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HOMOGENIZATION OF VISCOUS HAMILTON-JACOBI

EQUATIONS\ast 
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Abstract. We study the optimal rate of convergence in periodic homogenization of the viscous
Hamilton--Jacobi equation u\varepsilon 

t+H(x
\varepsilon 
,Du\varepsilon ) = \varepsilon \Delta u\varepsilon in Rn\times (0,\infty ) subject to a given initial datum. We

prove that \| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) \leq C(1+T )
\surd 
\varepsilon for any given T > 0, where u is the viscosity solution

of the effective problem. Moreover, we show that the O(
\surd 
\varepsilon ) rate is optimal for a natural class of H

and a Lipschitz continuous initial datum, both theoretically and through numerical experiments. It
remains an interesting question to investigate whether the convergence rate can be improved when
H is uniformly convex. Finally, we propose a numerical scheme for the approximation of the effective
Hamiltonian based on a finite element approximation of approximate corrector problems.

Key words. periodic homogenization, optimal rate of convergence, second-order Hamilton--
Jacobi equations, cell problems, vanishing viscosity process, viscosity solutions
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1. Introduction.

1.1. Settings. For each \varepsilon > 0, let u\varepsilon \in C(Rn \times [0,\infty )) be the viscosity solution
to \Biggl\{ 

u\varepsilon t +H
\bigl( 
x
\varepsilon ,Du

\varepsilon 
\bigr) 
= \varepsilon \Delta u\varepsilon in Rn \times (0,\infty ),

u\varepsilon (x,0) = g(x) on Rn.
(1.1)

Here, g \in C0,1(Rn) is a given initial datum and H = H(y, p) \in Lip loc(Rn \times Rn) is a
given Hamiltonian that is Zn-periodic in its y-variable and satisfies

ess inf
y\in Rn

\bigl\{ 
| H(y, p)| 2 + (n+ 1)DyH(y, p) \cdot p

\bigr\} 
 - \rightarrow \infty as | p| \rightarrow \infty .(1.2)

Then, it is known that u\varepsilon converges to u \in C(Rn \times [0,\infty )) locally uniformly on
Rn \times [0,\infty ) as \varepsilon \rightarrow 0+, where u is the viscosity solution to the effective problem\Biggl\{ 

ut +H (Du) = 0 in Rn \times (0,\infty ),

u(x,0) = g(x) on Rn;
(1.3)

\ast Received by the editors February 28, 2024; accepted for publication (in revised form) August 5,
2024; published electronically November 20, 2024.

https://doi.org/10.1137/24M1642822
Funding: The work of the first author was supported by National Science Foundation grants

2012046, 2152011, and 2309534 and MSU SPG grant. The work of the third author was supported
by National Science Foundation Career grant DMS-1843320 and a Vilas Faculty Early-Career Inves-
tigator award. The work of the fourth author was supported by National Science Foundation grant
2000191.

\dagger Department of Mathematics and Department of CMSE, Michigan State University, East Lansing,
MI 48824 USA (jqian@msu.edu).

\ddagger Department of Mathematics, Texas A\&M University, College Station, TX 77843 USA (timo.
sprekeler@tamu.edu).

\S Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madison, WI
53706 USA (hung@math.wisc.edu).

\P Department of Mathematics, University of California at Irvine, Irvine, CA 92697 USA (yyu1@
math.uci.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1558

D
ow

nl
oa

de
d 

11
/2

0/
24

 to
 3

5.
20

.1
43

.4
8 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/24M1642822
mailto:jqian@msu.edu
mailto:timo.sprekeler@tamu.edu
mailto:timo.sprekeler@tamu.edu
mailto:hung@math.wisc.edu
mailto:yyu1@math.uci.edu
mailto:yyu1@math.uci.edu


OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1559

see [21, 8]. Here, the effective Hamiltonian H \in C(Rn) is determined by H in a nonlin-
ear way through cell problems. It is worth noting that if H =H(y, p) is independent
of y, that is, H(y, p) = F (p), then (1.1) becomes the usual vanishing viscosity problem\Biggl\{ 

u\varepsilon t + F (Du\varepsilon ) = \varepsilon \Delta u\varepsilon in Rn \times (0,\infty ),

u\varepsilon (x,0) = g(x) on Rn,
(1.4)

in which case we have H = F . Both (1.1) and (1.4) are basic and fundamentally
important problems in the theory of viscosity solutions.

Introducing the notation Tn :=Rn/Zn, we now give a precise definition of H.

Definition 1 (effective Hamiltonian). Assume (A1)--(A2). For each p \in Rn,
there exists a unique constant H(p)\in R such that the cell (ergodic) problem

H(y, p+Dv) =H(p) +\Delta v for y \in Tn(1.5)

has a continuous viscosity solution v. If needed, we write v = v(y, p) or v = vp(y) to
clearly demonstrate the nonlinear dependence of v on p. In the literature, v(\cdot , p) is
often called a corrector. It is worth mentioning that v(\cdot , p) is unique up to additive
constants.

From now on, we normalize the corrector v so that v(0, p) = 0 for all p \in Rn.
In fact, v(\cdot , p) \in C2(Tn) and p \mapsto \rightarrow v(\cdot , p) is locally Lipschitz. Further, the effective
Hamiltonian H is locally Lipschitz.

Our main goal in this paper is to obtain the optimal rate for the convergence of
u\varepsilon to u, that is, an optimal bound for \| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) for any given T > 0 as
\varepsilon \rightarrow 0+. Heuristically, thanks to the two-scale asymptotic expansion,

u\varepsilon (x, t)\approx u(x, t) + \varepsilon v
\Bigl( x
\varepsilon 
,Du(x, t)

\Bigr) 
+O(\varepsilon 2).(1.6)

However, this is just a formal local expansion, and it is not clear at all how to obtain
the optimal global bound in the L\infty -norm from this.

1.2. Main results. We now describe our main results. Let us introduce the set
of assumptions (A1)--(A3) given by

(A1) H \in Lip loc(Rn \times Rn), and H(\cdot , p) is Zn-periodic for each p\in Rn;
(A2) H satisfies (1.2);
(A3) g \in Lip (Rn) with \| g\| C0,1(Rn) <\infty .

Theorem 1.1. Assume (A1)--(A3) and fix T > 0. Then, there exists a constant
C > 0 depending only on H, n, and \| g\| C0,1(Rn) such that for \varepsilon \in (0,1) there holds

\| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) \leq C(1 + T )
\surd 
\varepsilon ,

where u\varepsilon and u denote the viscosity solutions to (1.1) and (1.3), respectively.

The above rate O(
\surd 
\varepsilon ) turns out to be optimal in the sense that there exist

particular choices of H and g satisfying (A1)--(A3) such that the convergence rate is
exactly O(

\surd 
\varepsilon ). Quantitative homogenization for Hamilton--Jacobi equations in the

periodic setting has received quite a lot of attention in the past twenty years. The
convergence rate O(\varepsilon 

1/3) was obtained for first-order equations first in [5]. In [3], the
authors generalized the method in [5] to get the same convergence rate O(\varepsilon 

1/3) for
the viscous case considered in this paper. For weakly coupled systems of first-order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1560 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

equations, see [25]. For other related works, see the references in [5, 3, 25]. Of course,
the rate O(\varepsilon 

1/3) is not known to be optimal in general.
The optimal rate of convergence O(\varepsilon ) for convex first-order equations was recently

obtained in [35]. Moreover, we expect that for any given uniformly convex H, the
convergence rate is O(\varepsilon ) for (1.1) for generic initial data, which is stronger than the
notion of optimality in this paper. We refer to [17] for the multiscale setting. For
earlier progress in this direction with nearly optimal rates of convergence, we refer
the reader to [26, 36, 24, 6] and the references therein. To date, optimal rates of
convergence for general nonconvex first-order cases have not been established.

To the best of our knowledge, the optimal rate of convergence for periodic homog-
enization of viscous Hamilton--Jacobi equations has not been obtained in the current
literature. The rate O(\varepsilon 

1/3) was obtained in [5, 3] by using the doubling variable
technique, the perturbed test function method [8], and the approximate cell prob-
lems. The usage of the approximate cell problems introduces another parameter in
the analysis, and as a result, the rate O(\varepsilon 

1/3) was the best one can obtain through
this route by optimizing over all parameters.

In this paper, we are able to obtain the O(
\surd 
\varepsilon ) convergence rate by dealing directly

with the correctors. A key point is that after normalizing v(0, p) = 0, we have that
v(\cdot , p) is unique, and p \mapsto \rightarrow v(\cdot , p) is locally Lipschitz. It is worth noting that we do not
require convexity of the Hamiltonian in Theorem 1.1.

Here, we will use H(y, p) = F (p) for some choices of nonlinear F to construct
computable sharp examples. Similar results were known for linear F in the con-
text of conservation laws [31]. The connection between scalar conservation laws and
Hamilton--Jacobi equations is well known to experts. Precisely speaking, in one di-
mension, if u = u(x, t) is a viscosity solution to ut + F (ux) = 0, then v = ux is an
entropy solution to vt + (F (v))x = 0. The convergence rate of vanishing viscosity in
scalar conservation laws has been well studied and the convergence rate of O(

\surd 
\varepsilon ) was

known under suitable assumptions [19].

Theorem 1.2. Let n= 1. Let F \in Lip loc(R) be such that\Biggl\{ 
F (p) = p for p\in [0,1],

F (p)\leq p for p\in [ - 1,0],

and suppose that g(x) =max\{ 1 - | x| ,0\} for x\in R. Then, for any \varepsilon \in (0, 14 ) there holds

| u\varepsilon (0,1) - u(0,1)| \geq e - 1\surd 
\pi e

\surd 
\varepsilon ,

where u\varepsilon denotes the viscosity solution to (1.4) and u denotes the viscosity solution
to (1.3) with H = F .

We would like to point out that the above g can be replaced by a smooth function
(Remark 1). Also, the proof of Theorem 1.2 leads to the following corollary.

Corollary 1.3. Let n= 1. Assume that F \in Lip loc(R) and that F is linear in
(a, b)\subset R for some given a < b. Then, there exists an initial datum g \in Lip (R) such
that for any \varepsilon \in (0, 14 ) we have that

| u\varepsilon (0,1) - u(0,1)| \geq c0
\surd 
\varepsilon 

for some constant c0 > 0 depending only on F and g, where u\varepsilon denotes the viscosity
solution to (1.4) and u denotes the viscosity solution to (1.3) with H = F .
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1561

It is also straightforward to generalize Theorem 1.2 to any dimension in the corol-
lary below, whose proof is essentially the same as that of Theorem 1.2.

Corollary 1.4. Let F \in Lip loc(Rn) be such that\Biggl\{ 
F (se1) = s for s\in [0,1],

F (se1)\leq s for s\in [ - 1,0],

and suppose that g(x) = max\{ 1 - | x1| ,0\} for x \in Rn. Then, for any \varepsilon \in (0, 14 ) there
holds

| u\varepsilon (0,1) - u(0,1)| \geq e - 1\surd 
\pi e

\surd 
\varepsilon ,

where u\varepsilon denotes the viscosity solution to (1.4) and u denotes the viscosity solution
to (1.3) with H = F .

The bound O(
\surd 
T\varepsilon ) for \| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) for the vanishing viscosity process

of (1.4) was obtained in [12, 7, 9]. In this situation, we need only assume that F is
locally Lipschitz on Rn and g is bounded and Lipschitz on Rn (see, e.g., [7, Theorem
5.1]). For the static cases, see [33, 34].

Thus, the results of Theorem 1.2 and Corollaries 1.3--1.4 confirm both the opti-
mality of the convergence rate of the vanishing viscosity process of (1.4) with optimal
conditions, and the optimality of the O(

\surd 
\varepsilon ) bound in Theorem 1.1. See Remark 1

for Theorem 1.2 with a C2 initial condition for each \varepsilon > 0. Besides, we provide a
generalization of Theorem 1.2 in Proposition 4.2 in which for each fixed \varepsilon \in (0, 14 ),
the Hamiltonian F need not be linear in any interval in one dimension at the price
of nonconvexity. Note also that in Corollary 1.4, F does not need to be linear in any
open set in multiple dimensions.

Note that all the Hamiltonians in Theorem 1.2 and Corollaries 1.3--1.4 are not
strictly convex and do not have y-dependence (i.e., no homogenization effect is in-
volved). Hence, it is natural to ask (I) whether the convergence rate can be improved
for strictly/uniformly convex H and (II) how the y-dependence impacts the conver-
gence rate.

(I) has been investigated in the context of one dimensional conservation laws for
the vanishing viscosity process of (1.4). It was proved that the convergence rate can be
improved to O(\varepsilon | log \varepsilon | ) for uniformly convex F under some technical assumptions [32].
In section 4.3, we demonstrate this fact for the quadratic Hamiltonian F (p) = 1

2 | p| 
2

in any dimension for general Lipschitz continuous initial data. More interestingly, we
showed that for any C2 initial datum g, the convergence rate is O(\varepsilon ) for a.e. (x, t) \in 
Rn \times (0,\infty ). For strictly but not uniformly convex F , numerical computation shows
that the convergence rate could be various fractions. For instance, for F (p) = 1

4 | p| 
4 in

Example 5, the rate of convergence for the vanishing viscosity process of (1.4) seems
to be O(\varepsilon 2/3). This suggests that there might be a variety of rates O(\varepsilon s) for 1

2 \leq s\leq 1
for (1.4), which is a new phenomenon. It will be an interesting project to find an
example where a convergence rate \alpha \in ( 12 ,1) can be established rigorously.

As for (II), it is quite challenging to conduct a theoretical analysis beyond The-
orem 1.1 when y is present. In this paper, we will focus on numerical computations
to get some rough ideas and inspire interested readers to work on this subject. Our
numerical examples, Examples 10 and 11, show that when H = H(y, p) is strictly
convex in p and smooth in y, the convergence rate is similar to O(\varepsilon ) or O(\varepsilon | log \varepsilon | ).
Meanwhile, when the regularity in y is merely Lipschitz continuity, the convergence
rate seems to be reduced; see Examples 6--9.
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1562 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

Finally, we discuss the construction of numerical methods for the approximation of
the effective HamiltonianH. In particular, we provide a simple scheme to approximate
H at a fixed point based on a finite element approximation of approximate corrector
problems. For related work on the numerical approximation of effective Hamiltonians
we refer to [1, 11, 15, 16, 23, 27] for first-order Hamilton--Jacobi equations without
viscosity term, and to [14, 18] for second-order Hamilton--Jacobi--Bellman and Isaacs
equations.

Organization of this paper. In section 2, we use a priori estimates to simplify
the settings of the problems. The proof of the bound in Theorem 1.1 is given in
section 3. In section 4, we consider (1.4) with various choices of F and g, and obtain
the optimality of the bound in Theorem 1.1. In particular, this section includes a proof
of Theorem 1.2. Numerical results for both (1.1) and (1.4) are studied in section 5.
The approximation of the effective Hamiltonian is studied in section 6.

2. Settings and simplifications. Assume (A1)--(A3). For \varepsilon \in (0,1), let u\varepsilon 

denote the viscosity solution to (1.1). Let u denote the viscosity solution to (1.3). By
the comparison principle, we have that

\| ut\| L\infty (Rn\times [0,\infty )) + \| Du\| L\infty (Rn\times [0,\infty )) \leq M(2.1)

for M :=R0 +maxB(0,R0)

\bigm| \bigm| H\bigm| \bigm| \leq R0 +maxRn\times B(0,R0)
| H| , where R0 := \| Dg\| L\infty (Rn).

Let us further assume that

\| u\varepsilon t\| L\infty (Rn\times [0,\infty )) + \| Du\varepsilon \| L\infty (Rn\times [0,\infty )) \leq C0(2.2)

for a constant C0 \geq M that is independent of \varepsilon . Note that (2.2) is satisfied if
\| Dg\| L\infty (Rn) + \varepsilon \| \Delta g\| L\infty (Rn) \leq C for some C > 0 independent of \varepsilon \in (0,1) thanks
to the classical Bernstein method based on (A1)--(A2) (see, e.g., [34, Chapter 1]). In
particular, (2.2) holds if g \in C2(Rn) with \| Dg\| L\infty (Rn) + \| \Delta g\| L\infty (Rn) < \infty . Since
g is merely assumed to be in C0,1(Rn) in Theorem 1.1, we will employ a suitable
mollification of g in section 3.2 to remove the assumption (2.2).

Accordingly, values of H(y, p) for | p| > C0 are irrelevant. Indeed, letting \xi \in 
C\infty (Rn, [0,1]) be a cut-off function satisfying

\xi (p) = 1 if | p| \leq C0 + 1, \xi (p) = 0 if | p| \geq 2(C0 + 1),

and introducing

\widetilde H(y, p) := \xi (p)H(y, p) + (1 - \xi (p))| p| 2 for (y, p)\in Tn \times Rn,

we have that \widetilde H satisfies (A1)--(A2) and u\varepsilon solves (1.1) with \widetilde H in place of H. There-
fore, from now on, we can assume that H takes the form of \widetilde H, that is, H satisfies

(A4) H(y, p) = | p| 2 for y \in Tn and | p| \geq 2(C0 + 1).
Assumption (A4) helps us simplify the situation quite a bit as follows. For | p| \geq 
2(C0+1), it is clear that v(\cdot , p)\equiv 0 and H(p) = | p| 2. Hence, we obtain that p \mapsto \rightarrow v(\cdot , p)
is bounded and globally Lipschitz, that is, there exists C > 0 such that

\| v(\cdot , p)\| L\infty (Tn) \leq C, \| v(\cdot , p) - v(\cdot , \~p)\| L\infty (Tn) \leq C| p - \~p| \forall p, \~p\in Rn.(2.3)

If a function h : Rn \rightarrow R is Zn-periodic, we can think of h as a function from
Tn to R as well, and vice versa. In this paper, we switch freely between the two
interpretations.
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1563

3. Proof of Theorem 1.1.

3.1. Part 1: Proof based on (2.2). Assumptions (A1)--(A4) are always in
force in this section. Let T > 0 be fixed. Our goal is to show that there exists a
constant C > 0 depending only on \| H\| C0,1(Tn\times B(0,2(C0+1))), n, and C0 from (2.2)

such that for any \varepsilon \in (0,1) there holds

\| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) \leq C(1 + T )
\surd 
\varepsilon .(3.1)

The approach here is inspired by that in [34, Theorem 4.40]. We first show that

u\varepsilon (x, t) - u(x, t)\leq C(1 + T )
\surd 
\varepsilon \forall (x, t)\in Rn \times [0, T ].(3.2)

Proof of (3.2). We divide the proof into several steps.
Step 0. We write \scrA := Rn \times Rn \times Rn \times [0,\infty )\times [0,\infty ). For K > 0 to be chosen

and \gamma \in (0, 12 ), we introduce the auxiliary function \Phi 1 :\scrA \rightarrow R given by

\Phi 1(a) := u\varepsilon (x, t) - u(y, s) - \varepsilon v

\biggl( 
x

\varepsilon 
,
z  - y\surd 
\varepsilon 

\biggr) 
 - \omega (a) for a= (x, y, z, t, s) \in \scrA ,

where

\omega (x, y, z, t, s) :=
| x - y| 2 + | x - z| 2 + | t - s| 2

2
\surd 
\varepsilon 

+K(t+ s) + \gamma 
\sqrt{} 
1 + | x| 2.(3.3)

Note that there exist \^x, \^y, \^z \in Rn and \^t, \^s\in [0,\infty ) such that \Phi 1 has a global maximum
at the point \^a := (\^x, \^y, \^z, \^t, \^s) \in \scrA . We fix such a choice of \^a and introduce \Phi :\scrA \rightarrow R
given by

\Phi (a) := \Phi 1(a) - \gamma 
| a - \^a| 2

2
for a\in \scrA .

Observe that \Phi has a strict global maximum at the point \^a.
Step 1. We show that

| \^x - \^z| \leq C\varepsilon , | \^x - \^y| + | \^y - \^z| \leq C
\surd 
\varepsilon , | \^t - \^s| \leq C(1 +K)

\surd 
\varepsilon .(3.4)

To this end, we first use that \Phi (\^a)\geq \Phi (\^x, \^y, \^x, \^t, \^s) and (2.3) to obtain

(1 - \gamma 
\surd 
\varepsilon )
| \^x - \^z| 2

2
\surd 
\varepsilon 

\leq \varepsilon 

\biggl[ 
v

\biggl( 
\^x

\varepsilon 
,
\^x - \^y\surd 
\varepsilon 

\biggr) 
 - v

\biggl( 
\^x

\varepsilon 
,
\^z  - \^y\surd 
\varepsilon 

\biggr) \biggr] 
\leq C

\surd 
\varepsilon | \^x - \^z| ,

which yields | \^x - \^z| \leq C\varepsilon as \gamma 
\surd 
\varepsilon \leq 1

2 . Then, we use that \Phi (\^a)\geq \Phi (\^x, \^x, \^x, \^t, \^s), (2.1),
and (2.3) to find that

(1 - \gamma 
\surd 
\varepsilon )
| \^x - \^y| 2 + | \^x - \^z| 2

2
\surd 
\varepsilon 

\leq u(\^x, \^s) - u(\^y, \^s) + \varepsilon 

\biggl[ 
v

\biggl( 
\^x

\varepsilon 
,0

\biggr) 
 - v

\biggl( 
\^x

\varepsilon 
,
\^z  - \^y\surd 
\varepsilon 

\biggr) \biggr] 
\leq C| \^x - \^y| +C

\surd 
\varepsilon | \^y - \^z| 

\leq C| \^x - \^y| +C\varepsilon 
3/2,

which yields | \^x - \^y| \leq C
\surd 
\varepsilon . Finally, using \Phi (\^a)\geq \Phi (\^x, \^y, \^z, \^t, \^t) and (2.1), we find

(1 - \gamma 
\surd 
\varepsilon )
| \^t - \^s| 2

2
\surd 
\varepsilon 

\leq u(\^y, \^t) - u(\^y, \^s) +K(\^t - \^s)\leq (C +K)| \^t - \^s| ,

which yields | \^t - \^s| \leq C(1 +K)
\surd 
\varepsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

0/
24

 to
 3

5.
20

.1
43

.4
8 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



1564 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

Step 2. For the case \^t, \^s > 0, we show that

K +
\^t - \^s\surd 
\varepsilon 

+H

\biggl( 
\^z  - \^y\surd 
\varepsilon 

\biggr) 
\leq C

\surd 
\varepsilon +C\gamma .(3.5)

Introducing \varphi : Rn \times [0,\infty )\rightarrow R defined by \varphi (x, t) := u\varepsilon (x, t) - \Phi (x, \^y, \^z, t, \^s), we see

that u\varepsilon  - \varphi has a global maximum at (\^x, \^t). We compute \varphi t(\^x, \^t) =K +
\^t - \^s\surd 

\varepsilon 
and

D\varphi (\^x, \^t) =Dv

\biggl( 
\^x

\varepsilon 
,
\^z  - \^y\surd 
\varepsilon 

\biggr) 
+

(\^x - \^y) + (\^x - \^z)\surd 
\varepsilon 

+ \gamma 
\^x\sqrt{} 

1 + | \^x| 2
,

\varepsilon \Delta \varphi (\^x, \^t) =\Delta v

\biggl( 
\^x

\varepsilon 
,
\^z  - \^y\surd 
\varepsilon 

\biggr) 
+ 2n

\surd 
\varepsilon + \gamma \varepsilon 

n+ (n - 1)| \^x| 2

(1 + | \^x| 2)3/2
+ \gamma n\varepsilon .

Writing y0 :=
\^x
\varepsilon and p0 :=

\^z - \^y\surd 
\varepsilon 
, we can use the viscosity subsolution test, (1.5), (3.4),

and local Lipschitz continuity of H to find that

K +
\^t - \^s\surd 
\varepsilon 

+H

\biggl( 
\^z  - \^y\surd 
\varepsilon 

\biggr) 
=\varphi t(\^x, \^t) +H(p0)

\leq 
\bigl[ 
\varepsilon \Delta \varphi (\^x, \^t) - \Delta v(y0, p0)

\bigr] 
+
\bigl[ 
H(y0, p0 +Dv(y0, p0)) - H(y0,D\varphi (\^x, \^t))

\bigr] 
\leq 2n

\surd 
\varepsilon + \gamma \varepsilon 

n+ (n - 1)| \^x| 2

(1 + | \^x| 2)3/2
+ \gamma n\varepsilon +C

\bigm| \bigm| \bigm| \bigm| \bigm| 2 \^z  - \^x\surd 
\varepsilon 

 - \gamma 
\^x\sqrt{} 

1 + | \^x| 2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

\surd 
\varepsilon +C\gamma ;

i.e., (3.5) holds.
Step 3. For the case \^t, \^s > 0, we show that

K  - 
\^t - \^s\surd 
\varepsilon 

 - H

\biggl( 
\^x - \^y\surd 
\varepsilon 

\biggr) 
\leq C

\surd 
\varepsilon .(3.6)

For \alpha > 0, we introduce the auxiliary function \Psi :Rn \times Rn \times [0,\infty )\rightarrow R given by

\Psi (y, \xi , s) := u(y, s) + \varepsilon v

\biggl( 
\^x

\varepsilon 
,
\^z  - \xi \surd 
\varepsilon 

\biggr) 
+

| \^x - y| 2 + | \^t - s| 2

2
\surd 
\varepsilon 

+
| y - \xi | 2

2\alpha 
+Ks

+ \gamma 
| \^y - y| 2 + | \^s - s| 2

2
.

Note that there exist y\alpha , \xi \alpha \in Rn and s\alpha \in [0,\infty ) such that the function \Psi has a
global minimum at the point (y\alpha , \xi \alpha , s\alpha ).

Step 3.1. We first show that

| y\alpha  - \xi \alpha | \leq C\alpha 
\surd 
\varepsilon , | \^x - y\alpha | \leq C

\surd 
1 + \alpha 

\surd 
\varepsilon , | \^t - s\alpha | \leq C(1 +K)

\surd 
\varepsilon .(3.7)

We use \Psi (y\alpha , \xi \alpha , s\alpha )\leq \Psi (y\alpha , y\alpha , s\alpha ) and (2.3) to obtain

| y\alpha  - \xi \alpha | 2

2\alpha 
\leq \varepsilon 

\biggl[ 
v

\biggl( 
\^x

\varepsilon 
,
\^z  - y\alpha \surd 

\varepsilon 

\biggr) 
 - v

\biggl( 
\^x

\varepsilon 
,
\^z  - \xi \alpha \surd 

\varepsilon 

\biggr) \biggr] 
\leq C

\surd 
\varepsilon | y\alpha  - \xi \alpha | ,

which yields | y\alpha  - \xi \alpha | \leq C\alpha 
\surd 
\varepsilon . Then, using \Psi (y\alpha , \xi \alpha , s\alpha ) \leq \Psi (\^x, \^x, s\alpha ), (2.1), and

(2.3), we obtain

| \^x - y\alpha | 2

2
\surd 
\varepsilon 

\leq u(\^x, s\alpha ) - u(y\alpha , s\alpha ) + \varepsilon 

\biggl[ 
v

\biggl( 
\^x

\varepsilon 
,
\^z  - \^x\surd 
\varepsilon 

\biggr) 
 - v

\biggl( 
\^x

\varepsilon 
,
\^z  - \xi \alpha \surd 

\varepsilon 

\biggr) \biggr] 
+ \gamma 

| \^x - \^y| 2

2

\leq C| \^x - y\alpha | +C
\surd 
\varepsilon | \^x - \xi \alpha | +C\varepsilon 

\leq C| \^x - y\alpha | +C(1 + \alpha )\varepsilon ,
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1565

which yields | \^x  - y\alpha | \leq C
\surd 
1 + \alpha 

\surd 
\varepsilon . Finally, | \^t  - s\alpha | \leq C(1 + K)

\surd 
\varepsilon follows from

\Psi (y\alpha , \xi \alpha , s\alpha )\leq \Psi (y\alpha , \xi \alpha , \^t), (2.1), and (3.4).
Step 3.2. We now show that, upon passing to a subsequence, there holds

(y\alpha , \xi \alpha , s\alpha )\rightarrow (\^y, \^y, \^s) as \alpha \rightarrow 0+.(3.8)

In view of (3.7), there exists (\~y, \~s) \in Rn \times [0,\infty ) such that, upon passing to a sub-
sequence, (y\alpha , \xi \alpha , s\alpha ) \rightarrow (\~y, \~y, \~s) as \alpha \rightarrow 0+. As \Psi (\~y, \~y, \~s) = lim\alpha \rightarrow 0+ \Psi (y\alpha , \xi \alpha , s\alpha ) \leq 
\Psi (\^y, \^y, \^s) and using that, by Step 0, the point (\^y, \^s) is a strict global minimum of the
map (y, s) \mapsto \rightarrow \Psi (y, y, s), we find that (\~y, \~s) = (\^y, \^s).

Step 3.3. Introducing \psi :Rn\times [0,\infty )\rightarrow R defined by \psi (x, t) := u(x, t) - \Psi (x, \xi \alpha , t),
we see that u - \psi has a global minimum at the point (y\alpha , s\alpha ). We compute

\psi t(y\alpha , s\alpha ) =
\^t - s\alpha \surd 

\varepsilon 
 - K + \gamma (\^s - s\alpha ), D\psi (y\alpha , s\alpha ) =

\^x - y\alpha \surd 
\varepsilon 

+
\xi \alpha  - y\alpha 
\alpha 

+ \gamma (\^y - y\alpha ).

By the viscosity supersolution test, local Lipschitz continuity of H, and (3.7), we have
for any \alpha \in (0,1) that

K  - 
\^t - s\alpha \surd 

\varepsilon 
 - \gamma (\^s - s\alpha ) - H

\biggl( 
\^x - y\alpha \surd 

\varepsilon 
+ \gamma (\^y - y\alpha )

\biggr) 
= - \psi t(y\alpha , s\alpha ) - H

\biggl( 
D\psi (y\alpha , s\alpha ) - 

\xi \alpha  - y\alpha 
\alpha 

\biggr) 
\leq H(D\psi (y\alpha , s\alpha )) - H

\biggl( 
D\psi (y\alpha , s\alpha ) - 

\xi \alpha  - y\alpha 
\alpha 

\biggr) 
\leq C

\surd 
\varepsilon .

In view of (3.8), passing to the limit \alpha \rightarrow 0+ in the above inequality yields (3.6).
Step 4. For the case \^t, \^s > 0, we combine (3.5) and (3.6), use local Lipschitz

continuity of H, and (3.4), to find that

2K \leq H

\biggl( 
\^x - \^y\surd 
\varepsilon 

\biggr) 
 - H

\biggl( 
\^z  - \^y\surd 
\varepsilon 

\biggr) 
+C

\surd 
\varepsilon +C\gamma \leq C

\surd 
\varepsilon +C\gamma ,

which is a contradiction if \gamma \leq 1
2

\surd 
\varepsilon and K = K1

\surd 
\varepsilon for K1 > 0 sufficiently large.

Thus, \^t = 0 or \^s = 0. In either scenario, using the definition of \Phi , the fact that
u\varepsilon (\cdot ,0) = u(\cdot ,0), (2.1), and (2.3), we have for any (x, t) \in Rn \times [0, T ] that

\Phi (x,x,x, t, t)\leq \Phi (\^a)\leq u\varepsilon (\^x, \^t) - u(\^y, \^s) - \varepsilon v

\biggl( 
\^x

\varepsilon 
,
\^z  - \^y\surd 
\varepsilon 

\biggr) 
\leq C

\surd 
\varepsilon .

In view of the definition of \Phi , letting \gamma \rightarrow 0+ in the above inequality yields

u\varepsilon (x, t) - u(x, t) - \varepsilon v
\Bigl( x
\varepsilon 
,0
\Bigr) 
 - 2K1

\surd 
\varepsilon t\leq C

\surd 
\varepsilon \forall (x, t)\in Rn \times [0, T ].

Finally, by (2.3), we conclude that

u\varepsilon (x, t) - u(x, t)\leq C(1 + T )
\surd 
\varepsilon \forall (x, t)\in Rn \times [0, T ].

To complete the proof of (3.1), it remains to show that

u\varepsilon (x, t) - u(x, t)\geq  - C(1 + T )
\surd 
\varepsilon \forall (x, t)\in Rn \times [0, T ].(3.9)

Proof of (3.9). For K > 0 to be chosen and \gamma > 0 small, we introduce the auxiliary
function \widetilde \Phi 1 :Rn \times Rn \times Rn \times [0,\infty )\times [0,\infty )\rightarrow R given by
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1566 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

\widetilde \Phi 1(x, y, z, t, s) := u\varepsilon (x, t) - u(y, s) - \varepsilon v

\biggl( 
x

\varepsilon 
,
z  - y\surd 
\varepsilon 

\biggr) 
+ \omega (x, y, z, t, s),

where \omega is defined as in (3.3). By following closely and carefully the proof of (3.2),
we obtain the desired result.

3.2. Part II: Removal of assumption (2.2). Let T > 0 be fixed, let \varepsilon \in (0,1),
and suppose that we are in the situation (A1)--(A3), i.e., (A1)--(A2) hold and g \in 
C0,1(Rn). Let \rho \in C\infty 

c (Rn, [0,\infty )) be a standard mollifier, i.e.,\int 
Rn

\rho (x)dx= 1, supp(\rho )\subset \{ x\in Rn : | x| \leq 1\} , \rho (x) = \rho ( - x) for x\in Rn.

We set \rho \varepsilon := 1
\varepsilon n \rho (

\cdot 
\varepsilon ) and g

\varepsilon := \rho \varepsilon \ast g. Then, g\varepsilon \in C2(Rn) and we have the bounds

\| g\varepsilon  - g\| L\infty (Rn) \leq C\varepsilon , \| Dg\varepsilon \| L\infty (Rn) + \varepsilon \| D2g\varepsilon \| L\infty (Rn) \leq C.(3.10)

Let \~u\varepsilon denote the viscosity solution to\Biggl\{ 
\~u\varepsilon t +H

\bigl( 
x
\varepsilon ,D\~u\varepsilon 

\bigr) 
= \varepsilon \Delta \~u\varepsilon in Rn \times (0,\infty ),

\~u\varepsilon (x,0) = g\varepsilon (x) on Rn,
(3.11)

and let \~u denote the viscosity solution to\Biggl\{ 
\~ut +H (D\~u) = 0 in Rn \times (0,\infty ),

\~u(x,0) = g\varepsilon (x) on Rn.

By (3.10) and the comparison principle, we have that

\| \~u\varepsilon  - u\varepsilon \| L\infty (Rn\times [0,\infty )) + \| \~u - u\| L\infty (Rn\times [0,\infty )) \leq C\varepsilon .(3.12)

On the other hand, in view of (3.10) we have
\bigm| \bigm| H(x\varepsilon ,Dg

\varepsilon (x)) - \varepsilon \Delta g\varepsilon (x)
\bigm| \bigm| \leq C for

x\in Rn, which yields that (x, t) \mapsto \rightarrow g\varepsilon (x)+Ct is a supersolution to (3.11), and (x, t) \mapsto \rightarrow 
g\varepsilon (x) - Ct is a subsolution to (3.11). By the comparison principle,

g\varepsilon (x) - Ct\leq \~u\varepsilon (x, t)\leq g\varepsilon (x) +Ct \forall (x, t)\in Rn \times [0,\infty ),

which implies that \| \~u\varepsilon t (\cdot ,0)\| L\infty (Rn) \leq C. As \~u\varepsilon t solves a linear parabolic equation, we
find that \| \~u\varepsilon t\| L\infty (Rn\times [0,\infty )) \leq C by the maximum principle. Then, by the classical
Bernstein method (see, e.g., [34, Chapter 1]),

\| \~u\varepsilon t\| L\infty (Rn\times [0,\infty )) + \| D\~u\varepsilon \| L\infty (Rn\times [0,\infty )) \leq C.

Thus, we can assume that (A4) holds, and the proof from section 3.1 yields

\| \~u\varepsilon  - \~u\| L\infty (Rn\times [0,T )) \leq C(1 + T )
\surd 
\varepsilon .(3.13)

Finally, combining (3.12) and (3.13), we see that

\| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) \leq C(1 + T )
\surd 
\varepsilon ,

which concludes the proof.

4. Optimality of the bound in Theorem 1.1. In this section, we consider
the vanishing viscosity problem (1.4) with particular choices of F and g. For \varepsilon > 0,
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1567

let u\varepsilon denote the viscosity solution to (1.4), and let u denote the viscosity solution
to (1.3) with H = F . If F \in Lip loc(Rn) and g \in Lip (Rn), then \| Du\varepsilon \| L\infty (Rn\times [0,\infty )) \leq 
\| Dg\| L\infty (Rn). Besides, it was obtained in [12, 7, 9] that

\| u\varepsilon  - u\| L\infty (Rn\times [0,T ]) \leq C
\surd 
T\varepsilon ,(4.1)

where the constant C > 0 depends only on n, R0 := \| g\| Lip (Rn), and \| F\| Lip (B(0,R0)).
Below, we study both Cauchy problems and Dirichlet problems.

4.1. A linear Cauchy problem. We first consider the case that F is linear in
one dimension.

Proposition 4.1. Let n = 1 and assume that H(y, p) = F (p) = p for y, p \in R.
Let g \in Lip (R) and suppose that g \geq g( - 1) on R and g(x) \geq x+ 1 + g( - 1) for any
x\in [ - 1,0]. Then, for any \varepsilon \in (0, 14 ) there holds

| u\varepsilon (0,1) - u(0,1)| = u\varepsilon (0,1) - g( - 1)\geq e - 1\surd 
\pi e

\surd 
\varepsilon ,

where u\varepsilon denotes the viscosity solution to (1.4) and u denotes the viscosity solution
to (1.3) with H = F .

Proof. In this situation, the problem (1.4) becomes\Biggl\{ 
u\varepsilon t + u\varepsilon x = \varepsilon u\varepsilon xx in R\times (0,\infty ),

u\varepsilon (x,0) = g(x) on R,

and the problem (1.3) becomes\Biggl\{ 
ut + ux = 0 in R\times (0,\infty ),

u(x,0) = g(x) on R.
(4.2)

Note that the solution to (4.2) is given by u(x, t) = g(x - t) for (x, t) \in R\times [0,\infty ). We
introduce v\varepsilon :R\times [0,\infty )\rightarrow R given by v\varepsilon (x, t) := u\varepsilon (x+ t, t). Then, v\varepsilon solves\Biggl\{ 

v\varepsilon t = \varepsilon v\varepsilon xx in R\times (0,\infty ),

v\varepsilon (x,0) = g(x) on R,

and hence, v\varepsilon is given by

v\varepsilon (x, t) =
1\surd 
4\pi \varepsilon t

\int \infty 

 - \infty 
e - 

| x - y| 2
4\varepsilon t g(y)dy.

This implies that

u\varepsilon (x, t) = v\varepsilon (x - t, t) =
1\surd 
4\pi \varepsilon t

\int \infty 

 - \infty 
e - 

| x - y| 2
4\varepsilon t g(y - t)dy.

Using \~g(x) := g(x) - g( - 1)\geq 0 for all x \in R and \~g(y  - 1)\geq y if y \in [0,1], we have for
any \varepsilon \in (0, 14 ) that

u\varepsilon (0,1) - u(0,1) =
1\surd 
4\pi \varepsilon 

\int \infty 

 - \infty 
e - 

y2

4\varepsilon g(y - 1)dy - g( - 1)

=
1\surd 
4\pi \varepsilon 

\int \infty 

 - \infty 
e - 

y2

4\varepsilon \~g(y - 1)dy

\geq 1\surd 
4\pi \varepsilon 

\int 2
\surd 
\varepsilon 

0

e - 
y2

4\varepsilon y dy=
e - 1\surd 
\pi e

\surd 
\varepsilon .

Noting that u(0,1) = g( - 1) yields the desired result.
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1568 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

4.2. Proof of Theorem 1.2. Recall that we consider (1.4) in one dimension,
i.e., \Biggl\{ 

u\varepsilon t + F (u\varepsilon x) = \varepsilon u\varepsilon xx in R\times (0,\infty ),

u\varepsilon (x,0) = g(x) on R.
(4.3)

As \varepsilon \rightarrow 0+, we have that u\varepsilon \rightarrow u locally uniformly on R\times [0,\infty ), where u solves\Biggl\{ 
ut + F (ux) = 0 in R\times (0,\infty ),

u(x,0) = g(x) on R.
(4.4)

Proof of Theorem 1.2. We first show that u(0,1) = 0. As F (0) = 0 and g \geq 0 on
R, the function \varphi \equiv 0 is a subsolution to (4.4), which yields u(0,1) \geq 0. In order to
show that also u(0,1) \leq 0, let us introduce h, \~h : R \rightarrow R given by \~h(x) := x+ 1 and
h(x) :=max\{ \~h(x),0\} for x\in R. Let \rho \in C\infty 

c (R, [0,\infty )) be a standard mollifier, i.e.,\int \infty 

 - \infty 
\rho (x)dx= 1, supp(\rho )\subset [ - 1,1], and \rho (x) = \rho ( - x) for x\in R.

For \delta \in (0,1), let \rho \delta := 1
\delta \rho (

\cdot 
\delta ) and set h\delta := \rho \delta \ast h. Note that h\delta \geq 0 as h \geq 0, and

h\delta \geq \rho \delta \ast \~h= \~h as h\geq \~h. Hence, h\delta \geq h\geq g on R. Besides, 0\leq (h\delta )\prime \leq 1 on R which
follows from (h\delta )\prime = \rho \delta \ast h\prime and 0 \leq h\prime \leq 1 a.e. on R. Introducing \psi (x, t) := h(x - t)
and \psi \delta (x, t) := h\delta (x - t) for (x, t) \in R\times [0,\infty ), we have that \psi \delta (\cdot ,0) = h\delta \geq g on R
and, using that F (p) = p for p\in [0,1],

\psi \delta 
t (x, t) + F (\psi \delta 

x(x, t)) = - (h\delta )\prime (x - t) + F ((h\delta )\prime (x - t)) = 0,

i.e., \psi \delta is a supersolution to (4.4). Since \psi \delta \rightarrow \psi locally uniformly on R\times [0,\infty ) as
\delta \rightarrow 0+, we deduce that \psi is also a supersolution to (4.4). In particular,

u(0,1)\leq \psi (0,1) = h( - 1) = 0.

Thus, u(0,1) = 0.
Next, we construct a subsolution to (4.3). We set

\phi \varepsilon (x, t) :=
1\surd 
4\pi \varepsilon t

\int \infty 

 - \infty 
e - 

| x - y| 2
4\varepsilon t g(y - t)dy(4.5)

and recall from the proof of Proposition 4.1 that \phi \varepsilon t + \phi \varepsilon x = \varepsilon \phi \varepsilon xx in R\times (0,\infty ) and
\phi \varepsilon (\cdot ,0) = g on R. Since | g\prime | \leq 1 a.e. on R, we note that | \phi \varepsilon x| \leq 1 in R\times (0,\infty ). Using
that by assumption F (p)\leq p if | p| \leq 1, we find that

\phi \varepsilon t + F (\phi \varepsilon x) - \varepsilon \phi \varepsilon xx \leq \phi \varepsilon t + \phi \varepsilon x  - \varepsilon \phi \varepsilon xx = 0 in R\times (0,\infty ).

Therefore, \phi \varepsilon is a subsolution to (4.3) and by the comparison principle we have that
u\varepsilon \geq \phi \varepsilon . Hence, for \varepsilon \in (0, 14 ) there holds

u\varepsilon (0,1)\geq \phi \varepsilon (0,1)\geq e - 1\surd 
\pi e

\surd 
\varepsilon ,

where the second inequality follows from Proposition 4.1 applied to \phi \varepsilon .

Remark 1. Fix \varepsilon \in (0, 15 ) and \alpha \in (0, 1
10

\surd 
\varepsilon ). In the situation of Theorem 1.2, if

we replace the initial condition g by

g\alpha := \rho \alpha \ast g \in C\infty (R),
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where \rho \alpha := 1
\alpha \rho (

\cdot 
\alpha ) with \rho as in the proof of Theorem 1.2, then we still have that

u\varepsilon (0,1) - u(0,1)\geq e - 1

2
\surd 
\pi e

\surd 
\varepsilon .

Indeed, as g\alpha ( - 1) \in (0, \alpha ) and g\alpha (x) \geq 1 + x for all x \in [ - 1, - 1 + 2
\surd 
\varepsilon ] \subset [ - 1, - \alpha ),

we have in view of the proof of Proposition 4.1 that u\varepsilon (0,1) \geq e - 1\surd 
\pi e

\surd 
\varepsilon and that

u(0,1) = g\alpha ( - 1) < 1
10

\surd 
\varepsilon . Note that we still have g\alpha \in Lip (R) with \| g\alpha \| L\infty (R) \leq 1

and \| (g\alpha )\prime \| L\infty (R) \leq 1.

We now provide a generalization of Theorem 1.2.

Proposition 4.2. Let n= 1 and \varepsilon \in (0, 14 ). Let m> 1 be a constant such that

1 - 1

m
\leq e - 1

2
\surd 
\pi e

\surd 
\varepsilon .

Let F \in Lip loc(R) be such that\Biggl\{ 
F (p) = 1

mp
m for p\in [0,1],

F (p)\leq p for p\in [ - 1,0].

Assume that g(x) =max\{ 1 - | x| ,0\} for x\in R. Let u\varepsilon denote the viscosity solution to
(1.4), and let u denote the viscosity solution to (1.3) with H = F . Then,

| u\varepsilon (0,1) - u(0,1)| \geq e - 1

2
\surd 
\pi e

\surd 
\varepsilon .

Proof. First, we note that F (p)\leq p if | p| \leq 1. Thus, by the last part of the proof
of Theorem 1.2, we still have u\varepsilon \geq \phi \varepsilon , and hence,

u\varepsilon (0,1)\geq \phi \varepsilon (0,1)\geq e - 1\surd 
\pi e

\surd 
\varepsilon ,(4.6)

where \phi \varepsilon is defined in (4.5). Now, let h\delta = \rho \delta \ast h for \delta \in (0,1) be defined as in the
proof of Theorem 1.2. We recall that h\delta \geq h\geq g and 0\leq (h\delta )\prime \leq 1 on R. Introducing
\zeta (x, t) := h(x - t) + (1 - 1

m )t and

\zeta \delta (x, t) := h\delta (x - t) +

\biggl( 
1 - 1

m

\biggr) 
t for (x, t)\in R\times [0,\infty ),

we claim that \zeta \delta is a supersolution to (4.4). Indeed, we have that \zeta \delta (\cdot ,0) = h\delta \geq g on
R, and using F (p) = 1

mp
m for p\in [0,1] and Bernoulli's inequality, there holds

\zeta \delta t (x, t) + F (\zeta \delta x(x, t)) = 1 - 1

m
 - (h\delta )\prime (x - t) + F ((h\delta )\prime (x - t))

=
((h\delta )\prime (x - t))m  - [1 +m((h\delta )\prime (x - t) - 1)]

m
\geq 0.

Since \zeta \delta \rightarrow \zeta locally uniformly on R\times [0,\infty ) as \delta \rightarrow 0+, we deduce that \zeta is also a
supersolution to (4.4). Hence, we have that

u(0,1)\leq \zeta (0,1) = h( - 1) + 1 - 1

m
= 1 - 1

m
\leq e - 1

2
\surd 
\pi e

\surd 
\varepsilon ,

which completes the proof in view of (4.6).

It is important to note that in the above proposition, although F depends on m
and hence \varepsilon , the value \| F\| Lip \mathrm{l}\mathrm{o}\mathrm{c}(R) does not depend on m and \varepsilon .
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1570 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

4.3. Quadratic Hamiltonian. Next, we consider the case where F is quadratic
in one dimension. First, we construct an example that complements (4.1) when T is
very small.

Proposition 4.3. Let n= 1 and assume that H(y, p) = F (p) = 1
2 | p| 

2 for y, p\in R,
and g(x) = - | x| for x \in R. For \varepsilon > 0, let u\varepsilon be the viscosity solution to (1.4), and let
u be the viscosity solution to (1.3). Then, for \varepsilon \in (0,1) and T > 0, there holds

\| u\varepsilon  - u\| L\infty (R\times [0,T ]) \leq C
\surd 
T\varepsilon ,

and this upper bound O(
\surd 
T\varepsilon ) is sharp in the sense that

lim
t\rightarrow 0+

u\varepsilon (0, t) - u(0, t)\surd 
t\varepsilon 

= - 2\surd 
\pi 
.

It is important to note that we also obtain a rigorous asymptotic expansion of
u\varepsilon (0, t) for 0 < t\ll \varepsilon in the proof of Proposition 4.3. We then give a finer bound of
u\varepsilon  - u in Proposition 4.4 under some appropriate conditions on g.

In this subsection, we assume the setting of Proposition 4.3. Then, problem (1.4)
reads \left\{   u\varepsilon t +

1

2
| u\varepsilon x| 2 = \varepsilon u\varepsilon xx in R\times (0,\infty ),

u\varepsilon (x,0) = g(x) on R.

We have that u\varepsilon \rightarrow u locally uniformly on R\times [0,\infty ) as \varepsilon \rightarrow 0+, and u solves\left\{   ut +
1

2
| ux| 2 = 0 in R\times (0,\infty ),

u(x,0) = g(x) on R.
(4.7)

Proof of Proposition 4.3. The bound O(
\surd 
T\varepsilon ) was obtained in [12, 9]. We need

only show that this bound is optimal here. As g(x) = - | x| for x\in R, we see that the
solution to (4.7) is given by

u(x, t) = - | x|  - t

2
for (x, t)\in R\times [0,\infty ).

In particular, u(0, t) = - t
2 for all t\geq 0. For \varepsilon \in (0,1), we have the following represen-

tation formula for u\varepsilon (see, e.g., [10, Chapter 4]):

u\varepsilon (x, t) = - 2\varepsilon log

\biggl[ 
1\surd 
4\pi \varepsilon t

\int \infty 

 - \infty 
e - 

| x - y| 2
4\varepsilon t  - g(y)

2\varepsilon dy

\biggr] 
.(4.8)

In particular, for any t > 0 we have that

u\varepsilon (0, t) = - 2\varepsilon log

\biggl[ 
1\surd 
\pi 

\int \infty 

 - \infty 
e
 - | z| 2+ | z| 

\surd 
t\surd 

\varepsilon dz

\biggr] 
= - 2\varepsilon log

\biggl[ 
2\surd 
\pi 
e

t
4\varepsilon 

\int \infty 

0

e
 - (z - 

\surd 
t

2
\surd 

\varepsilon 
)2
dz

\biggr] 
= - t

2
 - 2\varepsilon log

\Biggl[ 
1 +

2\surd 
\pi 

\int \surd 
t

2
\surd 

\varepsilon 

0

e - s2 ds

\Biggr] 
= - t

2
 - 2\varepsilon log

\biggl[ 
1 + erf

\biggl( \surd 
t

2
\surd 
\varepsilon 

\biggr) \biggr] 
.
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1571

Note that we have

erf(z) =
2\surd 
\pi 

\infty \sum 
k=0

( - 1)kz2k+1

k!(2k+ 1)
.

For z =
\surd 
t

2
\surd 
\varepsilon 
\ll 1, we have that 0< erf(z)\ll 1 and

log(1 + erf(z)) = log

\biggl( 
1 +

2\surd 
\pi 
z + \cdot \cdot \cdot 

\biggr) 
=

2\surd 
\pi 
z + \cdot \cdot \cdot ,

and thus,

u\varepsilon (0, t) = - t

2
 - 2\varepsilon 

2\surd 
\pi 

\surd 
t

2
\surd 
\varepsilon 
+ \cdot \cdot \cdot = - t

2
 - 2

\surd 
t\varepsilon \surd 
\pi 

+ \cdot \cdot \cdot ,

which gives us the desired result.

4.3.1. Improvement of convergence rates. It was shown in [32] that if the
Hamiltonian F is uniformly convex, i.e., F \prime \prime \geq \alpha on R for some constant \alpha > 0, then
the convergence rate of the vanishing viscosity limit can be improved to O(\varepsilon | log \varepsilon | )
when the initial datum satisfies certain technical assumptions. Below we show that
for F (p) = 1

2 | p| 
2, the rate is almost everywhere O(\varepsilon ) when the initial datum is C2,

although O(\varepsilon | log \varepsilon | ) could happen at some points. For F (p) = 1
2 | p| 

2, we have by the
Hopf--Lax formula (see, e.g., [10, 34]) that

u(x, t) = inf
y\in R

\biggl\{ 
g(y) + tL

\biggl( 
x - y

t

\biggr) \biggr\} 
, where L(v) := sup

p\in R
\{ pv - F (p)\} = 1

2
| v| 2.

In particular, for any (x, t) \in R\times (0,\infty ) there holds

u(x, t) - | x| 2

2t
= inf

y\in R

\biggl\{ 
g(y) +

| y| 2

2t
 - xy

t

\biggr\} 
,(4.9)

which yields that x \mapsto \rightarrow u(x, t) - | x| 2
2t is concave for any fixed t > 0. Hence, for any fixed

t > 0, we have that u(\cdot , t) is twice differentiable a.e. on R. For t > 0, we set

St := \{ x\in R : u(\cdot , t) is twice differentiable at x\} ,(4.10)

and note that R\setminus St has Lebesgue measure zero. Assume now that g \in C2(R). We
know that for each x\in St, there exists a unique yx,t \in R such that

u(x, t) = inf
y\in R

\biggl\{ 
g(y) +

1

2t
| x - y| 2

\biggr\} 
= g(yx,t) +

1

2t
| x - yx,t| 2,(4.11)

and we have that

ux(x, t) = g\prime (yx,t) =
x - yx,t

t
, g\prime \prime (yx,t)\geq  - 1

t
,(4.12)

where the first equality in (4.12) follows from the method of characteristics. We obtain
that ux(x, t) = g\prime (x - tux(x, t)) and hence,

uxx(x, t) = (1 - tuxx(x, t))g
\prime \prime (x - tux(x, t)) = (1 - tuxx(x, t))g

\prime \prime (yx,t).

In view of (4.12), we deduce that

g\prime \prime (yx,t)> - 1

t
.(4.13)

We are now in a position to prove the following result.
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1572 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

Proposition 4.4. Let n= 1 and assume that H(y, p) = F (p) = 1
2 | p| 

2 for y, p\in R.
Assume that g \in Lip(R). For \varepsilon \in (0,1), let u\varepsilon denote the viscosity solution to (1.4),
and let u denote the viscosity solution to (1.3) with H = F . Then, the following
assertions hold true:

(i) For fixed (x, t)\in R\times [0,\infty ), there holds

| u\varepsilon (x, t) - u(x, t)| \leq 2\varepsilon | log \varepsilon | 

for \varepsilon > 0 sufficiently small.
(ii) If we further assume that g \in C2(R), then for each fixed t > 0 we have that

| u\varepsilon (x, t) - u(x, t)| \leq C\varepsilon for a.e. x\in R,

where C =C(x, t)> 0 is independent of \varepsilon \in (0,1).
(iii) If g(x) = - 1

2x
2 for all x\in [ - 1,1] and g(x)\geq  - 1

2x
2 for all x\in R, then

| u\varepsilon (0,1) - u(0,1)| \geq 1

2
\varepsilon | log \varepsilon | 

for \varepsilon > 0 sufficiently small.

Proof. Without loss of generality, let (x, t) = (0,1). Introducing h(y) := g(y) +
1
2 | y| 

2 for y \in R, we have by (4.8) and (4.9) that

u\varepsilon (0,1) = - 2\varepsilon log

\biggl[ 
1\surd 
4\pi \varepsilon 

\int \infty 

 - \infty 
e - 

h(y)
2\varepsilon dy

\biggr] 
, u(0,1) =min

R
h= h(\=y),

where \=y \in R is a fixed point for which there holds h(\=y) =minR h. Note that

u\varepsilon (0,1) - u(0,1) = - 2\varepsilon log

\biggl[ 
1\surd 
4\pi \varepsilon 

\int \infty 

 - \infty 
e - 

h(y) - h(\=y)
2\varepsilon dy

\biggr] 
.(4.14)

We first prove (i). Since g \in Lip(R), there exists M > 0 such that for any y \in R with
| y - \=y| \geq M there holds h(y) - h(\=y)\geq 1

4 | y - \=y| 2. For \varepsilon \in (0,1), we have that

2M \geq 
\int \=y+M

\=y - M

e - 
h(y) - h(\=y)

2\varepsilon dy\geq 
\int \=y+M

\=y - M

e - 
A| y - \=y| 

2\varepsilon dy=
4

A

\Bigl( 
1 - e - 

AM
2\varepsilon 

\Bigr) 
\varepsilon \geq B\varepsilon 

for some A=A(L, | \=y| ,M)> 0 and B =B(A,M)> 0. Moreover,\int 
R\setminus (\=y - M,\=y+M)

e - 
h(y) - h(\=y)

2\varepsilon dy\leq 
\int 
R\setminus (\=y - M,\=y+M)

e - 
| y - \=y| 2

8\varepsilon dy\leq 2

\int \infty 

M

e - 
My
8\varepsilon dy\leq 16

M
\varepsilon .

Combining the two inequalities stated above, we find that

B\varepsilon \leq 
\int \infty 

 - \infty 
e - 

h(y) - h(\=y)
2\varepsilon dy\leq 2M +

16

M
\varepsilon .

Thus, in view of (4.14), we obtain that

| u\varepsilon (0,1) - u(0,1)| \leq 2\varepsilon | log \varepsilon | 

for \varepsilon > 0 sufficiently small.
Next, we prove (ii). Assume that 0 \in S1, where S1 \subset R is defined in (4.10). Then,

\=y= y0,1 (recall (4.11)--(4.12)) is the unique minimum point of h and, using (4.13), we
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1573

have that h\prime \prime (\=y) = g\prime \prime (\=y) + 1 > 0. Combining with the fact that g \in C2(R) \cap Lip (R),
there exists \alpha > 0 such that \alpha | y  - \=y| 2 \leq h(y) - h(\=y)\leq 1

\alpha | y  - \=y| 2 for any y \in R. Thus,
there exists C =C(\alpha )> 0 such that

C
\surd 
\varepsilon \leq 

\int \infty 

 - \infty 
e - 

h(y) - h(\=y)
2\varepsilon dy\leq 1

C

\surd 
\varepsilon ,

and hence, in view of (4.14),

| u\varepsilon (0,1) - u(0,1)| \leq C\varepsilon .

Finally, (iii) follows immediately from (4.14) in combination with the fact that
due to h\geq 0 on R, h| [ - 1,1] \equiv 0, and h(\=y) = 0, there holds\int \infty 

 - \infty 
e - 

h(y) - h(\=y)
2\varepsilon dy\geq 

\int 1

 - 1

e - 
h(y) - h(\=y)

2\varepsilon dy= 2.

It is not clear to us whether Proposition 4.4 holds for other uniformly convex F .
For strictly but not uniformly convex F (e.g., F (p) = 1

4 | p| 
4), the convergence rate for

the vanishing viscosity process might be O(\varepsilon \alpha ) for some exponent \alpha \in ( 12 ,1); see the
numerical Example 5. A natural question is whether we will see a similar convergence
rate when the homogenization process is involved for the quadratic case as numerical
example, Example 10, suggests. Let us briefly demonstrate the technical difficulty
in extending the proof of Proposition 4.4 to the homogenization problem. Consider
H(y, p) = 1

2 | p| 
2 + V (y) for a smooth Zn-periodic potential function V . Then, by the

Hopf--Cole transformation, we have that

u\varepsilon (x, t) = - 2\varepsilon log

\biggl[ 
h

\biggl( 
x

\varepsilon 
,
t

\varepsilon 

\biggr) \biggr] 
,

where h= h(x, t) is the solution to the problem\left\{   ht  - \Delta h+
1

2
V h= 0 in Rn \times (0,\infty ),

h(x,0) = e - 
g(\varepsilon x)
2\varepsilon on Rn.

Therefore, we have that

u\varepsilon (x, t) = - 2\varepsilon log

\biggl[ \int 
Rn

K

\biggl( 
x

\varepsilon 
,
y

\varepsilon 
,
t

\varepsilon 

\biggr) 
e - 

g(y)
2\varepsilon dy

\biggr] 
,

where K =K(x, y, t) denotes the fundamental solution corresponding to the operator
\partial t - \Delta + 1

2V . Obtaining the convergence rate requires a sharp estimate of the homog-
enization of K, which is a highly nontrivial subject. Let us further point out that the
convergence rate might also depend on the regularity of V as the numerical example,
Example 6, suggests.

4.4. A Dirichlet problem. We are again in one dimension. For \varepsilon > 0, we
consider the Dirichlet problem\Biggl\{ 

2(u\varepsilon )3 = \varepsilon (u\varepsilon )\prime \prime in (0,\infty ),

u\varepsilon (0) = 1.
(4.15)
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1574 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

It is quickly seen that the solution is given by

u\varepsilon (x) =

\surd 
\varepsilon 

x+
\surd 
\varepsilon 

for x\geq 0.

In particular, we have u\varepsilon \rightarrow u \equiv 0 locally uniformly in (0,\infty ). Of course, there is a
boundary layer of size O(

\surd 
\varepsilon ) at x = 0, but let us ignore this boundary layer in our

discussion here. We observe that for any \varepsilon \in (0,1) there holds

| u\varepsilon (1) - u(1)| =
\surd 
\varepsilon 

1 +
\surd 
\varepsilon 
\geq 1

2

\surd 
\varepsilon .

Thus, once again, we see that the O(
\surd 
\varepsilon ) rate occurs naturally here. We record this

in the following lemma.

Lemma 4.5. For \varepsilon \in (0,1), let u\varepsilon denote the solution to (4.15). Then, u\varepsilon \rightarrow u\equiv 0
locally uniformly in (0,\infty ), and there holds

| u\varepsilon (x) - u(x)| =
\surd 
\varepsilon 

x+
\surd 
\varepsilon 
\geq 1

2x

\surd 
\varepsilon \forall x\geq 1.

In particular, for any d > 1, the optimal rate for the convergence of u\varepsilon to u in the
L\infty ((1, d))-norm is O(

\surd 
\varepsilon ).

5. Numerical results for the vanishing viscosity process and the ho-
mogenization problem.

5.1. Vanishing viscosity process. We consider (1.4) in one dimension, that
is, \Biggl\{ 

u\varepsilon t + F (u\varepsilon x) = \varepsilon u\varepsilon xx in R\times (0,\infty ),

u\varepsilon (x,0) = g(x) on R.
(5.1)

Recall that, as \varepsilon \rightarrow 0+, u\varepsilon \rightarrow u locally uniformly on R\times [0,\infty ), where u solves\Biggl\{ 
ut + F (ux) = 0 in R\times (0,\infty ),

u(x,0) = g(x) on R.

We now verify numerically that, in some particular examples,

\| u\varepsilon (\cdot ,1) - u(\cdot ,1)\| L\infty \geq C
\surd 
\varepsilon ,

for some C > 0 independent of \varepsilon \in (0,1), which confirms again that the bound O(
\surd 
\varepsilon )

is optimal in general. To do so, we consider various choices of F and g and compute
\| u\varepsilon (\cdot ,1) - u(\cdot ,1)\| L\infty for different values of \varepsilon > 0. Specifically, Examples 3, 7, and 9 give
the order of convergence 1

2 , and the other examples give convergence orders between
1
2 and 1. In particular, Examples 3, 7, and 9 confirm the optimality of Theorem 1.1.

Let us describe our methodology. We partition a spatial interval [a, b] by a uniform
mesh with mesh size \Delta x and choose adaptive time steps \Delta t to march through a given
time interval [0, T ]. Accordingly, we discretize equation (5.1) as follows:

un+1
i = uni  - \Delta t

\biggl[ 
F

\biggl( 
uni+1  - uni - 1

2\Delta x

\biggr) 
 - \varepsilon 

uni+1  - 2uni + uni - 1

\Delta x2

\biggr] 
=:G(uni - 1, u

n
i , u

n
i+1).
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Monotonicity of the scheme requires that G is nondecreasing in each of its arguments;
consequently, we have

\varepsilon \geq 1

2
\Delta xmax

p
| F \prime (p)| ,(5.2)

\Delta t\leq \Delta x2

2\varepsilon 
.(5.3)

The condition (5.2) requires a minimum viscosity to be imposed on the numerical
scheme, and the time step has to be chosen according to (5.3). To check the effect of
vanishing viscosity, we will set

\varepsilon min =
1

2
\Delta xmax

p
| F \prime (p)| ,

\varepsilon = 2k\varepsilon min for k= 9, . . . ,1,0,

\Delta t= ccfl
\Delta x2

2\varepsilon 
,

where ccfl \leq 1 is the CFL number. We note that it is extremely hard to verify
rigorously the examples considered below.

Example 1. Assume F (p) = | p| 3/2 for p\in R, and g(x) = - | x| for x\in R. Then,

u(x, t) = - | x|  - t for all (x, t)\in R\times [0,\infty ).

Numerical results are shown in Figure 5.1(a). We observe that the convergence rate
is O(\varepsilon ) in this example.

Example 2. Assume F (p) = | p| 4 for p\in R, and g(x) = - | x| for x\in R. Then,

u(x, t) = - | x|  - t for all (x, t)\in R\times [0,\infty ).

Numerical results are shown in Figure 5.1(b). We observe that the convergence rate
is O(\varepsilon ) in this example.

Example 3. Assume F (p) = | p| for p \in R, and g(x) = max\{ 1 - | x| ,0\} for x \in R.
Then,

u(x, t) =max\{ 1 - | x|  - t,0\} for all (x, t)\in R\times [0,\infty ).

Numerical results are shown in Figure 5.1(c). We observe that the convergence rate
is O(

\surd 
\varepsilon ) in this example.

Example 4. We consider (5.1) only on a quadrant U = ( - \infty ,0)\times (0,\infty ). Assume

F (p) = p3 for p\in R, and g(x) = 2
\surd 
2

9 ( - x)3/2 for x\leq 0. The limiting PDE is\left\{     
ut + (ux)

3 = 0 in ( - \infty ,0)\times (0,\infty ),

u(0, t) = 0 for t\in (0,\infty ),

u(x,0) = g(x) for x\in ( - \infty ,0].

Then, for 0\leq t\leq 1,

u(x, t) =

\biggl( 
 - 2x

3

\biggr) 3/2

(3 - 2t) - 
2/2 for all x\in ( - \infty ,0].
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(a) F (p) = |p| 32 for p ∈ R,
g(x) = −|x| for x ∈ R.

(b) F (p) = |p|4 for p ∈ R,
g(x) = −|x| for x ∈ R.

(c) F (p) = |p| for p ∈ R,
g(x) = max{1− |x|, 0} for x ∈ R.

(d) F (p) = p3 for p ∈ R,
g(x) = 2

√
2

9
(−x)3/2 for x ∈ (−∞, 0].

(e) F (p) = 1
4
|p|4 for p ∈ R,

g(x) = M min{|x|, |x− 1
2
| − 1

4
} for x ∈ R.

Fig. 5.1. Illustration of the error \| u\varepsilon 
\Delta x(\cdot ,1) - u(\cdot ,1)\| L\infty (\Omega ) for Examples 1--5.

Numerical results are shown in Figure 5.1(d). Numerically, we observe that the con-
vergence rate is O(\varepsilon 3/4) in this example.

Example 5. Assume F (p) = 1
4 | p| 

4 for p\in R, and g(x) =Mmin(| x| , | x - 1
2 |  - 

1
4 ) for

x\in R and some scaling constant M . We choose M \in \{ 1
4 ,

1
2 ,1,2\} to perform our tests.

Then, we can use the Hopf--Lax formula to obtain
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u(x, t) = inf
y\in R

\biggl\{ 
g(y) + tL

\biggl( 
x - y

t

\biggr) \biggr\} 
, where L(v) := sup

p\in R
\{ pv - F (p)\} = 3

4
| v| 4/3

for (x, t)\in R\times (0,\infty ). Numerical results are shown in Figure 5.1(e). Numerically, we
observe that the convergence rate is O(\varepsilon 

2/3) in this example.

5.2. A simple homogenization test. Consider (1.1) in one dimension, that
is, \Biggl\{ 

u\varepsilon t +H
\bigl( 
x
\varepsilon , u

\varepsilon 
x

\bigr) 
= \varepsilon u\varepsilon xx in R\times (0,\infty ),

u\varepsilon (x,0) = g(x) on R.

We take g(x) = min(| x| , | x - 1
2 |  - 

1
4 ) for x \in R, and we consider six different choices

for the Hamiltonian H. Since the exact solution to the homogenized problem (1.3) is

unknown, we compute \| u\varepsilon (\cdot , T ) - u
\varepsilon /2(\cdot , T )\| L\infty (\Omega ) for some chosen T > 0 and compu-

tational domain \Omega .

Example 6. Assume H(y, p) = 1
2 | p| 

2+mink\in Z | y - k| for y, p\in R. Numerical results
are shown in Figure 5.2(a). The order of convergence seems to be in [ 12 ,

2
3 ].

Example 7. Assume H(y, p) = 1
4 | p| 

4+mink\in Z | y - k| for y, p\in R. Numerical results
are shown in Figure 5.2(b). The order of convergence seems to be 1

2 .

Example 8. Assume H(y, p) = 1
2 | p| 

2 + mink\in Z | y  - k| 2 for y, p \in R. Numerical
results are shown in Figure 5.2(c). We observe the same as for Example 6.

Example 9. Assume H(y, p) = 1
4 | p| 

4 + mink\in Z | y  - k| 2 for y, p \in R. Numerical
results are shown in Figure 5.2(d). We observe the same as for Example 7.

Example 10. Assume H(y, p) = 1
2 | p| 

2 + sin(y) for y, p \in R. Numerical results are
shown in Figure 5.2(e), and the order of convergence seems to be close to 1.

Example 11. Assume H(y, p) = 1
4 | p| 

4 + sin(y) for y, p \in R. Numerical results are
shown in Figure 5.2(f), and the order of convergence seems to be close to 1.

6. Numerical approximation of effective Hamiltonians. In this section,
we would like to gain a better understanding of the effective Hamiltonian H. Let us
recall that for p\in Rn, the value H(p)\in R is the unique constant for which there exists
a viscosity solution v(\cdot , p)\in C(Tn) to

H(y, p+Dv) =H(p) +\Delta v for y \in Tn.

6.1. Framework. Let us focus on a Hamilton--Jacobi--Bellman nonlinearity

H :Tn \times Rn \rightarrow R, H(y, p) := sup
\alpha \in \Lambda 

\{  - b(y,\alpha ) \cdot p - f(y,\alpha )\} ,(6.1)

where \Lambda is a compact metric space, b\in C(Tn\times \Lambda ;Rn), f \in C(Tn\times \Lambda ), and we assume
that b = b(y,\alpha ), f = f(y,\alpha ) are Lipschitz continuous in y, uniformly in \alpha . In this
setting, H \in Lip (Tn\times Rn) and H =H(y, p) is convex in p. See [22] and the references
therein for the homogenization of viscous G-equations.

6.2. Approximation of the effective Hamiltonian. Let p \in Rn be fixed.
Our goal is to approximate the value H(p), and we begin by introducing approximate
correctors.
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1578 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

(a) H(y, p)= 1
2
|p|2+mink∈Z|y − k|, y, p ∈ R. (b) H(y, p)= 1

4
|p|4+mink∈Z|y − k|, y, p ∈ R.

(c) H(y, p)= 1
2
|p|2+mink∈Z|y − k|2, y, p ∈ R. (d) H(y, p)= 1

4
|p|4+mink∈Z|y − k|2, y, p ∈ R.

(e) H(y, p) = 1
2
|p|2 + sin(y) for y, p ∈ R. (f) H(y, p) = 1

4
|p|4 + sin(y) for y, p ∈ R.

Fig. 5.2. Illustration of \| u\varepsilon 
\Delta x(\cdot , T )  - u

\varepsilon /2
\Delta x(\cdot , T )\| L\infty (\Omega ) for Examples 6--11 with initial datum

g(x) = min(| x| , | x  - 1
2
|  - 1

4
) for x \in R. Here, \Omega = [ - 5

2
, 5
2
], T = 1 for (a)--(d), and \Omega = [ - 11

2
, 11

2
],

T = 1
2
for (e)--(f).

6.2.1. Approximate correctors. For \sigma > 0, introducing the approximate cor-
rector v\sigma \in C(Tn) to be the unique viscosity solution to the problem

\sigma v\sigma +H(y, p+Dv\sigma ) =\Delta v\sigma for y \in Tn,(6.2)
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OPTIMAL HOMOGENIZATION RATE OF VISCOUS HJ EQUATION 1579

it is known that \{  - \sigma v\sigma \} \sigma >0 converges uniformly to the constant H(p) as \sigma \rightarrow 0+; see
[20, Chapter 4].

Lemma 6.1. For \sigma > 0, let v\sigma denote the unique viscosity solution to (6.2). Then,
v\sigma \in C2,\gamma (Tn) for any \gamma \in (0,1). Moreover, for any \sigma > 0 there holds

\| \sigma v\sigma +H(p)\| L\infty (Tn) \leq C\sigma ,

where C > 0 is a constant independent of \sigma .

Proof. As H \in Lip (Tn \times Rn), we have that v\sigma \in W 2,p(Tn) for any p > 1; see [2].
Hence, Dv\sigma \in C0,\gamma (Tn) for any \gamma \in (0,1), and hence, H(\cdot ,Dv\sigma (\cdot ))\in C0,\gamma (Tn). By the
standard Schauder estimates, we obtain that v\sigma \in C2,\gamma (Tn).

Let v= v(\cdot , p)\in C(Tn) be a solution to the cell problem (1.5). Then, the function

v - \| v\| L\infty (Tn)  - H(p)
\sigma is a subsolution to (6.2) and the function v+ \| v\| L\infty (Tn)  - H(p)

\sigma 
is a supersolution to (6.2). By the comparison principle, we have that

v - \| v\| L\infty (Tn)  - 
H(p)

\sigma 
\leq v\sigma \leq v+ \| v\| L\infty (Tn)  - 

H(p)

\sigma 
in Tn,

and hence,

\| \sigma v\sigma +H(p)\| L\infty (Tn) \leq 2\| v\| L\infty (Tn)\sigma ,

which completes the proof.

Therefore, a natural idea is to obtain a numerical approximation of H(p) based
on the fact that

H(p) = lim
\sigma \rightarrow 0+

\int 
Y

( - \sigma v\sigma ),

where Y := (0,1)n, in combination with a numerical approximation v\sigma h of v\sigma with
\| v\sigma  - v\sigma h\| L1(Y ) \rightarrow 0 as h\rightarrow 0 for \sigma fixed. Let us briefly address a possible numerical
approximation for \| b\| \infty small. To ensure strong monotonicity of the finite element
schemes proposed below, we assume that

\sigma >
\| b\| 2\infty 
4

,(6.3)

requiring a minimum discount to be imposed for the numerical scheme. Here, we
follow the idea of the small-\delta method (see, e.g., [27]) in combination with a finite
element approximation of (6.2). We note that the effective Hamiltonian can also be
approximated by the large-T method; see [27, 28] and the references therein. Since the
large-T method and the small-\delta method (see, e.g., [27]) are mathematically equivalent,
we just use the small-\delta method to illustrate the new formulation for convenience.

6.2.2. \bfitH 1
per(\bfitY )-conforming finite element approximation of (6.2). We

have that v\sigma is the unique element in H1
per(Y ) such that

a(v\sigma ,\varphi ) = 0 \forall \varphi \in H1
per(Y ),

where a :H1
per(Y )\times H1

per(Y )\rightarrow R is given by

a(w,\varphi ) := (Dw,D\varphi )L2(Y ) +

\biggl( 
sup
\alpha \in \Lambda 

\{  - b(\cdot , \alpha ) \cdot Dw - g(\cdot , \alpha )\} ,\varphi 
\biggr) 

L2(Y )

+ \sigma (w,\varphi )L2(Y )
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1580 J. QIAN, T. SPREKELER, H. V. TRAN, AND Y. YU

with g(\cdot , \alpha ) := b(\cdot , \alpha ) \cdot p+ f(\cdot , \alpha ). Indeed, assuming (6.3), a :H1
per(Y )\times H1

per(Y )\rightarrow R
is strongly monotone since for any u1, u2 \in H1

per(Y ) and s \in (
\| b\| 2

\infty 
4\sigma ,1), writing \delta u :=

u1  - u2,

a(u1, \delta u) - a(u2, \delta u)\geq \| D\delta u\| 2L2(Y ) + \sigma \| \delta u\| 2L2(Y )  - (sup
\alpha \in \Lambda 

| b(\cdot , \alpha ) \cdot D\delta u| , | \delta u| )L2(Y )

\geq (1 - s)\| D\delta u\| 2L2(Y ) +

\biggl( 
\sigma  - 1

4s
\| b\| 2\infty 

\biggr) 
\| \delta u\| 2L2(Y )

\geq Cm\| \delta u\| 2H1(Y ).

It is also quickly checked that we have the Lipschitz property

| a(u1,\varphi ) - a(u2,\varphi )| \leq Cl\| u1  - u2\| H1(Y )\| \varphi \| H1(Y ) \forall u1, u2,\varphi \in H1
per(Y ).

Let Vh \subset H1
per(Y ) be a closed linear subspace of H1

per(Y ). By the Browder--Minty
theorem and standard conforming Galerkin arguments, there exists a unique v\sigma h \in Vh
such that

a(v\sigma h ,\varphi h) = 0 \forall \varphi h \in Vh,(6.4)

and we have the near-best approximation bound

\| v\sigma  - v\sigma h\| H1(Y ) \leq 
Cl

Cm
inf

wh\in Vh

\| v\sigma  - wh\| H1(Y ).

Choosing for Vh a Lagrange finite element space over a shape-regular triangulation
\scrT h of Y with mesh-size h > 0, consistent with the periodicity requirement, leads to
a convergent method under mesh refinement. The discrete nonlinear system can be
solved numerically using Howard's algorithm (see, e.g., [29]).

Introducing the approximate effective Hamiltonian

H\sigma ,h(p) :=

\int 
Y

( - \sigma v\sigma h),(6.5)

we then have that

| H(p) - H\sigma ,h(p)| \leq 
\bigm| \bigm| \bigm| \bigm| H(p) - 

\int 
Y

( - \sigma v\sigma )
\bigm| \bigm| \bigm| \bigm| + \sigma \| v\sigma  - v\sigma h\| L1(Y ),

where \| v\sigma  - v\sigma h\| L1(Y ) \rightarrow 0 as h \rightarrow 0 and the first term on the right-hand side is of
order O(\sigma ) by Lemma 6.1.

6.2.3. Fourth-order-type variational formulation for (6.2). If information
on second-order derivatives of v\sigma is desired, it is interesting to see that inspired by
arguments based on Cordes-type conditions (see, e.g., [4, 13, 14, 29, 30]), we can derive
a fourth-order-type variational formulation for v\sigma , allowing for the construction of H2-
conforming finite element schemes. Introducing \gamma := 4\sigma 

| b| 2+4\sigma \in C(Tn \times \Lambda , (0,1]), note
that v\sigma is the Y-periodic solution to

G[v\sigma ] = 0, where G[w] := sup
\alpha \in \Lambda 

\{ \gamma (\cdot , \alpha ) ( - \Delta w - b(\cdot , \alpha ) \cdot Dw+ \sigma w - g(\cdot , \alpha ))\} ,

and v\sigma is the unique element in H2
per(Y ) satisfying

\~a(v\sigma ,\varphi ) := (G[v\sigma ], \sigma \varphi  - \Delta \varphi )L2(Y ) = 0 \forall \varphi \in H2
per(Y ).
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Indeed, note that due to (6.3) we have that \~a is strongly monotone: For any u1, u2 \in 
H2

per(Y ), writing \delta u := u1  - u2 and \eta :=
4\sigma  - \| b\| 2

\infty 
4\sigma +\| b\| 2

\infty 
\in (0,1], we have

| G[u1] - G[u2] - (\sigma \delta u  - \Delta \delta u)| 2

\leq sup
\alpha \in \Lambda 

|  - (\gamma (\cdot , \alpha ) - 1)\Delta \delta u  - [\gamma b](\cdot , \alpha ) \cdot D\delta u + (\gamma (\cdot , \alpha ) - 1)\sigma \delta u| 2

\leq (1 - \eta )(| \Delta \delta u| 2 + 2\sigma | D\delta u| 2 + \sigma 2| \delta u| 2)

almost everywhere (note 2| \gamma  - 1| 2 + 1
2\sigma | \gamma b| 

2 = 2 - 2\gamma \leq 1 - \eta ), and

\| \Delta \delta u\| 2L2(Y ) + 2\sigma \| D\delta u\| 2L2(Y ) + \sigma 2\| \delta u\| 2L2(Y ) = \| \sigma \delta u  - \Delta \delta u\| 2L2(Y ),

which, in combination, yields

\~a(u1, \delta u) - \~a(u2, \delta u)\geq 
\Bigl( 
1 - 

\sqrt{} 
1 - \eta 

\Bigr) 
\| \sigma \delta u  - \Delta \delta u\| 2L2(Y ).

Further, \~a satisfies the Lipschitz property

| \~a(u1,\varphi ) - \~a(u2,\varphi )| \leq 
\Bigl( 
1 +

\sqrt{} 
1 - \eta 

\Bigr) 
\| \sigma \delta u  - \Delta \delta u\| L2(Y )\| \sigma \varphi  - \Delta \varphi \| L2(Y ).

Let Vh \subset H2
per(Y ) be a closed linear subspace of H2

per(Y ). By the Browder--Minty
theorem and standard conforming Galerkin arguments, there exists a unique v\sigma h \in Vh
such that

\~a(v\sigma h ,\varphi h) = 0 \forall \varphi h \in Vh,

and, introducing the norm | | | w| | | := \| \sigma w  - \Delta w\| L2(Y ) for w \in H2
per(Y ), we have the

near-best approximation bound

| | | v\sigma  - v\sigma h | | | \leq 
1 +

\surd 
1 - \eta 

1 - 
\surd 
1 - \eta 

inf
wh\in Vh

| | | v\sigma  - wh| | | .

Choosing for Vh an Argyris or HCT finite element space over a shape-regular trian-
gulation \scrT h of Y with mesh-size h > 0, consistent with the periodicity requirement,
leads to a convergent method under mesh refinement. The discrete nonlinear system
can again be solved numerically using Howard's algorithm. With the observations
of this subsection at hand, one can also construct mixed finite element schemes and
discontinuous Galerkin finite element schemes for (6.2) similarly to [14, 18].

6.2.4. Numerical experiments. For our numerical tests, we consider one lin-
ear example with known effective Hamiltonian and one nonlinear example with un-
known effective Hamiltonian. For both tests, we use the method from section 6.2.2.

Example 12. Consider H : T2 \times R2 \rightarrow R given by (6.1) with n = 2 and \Lambda := \{ 0\} .
We set b(y,\alpha ) := \~b(y) :=

\bigl( 
1
2\pi cos(2\pi y1),0

\bigr) 
and f(y,\alpha ) := \~f(y) = 1 + sin(2\pi y1) for

y = (y1, y2) \in T2 and \alpha \in \Lambda . Our goal is to approximate the value of the effective
Hamiltonian H at the point p := (3,1), and compute the approximation error | H(p) - 
H\sigma ,h(p)| , where the true value can be explicitly computed as

H(p) = 1+

\int 1

0
sin(2\pi t) exp( 1

4\pi 2 sin(2\pi t))dt\int 1

0
exp( 1

4\pi 2 sin(2\pi s))ds
.
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In our numerical experiment, we compute H\sigma ,h(p) via (6.4)--(6.5), where we choose Vh
to consist of continuous Y -periodic piecewise affine functions on a periodic
shape-regular triangulation \scrT h of Y into triangles with vertices \{ (ih, jh)\} 1\leq i,j\leq N

where N = 1
h \in N. We choose \sigma = 10 - i for i\in [ - 3,2]\cap Z and h= 2 - j for j \in [1,10]\cap Z.

The results are shown in Figure 6.1. Numerically, we can observe that the rate O(\sigma )
in Lemma 6.1 is optimal.

Example 13. We consider H :T2\times R2 \rightarrow R given by (6.1) with n= 2 and \Lambda := \{ \alpha \in 
R2 : | \alpha | \leq 1\} . We set b(y,\alpha ) := \~b(y)+\alpha and f(y,\alpha ) := \~f(y) for (y,\alpha )\in T2\times \Lambda , where \~b
and \~f are defined as in Example 12. Note that H(y, p) = | p|  - \~b(y) \cdot p - \~f(y) for (y, p)\in 
T2\times R2. Our goal is to approximate the unknown effective Hamiltonian H on [ - 1,1]2.
To this end, we approximateH(p) at all points p in S := \{ \pm 1,\pm 3

4 ,\pm 
1
2 ,\pm 

3
8 ,\pm 

1
4 ,\pm 

1
8 ,0\} 

2,
where we chose a finer resolution around the origin. In our numerical experiment, we
compute H\sigma ,h(p) via (6.4)--(6.5), where we choose Vh to consist of continuous Y -
periodic piecewise affine functions on a periodic shape-regular triangulation \scrT h of Y
into triangles with vertices \{ (ih, jh)\} 1\leq i,j\leq N where N = 1

h \in N. We fixed a fine mesh,
i.e., h = 2 - 10, and produced convergence histories with respect to \sigma at each point
p \in S. The nonlinear discrete problems were solved using Howard's algorithm. For
the plot of the numerical effective Hamiltonian we used \sigma = 2 - 4; see Figure 6.2(a).

(a) h |→ H(p)−Hσ,h(p)| for fixed σ (b) σ |→ H(p)−Hσ,h(p)| for fixed h = 2−10

Fig. 6.1. Approximation of H(p) at p= (3,1) for Example 12.

(a) p → Hσ,h(p) for σ = 2−4, h = 2−10.
(b) σ |→ Hσ,h(p) − H σ

2
,h(p)| for h = 2−10

and p = (−1,−1).

Fig. 6.2. Approximation of H for Example 13.
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An exemplary convergence history of | H\sigma ,h(p)  - H \sigma 
2 ,h(p)| with respect to \sigma , for

p = ( - 1, - 1), is shown in Figure 6.2(b) and we observe the rate O(\sigma ), as expected.
We note that the scheme performs nicely even beyond (6.3).
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manuscript.
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