SM1.4.

8. Conclusion. In this work, we have proposed two operator-splitting/mixed
finite-element methods to solve the Dirichlet Minkowski problem in dimension two.
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0 0.5 1
-0.15

-0.1

-0.05

0
h=1/20
h=1/40
h=1/80

0 0.5 1
-0.15

-0.1

-0.05

0
h=1/20
h=1/40
h=1/80

0 0.5 1
-0.2

-0.15

-0.1

-0.05

0
h=1/20
h=1/40
h=1/80

0 0.5 1
-0.2

-0.15

-0.1

-0.05

0
h=1/20
h=1/40
h=1/80

Fig. 5. (Test problem (7.4).) Rows 1--2: Scheme (4.6)--(4.8). Row 1: Graphs and contour of
the numerical solution with h = 1/80. Row 2: Graphs of the restrictions of numerical solutions
along x1 = 1/2 (left) and x1 = x2 (right) with h= 1/20, 1/40, and 1/80. Rows 3--4: Scheme (4.16)--
(4.18).) Row 3: Graphs and contour of the numerical solution with h= 1/80. Row 4: Graphs of the
restrictions of numerical solutions along x1 = 1/2 (left) and x1 = x2 (right) with h = 1/20, 1/40,
and 1/80. The second-order derivatives are approximated by (5.13).

Our algorithms are easy to implement since only a system of PDEs is to be solved
and the basis functions are chosen to be piecewise linear. When the problem has a
classical solution, scheme (4.6)--(4.8) using approximation (5.19)--(5.20) for second-
order derivatives is first-order accurate, while using approximation (5.13) it is almost
second-order accurate. For an incompatible problem, scheme (4.16)--(4.18) can adjust
the boundary value of the computed solution to make it compatible with its interior
values. Our algorithm can solve the Minkowski problem on arbitrarily shaped domains
and can also solve problems with singularities in the solution gradient. Our algorithm
can be easily extended to high dimensions, which constitutes an ongoing work.
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