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A B S T R A C T

Climate change is increasingly impacting water availability. National-scale hydrologic models simulate
streamflow resulting from many important processes, but often without processes such as human water use and
management activities. This work explores and tests methods to account for such omitted processes using one
national-scale hydrologic model. Two bias correction methods, Flow Duration Curve (FDC) and Auto-Regressive
Integrated Moving Average (ARIMA), are tested on streamflow simulated by the US Geological Survey National
Hydrologic Model (NHM-PRMS), which omits irrigation pumping. A semi-arid agricultural case study is used.
FDC and ARIMA perform better for correcting low and high flows, respectively. A hybrid method performs well
at both low and high flows; typical Nash-Sutcliffe values increased from <-1.00 to about 0.75. Results suggest
methods with which national-scale hydrologic models can be bias-corrected for omitted processes to improve
regional streamflow estimates. Utility of these correction methods in simulation of future projections is
discussed.

1. Introduction

Climate change is already impacting water availability for industrial
and agricultural supplies (e.g., Foster et al., 2020; Ayers et al., 2022).
Surface water and groundwater resources in heavily irrigated land-
scapes are facing the compound stressors of climate change and
increased agricultural water use. In many watersheds worldwide, this
has caused water demands to exceed water supply (Gleeson et al., 2012).
Further supply depletion and more extreme high streamflows are pro-
jected in the future: at 4 ◦C global warming by the end of the 21st
century, approximately 10% of the global land area is projected to face
increasing high extreme streamflow and decreasing low extreme
streamflow, affecting over 2.1 billion people (IPCC, 2023). This occurs
as the warmer temperatures increase evapotranspiration (Condon et al.,
2020) and change precipitation patterns (Patterson et al., 2022; Wigley
and Jones, 1985; Zhang et al., 2011a). Resulting reduced surface-water
storage and groundwater recharge would affect water availability. This
work focuses on how to obtain insight about likely changes in water
resources that can be used to manage water supplies and water depen-
dent activities. Within this context, this work focuses on streamflow and
how it is impacted by irrigation water use.

Prediction of water availability and responses to stressors such as
weather, climate and human impacts like pumping have often been
simulated using computer models (Acharki et al., 2023; Cao et al., 2021;
Lewis et al., 2023; Maurya et al., 2023; Mohseni et al., 2023; Zhang
et al., 2023a, 2023b). However, model dynamics are always simplified
often by omitted selected factors, which results in poorly represented
systems. Interactions between groundwater and surface water tend to be
problematic. They are represented in substantial detail in, for example,
the Scott Valley Integrated Hydrologic Model in Northern California
(Foglia et al., 2013; Tolley et al., 2019) and the Ohio River Basin Agri-
cultural Policy Environmental Extender (APEX) model (Santhi et al.,
2014). However, developing detailed watershed-scale, site-specific
models takes significant time, effort, and resources, and as a result many
existing models lack such capabilities and many areas lack any hydro-
logic model (Zipper et al., 2022a). In addition, areas may be impacted by
upstream effects that are omitted from the local models, such as climate
impacts on snowpack in what may be distant upland areas.

One alternative for settings without reliable site-specific models and/
or when larger-scale effects are important is using large-scale (regional,
continental, or global) streamflow models. For instance, the Soil and
Water Assessment Tool (SWAT) (Malik et al., 2022; White et al., 2022),
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Variable Infiltration Capacity (VIC) (Bao et al., 2022; Srivastava et al.,
2020; Treesa, 2017), Hydrologic Engineering Center - Hydrologic
Modeling System (HEC-HMS) (Chu and Steinman, 2009; Dotson, 2001),
Water Balance Model (WBM) (Arnell, 1999; Bock et al., 2018; Lohmann
et al., 2004), ParFlow-CONUS (Maxwell et al., 2015; O’Neill et al.,
2021), WRF-Hydro (Salas et al., 2018), Precipitation-Runoff Modeling
System (PRMS; Markstrom et al., 2015) and many others have been
successfully used for large-scale water resource assessment and reservoir
management worldwide. Some of these models, such as WRF-Hydro, are
designed for short timeframes and are more suitable for problems such
as weather and flood predictions. Others, such as PRMS, are designed for
long timeframes and are suitable for simulations involving years and
even decades or centuries. In addition, some, such as WRF-Hydro, tend
to have very large computational demands that make model calibration
and testing more difficult. Others, such as PRMS, have smaller compu-
tational demands that make model calibration and testing easier.

Some constructed large-scale models allow for abstracting sub-
models to generate a complete local-scale model for enhancement after
calibration (Kannan et al., 2019; Pagliero et al., 2019; Vansteenkiste
et al., 2014; Yalew et al., 2013) but the transfer of these calibrated
models directly to uncalibrated watersheds may not account for unique
characteristics present in the uncalibrated watershed. For large-scale
models to be used for local management-relevant investigations, they
need to be evaluated for the relevant setting because they are most often
calibrated over a large-scale sample of gages, the distribution of which is
often biased towards reference and/or perennial gages (Krabbenhoft
et al., 2022), which makes them inherently less well-suited for any
specific local application (Blanc et al., 2014). Of interest in this work is
how bias might be identified and, if significant, mitigated to allow the
insights available from such large-scale models to be used to evaluate
the impacts of climate change at regional scales.

In this work we use an application of PRMS developed by the United
States Geological Survey (USGS) and published as the National Hydro-
logic Model (NHM-PRMS; Regan et al., 2019). This model was designed
to provide nationally consistent estimates of total water availability,
changes in the timing and source of streamflow, and measures of the
uncertainty of these estimates (Regan et al., 2019). NHM-PRMS is used
to compute internally-consistent simulation results of the temporal and
spatial distribution of water availability and storage across the contig-
uous United States (CONUS) and computes daily streamflows (Regan
et al., 2019; additional NHM-PRMS details in Section 2.1 of this article).
PRMS was developed primarily to simulate hydrological processes in
small to medium-sized gaged watersheds and has performed well in past
evaluations. A study conducted by Hodgkins et al. (2020) used Daymet
climate forcing version 3, version 1.0 of the USGS National Hydrography
Geospatial Fabric (NHGF), and PRMS 5.0.0 to compare trends in simu-
lated and measured streamflow. They found that the NHM-PRMS has a
relatively good fit to observed data across minimally-developed basins
spanning the continental US (Hodgkins et al., 2020). However,
NHM-PRMS may underestimate baseflow in some settings (Foks et al.,
2019). This may be due to a simplified representation of groundwater,
including omission of groundwater extraction (Towler et al., 2023). In
addition to simplified groundwater, because NHM-PRMS is based on
NHGF, the resulting coarse spatial resolution and specific configuration
of the PRMS code in NHM may limit its applicability in site-specific
studies. In general, the NHM-PRMS performs better in minimally
disturbed basins than in those impacted by human activities such as
irrigation (Towler et al., 2023), and therefore the ability of NHM-PRMS
to provide management-relevant streamflow estimates in
heavily-stressed environments remains unknown. The difficulties these
results suggest for NHM-PRMS are similar to difficulties likely in other
large-scale models, so the goals of this work have wide applicability.

Bias correction of streamflow models can be accomplished using a
variety of methods. Data-based bias correction methods using process-
based models has been the subject of various studies using climate
data, precipitation records, land use information, and other historical

datasets to implement diverse bias correction methods aimed at
enhancing simulated streamflow outcomes [e.g. Chen et al., 2013
(downscaling precipitation for hydrologic impact studies over North
America); Lin et al., 2023 (data driven models for streamflow predic-
tion); Yang et al., 2020 (ensemble precipitation forecasts in the
improvement of summer streamflow prediction skill)]. Another way of
reducing residual errors and biases in hydrologic models is the use of
machine learning approaches such as artificial neural networks (Hunt
et al., 2022; Meng et al., 2016) and random forest (Abbasi et al., 2021;
Shen et al., 2022). However these methods require more input data and
time in the computational analysis (Al-Jarrah et al., 2015; Kotsiantis
et al., 2006; Najafabadi et al., 2015). This work investigates methods
with smaller data and computational demands.

In this work two bias correction methods are evaluated: flow dura-
tion curve (FDC) (following Farmer et al., 2018) and Auto-Regressive
Integrated Moving Average (ARIMA, following Kim et al., 2021). The
FDC method was used because it is less complex and research suggests it
can accurately represent high and low flow events of a hydrologic sys-
tem (Farmer et al., 2018; Hrachowitz et al., 2013; Kim et al., 2021; Vogel
and Fennessey, 1995). ARIMA reputedly captures the temporal de-
pendencies and patterns in streamflow data (Abudu et al., 2010; Kim
et al., 2021; Nigam et al., 2009). ARIMA and FDC in this context appear
to offer the advantage of bias-correction across a range of flow vari-
ability to accommodate anthropogenic effects arising from water use
and management practices. Here we seek to test the utility of these
methods in the context of using national hydrologic models to obtain
more accurate regional-scale streamflow estimates.

In this study, we first compare streamflows simulated by NHM-PRMS
with historical data to determine the degree to which it can provide
useful management insights. The evaluation is pursued using data from a
semi-arid agricultural area characterized by heavy groundwater pum-
page, the type of area where large-scale models are likely to face diffi-
culties. The area chosen is the Central Arkansas River Basin (CARB),
which includes parts of the USA in Kansas, Colorado, New Mexico,
Texas, and Oklahoma. This area is underlain by the High Plains aquifer,
including the Ogallala aquifer. Results shown in this work reveal that the
simulation provided useful predictions of streamflow in some settings,
but there were widespread discrepancies between measured and simu-
lated NHM-PRMS streamflow that would impair decision making. This
provides an ideal test case study for testing the bias correction methods
identified. Therefore, our aimwith this study is not to improve the NHM-
PRMS itself, but rather to develop and test postprocessing methods that
could improve the utility of NHM-PRMS output. The CARB is part of the
depleted Ogallala aquifer system, it is important to global food supplies,
it has a long history of groundwater extraction and depletion, and there
is rich historical data available in much of the region. Exploration of this
system provides important insights about potential limitations in the
NHM-PRMS and whether it, and other large-scale models, can be used
with bias correction to develop predictions given future water demands,
including the effects of climate change.

2. Methods

This section presents NHM-PRMS and the data and methods used to
evaluate NHM-PRMS simulated values, describes the bias correction
methods, and presents a framework for evaluating how the bias
correction methods might be tested for their ability to improve future
projections.

2.1. NHM-PRMS

PRMS is a daily timestep, deterministic model which simulates the
response of watersheds to combinations of climate and land use to
improve understanding of hydrologic processes on the basis of historical
and projected climate data (Markstrom et al., 2015; Regan et al., 2018,
2019). PRMS simulates diverse physical processes including plant
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canopy, snow accumulation and melt, soil, surface depression, surface
runoff, groundwater storage, climate, and stream segments to charac-
terize and derive parameters required in simulation algorithms, spatial
discretization, and topological connectivity (Farmer et al., 2019;
Markstrom et al., 2015; Regan et al., 2018; Towler et al., 2023).

This study uses results from NHM-PRMS, consisting of PRMS version
5.0.0, Daymet gridded data set version 2 (Thornton et al., 2014) and
version 1.0 of the NHGF. The PRMS hydrographic data such as hydro-
logic response units (HRUs), stream segments, and watershed parame-
ters are extracted from NHGF database (Viger and Bock, 2014). The
NHGF framework for CONUS-scale modeling derived from the National
Hydrography Dataset Plus, version 1 (NHDPlus) (Bondelid et al., 2010).
The NHGF divides the land surface into hydrologic response units
(HRUs), totaling 109,951 across the CONUS, each with a median size of
33.2 km2. The flow from these HRUs is routed through a stream network
comprising 56,549 segments, utilizing Muskingum routing (Viger and
Bock, 2014).

The NHM-PRMS was calibrated using reference streamflow sites
from the Geospatial Attributes of Gages for Evaluating Streamflow,
version II (GAGES-II; Falcone, 2011), a database that spans CONUS. The
calibration involved using measured streamflow and daily hydrographs
from pooled ordinary kriging (Farmer, 2016) across 1410 gaged wa-
tersheds throughout the CONUS (Farmer et al., 2019). These reference
sites represent minimally disturbed watersheds, and the sites are evenly
distributed across the CONUS (Falcone, 2011). The NHM-PRMS was
selected for this study because it simulates streamflow influenced by
large-scale dynamics, and provides outputs for streamflow and compo-
nents of flow (surface runoff, interflow, and groundwater flow) for each
stream segment (Regan et al., 2018, 2019). In addition, the NHM-PRMS
can be coupled with climate models or downscaled climate projections
to simulate future hydrological responses under various climate change
scenarios (Risley, 2019). The model does not perform well in

non-reference gaged areas impacted by human activities (Towler et al.,
2023) hence bias-correction methods might enhance usefulness in
disturbed watersheds such as the CARB.

2.1.1. Demonstration site
The CARB is the middle third of the Arkansas River Basin, and it

stretches from the foothills of the Colorado Rocky Mountains to north-
western Oklahoma, covering approximately 414,000 km2 (161,000 mi2)
(USBR, 2016). The CARB includes areas of Colorado (CO), Kansas (KS),
New Mexico (NM), Texas (TX), and Oklahoma (OK) (Fig. 1).

The CARB faces many of the problems common to agricultural re-
gions in the Western US, including diminishing groundwater supplies,
stream drying, increasing water and soil salinity, and increasing nitrate
concentrations (Butler et al., 2018, 2023; Whittemore et al., 2016;
Zipper et al., 2021, 2022b). Water sources in the region include pre-
cipitation, surface water from the Arkansas River and its tributaries,
groundwater from the High Plains/Ogallala aquifer and some local al-
luvial aquifers.

The climate of the study area generally has high temperatures and
low precipitation which affects surface-water availability. Changes to
both precipitation and temperature will be a key to determining climate-
change impacts on agricultural and other water resource intensive ac-
tivities. Feddema et al. (2008) projected that there will be relatively
little change in KS total annual precipitation, however, potential evap-
oration is projected to increase in the summer due to higher tempera-
tures. As such, it is projected that irrigation water demand will increase
significantly by 2–8 inches depending on the location, crop type, and
agricultural practices (Feddema et al., 2008). Given the inherent chal-
lenge of predicting both human behavior and climate patterns accu-
rately, a significant increase in water deficits would necessitate a
reevaluation of anthropogenic impacts.

None of the gages in the CARB were used in NHM-PRMS calibration

Fig. 1. The CARB region showing the Arkansas River, Cimarron River and the North Canadian River (dark blue), with selected stream gages for defining the study
area and the John Martin Reservoir (JMR).
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(Farmer et al., 2019). The NHM-PRMS does not simulate reservoir op-
erations, surface or groundwater withdrawals, or stream releases
(Towler et al., 2023). Therefore, the NHM-PRMS simulations for the
CARB could approximate what streamflow would have been under
reference conditions rather than current human-modified conditions, as
the NHM is a natural flows model. In addition, the CARB region is
heavily impacted by irrigation and most of the waters in the streams are
allocated to meet crop demands. The John Martin Reservoir (JMR)
located on the Arkansas River (Fig. 1) serves as a buffer against drier
years (Bern et al., 2020) and has controlled outflow across the CO-KS
border from year to year, though due to irrigation diversions the
stream has been completely dry shortly downstream of the border for the
past several decades (Zipper et al., 2022b). The NHM-PRMS does not
account for any management of water resources or reservoir storage, but
rather focuses on simulating natural flows in each stream segment and
provides a crude estimate of stream segment storage based onManning’s
equation, it is possible that the estimated storage used in the model is too
high, which could result in biased timing of streamflow increases and
decreases of the NHM-PRMS.

2.1.2. Data sources
NHM-PRMS version 5.0.0 daily streamflow results were downloaded

from the ScienceBase (Hay, 2019) using R packages data.table (Dowle
et al., 2019) from October 1, 1980 through December 31, 2016,
approximately 36 years. Daily measured streamflow for stream gages
was retrieved from the National Water Information System (NWIS)
(USGS, 2022) using the dataRetrieval R package (DeCicco and Hirsch,
2021) for the same period. Stream gage data was filtered to determine
gages in the CARB that had continuous daily streamflow data with no
missing data. Out of the 58 gages found in the CARB, 27 had continuous
data for the study period.

2.1.3. Model performance measures
NHM-PRMS simulated streamflow was compared to the USGS gage

data to quantify howwell the model represents the data. Fit metrics such
as the Nash-Sutcliffe Efficiency (NSE), the coefficient of determination
(R2) and root mean square error (RMSE) were used to test the perfor-
mance of the model as shown in Table 1, and were calculated using the
“hydroGOF” (hydrological goodness-of-fit) package in R
(Zambrano-Bigiarini, 2020).

2.2. Bias correction

We evaluated the performance of two bias correction methods, FDC
and ARIMA, at all gages for their ability to reduce bias in the mean and
variance of the simulated streamflow.

The FDC approach was used here to bias-correct the NHM-PRMS
simulated time series of monthly streamflow. In this method we
assumed that the probability distribution of the simulated streamflow
should be shifted to approximately match the probability of the
measured streamflow. This assumption was made to translate the model
results that were a little too high to be low enough to reflect the
measured and vice versa. Cumulative probability for the simulated and

measured streamflow at a given time were generated from the “fdc”
function (Vogel and Fennessey, 1994, 1995; Yilmaz et al., 2008) in R.
The cumulative probability of the simulated streamflow was mapped to
the cumulative probability of the measured streamflow for
bias-correction (Farmer et al., 2018; Kim et al., 2021) and the matching
streamflow was used as the bias-corrected simulated streamflow as
shown in Fig. 2a and b.

The stochastic approaches involved both nonseasonal models and
seasonal models because the type of model that fits to a particular time
series is problem dependent (Mishra and Desai, 2005) so there was a
need to see how each gage would respond to the correction due to their
difference in location and hydrological regimes. The nonseasonal model
is Autoregressive Integrated Moving Average (ARIMA) and the seasonal
model is Seasonal ARIMA (SARIMA), though since the SARIMA is a
component of the ARIMA method, both are broadly within the category
of ARIMA models. ARIMA and SARIMA are commonly applied in the
hydrology field (Bazrafshan et al., 2015; Dwivedi et al., 2019; Kim et al.,
2021; Mishra and Desai, 2005; Musarat et al., 2021; Phan and Nguyen,
2020; Valipour et al., 2013; Zhang et al., 2011b) to forecast reservoir
inflows, water quality, drought, runoff, rainfall and other hydrological
parameters. However, no study has used these stochastic approaches to
bias-correct the NHM-PRMS.

Here, we used the ARIMA and SARIMA methods to bias-correct the
simulated NHM-PRMS streamflow results, both separately from and in
combination with, the FDC approach. The ARIMAmethod has the ability
to forecast future residuals based on past observations and provides
valuable information about the trends and the presence of autocorre-
lation in time series data whereas the SARIMA requires few model pa-
rameters for the time series, which exhibit non-stationarity both within
and across the seasons (Mishra and Desai, 2005). These methods require
a univariate time series that assumes stationarity which means the
dataset should have a constant mean and variance (Dwivedi et al., 2019;
Mishra and Desai, 2005; Musarat et al., 2021; Valipour et al., 2013).
ARIMA is usually specified with three parameters p, d and q described as
ARIMA (p, d, q) where p indicates the order of the autoregressive (AR)
component, d indicates the amount of differencing (I), and q indicates
the order of the moving average (MA) component (Mishra and Desai,
2005). The SARIMA is a component of the ARIMA method which ac-
counts for temporal dependencies and seasonality patterns that occur in
the data at regular intervals. Since streamflow in the CARB exhibits
strong seasonal patterns due to climate impacts on the water resource,
for example higher streamflow in spring when snow melts than in
summer, the SARIMA method was considered to adjust the patterns and
forecast residuals accordingly.

SARIMA models are described as ARIMA (p, d, q) (P, D, Q)s, where P
is the order of seasonal autoregression (ARs), D is the number of seasonal
differencing (Is), Q is the order of seasonal moving average (MAs) and s is
the length of season. The mathematical equation for the ARIMA and
SARIMA (Eqs. (1) and (4) respectively) are:

ф(β) (1 - βуt) = φ(β)εt (1)

where φ (β) and φ(β) are polynomials of order p and q respectively, yt is
the observed series, and εt is the random error term.

ф(β) = (1 - ф1β – ф2β2 - … - фpβp) (2)

φ(β) = (1 – φ1β – φ2β2 - … - φqβq) (3)

ѱPβSфpβ (1 – βS)D (1 – β)d yt = λQβSφqβεt (4)

where ф is the parameter of AR, φ is the parameter of MAmodel, ѱ is the
parameter of ARs model, and λ is the MAs model.

The ARIMA and SARIMA were constructed from a time series of the
residuals calculated from the observed and NHM-PRMS simulated
streamflow. The ARIMA models were carried out in three steps (Fig. 2c):
(1) Identification (Box and Jenkins, 1976), (2) Estimation (Bras and
Rodríguez-Iturbe, 1993), and (3) Diagnostic Checking/Validation

Table 1
Metrics criteria for the model evaluation.

Perfect fit Average fit Worse fit

NSE = 1 (Schaefli
and Gupta,
2007)

NSE = 0, simulated
performs as good as the
mean of the measured

NSE <0, the mean of the
measured is a better predictor
than the simulated

RMSE = 0 (
Barnston, 1992)

The lower the RMSE value,
the better the simulated fit.

Higher RMSE value means
simulated does not fit
measured perfectly

R2 = 1 (Legates
and McCabe Jr.,
1999)

R2 < 1 R2 ~ 0
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(Smith, 1985).
The identification step (Fig. 2c) involved data filtering, obtaining

residual series by subtracting the simulated streamflow from that of the
measured (Kim et al., 2021), and checking for stationarity of the dataset.
If the residual series is not stationary, which we found in this work, the
ARIMAmethod can be introduced to achieve stationarity and normality.
Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) approaches were used to check the stationarity of the dataset
(Box and Jenkins, 1976). The temporal correlation structure of the
transformed data was identified by examining its ACF and PACF func-
tions (Mishra and Desai, 2005). The ACF is a useful statistical tool that
measures if earlier values in the series have some relation to later values
(Ömer Faruk, 2010). PACF is the amount of correlation between a var-
iable and a lag of itself that is not explained by correlations at all low
order lags (Ömer Faruk, 2010). PACF is defined for positive lag only and
their value also lies between −1 and +1 (Guha and Bandyopadhyay,
2016).

The estimation step (Fig. 2c) involved estimating the parameters of
the ARIMA and SARIMA models for each gage using the “autoARIMA”
function in R (Box et al., 2015; Box and Jenkins, 1976). For the diag-
nostic checking/validation step the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) were used to select the best
model. Performance of these criteria was evaluated by (Foglia et al.,
2013) and indicated that BIC tends to favor more model parameters. The
AIC (Akaike, 1987) and BIC (Wit et al., 2012) are mathematically (Eqs.
(5) and (6) respectively) represented as:

AIC = 2k – 2ln(L) (5)

BIC = kln(n) – 2ln(L) (6)

Where k is the number of parameters needed to captures the complexity
of a model based on the criteria used, ln(L) is the log-likelihood of the
model on the data which captures the goodness of fit and n is the number
of data points (Akaike, 1987; Wit et al., 2012). The ARIMA model with
the lowest AIC and BIC value was considered the best model and the
autoregressive model of the residuals was generated. In this work AIC
and BIC produced similar results. The “autoARIMA” function (Hyndman
and Khandakar, 2008; Wang et al., 2006) automates the model processes
and selects ARIMA or SARIMA as the best model for each of the gages.
The seasonal and nonseasonal parameters for each gage were generated
after running the model. The diagnostic checking/validation (Fig. 2c)
step involved carrying out a residual check to see if the modeled re-
siduals are normally distributed or not (Mishra and Desai, 2005). The
bias-corrected flow was obtained by adding the modeled residuals from
ARIMA to the simulated flow (Kim et al., 2021). The metrics of the
bias-corrected flow versus the observed flow were obtained to see how
the residual-based bias-correction methods performed. Forecasting
(Peiris and Perera, 1988) was carried out on the modeled residuals for
each gage to identify residual values that could be used to bias-correct
the NHM-PRMS results in the absence of measured streamflow data, as
needed to make future projections.

Fig. 2. Illustration of the bias correction methods. (a) The volume of NHM-PRMS simulated streamflow and probability at a point was mapped to the same
probability on the measured streamflow and the corresponding streamflow value was used as the bias corrected FDC simulated streamflow at that point; (b) shows
the bias corrected simulated FDC streamflow for all NHM-PRMS simulated streamflow values for gage 07156900 (Appendix, Table A.2); (c) a flowchart for the
ARIMA and SARIMA residual-based bias-corrected model.
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2.3. Applying the bias correction to future projections

The FDC and ARIMAmethods rely on comparison between simulated
and observed streamflow and therefore it is unknown how the methods
would perform for future scenarios when there is no observational data
available. To test the characteristics of projection, the bias-correction
models were trained on a subset of the data (1980–2000) and the
remainder of the data (2001–2016) was used to test model performance.
The metrics for the trained and test methods were compared to see if the
performance improved throughout the CARB. The method that gives
better performance metrics would be the preferred bias correction
method that could be applied for future climate scenarios to estimate
future streamflow in the region.

3. Results and discussion

This section first presents streamflowmeasurements and output from
the NHM-PRMS model. Then, bias corrected simulated values are
compared with the measured streamflow to quantify error reduction.
Finally, future bias corrections are calculated, method accuracy is
evaluated, and recommendations for projection bias corrections are
made.

3.1. Comparison between observed streamflow and NHM-PRMS output

NHM-PRMS simulated streamflows were compared to measurements
for the 27 gages in the CARB with continuous data graphically and using
the NSE. There are large differences between NHM-PRMS simulated and
measured streamflow at most of the gage sites in the CARB (Figs. 3a and
4a). The mean and median NSE values for the monthly NHM-PRMS
streamflow and measured streamflow across all the gages were
−97.51 and −3.19 respectively, indicating poor performance (Table 1).
Only five gages in the CARB had NSE >0 (Table A.2, Fig. 3a), and all of
these were found in the westernmost portion of the domain closest to the

headwaters in CO. The model predictions were likely best in western CO
(Fig. 3a) because watersheds are smaller and groundwater withdrawal
in that area is less (Dieter, 2018) than the other portions of the CARB.
Thus, the area more closely matches the conditions of the reference
gages used for NHM-PRMS calibration. This inference is supported by
other studies that found that the NHM-PRMS did not represent
groundwater withdrawals and stream releases (Towler et al., 2023),
which suggests that areas that have less human activities would have
better matches between model results and observed data. In addition,
the NHM-PRMS model includes snowmelt parameters (Towler et al.,
2023) and the model may have captured and predicted better patterns of
snowmelt runoff from the headwaters. The NHM-PRMS performance
gets worse moving downstream in the basin, as shown in Fig. 3a and
Table A.2, likely because agricultural activities intensify downstream
and possibly due to high storage estimates used in the model. Results
from four stream gages A, B, C and D (Fig. 3a) were selected to
demonstrate how the bias correction method performed at the upstream
and downstream ends of the watershed. Gage A was selected because it
is located at the inlet of the watershed and B, C and D are located at the
outlet of different streams/rivers in the basin. The results for all gages
can be found in Appendix A (Table A.2).

The performance of the model at gage locations below the JMR is
poor compared to measured streamflow (Fig. 3a) as storage and releases
from the reservoir are not simulated and they significantly impact
downstream daily flows (Towler et al., 2023; Zipper et al., 2022b). Since
the model did not accurately simulate streamflow in the CARB, further
investigation was done to bias-correct the NHM-PRMS output.

3.2. Bias correction results

To better match the measured streamflow at long-term gages in the
CARB, bias correction methods were applied to the model output at
these locations. Two bias correction methods, stochastic (ARIMA and
SARIMA) and FDC, were applied independently and together (FDC-

Fig. 3. Distribution map of performance metrics of gages in the CARB. (a) NHM-PRMS simulated streamflow versus USGS measured streamflow; (b) the FDC
approach; (c) the ARIMA approach and (d) the FDC and ARIMA approach. Gage A represents 07108900 at St. Charles River at Vineland in CO, Gage B represents
07141300 at Arkansas River at Great Bend in KS, Gage C represents 07158000 at Cimarron River near Waynoka in OK and Gage D represents gage 07238000 at North
Canadian River near Seiling in OK. Gray lines in the background show state boundaries (as in Fig. 1).
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ARIMA) to try to best match observed data.

3.2.1. ARIMA and SARIMA
For the identification step of ARIMA and SARIMA, ACF and PACF

were generated for residuals of all the gages in the CARB before and after
the bias correction. To represent the ACF and PACF results for all the
gages in this paper, gage A (Fig. 5) ACF and PACF results are shown.
Before bias correction, the ACF and PACF graphs (Fig. 5) showed sig-
nificant spikes at lag 1 and 12 with a few lags deviating from the con-
fidence limits (CL) which indicates that the dataset was non-stationary
and therefore a first order differencing was needed to make the data

stationary. After bias correction, the ACF graph (Fig. 5) showed signif-
icant spikes at lag 1 and 12 and the PACF at lag 12, however most of the
vertical lines were within the CL and the lags were near to zero, sug-
gesting that the bias-correct model residuals are independently distrib-
uted and the model has accurately forecasted the time series (Musarat
et al., 2021). The ACF and PACF graphs generated for all the gages had
vertical lines within the CL after the bias-correction.

For the estimation step, the parameters for ARIMA and SARIMA,
which included the p-values, standard errors and t-ratios, were esti-
mated for all the gages (see Table A.3). The estimated parameters were
statistically significant (p-values are <0.05) which reflects that the

Fig. 4. (a) Time series plot of the NHM-PRMS simulated (blue) and the USGS measured (black) streamflow of selected gages in CARB; (b)Time series plot of
measured (black) and bias-corrected (colors) streamflow at gaged sites. Gage A represents 07108900 at St. Charles River at Vineland in CO, gage B represents
07141300 at Arkansas River at Great Bend in KS, gage C represents 07158000 at Cimarron River near Waynoka in OK and gage D represents gage 07238000 at North
Canadian River near Seiling in OK.
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standard errors were generally small compared to the parameter values
(Mishra and Desai, 2005). Thus, all parameters are statistically different
than zero and are retained in the model. For the diagnostic step, the
histogram generated for gages A, B, C, and D for the residuals (Fig. B.1)
showed the modeled residuals are normally distributed and fits the
dataset well.

The best model selected for gage A was ARIMA (0, 1, 3)(0, 0, 1)12
(Table A.3) which means the ARIMA part of the model does not contain
AR term (p = 0) but has I term (d = 1) which suggests that the original
time series data was differentiated once for stationarity. The MA term (q
= 3) suggests three lagged values of the forecasted errors were used to
predict the residual values in the model. The SARIMA part does not
contain ARs or Is terms (P = 0, D = 0), which suggests the seasonal
dataset was stationary and did not require differentiation. The MAs term
(Q = 1) suggests one lagged value was used for forecasting the residuals
for seasonal pattern recurring every 12 time units (months). The models
selected for the other gages are shown in Table A.3. In addition, the
estimated parameters from Eqs. (1) and (4) (Table A.3) with positive
values suggest stronger positive correlation and the negative values
suggest weaker negative correlation between consecutive values in the
time series data. Overall, the estimated parameters for the ARIMA and
SARIMA for all the gages were <1 (Table A.3) indicating a nonrandom
mode model (stationarity) which suggests the modeled residuals for
each gage fit the datasets.

Following ARIMA bias-correction, the mean and median NSE values
for all the gages were −19.26 and 0.04 respectively. The NSE values for
gage A improved from 0.42 to 0.92, gage B from −103.19 to −66.38,
gage C from−4.99 to 0.09 and gage D from−46.07 to−7.19 as shown in
Table A.2. The NHM-PRMS simulated streamflow improved slightly
with a lot of negative NSE values and a few close to +1 (Table A.2)
across the basin. In general, 14 gages in the region had NSE
>0 (Table A.2) and the improvement was most frequently observed
upstream in CO exemplified by Fig. 3c. There were slight improvements
in the NHM-PRMS performance after the bias correction at all gages in
the region as shown in Table A.2. However, the performance of the
model after bias correction still degrades moving downstream (Fig. 3c).
Fig. 4a and b shows that the bias-corrected simulated streamflow is still
closer to the simulated streamflow than the measured. Based on Fig. 4a

and b it could be observed that the ARIMA (seasonal and nonseasonal)
approaches captured more high flows in the NHM-PRMS simulations
and similar observation was seen across all the gages in the CARB. This
suggests the ARIMA performed better in the high flows than in the low
flows.

3.2.2. FDC
The mean and median NSE values for all the gages when bias-

corrected using FDC were −0.04 and −0.09 respectively and the NSE
values for gages A, B, C and D were 0.33, −0.37, −0.05 and −0.17
respectively (Table A.2). Fig. 3b shows that the bias corrected NHM-
PRMS performed better across all the gages in the CARB, with 11
gages in the region having NSE >0 (Table A.2). The FDC may perform
better than ARIMA because ARIMA assumes stationarity and linearity in
the data for the modeled residuals, which may not always hold true for
low flows. Since this study involves bias correcting real-world non-sta-
tionarity processes and anthropogenic effects, ARIMA is less effective for
highly non-stationary hydrologic response to climate change and
anthropogenic changes, such as changing agricultural practices (Milly
et al., 2008).

Low flows are often climate controlled (Dallaire et al., 2021; Diera-
uer et al., 2018; Marx et al., 2018), thus during average and high tem-
peratures precipitation decreases and evapotranspiration increases
reducing the quantity of water in the streams. The time series plot
(Fig. 6) shows that although the bias-corrected simulated streamflow
exhibits a small degree of residual bias (Table A.2) it still matches the
measured data better than the uncorrected NHM-PRMS results. This
suggests that the FDC method reduced bias for low flows more effec-
tively than for high flows.

3.2.3. FDC-ARIMA
The approach presented here involved combining the method that

corrected for low flows and high flows to determine how they combine
to bias-correct the simulated results. The bias-corrected simulated
streamflow output from the FDC was used as the input simulated
streamflow for the ARIMA methods. The FDC-ARIMA approach
improved the performance of the NHM-PRMS model across all gages
(Table A.2, Fig. 6) in the basin with a mean and median NSE value of

Fig. 5. ACF and PACF correlograms for gage A before (top graphs) and after (bottom graphs) bias-correction with 95% confidence limits (blue). The lag units are
in months.
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0.78 and 0.87 respectively. Gages A, B, C and D improved to an NSE
value of 0.92, 0.80, 0.92 and 0.67 respectively (Table A.2). Figs. 3d and
6 show that the bias-corrected streamflow matches the measured, sug-
gesting that the FDC-ARIMAmethod most effectively reduces bias in the
NHM-PRMS in the CARB.

Comparing the three bias corrected approaches for the three outlet
gages on the far eastern side of the CARB (gage B, C and D as shown in
Fig. 3a), gage C below the Arkansas River responds to ARIMA bias
correction differently than the other gages along the Arkansas River. The
NSE for gage C improved from −4.99 to 0.09 and gage D from −46.07 to
−7.19 as shown in Table A.2. In contrast, using the FDC method, the
three outlets all behaved similarly with NSE between −0.5 and
0 (Fig. 3b). The improvement using the ARIMA method at the outlets
may be due to drainage accumulation, as water from the Arkansas River
and other tributaries in the CARB flows downstream, providing a po-
tential source for streamflow even during drought. Applying the FDC-
ARIMA method all the three outlets improved the NSE >0.5 (Fig. 3d)
whereas for the ARIMA method only gage C improved (Fig. 3c).

3.3. Lessons for future scenario simulations such as for climate-change
evaluation

The predictive ability of ARIMA and FDC were tested using a subset
of data to train the model, and then that model was applied to the
remaining data. Comparing the results to the observed testing data
provides a way to evaluate how effective and robust the model is when
bias-correcting for periods of time when no observed streamflow data
are available.

The training data for ARIMA performed similarly as the testing
(Fig. 6), where the model performed well upstream and worse moving
downstream. From Table A.4 it was observed that the testing model
performed worse than the training for some gages, indicating over-
fitting. This means the ARIMA methods at those sites learned to fit the
training data too closely, including capturing the patterns leading to
noise in the data, which caused the model to perform poorly on testing
data in disturbed areas (Fig. 6c). For the forecasting analysis (Table A.4
and Fig. B.2), we observed that the forecasted residuals (Fig. B.2) start
from the beginning of the time series (2017) and later flattened after a
period of time indicating no trend in the data or weak signal. This
suggests that forecasting of residuals for each gage is time bound and
most of the gages in the region could be forecasted up to 3 years as
shown in Table A.4. The forecasted residuals could be used to bias

correct extreme high flows in simulated models to aid in predicting flood
events accurately for more reliable early warnings and evacuation plans,
effective reservoir management for flood mitigation and for proper
water resource management decisions. These forecasted residuals could
contribute to correcting biases in future streamflow simulations,
although their applicability is limited to a three-year timeframe and
therefore may be most useful for seasonal to annual streamflow fore-
casting. The ARIMA methods would not be useful for long-term water
supply management, as it does not predict far enough out, or capture
low flows well. Additionally, the ARIMA training data was parameter-
ized based on static historical information and this could cause inac-
curacies because the NHM parameterization data sets were calibrated at
different spatial resolutions.

From Fig. 6 it can be observed that the training FDC method per-
formed similarly as the testing FDC (Table A.4) and the fits were
reasonable across the whole basin. Some streamflow peaks were not
captured during the testing period (Fig. 7), consistent with our previous
results (Section 3.2) which found that FDC corrects low flows better than
high. Since the performance of some of the gages were not consistent
throughout the testing period (Fig. 6b), the performance for projections
further into the future may get worse at some sites, for example if a
change within the watershed led to a shift in the flow distribution. This
means that longer-term scenario simulation should be site specific and
with appropriate context regarding limitations related to changes in
management. Additionally, the FDC method for bias-correcting future
scenarios assumes stationarity and homogeneity (Müller and Thompson,
2016) meaning the FDC approach may not accurately correct for bias if
future climate scenarios include significant changes in precipitation
patterns and when there are significant changes in water use, land use
and water management.

Although FDCs constructed from historical observations at gaged
sites may not represent current flow conditions well because flow re-
gimes could be impacted by climate change and anthropogenic alter-
ations of the catchments (Castellarin et al., 2013; Mu et al., 2007), the
bias-corrected FDC approach could nevertheless be an important tool for
reducing residuals in the NHM-PRMS model. This is particularly
important for making future projections in areas that have been
impacted by human activities because the NHM-PRMS does not account
for processes like water withdrawals and reservoir operations, and so
inherently is not representative of streamflow under these conditions
(Towler et al., 2023).

For the purposes of predicting freshwater availability, the ability of

Fig. 6. Distribution map of FDC and ARIMA performance metrics of bias-corrected simulated streamflow versus USGS measured streamflow for gages in the CARB.
(a) Training data for FDC (1980–2000); (b) Testing data for FDC (2001–2016); (c) Training data for ARIMA (1980–2000); (d) Testing data for ARIMA (2001–2016).
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the NHM-PRMS results to estimate low flows is limited but these flows
are critical to understanding water availability during periods of
drought or reduced precipitation (Van Loon et al., 2016). Furthermore,
since the FDC approach presented here better captures low flows and the
study is focused on making long term projections, the FDC would be a
better approach for future scenarios compared to the ARIMA method for
proper management and sustainability of streamflow.

A limitation of our work is that we only investigate bias-correction
methods in settings with existing gaging data. While we do not
demonstrate the application of bias correction methods in ungauged
basins, other research works have utilized approaches such as spatial
interpolation algorithms for FDC estimates (Farmer et al., 2019; Shu and
Ouarda, 2012) to perform bias correction on national-scale streamflow
models including ungauged settings. One limitation of bias correction
methods lies in their assumption of a certain level of stationarity and
linearity in hydrological processes. This assumption, coupled with
evolving climate and land-use patterns, along with unreliable model
performance (Vaittinada Ayar et al., 2021) could significantly restrict
the effectiveness of these methods in predicting future conditions,
particularly in heavily disturbed basins. In situations such as this,
ensemble bias correction methodologies such as those proposed by
Vaittinada Ayar et al. (2021) offer a viable solution to preserve internal
variability, even amidst shifting climatic conditions.

4. Conclusions

In this work, bias correction was found to be necessary to make re-
sults from a national scale hydrologic model useful for estimating
streamflow in a heavily stressed basin, as needed for future projection
under climate change. Without bias correction, for a historic period (27
gages with continuous data between 1980 and 2016 from the Central
Arkansas River basin (CARB)), simulated low flows were far greater than
measured values. Indeed, in some areas zero streamflow was measured
for long historic periods due to anthropogenic streamflow depletion,
while simulated streamflow was consistently at non-zero values. Simu-
lated high flows were less than measured values in the test case. Thus,
the measured data had a wider range of values than the simulated

values, including lower lows and higher highs. The CARB provided a
useful test case due to its similarity to other highly stressed aquifers
worldwide in that it is large (414,000 km2) and has been heavily irri-
gated over past decades. Impacts on streams and groundwater systems in
the region are well documented. The analysis was conducted using the
USGS National Hydrologic Model (NHM-PRMS) because of its utility for
multi-decadal simulations. The difficulties addressed in the CARB are
expected to apply to other national scale models as well, because large-
scale models tend to poorly represent selected aspects important to
regional-scale resource management.

Results that closely matched streamflows for historical periods were
obtained using a combination of the FDC and ARIMA bias correction
methods. FDC (Flow Duration Curve) maps the cumulative probability
of the NHM simulated streamflow onto the probability of the measured
streamflow. FDC proved to be good at correcting low flows. ARIMA
(Auto-Regressive Integrated Moving Average) involves subtracting the
simulated from the measured streamflow and modeling the residual
time series. ARIMA proved to be good at correcting high flows. Amethod
of combining the two methods was devised that produced good results
for both low and high flows during the historic period.

Tests conducted by withholding selected historical data suggests that
ARIMA has poor long-term projection capabilities for the problem
considered. Using FDC alone was found to be better for future simula-
tions such as would be required for analysis of the effects of climate
change. This means that the future projects are likely to have the
strengths and deficiencies typical of FDC– low flows that are corrected
well, and high flows that are more problematic.

Overall, this work identifies serious difficulties with using national-
scale model results directly to project streamflows over climate-
change scale time periods in locations with strong anthropogenic im-
pacts on water resources, and that bias correction has some ability to
improve results. This suggests ways to obtain national-scale simulated
streamflows and provide results more useful for management and allo-
cation of surface water and groundwater under climate change. Though
the method development and tests in this work focused on agricultural
systems, application to other water management settings is promising.

Fig. 7. Time series plot of FDC bias-corrected streamflow versus USGS measured streamflow at gaged sites with the blue line separating training (1980–2000) and
testing results (2001–2016). Gage A represents 07108900 at St. Charles River at Vineland in CO, gage B represents 07141300 at Arkansas River at Great Bend in KS,
Gage C represents 07158000 at Cimarron River near Waynoka in OK and Gage D represents gage 07238000 at North Canadian River near Seiling in OK.
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Post, D., Kong, D., Beck, H.E., Li, C., Blöschl, G., 2023b. Future global streamflow
declines are probably more severe than previously estimated. Nature Water 1 (3),
261–271. https://doi.org/10.1038/s44221-023-00030-7.

Zipper, S.C., Hammond, J.C., Shanafield, M., Zimmer, M., Datry, T., Jones, C.N.,
Kaiser, K.E., Godsey, S.E., Burrows, R.M., Blaszczak, J.R., Busch, M.H., Price, A.N.,
Boersma, K.S., Ward, A.S., Costigan, K., Allen, G.H., Krabbenhoft, C.A., Dodds, W.K.,
Mims, M.C., et al., 2021. Pervasive changes in stream intermittency across the
United States. Environ. Res. Lett. 16 (8), 084033. https://doi.org/10.1088/1748-
9326/ac14ec.

Zipper, S.C., Farmer, W.H., Brookfield, A., Ajami, H., Reeves, H.W., Wardropper, C.,
Hammond, J.C., Gleeson, T., Deines, J.M., 2022a. Quantifying streamflow depletion
from groundwater pumping: a practical review of past and emerging approaches for
water management. JAWRA Journal of the American Water Resources Association
58 (2), 289–312. https://doi.org/10.1111/1752-1688.12998.

Zipper, S., Popescu, I., Compare, K., Zhang, C., Seybold, E.C., 2022b. Alternative stable
states and hydrological regime shifts in a large intermittent river. Environ. Res. Lett.
17 (7), 074005. https://doi.org/10.1088/1748-9326/ac7539.

P. Bosompemaa et al. Environmental Modelling and Software 183 (2025) 106234 

13 

https://doi.org/10.1029/2011WR011501
https://doi.org/10.1029/2011WR011501
https://doi.org/10.1002/for.3980040305
https://doi.org/10.1007/s11269-020-02630-4
https://www.osti.gov/biblio/1148868
https://doi.org/10.1029/2018WR024209
https://doi.org/10.1029/2018WR024209
https://doi.org/10.5194/hess-27-1809-2023
https://doi.org/10.5194/hess-27-1809-2023
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref87
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref87
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref88
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref88
https://maps.waterdata.usgs.gov/mapper/index.html
https://doi.org/10.1038/s41598-021-82715-1
https://doi.org/10.1038/s41598-021-82715-1
https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.5194/hess-20-3631-2016
https://doi.org/10.1016/j.jhydrol.2014.01.050
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref94
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref94
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485
https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485
https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
https://doi.org/10.1111/j.1752-1688.1995.tb03419.x
https://doi.org/10.1007/s10618-005-0039-x
https://doi.org/10.1007/s10618-005-0039-x
https://doi.org/10.1111/1752-1688.13056
https://doi.org/10.1111/1752-1688.13056
https://doi.org/10.1080/02626667.2014.959958
https://doi.org/10.1038/314149a0
https://doi.org/10.1038/314149a0
https://doi.org/10.1111/j.1467-9574.2012.00530.x
https://doi.org/10.1111/j.1467-9574.2012.00530.x
https://doi.org/10.1016/j.envsoft.2012.08.002
https://doi.org/10.1016/j.jhydrol.2020.124955
https://doi.org/10.1029/2007WR006716
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref105
http://refhub.elsevier.com/S1364-8152(24)00295-0/sref105
https://doi.org/10.1016/j.jhydrol.2011.09.017
https://doi.org/10.1007/s11269-011-9833-y
https://doi.org/10.1061/JHYEFF.HEENG-5825
https://doi.org/10.1061/JHYEFF.HEENG-5825
https://doi.org/10.1038/s44221-023-00030-7
https://doi.org/10.1088/1748-9326/ac14ec
https://doi.org/10.1088/1748-9326/ac14ec
https://doi.org/10.1111/1752-1688.12998
https://doi.org/10.1088/1748-9326/ac7539

	Using national hydrologic models to obtain regional climate change impacts on streamflow basins with unrepresented processes
	1 Introduction
	2 Methods
	2.1 NHM-PRMS
	2.1.1 Demonstration site
	2.1.2 Data sources
	2.1.3 Model performance measures

	2.2 Bias correction
	2.3 Applying the bias correction to future projections

	3 Results and discussion
	3.1 Comparison between observed streamflow and NHM-PRMS output
	3.2 Bias correction results
	3.2.1 ARIMA and SARIMA
	3.2.2 FDC
	3.2.3 FDC-ARIMA

	3.3 Lessons for future scenario simulations such as for climate-change evaluation

	4 Conclusions
	Software and data availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


