Downloaded 10/26/24 to 35.8.11.2 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. Sci. COMPUT. © 2024 Society for Industrial and Applied Mathematics
Vol. 46, No. 5, pp. A3230-A3257

OPERATOR-SPLITTING/FINITE ELEMENT METHODS
FOR THE MINKOWSKI PROBLEM*

HAO LIUT, SHINGYU LEUNG!, AND JIANLIANG QIANS

Abstract. The classical Minkowski problem for convex bodies has deeply influenced the devel-
opment of differential geometry. During the past several decades, abundant mathematical theories
have been developed for studying the solutions of the Minkowski problem; however, the numerical so-
lution of this problem has been largely left behind, with only a few methods available to achieve that
goal. In this article, focusing on the two-dimensional Minkowski problem with Dirichlet boundary
conditions, we introduce two solution methods, both based on operator-splitting. One of these two
methods deals directly with the Dirichlet condition, while the other one uses an approximation a la
Robin of this Dirichlet condition. The relaxation of the Dirichlet condition makes the second method
better suited than the first one to treat those situations where the Minkowski equation (of Monge—
Ampere type) and the Dirichlet condition are not compatible. Both methods are generalizations of
the solution method for the canonical Monge-Ampere equation discussed by Glowinski et al. [J. Sei.
Comput., 81 (2019), pp. 2271-2302]; as such they take advantage of a divergence formulation of the
Minkowski problem, which makes it well suited to both a mixed finite-element approximation and
the time-discretization via an operator-splitting scheme of an associated initial value problem. Our
methodology can be easily implemented on convex domains of rather general shape (with curved
boundaries, possibly). The numerical experiments validate both methods, showing that if one uses
continuous piecewise affine finite-element approximations of the solution of the Minkowski problem
and of its three second order derivatives, these two methods provide nearly second-order accuracy
for the L? and L°° norms of the approximation error, where the Minkowski-Dirichlet problem is
assumed to have a smooth solution. One can easily extend the methods discussed in this article to
address the solution of three-dimensional Minkowski problems.

Key words. operator-splitting methods, Minkowski problem, Monge-Ampére equation, mixed
finite element methods
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1. Introduction. The Minkowski problem (named after Hermann Minkowski
(1864-1909)) is an important problem in differential geometry. It asks for the con-
struction of a compact surface S as boundary of a convex bounded domain, know-
ing its Gaussian curvature. Given a compact strictly convex hypersurface S in the
d-dimensional real space R, the Gauss map G is a diffeomorphism from S to the
unit sphere S~! of R, Map G is defined by G(x) = n(x) Vx € S, where n(x) denotes
the unit outward normal of S at x. Accordingly, the Gauss—Kronecker curvature K
is the Jacobian of the Gauss map. Minkowski stated that one has
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(1.1) /Si <(K(G1(x))) " 'do(x) =0,

where ¢ is the Lebesgue measure on S9!, Conversely, Minkowski posed the following
(inverse) problem: Suppose that f is a strictly positive function defined over S¢—!
verifying fS"—l x f(x)do(x) = 0; can one find a hypersurface S having 1/ f as Gaussian
curvature? In [41, 42], Minkowski discussed the existence and uniqueness of solutions
to the above inverse problem. For d =2, the solution regularity was proved by Lewy
[33, 34], Nirenberg [44], and Pogorelov [45], while, for d > 2, the solution regularity
was analyzed by Cheng and Yau [11] and Pogorelov [46].

Despite being around for more than a century and being one of the most impor-
tant problems in differential geometry, not much was done concerning the numerical
solution of the Minkowski problem. The earliest attempt we could find was discussed
in [36, 37], two publications dedicated to the solution of a related problem—mnamely,
reconstructing a shape from extended Gaussian images. In [31], after generalizing
Minkowski’s proof, Lamberg converted the Minkowski problem into an optimization
one, the resulting algorithm solving a polyhedral version of the Minkowski problem.
In [32], Lamberg introduced an algorithm based on Minkowski’s isoperimetric inequal-
ity, leading to an approximate Minkowski problem taking place in a finite-dimensional
function space spanned by truncated spherical harmonic series. In a more recent pub-
lication [10], Cheng designed a level-set based finite-difference PDE method to drive
an implicitly defined surface towards shapes arising from the Minkowski problem.

In all the above-cited works the hypersurface is supposed to be closed. Actu-
ally, another type of Minkowski problem is the Minkowski—Dirichlet problem. For
the Minkowski—Dirichlet problem, one supposes that the hypersurface is open and
bounded, with a Dirichlet condition imposed on its boundary. The well-posedness of
this problem has been addressed by many authors: For example, Bakelman [3], Lions
[35], and Urbas [50, 51, 52] have proved the existence and uniqueness of a solution.
Trudinger and Urbas [48] proved a necessary and sufficient condition for the classical
solvability of the Minkowski-Dirichlet problem. Recently, in [30] Hamfelt designed
a monotone finite-difference method to solve the Minkowski—Dirichlet problem; since
the method relies on wide stencils, it is advantageous for those situations where, due
to the lack of classical solutions, one looks for viscosity solutions.

Here, we propose two new methods for the numerical solution of the Minkowski—
Dirichlet problem in dimension d = 2. The first method, well suited to problems with
classical solutions, imposes the Dirichlet condition in a strong sense. On the other
hand, the second method imposes the Dirichlet condition in a least-squares sense
(via a quadratic penalty technique), making it appropriate for those situations where,
due to data incompatibility, the Minkowski—Dirichlet problem has no solution. Of
course, the second method has also the ability to capture classical solutions, if such
solutions do exist. The Minkowski problem we will look at can be described as follows:
Let © be a bounded domain of R? and K be a positive function defined over €2, and
let g be a function defined on the boundary 02; can one find a function u defined
over 2 and verifying u|pq = g, such that K is the Gauss curvature of the graph of u
(a surface in R%t1)? 1In partial differential equation form, the above Minkowski-
Dirichlet problem reads as follows:

det(D?u) )
Y K mQ
(1.2) (14 [Vul2)1+d/2 e
u=g on 0f).
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The partial differential equation in (1.2) belongs to a family of Monge-Ampere equa-
tions. The simplest element of this family is clearly the following canonical Monge—
Ampere equation:

(1.3) det(D?u) = f in Q.

Equation (1.3) is elliptic if f > 0. The above Monge-Amperére equation (1.3) is a
fully nonlinear second order partial differential equation; it has been drawing a lot
of attention lately, mostly because of its relations with optimal transport problems
(other applications are described in, e.g., [19]; see also the references therein). During
the past three decades, a variety of methods have been designed to solve numeri-
cally equation (1.3), completed by boundary conditions (mostly Dirichlet’s) (some
of these methods are described in the review article [19]). As expected, most of
these methods focus on the two-dimensional Monge-Ampere equation and cover a
large variety of approaches. Combinations of (mixed) finite-element approximations
and augmented Lagrangian or least-squares formulations have been applied to the
solution of (1.3) and related fully nonlinear elliptic equations such as Pucci’s (see
[4, 8, 13, 15, 14, 17, 18, 16, 26, 29, 25, 43, 9, 19] for details). Alternative finite-
difference and finite-element methods have been developed for these fully nonlinear
elliptic equations as well; see [1, 5, 6, 7, 21, 20, 40, 47, 28, 38, 19]; this list is far from
complete.

The main goal of this article is to extend to problem (1.2) (assuming d=2),
the operator-splitting based methods developed in [28, 38] for the solution of (1.3)
(completed by Dirichlet conditions) in dimensions 2 and 3 and in [27, 39] for the
eigenvalue problems of (1.3). Following [28, 38], the first step in that direction is to
take advantage of a divergence formulation of problem (1.2), which is better suited
to finite-element approximations. The second step is to decouple (in some sense) dif-
ferential operators and nonlinearities by introducing as additional unknown functions
p =D?2u (as done in [27, 38]) and s = Vu (which was not necessary in [27, 38]). At the
end of the second step, one has replaced the highly nonlinear scalar Minkowski equa-
tion by an equivalent system of linear and nonlinear equations for u,p, and s, whose
formalism is simpler. In the third step, we associate an initial value problem with
the above system and use operator-splitting to time-discretize the above initial value
problem, in order to capture its steady state solution(s). We use simple finite-element
approximations of mixed type to implement the above methodology: indeed, we use
finite-element spaces of continuous piecewise affine functions to approximate u and
its three second-order derivatives, making our methods well suited to solve problem
(1.2) on domains 2 with curved boundaries.

As mentioned above we will develop two new methods for the solution of problem
(1.2). These two methods are very close to each other; the first one deals directly with
the boundary condition u = g on 0f2, while the second one imposes the boundary
condition in a least-squares sense.

This article is organized as follows: In section 2, we state some theoretical results
on the existence and uniqueness of solutions to the Minkowski-Dirichlet problem (1.2).
In section 3, we provide the divergence formulation of problem (1.2) and associate with
it two initial value problems, which differ in the way the Dirichlet boundary condition
is treated. The time discretization of these two initial value problems by operator-
splitting is discussed in section 4, followed by their finite-element space discretization
in section 5. We address in section 6 the initialization of the two above algorithms. In
section 7, we report the results of numerical experiments validating our methodology.
Section 8 concludes the article.
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2. Problem formulation, existence, uniqueness, and regularity results.
We defined the Minkowski problem in section 1. In this article, we will focus on the
numerical solution of the Minkowski-Dirichlet problem (1.2), assuming that d = 2
(2-D). A first step to that goal is to rewrite (1.2) as
(2.1) det(D%u) = K(1+|Vul?)!*9/2  in Q,

’ u=gq on 897
a Monge—-Ampere-type formulation better suited for numerical solution. In (2.1), K
2

(> 0) is the prescribed curvature and D%u = (#&j)lgmgd is the Hessian matrix of
function wu.

To put our computational investigations into perspective, we recall some classical
results concerning the existence, uniqueness, and regularity of classical solutions to
problem (2.1). In [48], one proves the following results about existence and uniqueness.

THEOREM 2.1. Suppose that in (2.1), Q is a uniformly bounded convex domain
of R?, its boundary OS2 having C’l’l-regularity; Then, problem (2.1) has, for any
g € CHY (), a unique solution in C*(Q) N C%H(Q) if and only if

(2.2) / Kdx < wyg,
Q

and

(2.3) K =0 on 0.

The constant wq in (2.2) is given by wg = [z W (implying we = ® and
w3 =47/3); actually, wq is the volume of the unit ball of R?.

Condition (2.3) is required to make sure that a solution exists for arbitrary g. It
is proved in [48] that if K does not vanish on the boundary, one can find a smooth
function g such that problem (2.1) has no solution.

In [50, 51, 52|, one discusses regularity of the solution in the critical case defined
by

(2.4) Kdr =wy,
Q

where the following results are proved.

THEOREM 2.2. Let Q be a uniformly convex domain of R® with a C*' smooth
boundary and K be a positive C? smooth function verifying (2.4). If u is a solution
of the Minkowski—Dirichlet problem (2.1), then

(i) ue COV2(Q);

(ii) the graph of u is C**-smooth for some o € (0,1);
(iii) ulpq is CH*-smooth;
(iv) if 0Q is C* L and K € OF~1 with k > 2, then the graph of u is C*+1.o-

smooth and u|pq is C*¥T1*-smooth.

See [49] for more details on the solution of the Minkowski problem.

Some of the conditions in the above two theorems are rather restrictive and/or
not easy to verify. Nevertheless, the results they are reporting are very useful from
two perspectives: on one hand, they suggest test problems, where we know in advance
that solutions exist; on the other hand, they also suggest some other examples, where
the answer to existence will be indicated by the results of our computations. Finally,
we will also consider test problems with known solutions so as to check how fast and
how accurately our methods recover them.
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3. Divergence formulations of the 2-D Minkowski problem and relax-
ation by penalty of the Dirichlet condition.

3.1. Synopsis. There are cases where the data K and g do not allow the exis-
tence of classical smooth solutions to problem (2.1). In [30], one introduces a notion
of viscosity solution to problem (2.1), with the solution satisfying the generalized
Monge-Ampéere equation in [2], but not necessarily the Dirichlet condition. In the
following subsections, we will consider two divergence formulations of problem (2.1)
in dimension two to enforce the Dirichlet condition. The first formulation keeps the
Dirichlet condition as it is and is well suited to those situations where problem (2.1)
has classical solutions. On the other hand, the second formulation makes use of a
penalty to relax the Dirichlet condition; for large values of the penalty parameter,
one recovers accurately classical solutions if such solutions do exist, or generalized
solutions in the absence of classical solutions.

3.2. A first divergence formulation of the 2-D Minkowski—Dirichlet
problem. If d = 2, problem (2.1) enjoys the following equivalent formulation
(in the sense of distributions):

(3.1)

—V - (cof(D?u)Vu) + 2K (1 + [Vu[?)?=0 in Q,
u=g on 0f),

where matrix cof(D?u) is the cofactor matrix of Hessian D?u, that is,

62121 9%
2 _ 3’6 8118x2
cof (D*u) = 5% P .

- 6:E18$2 61%

Problem (3.1) is equivalent to

—V - (cof(p)Vu) + 2K (1 +1s[?)2=0 in Q,
u=g on 02,
p—D2u=0 inQ,
s=Vu in Q.

(3.2)

In order to avoid possible difficulties at those points of Q where K may vanish, we
approximate system (3.2) by

{—V ((eI+cof(p)) Vu) + 2K (1 +1s[?)?=0 in Q,
uloa =g on €2,
(3.3) )

p— D u=0,

s—Vu=0,

with € a small positive parameter. We successfully used this type of regularization
in [28] for the solution of the canonical Monge-Ampere equation (1.3) completed by
Dirichlet boundary conditions. In practice, we will use a piecewise linear finite-element
basis and take ¢ of the order of h2, h being a space discretization step. Such a choice
makes the scheme stable while providing optimal second-order accuracy.

To solve system (3.3) we are going to associate with it the following initial value
problem:
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% — V- ((eI+ cof(p)) Vu) + 2K (1 +[s[*)* =0 in Q x (0,+00),
ulon =g on 99 x (0,+00),
(3.4) %1: +1 (p—D%u) =0 in 9 x (0, +00),
Os

E—FVQ(S—Vu):O in Q x (0,4+00),
(u(0),p(0),s(0)) = (0, Po,s0),

which will be time-discretized by operator-splitting (in section 4.1). In (3.4), v, and
o are two positive coefficients chosen so that the smooth modes of p and s evolve in
time roughly at the same speed as that of u. Roughly speaking, the evolution speed of
u is controlled by the eigenvalue of —V?u and the eigenvalue of p ~ D?u. According
to (2.1), if the eigenvalues of D?u are close to each other, then they are in the order
of VK. Following [28], we advocate defining ~; and v, by

71 =B1Ao (e +Va),
Y2 =B2Ao (e + V),

where )\ is the smallest eigenvalue of operator —V? in H}(Q), « is the lower bound
of K, and 81 and By are two constants of order one.

We comment in passing that we have used and will continue to use the notation
@(t) for the function z — ¢(x,t). In section 6, we will discuss the initialization of
system (3.4).

3.3. A divergence formulation of the 2-D Minkowski—Dirichlet problem
with relaxation of the boundary condition. Theorem 2.1 implies that problem
(2.1) may have no solution, unless function K belongs to a very specific class of
functions. In order to deal with such no-solution scenarios as well as we can, we are
going to relax the boundary condition u = g using a penalty technique of the least-
squares type. If problem (2.1) has a classical solution, we expect to recover it when
the penalty parameter converges to +oo.

The simplest way to proceed is to start from the following variational formulation
verified (formally) by any solution u of problem (2.1):

u € HY(Q),
(3.5) / (cof (D*u)Vu) - Vodz + 2/ K1+ |Vul*)?vdr =0 Yv e Hy(9Q),
Q Q
u =g on Of).

In order to relax the Dirichlet boundary condition, we are going to apply to problem
(3.5) the well-known penalty method discussed in [23, 24] to approximate Dirichlet’s
problems for linear second-order elliptic operators by Robin’s ones.

Let x be a positive constant. We (formally) approximate the variational problem
(3.5) by

ue HY(Q),
(3.6) / (cof (D*u)Vu) - Voda +2 / K(1+ |Vul?)2vdz
Q Q
+ £ [5o(u—g)vdl' =0 Yo € H'(Q),

where coefficient k acts as a weight, controlling the level of penalization. Some remarks
are in order.
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Remark 3.1. Let us consider the functional jo : H(Q2) — R defined by
K

ja(v) = 2/@9|v—g|%[F Yo e HY(Q).

Functional js is convex and C*° over H'(), its differential Dj,(v) at v being given
by

(3.7) (Djs(v),w) = m/aQ(v —gwdl'  Yv,we HY(Q),

where (-,-) denotes a duality pairing between (H'(2))’ (the dual space of H'(Q))
and H'(Q). Consequently, we can identify Djs(u) with x(ulsq — g) and replace
K [oo(u—g)vdl in (3.6) by (Dja(u),v).

Remark 3.2. If a function w is a solution of the nonlinear variational problem (3.6),
it is also a solution (in the sense of distributions) of the following (fully nonlinear)
boundary value problem:

—V - (cof (D?u)Vu) + 2K (1+ |[Vul|?*)? =0 in Q,

(3.8) 1 )
;(cof(D w)Vu) - n+u=g on 01,

where, in (3.8), n denotes the unit outward normal vector at 9. The boundary
condition in (3.8) is a (nonlinear) Robin boundary condition. When x — +00, prob-
lem (3.8) “converges” (formally) to problem (2.1), justifying our second divergence
formulation of problem (2.1).

Remark 3.3. A natural alternative to problem (3.6) is the one described by
ue H(Q),
(3.9) / (cof (D?*u)Vu) - Vodz +2 | K(1+|Vu|*)?vdz
QJr (041 (u),v) =0 Vv e Hl(éz),
where, in (3.9), 071(u) is the subdifferential at u of the convex Lipschitz continuous
functional j; : H*(2) — R, defined by
jiv) = /1/aﬂ |v—g|dT' Yve H' (Q).

This type of L' functional is very common in nonsmooth mechanics and increasingly
popular in data science as shown by various chapters of [29].

Proceeding as in section 3.2, we associate with (3.6) the semivariational system

ue HY(Q),
1 1
/((6I+cof(p))Vu) -Vvda:—l—/faVu-Vvdx
o\ 2 0?2
(310) +2/K(1+|S|2)2vdaz n m/ (u—gdl =0 Yoe H(Q),
Q 09
p—D2u=0,
s —Vu=0,

where in the second row, [,(3eI)Vu - Vudz + [, 36Vu - Vodz(= [,eVu - Vodz) is
the regularization term with a role similar to V - ((eI)Vu) in (3.3). The next step

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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is to associate with (3.10) an initial value problem, as we have done with (3.3) in
section 3.2. The initial value problem reads as

u(t) € HY(Q), vt >0,

1 1
@vdac + / —el + cof(p) | Vu - Vudz + / —eVu - Vudz

+2/K(1+|s\2)2vdx+n/ (u—g)vdl'=0 Yve H'(Q),
(3.11) Q a0

p
ot

% +792(s — Vu) =0 in Q x (0, +00),
(u(0),p(0),s(0)) = (0, Po,s0)-

As in section 3.2, we advocate taking

71 =p1xo (e +Va),
Y2 = Bao (e +Va).

In section 6, we will discuss the initialization of system (3.11).

The main difference between (3.4) and (3.11) is how the boundary condition is
implemented. Problem (3.4) enforces the Dirichlet boundary condition in a pointwise
manner, while (3.11) enforces the Dirichlet boundary condition in a weak sense so
that pointwise mismatch is allowed.

4. Discretization of the initial value problems (3.4) and (3.11) by
operator-splitting. In this section, we are going to apply the Lie scheme to the
time-discretization of the initial value problems (3.4) and (3.11); see [29] for details
on the Lie scheme. In our splitting strategy, each evolution step is split into several
fractional steps so that at each fractional step, we only focus on a few operators and
update each variable implicitly and independently instead of solving a large system
including all variables simultaneously. Another benefit is that with this strategy, p
and s are updated using the already updated u, which, in general, will improve the
convergence behavior of the algorithm.

In the following, let At (> 0) denote a time-discretization step, t" = nAt, and let
(u™,p",s"™) denote an approximation of (u,p,s) at t =¢".

+71(p — D) =0 in Q x (0, +00),

4.1. Time discretization of the initial value problem (3.4). The Lie-
scheme we employ here is a variant of the one we used in [28] to solve the Monge—
Ampere equation (1.2) completed by a Dirichlet boundary condition. It reads as

(41) (uoapovso):(u())p()vso)'

For n >0, (u",p",s") — (u"t1/2 prtl/2 gnt1/2)  (yn+1 pntl g7+l as follows.
The first fractional step. Solve

% — V- [(eI+cof(p™)) Vu] + 2K (1 + [s"[*)* =0 in Q x (¢, t"+1),
u=g on 9Q x (t", "),

(4.2) P _ im0 x (", ¢+,
ot
% =0in Q x (t", "),

(u’ b, S)(tn) = (un’ p", S")a

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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and set
(4.3) un+1/2 — u(tn+1)7 pn+1/2 — p(tn+1)(: pn)’ Sn+1/2 — S(tn-H)(: Sn).

The second fractional step. Solve

%:0 in Q x (", "+,
a .
(4.4) ailz +7(p— D2un+1/2) =0 in Q x (tn’tn+1)’
%—F’D(S—VUH—H/Q):O in Qx (¢, "),
(u, p,s)(t7) = (un+1/2, pn+1/2 gn+1/2),
and set
45) WM =uE )=y, pt T =Py p( ], s =),

In (4.5), P4 (+) is a (kind of) projection operator which maps the space of the 2 x 2
symmetric matrices onto the closed cone of the 2 x 2 symmetric positive semidefinite
matrices; we will return to operator P, in section 5.6.

We still need to solve the initial value problems that one encounters in (4.2) and
(4.4). There is no difficulty with (4.4) since the three initial value problems it contains
have closed-form solutions, leading to

U(tn+1) _ un+1/27
p(thrl) — effylAtpn 4 (1 _ ef'ylAt) D2Un+1,
s(t"tl) = e772Atgn 4 (1 — e’VzAt) Vutl.
It remains to solve the parabolic problem (4.2); for its solution, we advocate

performing just one step of the backward Euler scheme, which enables us to use a
relatively large time step while keeping the algorithm stable. We obtain then

n+l _ . n
% — V- [(eT + cof(p™)) VU] 4+ 2K (1 + [s"[2)2 =0  in Q,
untl =g on 99,

a (relatively) simple Dirichlet problem for a linear self-adjoint second-order strongly
elliptic operator with variable coefficients, well-suited to finite-element approximations
as we shall see in section 5.

Collecting the above results, we will employ the following time-discretization
scheme to solve the initial value problem (3.4):

(46) (UO’pO7SO) = (u07p0750)'
For n >0, (u™,p",s") — (u"t, p"*t s" 1) as follows.
Solve
wtt V- [(eI+cof(p™) Vu"t] + 2K (1 +[s"[*)*>=0 in Q
(4.7) At p ;
utl =g on 99,

and compute

(4 8) {pn+1 — P+ [6*’)/1Atpn 4 (1 o ef'ylAt) D2un+1] ,

SnJrl — ef'ygAtSn + (1 _ ef'yzAt) vunJrl.
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4.2. Time discretization of the initial value problem (3.11). As expected,
there are many commonalities between the ways we discretize systems (3.4) and (3.11);
we will take advantage of them. The major difference is that it is much easier to
operate directly on the variational formulation of the Monge-Ampeére part of the
problem so as to avoid dealing explicitly with the complicated Robin condition we
visualized in (3.8). Denote the updated boundary condition at ¢" by ¢g™. The Lie
scheme we are going to use reads as

(4.9) (u®,p°,5% ¢°) = (10, Po, 50, 9)-
FOI' n Z 07 (una pna Sna gn) — (un+1/3’ pn+1/3a Sn+1/37gn+1/3) —
N (un+2/37pn+2/37sn+2/3’gn+2/3) N (un—ﬁ—17pn—i-17sn—',-1’gn—i-l)7

where we outline the three fractional steps as the following.
The first fractional step. Solve

u(t) € HY(Q) Vt e (t",t" 1),

A %(t)vdx —I—/Q [(%I + cof(p(t))) Vu(t)} -Voudz

+2/ K(1+4[s(t)]?)*dz =0 in Q x (t",¢"T1) Yo € H}(Q),
Q
(4.10)

u=g" on O x (t",t" 1),
ait) =0in Q x (", 1"+,
0
éTj =0in Q x (t",t"1),
(u,p,s)(t”) = (un’pn,sn)’
and set

(4.11) un+1/3 — u(tn—&-l)’ pn+1/3 _ p(tn+1)’ Sn+1/3 _ S(tn+1), gn+1/3 — gn.

The second fractional step. Solve
ou

E =01in 2 x (tn7tn+1) in Q x (tn’tn+1)’
Op D23y =0 Qs (g gt

(4.12) 5 e —Dxu"TY) = i O x (7 7).
% +a(s = Va2 =0 in Q x (t", ¢+,
(u,p,s)(t") = (u"+1/3, ptl/3, Sn+1/3)7

and set

(4.13)

un+2/3 :u(tn—&-l)’ pn+2/3 =P+ [p(tn—&-l)] , Sn+2/3 :S(tn+1), gn+2/3 :gn+1/3.

The third fractional step. Solve

ue HY (),
Ju €
/—(t)vdx—l—f/Vu(t)-Vvdx—&—m/ (u(t) — g)vdl' =0
o Ot 2 Ja o9
Vv e HL(Q),
4.14
(4.14) %:Oian(t",t”“),
85_ : n gn+1
a-OmQx(t ST,

(u, p,s)(t") = (u+2/3, pr+2/3 gn+2/3)
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and set
(415) W =w("h), p" T = Py [p(t" )]s = st ), g" T = u T .

Assuming that one uses just one step of the backward Euler scheme to solve the
parabolic problem in (4.10) and (4.14), the Lie scheme (4.9)—(4.15) reduces to the
following variant of scheme (4.6)—(4.8):

(416) (u07p07soago) = (u07p0750ag)‘
For n>0, (u",p",s",g") — u" /2 = (ut1, prtl g7t gntl) as follows.
Solve

ut1/2 e HY(Q),

un+1/2 —um / €
_ 4+ —I+ cof(p")) Vut1/2| . Vudx
(4.17) /Q At Q [(2 ( )) }

+2/ K +|s"*)?vdr =0 Vv Hy(Q),
Q
w2 = g™ on 09,
and compute
pn+1 _ P+ [ef'ylAtpn + (1 _ ef'ylAt) D2un+1/2] ,
Sn+1 — e—'ygAtSn + (1 _ e—’ygAt) V’LLTH_I/Q,
ue HY(Q),

n+l _ ,n+1/2
(4.18) / %Udaj + < Vo™t Vodz
Q At 2 Ja

+r [ (W —gMwdl'=0 Yve H'Y(Q),
o9

1 1
=" pq.

9

5. Finite elements for the new operator-splitting scheme. The divergence
form strongly suggests that we apply a finite-element method to implement (4.7)—
(4.8) and (4.17)—(4.18). Here we choose a mixed finite-element method: we use the
same function space to approximate u, Vu, D?u, s, and p. Since we will choose basis
functions to be piecewise affine functions, the resulting approximations are continuous
piecewise affine on ).

5.1. Finite-element spaces. Let 7T, be the triangulation of the domain €, and
let h denote the maximum edge length of the triangles in 7,. Let ¥; = {Q); }jvzhl be
the collection of vertices in Ty, where @Q; denotes a typical vertex. We define the first
finite-element space as

(5.1) Vi, ={vjveC®(Q),vlr e AVT €Ty},

where P; denotes the space of polynomials with degree no larger than 1.
Accordingly, we associate each vertex @); with a shape function w; such that

W EVh,u}j(QJ‘):l,w]‘(Qk)ZO Vk:L ...,Nh, k#],

where the support of w;, denoted 6, is the union of triangles that have the same
common vertex @;, and we denote the area of 6; by |6,|. The set B= {wj}j-v:hl forms
a collection of basis functions of V},. In other words, we have
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Np,
v= Zv(Qj)wj Yo € Vp,.
j=1
In addition, we define
(52) Vgh:{’0|’UEVh7U(Q]‘):g(Qj) VQJ Ezhﬁ89}7

where g can be any function which is C° on 9. When g =0, we have that
Von=Vn N H&
Meanwhile, we define the following vector-valued spaces:

Rh:{r|r€Vh2X1},
Qn={dlqeV?**, q=q"},

so that we can use functions in Ry, to approximate Vu and s and use functions in Qy,
to approximate D?u and p.

5.2. Approximations of the two first-order derivatives of u. For any v €
Vi, we denote the first-order derivative approximation % of v by D;(v) for i =1,2,

and this approximate derivative operator is defined in the following weak sense:

Ov
(5.3) / Dih(v)wdx:/ wdz, i=1,2, Yw e H'(Q).
Q o Ox;
Since € is partitioned by the triangulation 7, we restrict the test functions w to be
in V}, so that we only need to test the above integral against those basis functions wy
for k=1,2,..., Ny. Since wy, is only supported on 6, we have

D, =12,
(5.4) { n(v) €V, Vi

Din(v)(Qr) = 7 Jy, wrde VE=1,2,..., Nj.

We remark in passing that on a regular mesh such as the one shown in Figure 1(a),
(5.4) recovers the central-difference approximation at an interior node and one-sided
approximation at a boundary node in a finite-difference method based on this mesh.

In some problems, Vu has singularities on 2. One challenging situation is when
the singularities appear on the boundary. The approximation at nodes near the
boundary can blow up, especially when the gradient of the exact solution blows up
at the boundary of a computational domain, such as a semisphere. To resolve this
problem, we need to regularize the approximation of Vu. One possible way is to adopt
the idea from [28, 8], which is used to approximate the second-order derivative:

Dih(v) S H&7
5.5
(5:5) €1 | VD -Vwdr+ | Dy (v)wdx = v
Q

wdz, i=1,2, Ywe H(Q).
Q o Ox; 0( )

The error of the regularized approximation can be larger than that of the direct
approximation, but it is more robust. Moreover, we have

lim Djp(v) = v

in L?(Q).
€1,h—0 8.’E1 m ( )
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5.3. Approximations of second-order derivatives of u. The general idea
to approximate the second-order derivatives is similar to the one used in [22, 12, 28].
For completeness, we mention the details here.

For any v € V},, we denote the approximations of 89: 830 by ngh( v) for 1,5 =1,2,
so that the approximate operator Dz y -, (v) of second-order derlvatlves is defined in the
following weak sense:

(5.6) /D2 (v)w dx—/ O wrdx
' Q ijh k h Q 3:816% k ’

To resolve the right-hand side of (5.6), we apply the divergence theorem,
(5.7)

0%v 1 ov ov ov Ow ov Ow
= — Q _
Q (‘9%3% de /&)Q ((9% ' 336] ) wd(a ) / <8(E1 890] + 896] 8551) dx’

where n = (n1,n2) is the outward normal direction along 9€2. The above approxima-
tion is accurate at interior nodes, but the approximation error is large at nodes on
the boundary. For example, consider the approximate derivative operator D%lh on
a regular mesh of the unit square; after some derivation, we can show that there is
always one node at one of the corners of the unit square such that D%, (v) = 0 at
that node, no matter what form v takes.

To deal with this issue, we treat interior nodes and boundary nodes separately. Let
Yon = {Qk}ﬁil denote the set of interior nodes in {2, where we assume that the first
Ny nodes of ¥j, are in the interior of . It follows that we have ¥;,NOQ = {Qk}giNg-H'
For k=1,2,..., Ny, the approximation of (5.6)—(5.7) reduces to

B Ov Owy, ~ Ov Owy
(58) /Dz]h wkdx / <axZ 81‘3 + a.’L‘j 8-'1% ) d

To treat nodes on the boundary7 the work in [8] used the zero Dirichlet boundary
condition for the operator D” nr1,7 =1,2, though the boundary value is not needed
in the resulting algorithm. In comparison with the numerical method in [8], ours
are different in that the boundary value of ij ,, is crucial for our splitting algorithm.
Specifically, in (4.7)—(4.8) we need boundary values to update p, which is in turn used
to compute the divergence operator and to update u. Therefore, we need a better
treatment of the boundary nodes.

Here we adopt a strategy from [28, 38] to treat boundary nodes by committing a
“variational crime.” First, we impose the zero Neumann boundary condition

8ngh( )

(5.9) =0

Multiplying (5.9) by wy for k= Ny + 1,..., N}, and integrating along 92, we get

oD?
0 :/ gih(v)wkd((%l) :/ V- (VD?jh(v)wk) dz
aQ n Q

(5.10) /V%WUWM+/VQM)VWM.
Q

If Duh( v) is harmonic, implying that V2D Uh( v) =0, then we have

(5.11) /VD”h( ) - Vwgdx =0.
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In our algorithm, although D?jh is only piecewise harmonic, we still use (5.11) to
update boundary values, which is the so-called variational crime. In either approxi-
mation (5.6)—(5.7) or approximation (5.8) and (5.11), since wy, is only supported on
Ok, the integration domain can be replaced by 0 if the test function is wy. Under
certain conditions, a rough derivation shows that the variational crime introduces an
error to (5.10) of O(h). Since D3, (v) € Vi, VD3, (v) is piecewise constant over €.
For any T € Ty, let v be one of its edges. Along v, Vszjh(v) is a Dirac-é function
multiplied by a factor (the difference of the values of Vij 5 (v) over the two triangles

having v as the common boundary). In the interior of T', VD3, (v) is 0. Thus

/Q V2DZ, (v)wpdz = / aTVQD?jh(v)wkdx:O(h)
ve
k

Teo
if VD};;,(v) is bounded by a constant.

1

In our numerical experiments, with the regularization mechanism introduced be-
low, the accuracy by (5.8) and (5.11) is similar to that by (5.6)—(5.7), but (5.8) and
(5.11) make the algorithm more robust. It is worth mentioning that as implemented in
[28] both approximations work for two-dimensional Monge-Ampeére equations; how-
ever, as shown in [38], only the approximation based on the variational crime works
for three-dimensional Monge—Ampeére equations.

As reported in [8, 28, 38], if we directly use the above approximations, the perfor-
mance of our algorithm depends on triangulations; in the worst case, on a symmetric
mesh as shown in Figure 1(b), our algorithm does not converge. To obtain an algo-
rithm which is robust for all kinds of meshes, we need to regularize the problem by
adding some viscosity to our formulation of second-order derivatives.

As a first approach of regularization, we incorporate a local regularization term
into the weak definition of second-order derivatives at interior nodes:

\V,’L,j = 1a27 Yv S V}u Dlzjh(’[)) S Vh and
C > T / VD7, (v) - Vwgdz + / D2, (v)wyda
T 0

(5.12) TET
. 1 v dwy, | Qv Jwy,
T2 oz, 9z, =1,...,N,
2 /Ok [5%‘ Ox; - Oz, Oz, } dz Vk=1,..., Non,

/ VD3, (v) - Vwgdz =0 Vk = Nop + 1,..., Ny,
0

where C' is a positive constant of order 1, and 7;’“ is the set of all triangles with the
common vertex Q.
If all triangles in T}, are of a similar size, (5.12) can be slightly simplified to be

Vi, j=1,2, Vv e Vh,ijh(v) €V, and

€1 / VD%, (v) - Vwgdz + / D}y, (v)wyda

(5.13) _6’°_1/ [81} %+@05w,€
0, LOTi Oy Oxy Ox;

/Gk VD};,(v) - Vwgdz =0 Vk = Nop + 1,..., Ny,

5 }dekzl,...,NOh,

where €7 is of order O(h?).

As a second approach of regularization, we incorporate a double-regularization
mechanism into our weak formulation of second-order derivatives. Assuming that
Y € H?, we consider the following linear elliptic variational problem:
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(5.14)
p5; € Hy(9),

< c _ 1 o 9 O 09
51/QVpij V(;de—k/ﬂpijd)dxf 2/Q {83:14 oz, +8x]8 dx Vo € HY (),

which yields the following relations in the weak sense:

01

: s __ : 2
(5.15) Elﬂr_)nopij = P00z, in L*(Q),
and
0?1
e V2 4t — in Q
(5.16) VPGP Gy,

p;; =0 on O

Since, as reported in [28], this approximation is not effective in treating the zero-
Dirichlet boundary condition, we apply the following correction step:

_51V2ﬁ%’ +ﬁfj :p% in Q,
(5.17) 0p5 ;
. =0 on 09,
on

whose variational formulation reads as
P € HY(Q),

5.18
(5.18) er | Vi - Vodr + / % fdx = / p5bde Ve HY(R).
Q Q Q

It follows that p7; verifies lime 0 pf; = % in L? (Q) and pj; € HA(Q).

Consequently, the discrete analogue Duh( v) of M o (1 < 1,7 <2) can be com-
puted in the following way.

Solve
(5.19)
Dij € ‘/Ohm
|| 1/ ov Owy, ov Jwy,
C Z |T|/ Vp” Vwkdx—l-?p”(Qk) 6$Z &vj +(971‘j aIi dx
TETE
Vk=1,...,Non,
and then
Dz2]h( )EV}w | | |9 ‘
sy {C X 11 [ 9Dk Vunde + DY Q0 = Bls(@0)
TeTr
Vk=1,...,Np,

where C' is a constant of order 1. Similar to the first approach of regularization, if all
triangles in 7}, are of a similar size, we can replace CZTeTk |T| in (5.19) and (5.20)

by €; that is of order O(h?).
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5.4. Implementation of scheme (4.6)—(4.8). We give a fully discretized ana-
logue of scheme (4.6)—(4.8) as follows.
Initialize

(5.21) u’ =up € Vi, p’ =po € Qp, s =sp € Ry,.

For n >0, proceed with {u",p™,s"} — {u"T!, pntl g7+ as follows.

Solve
un+1 c Vgh7
(5.22) / u"lode + At/ (eI + cof (p™)) Vu T - Vudx
’ Q Q

= / u"vdr — 2AtK/ (1+ [8"?)?dz Vv € Vo,
Q Q

and compute p"*t! and s”*! via

(5.23)
VE=1,... Ny,
a=e MAL

P (Qr) = ap™(Qr) + (1—a) (Dfm(“”“)(Qk) D’f’gh(u“l)(czk)) 7

Diyp, (u)(@r) D3y (u ™) (Qr)
P (Qr) = Py [P (Qu)]

and
Vk=1,...,Np,

(5-24> Sn+1(Qk) _ e—'yQAtsn<Qk) + (1 _ e—vat) (

Dip(u" T (Qr)
Doy (u" 1 (Qr) )

Here, all integrations in (5.22) are computed by the trapezoidal rule. In (5.23) and
(5.24), D}, for i =1,2 are computed using (5.5) or (5.3); ijh(unﬂ) fori,j=1,2 are
computed by approximation (5.12) or (5.19)-(5.20).

5.5. Implementation of scheme (4.16)—(4.18). The discretized analogue of
scheme (4.6)—(4.8) can be written as follows.
Initialize

(5.25) u’ =ug € Vi, p’ =po € Qu, " =s0 ERy, g =y.

For n >0, proceed with {u",p",s"} — {u"T! p"tl s"t1} as follows.
Solve
u"+1/2 S Vq"h7

5.96 / " 2d + At/ (eI + cof (p™)) Vu /2 . Vudz
( : ) 0 0

z/ u"vdx — ZAtK/ (1+ [8"?)?dz Vv € Vynp,.
Q Q
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n+1 n+1

Compute p and s via
(5.27)

Vk=1,...,Np,

a=e MAL

P Q1) = ap™(@Qr) + (1—a) <D%2h (u1/2) (Q) D2y (w2 (Qy)

p" (@) =Py [P"T2(Qu)]

D3y (un+1/2) (Qr) Diyy (“n+1/2) (Qk)>

and

Vk=1,..., Ny,
(5.28) N B . ~ Din(w™t12(Qy)

s"TH(Qr) = e A (Q) + (1 — e 2 <D2h(un+1/2(Qk)> '
Compute

unt eV,
(5.29) /Qu"“‘lvdx + Ate /Q Vut . Vudz + At /89 u"Mude
= / Wt 20d + Ate/ gudx Yv €V,
Q2 o9

and update
(5.30) g =m0

All integrations in (5.26) and (5.29) are computed by the trapezoidal rule. In (5.27)
and (5.28), D}, for i =1,2 are computed using (5.5) or (5.3); ijh(u”“) fori,j=1,2
are computed by approximation (5.12) or (5.19)—(5.20).

5.6. The projection operator P, (). Since we want to find a convex solution
u, we need to have some mechanism to enforce convexity in our algorithm. There are
many possible approaches to handling the issue.

One particular approach that we discuss here is to modify one of the finite-element
components, p, after each iteration so that the modified p satisfies some convexity-
related properties. Since the Hessian matrix of a convex function is semipositive
definite and we expect p to converge to the Hessian matrix of the exact solution u*,
which is convex, it is reasonable to force p to be semipositive definite; therefore, we
introduce a spectral projection operator to achieve this, and P4 (-) is such a projector
in our algorithm.

Let A be a symmetric 2 X 2 matrix. Assume that A has a spectral decomposition,
A =SAS~!, where the columns of S are the eigenvectors of A and A = ()51 ;)2 ). We
define the spectral projector operator P (-) as

_o (M 0\ g
P+(A)—S<O A;>s :

where A\ = max{\;,0} for i = 1,2. The effect of P;(A) is to project A onto the
cone consisting of semipositive definite matrices. This projection during each iteration
makes (4.7) an elliptic PDE of w.

Another possible approach is to choose a convex initial condition, which will be
discussed in the next section.
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6. Initialization.

6.1. Initial condition for scheme (4.6)—(4.8). To initialize uy and py for
scheme (4.6)—(4.8), we solve the standard Monge-Ampeére equation

(61) {det(DQuo) :K,

ug =g on OS.

We will deal with (6.1) by adopting the method in [28], which solves the following
initial value problem to steady state:

% — V- ((eI+ cof (p))Vu) + 2K =0,
(6.2) u=g on 0,
Ip

Let {u.,ps} be the steady state of (6.2). Accordingly, we set ug = u., po = D%us,
and s = Du, as the initial condition for our scheme (4.6)—(4.8). Therefore, our
algorithm can be summarized as a two-stage method.

Stage 1. In the algorithm in [28], set € =; = h? and dt = 2h%. Solve (6.2) until
lu™tt —u™||2 < tol to get ug. Compute pg = D?ug and sg = Dug.

Stage 2. With the initial condition wg, po, and sg, solve (4.6)—(4.8) to steady
state.

6.2. Initial condition for scheme (4.16)—(4.18). When we use scheme
(4.16)—(4.18), the boundary value of the computed solution does not satisfy the given
boundary condition, so the initial condition used for scheme (4.6)—(4.8) may not help.
To initialize scheme (4.16)—(4.18), we use the initial condition used to solve (6.2) in
[28]:

(63) {VQUOZQ/\\/R,

u0|3f2:ga

where A (> 0) is of order O(1).

7. Numerical experiments. In this section, we carry out a variety of numerical
experiments in different settings to demonstrate the performance of scheme (4.6)—-(4.8)
and scheme (4.16)—(4.18). Four different meshes, as shown in Figure 1, will be used
in our experiments: (a) regular meshes on a unit square, (b) symmetric meshes on a
unit square, (c¢) unstructured meshes on a unit square, and (d) unstructured meshes

(a) (b) (d)

\/
ASXHAT
VAVAVAVAVAVAVAVAN
SOOEDENN
e
e
oS

F1G. 1. Four meshes for two different domains used in our numerical experiments. (a) A regular
mesh on a square. (b) A (highly) symmetric mesh on a square. (c) An anisotropic unstructured
mesh on a square. (d) An anisotropic unstructured mesh on a half-unit disk.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/26/24 to 35.8.11.2 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

A3248 HAO LIU, SHINGYU LEUNG, AND JIANLIANG QIAN

on a half-unit disk. In all of our experiments, in Stage 1 of our algorithm, we use the
method in [28] to initialize the iteration of our algorithm, where we use tol = h?.

There are several parameters in our algorithm: ~; and 5 (defined in section 3.2), e
(regularization parameter in the PDE (3.3)), 1 (regularization parameter in the first-
order and second-order derivative approximations in sections 5.2 and 5.3), and time
step At. In general, when a smooth solution exists, our algorithm is not sensitive
to the choice of parameters. Setting € and e; in the order of A% and B; and B,
(in the formulas of v; and 72) of O(1) makes the algorithm stable. The time step At
determines how fast our algorithm converges. Our algorithm converges as long as At is
small enough and other parameters are set as mentioned above. A large At will make
our algorithm converge faster, but it may destroy the stability. In our experiments,
setting At in the order of h? makes our algorithm yield reasonable results. For some
problems with singular solutions or derivatives blowing up along boundaries, we will
take both € and €1 to be a larger value and take At to be a smaller value in order to
stabilize the algorithm.

Without specification, we choose At = 2h? and € = ¢; = h? in both Stages 1
and 2 of our algorithm. For examples with compatible boundary condition, scheme
(4.6)—(4.8) is used. For examples with incompatible boundary condition, scheme
(4.16)—(4.18) is used. We also compare the numerical solutions by both schemes on
some examples. Without specification, stopping criterion ||u"*? —u"||y < 1076 and
scheme (4.6)—(4.8) are used. This stopping criterion is selected so that our algorithm
converges on all meshes. This criterion may be demanding for some coarse meshes, as
many iterations are not necessary. Nevertheless, our current setting does not affect
the demonstration of the performance of our proposed algorithms. A more practical
way is to set the stopping criterion depending on h. Additional numerical results are
presented in the supplementary materials (M159077_SM.pdf [local/web 2.41MB]).

7.1. Example 1. For the first example, we choose the exact solution u* as a
quadratic function,

(7.1) u* =a(z; —0.5)2 + (x2 — 0.5)2/a,

4
1+4a (z1-0.5)2+2(
g =u"*|sq, where « is a positive constant.

Since the solution of this example is smooth, we use (5.4) to approximate the
first-order derivatives. In the first test, we choose a =1 so that u* represents a family
of concentric circles which vary isotropically.

With the second-order derivatives approximated by (5.13) and scheme (4.6)—(4.8),
the graphs and convergence histories of numerical solutions on different meshes are
shown in Figure 2. The numbers of iterations and accuracy orders are shown in Table 1,
where the accuracy orders in the Lo and L., norms are in general larger than 1.5.
Stopping criterion |[u"™! —u"|| <1079 is used. Since the time step is in the order of
h?, we expect that the rate of convergence is close to 2. In Table 1, the rate is around
1.8, which is slightly better than our expectation.

With the second-order derivatives approximated by (5.19) and (5.20) and scheme
(4.6)—(4.8), we can use a less demanding stopping criterion. Here we use ||u"*! —
u™|| < 10~7. The numbers of iterations, the errors of approximation, and the rates
of convergence on regular and symmetric meshes of the unit square are shown in
Table 2, which demonstrates that, in general, our algorithm with approximation (5.19)
and (5.20) is first-order accurate, and in comparison with the results based on the

so that the Gauss curvature K = T2=05)2 and the boundary condition
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F1G. 2. (Test problem (7.1) with a« =1. Scheme (4.6)—(4.8).) Graphs of the computed solutions
and the related convergence history. Row 1: Regular triangulation of the unit square. Row 2:
Symmetric triangulation of the unit square. Row 3: Unstructured anisotropic triangulation of the
unit square. Row 4: Unstructured anisotropic triangulation of a half-unit disk. The second-order
derivatives are approzimated by (5.13).

approximation (5.13), the errors based on the approximation (5.19) and (5.20) are
larger and the convergence rates are smaller.

For comparison, we also show the results by scheme (4.16)—(4.18) with the second-
order derivatives approximated by (5.13). Since the boundary condition is compatible,
we use a large x = 500. The number of iterations and accuracy orders are shown in
Table 3. Its efficiency and accuracy are similar to that of scheme (4.16)—(4.18). If »
goes to infinity, scheme (4.16)—(4.18) has an additional stabilization (diffusion) term
which provides larger error but extra robustness—the same as what is observed by
comparing Table 1(a) and Table 3.

Since the exact solution is a quadratic function, its second-order derivatives are
constants so that the zero Neumann boundary condition on these derivatives is exact.
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TABLE 1
(Test problem (7.1) with o =1. Scheme (4.6)—(4.8).) Numbers of iterations necessary for con-
vergence, approxzimation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. (c) Unstructured anisotropic triangulation of the
unit square. (d) Unstructured anisotropic triangulation of the half-unit disk. The second-order
derivatives are approzimated by (5.13).

h Iterations [luntl —un ] L> norm rate Lo norm rate
1/10 193 9.88x10710 6.06x 104 9.86x 104
(a)  1/20 606 9.81x10~10 1.66x107%  1.87  2.73x10™*  1.85
1/40 2064 9.96x10~10 4.34x1075  1.94  7.11x1075  1.94
1/80 577 9.99x10~10 1.05x107°  2.05 1.73x107°  2.04
h Iterations [t —un] L> norm rate Lo norm rate
1/10 305 9.99x10~10 1.37x1073 2.64x1073
(b)  1/20 1021 9.99x10~10 3.53x10~%  1.96  6.88x10~*  1.94
1/40 3961 9.99x10~10 8.98x1075%  1.97  1.75x107%  1.98
1/80 14259 9.99x10~10 2.16x1075 2,06  4.24x10°  2.05
h Iterations [t — ] L3 norm rate Lo norm rate
1/10 180 9.38x10~10 5.70x10~4 2.04x1073
()  1/20 591 9.80x10710 1.90x107%  1.59  5.99x107%  1.77
1/40 2080 9.97x10~10 5.27x107°  1.85  1.57x107%  1.93
1/80 7690 9.99x10~10 1.42x107%  1.89  6.22x107%  1.34
h Iterations [luntl — ] L2 norm rate Loo norm rate
1/10 111 8.49x10710 6.10x10~4 1.20x1073
(d)  1/20 374 9.97x10710 1.65x107%  1.89  4.55x107*  1.40
1/40 1221 9.93x10710 3.61x107° 220  1.03x10~*  2.14
1/80 4765 9.97x10~10 8.73x1076  2.05  3.54x107°  1.54
TABLE 2

(Test problem (7.1) with o =1. Scheme (4.6)—(4.8).) Numbers of iterations necessary for con-
vergence, approximation errors, and accuracy orders. (a) Regular triangulation of the unit square.
(b) Symmetric triangulation of the unit square. The second-order derivatives are approzimated by
(5.19)—(5.20).

h Iterations [lumtl —un] L> norm rate Lo norm rate

1/10 266 9.50x1078 1.01x1071 1.22x1071
(a) 1/20 512 9.87x1078 4.02x1072 1.33 4.63x1072 1.40
1/40 1432 9.99x1078 1.82x1072 1.14  2.13x1072 1.12
1/80 4529 9.99x1078 8.73x1073 1.06 1.03x1072 1.05
h Iterations |l — ] L3 norm rate Loo norm rate

1/10 471 9.57x1078 8.24x1072 9.74x1072
(b) 1/20 782 9.95x10~8 3.46x1072 1.25 3.97x1072 1.29
1/40 2581 9.99x10~8 1.60x102 1.11 1.80x 102 1.14
1/80 7690 9.99x1078 7.78%x1073 1.04  8.56x1073 1.07

TABLE 3

(Test problem (7.1) with a = 1. Scheme (4.16)—(4.18).) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders. The second-order derivatives are approxi-
mated by (5.13).

h Iterations [luntl — | Ly norm rate Lo norm rate
1/10 198 9.78x10~10 1.88x1073 2.75x1073
1/20 604 9.80x10710 3.72x107% 234 5.91x107%  2.22
1/40 2057 9.92x10~10 8.86x107°  2.07  1.44x10™*  2.04
1/80 7566 9.99x10710 2.14x107%  2.05 3.53x10™®>  2.03
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F1G. 3. (Test problem (7.1). Scheme (4.6)—(4.8).) (a) With a =1, e1 =e2 =0 in both stages,
the convergence history on the reqular triangulation of the unit square. The second-order derivatives
are approzimated by (5.13). (b)—(c) The graph of the computed solution and the convergence history
on the regular triangulation of the unit square. The second-order derivatives are approximated by
(5.13).

TABLE 4
(Test problem (7.1) with o = 2. Scheme (4.6)—(4.8).) Numbers of iterations necessary for
convergence, approximation errors, and accuracy orders on the regular triangulation of the unit
square. The second-order derivatives are approzimated by (5.13).

h Iterations  ||u™*! —um|| L3 norm rate Lo norm rate
1/10 309 9.67x10710 5.01x1074 8.07x10~4
1/20 938 9.93x10~10 1.32x107%  1.92  2.12x107*  1.93
1/40 2982 9.97x1071%  3.38x107°  2.01  5.39x107°  1.98
1/80 14565 9.99x10~11 8.51x1076  1.99  1.36x107%  1.99

With e =¢; =0 and h =1/40, the convergence history of scheme (4.6)—(4.8) is shown
in Figure 3(a). We can see that although approximation (5.13) is a kind of variational
crime, the error decreases to machine precision.

In the second test, we choose a = 2 so that u* represents a family of concentric
ellipses which vary anisotropically. We apply our algorithm to this problem on the
unit square with regular meshes. The number of iterations necessary to satisfy the
stopping criterion and the corresponding approximation error accuracy is shown in
Table 4. The graph of the computed solution and the related convergence history are
shown in Figure 3(b)—(c).

7.2. Example 2. In the second example, we consider a problem with the exact
solution

(7.2) u=—/1—2% — 23,

which is a part of the unit sphere, and the corresponding Gauss curvature is con-
stant: K = 1. The computational domain is chosen to be half of the unit disk,
Q={(x1,22) |71 >0, 2% + 23 <1}. Accordingly, the boundary condition is given as

0, x>0,
7.3 f—
(73) g — 1—:1:%, 1 =0.

This problem is interesting since the gradient of the exact solution along the
boundary where 7 > 0 is infinite (a more challenging problem is solved in the sup-
plementary materials section SM1.3). This problem is also solved in [30]. Since
the first-order derivatives are infinite along a part of the boundary, we have to use
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F1G. 4. (Test problem (7.2). Scheme (4.6)—(4.8)) (a) The graph of the solution with h =1/64,
where the second-order derivatives are approzimated by (5.13). (b) The convergence history of
(a). (c)—(d) Graphs of the restrictions of the numerical solutions to the line 1 = 0 with different
h’s. (c) The second-order derivatives approzimated by (5.13) and (d) the second-order derivatives
approzimated by (5.19)—(5.20).

the regularized approximation (5.5) for the first-order derivatives; otherwise our so-
lution will blow up. We use ¢ = h, ¢; = h?, At = h?, and the stopping criterion
lu*tt —u™||a < 1076, Figure 4(a)—(b) shows the graph of the numerical solution for
h =1/64 and the related convergence history with second-order derivatives approx-
imated by (5.13). The cross sections of the numerical solutions along the boundary
xz1 = 0 with second-order derivatives approximated by (5.13) or (5.19)—(5.20) are
shown in Figure 4(c)—(d), and the convergence of numerical solutions using both ap-
proximations is clearly observed.

To further quantify both approximations of second-order derivatives, we show
the numbers of iterations, the Lo- and L.-errors, and their corresponding rates of
convergence in Table 5(a) and (b). In Table 5, we can see that both approximations of
the second-order derivatives behave reasonably well. Although the algorithm equipped
with approximation (5.19)—(5.20) produces smaller errors than the one equipped with
(5.13), the algorithm with approximation (5.13) is more stable as its convergence
rate is uniformly about 0.5. As a comparison, we also list the L.,-errors and related
convergence rates from [30] in Table 5(c). When the mesh is fine enough, our algorithm
equipped with either approximation produces smaller L,-errors than that of [30].

7.3. Example 3. We end this section by considering a problem with no classical
solution. The curvature is a constant in :

(7.4) K=1/2inQ,

where 2 = [0,1]%. We use the boundary condition g = 0 on 9. This problem has
no classical solution since det(DD?u) vanishes on 9€2. In other words, this problem is
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TABLE 5
(Test problem (7.2). Scheme (4.6)—(4.8).) Numbers of iterations, approzimation errors, and
accuracy orders with the second-order derivatives approzimated by (a) (5.13) and (b) (5.19)—(5.20).
(c) shows the Lo errors and accuracy orders from [30].

h Tteration  [Ju™t! —u™||2 Lo error rate Leo error rate
1/16 177 9.57x10~7 9.79x10~2 1.69x1071
(a) 1/32 791 9.98x10~7 5.61x1072  0.80  1.19x10~!  0.51
1/64 3360 9.97x10~ "7 3.12x1072  0.85 8.39x1072  0.50
1/128 17273 9.99x10~7 1.55x1072  1.01  5.86x1072  0.52
h Iteration luntt —um||o Lo error rate L error rate
1/16 236 9.72x10~7 2.86x1072 7.40x1072
(b) 1/32 1179 9.98x10~7 1.13x1072  1.34  4.53x1072  0.71
1/64 5261 9.95x10~7 7.33x1073  0.62 4.12x1072  0.14
h Lo error rate
1/16 1.61x1071
(c) 1/32 1.28x1071  0.33
1/64 1.09x10~1  0.23
1/128 8.80x1072  0.31
TABLE 6

(Test problem (7.4). Scheme (4.6)—(4.8).) Numbers of iterations, iteration errors, and minimum
values. The second-order derivatives are approzimated by (a) (5.13) and (b) (5.19)—(5.20).

n 2, n
hoo dter. funtt—wnp  fpr—D2unf;  IRTLDAT min o [pn — D2un|; in,
1/20 177 9.62x10~7 4.44x1072 2.35x1072  -0.1192 3.28 x 1073
(a) 1/40 672 9.72x10~7 1.80x107! 7.26x1072  -0.1263 5.98 x 1073
1/80 2149  9.98x10~7 4.94x10~1 1.67x10~1  -0.1305 9.41 x 1073
n 2, n
R Tter. [uttl—ut|z  |lp" — D22 W min  |p® — D2u™||z in.
1/20 246 9.88x107 4.60x1073 2.43x1073  -0.1345 747 x 1074
(b) 1/40 695 9.88x10~7 7.53%x10~2 2.43x1072  -0.1359 4.77 x 1078
1/80 2468 9.99x10~7 3.52x10 1 6.82x10~2  -0.1376 6.54 x 103

incompatible. In our experiment, we first use scheme (4.6)—(4.8) with ¢ = gy = g5 = h?
and At =2h2. The second-order derivatives are approximated by (5.13). The number
of iterations, convergence errors, and minimum values are shown in Table 6. The
graphs and contour of the numerical solution with h = 1/80 are shown in Figure 5,
row 1. The comparisons of the restriction of the numerical solution with different h
along 21 =1/2 and x; =z are shown in Figure 5, row 2. Our solution is smooth and
almost convex, except for the region near the corners of the domain.

Then we use scheme (4.16)—(4.18) with € = g1 = &5 = h% and At = 8h? to solve
it. With h = 1/80, the graph and contour of the computed solution are shown in
Figure 5, row 3. We can see that the boundary value of the computed solution is
no longer constant. At the middle segment on each edge, its value is away from 0
to be compatible with its interior value. The comparisons of the restriction of the
numerical solution with different h along 21 = 1/2 and x1 = x5 are shown in the fourth
row of Figure 5. Compared to the graph in the second row of Figure 5, we observe
the deviation of the boundary value from 0. The same problem is solved on an ellipse
domain in the supplementary materials section SM1.4.

8. Conclusion. In this work, we have proposed two operator-splitting/mixed
finite-element methods to solve the Dirichlet Minkowski problem in dimension two.
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F1G. 5. (Test problem (7.4).) Rows 1-2: Scheme (4.6)—(4.8). Row 1: Graphs and contour of
the numerical solution with h = 1/80. Row 2: Graphs of the restrictions of numerical solutions
along z1 =1/2 (left) and x1 = x2 (right) with h=1/20, 1/40, and 1/80. Rows 3—4: Scheme (4.16)—
(4.18).) Row 3: Graphs and contour of the numerical solution with h=1/80. Row 4: Graphs of the
restrictions of numerical solutions along x1 = 1/2 (left) and x1 = x2 (right) with h = 1/20, 1/40,
and 1/80. The second-order derivatives are approzimated by (5.13).

Our algorithms are easy to implement since only a system of PDEs is to be solved
and the basis functions are chosen to be piecewise linear. When the problem has a
classical solution, scheme (4.6)—(4.8) using approximation (5.19)—(5.20) for second-
order derivatives is first-order accurate, while using approximation (5.13) it is almost
second-order accurate. For an incompatible problem, scheme (4.16)—(4.18) can adjust
the boundary value of the computed solution to make it compatible with its interior
values. Our algorithm can solve the Minkowski problem on arbitrarily shaped domains
and can also solve problems with singularities in the solution gradient. Our algorithm
can be easily extended to high dimensions, which constitutes an ongoing work.
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