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Abstract
During embryonic development of the retina of the eye, astrocytes, a type of glial
cell, migrate over the retinal surface and form a dynamic mesh. This mesh then serves
as scaffolding for blood vessels to form the retinal vasculature network that supplies
oxygen and nutrients to the inner portion of the retina. Astrocyte spreading proceeds in
a radially symmetric manner over the retinal surface. Additionally, astrocytes mature
from astrocyte precursor cells (APCs) to immature perinatal astrocytes (IPAs) dur-
ing this embryonic stage. We extend a previously-developed continuum model that
describes tension-driven migration and oxygen and growth factor influenced prolifer-
ation and differentiation. Comparing numerical simulations to experimental data, we
identify model equation components that can be removed via model reduction using
approximate Bayesian computation (ABC). Our results verify experimental studies
indicating that the choroid oxygen supply plays a negligible role in promoting dif-
ferentiation of APCs into IPAs and in promoting IPA proliferation, and the hyaloid
artery oxygen supply and APC apoptosis play negligible roles in astrocyte spreading
and differentiation.

Keywords Cell migration · Embryonic development · Retina · Mathematical
modeling · Free boundary problem · Continuum model

1 Introduction

The retinal vasculature is vitally important for supplying oxygen and nutrients to the
inner layers of the retina, which contain photoreceptor cells and glial cells that convert
light signals to electrical and chemical signals that transmit to the brain, resulting in
a visual picture. When angiogenesis, the development of the retinal vasculature, does
not proceed correctly, it can lead to eye diseases, such as retinopathy of prematurity
and diabetic retinopathy, that cause loss of vision (Hellström et al. 2013; Fung et al.
2022).
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The development of the retinal vasculature begins around mid-gestation in humans
and closer to birth inmice and rats (Stone et al. 1995; Saint-Geniez andD’Amore 2004;
Fruttiger 2007). However, before endothelial cells form the blood vessel network,
astrocytes, a type of glial cell, spread to form a mesh, creating a spatial template for
the endothelial cells. The presence of astrocytes and the retinal vasculature are strictly
correlated; in mammals, astrocytes and vasculature are either both present or both
absent in the retina (Fruttiger 2007). Hence, gaining insight into the mechanisms of
astrocytemigration during embryonic development of the retina to assemble a scaffold
for subsequent blood vessel formation is key to understanding retinal angiogenesis in
both healthy and disease states.

The first mathematical model of retinal angiogenesis to implement astrocytes was
the work of Aubert et al. (2011), with later extensions by McDougall et al. (2012)
and Watson et al. (2012). Each of these models used partial differential equations to
describe the densities of endothelial cells, astrocytes, and growth factors, including the
A chain of platelet-derived growth factor (PDGFA) and vascular endothelial growth
factor (VEGF), and were based on data from mice. These models focused on the
migration of endothelial cells,with astrocytes playing a supporting role. The timeframe
of these models included prenatal and postnatal days to capture both the establishment
of the astrocyte mesh and the subsequent spreading of endothelial cells to form the
vasculature. In Stepien and Secomb (2022), a partial differential equations model
based on rat data was developed to focus solely on astrocyte spreading prenatally
before angiogenesis occurs, and it was the first model to additionally consider the
differentiation of astrocytes. The model of Stepien and Secomb (2022) forms the
basis for this study, where we aim to test model assumptions and deduce a reduced
model that contains the essential mechanisms describing astrocyte patterning during
retinal development.

To compare between various potential models, we implement model comparison
using approximate Bayesian computation (ABC) (Sunnåker et al. 2013; Liepe et al.
2014; Sisson et al. 2019). The ABC rejection method produces probability density
distributions of estimated parameters that best fit experimental data in situations where
the likelihood is not tractable. It has been used in studying cell migration and other
biological problems such as those in genetics, ecology, epidemiology, oncology, and
systems biology (Tanaka et al. 2006; Vo et al. 2015; Johnston et al. 2016; Browning
et al. 2017; da Costa et al. 2018; Dutta et al. 2018; Kursawe et al. 2018; Stepien
et al. 2019; Warne et al. 2019; Browning et al. 2020; Carr et al. 2021; Xiao et al. 2021;
Martina Perez et al. 2022;Cunha Jr. et al. 2023;Anderson et al. 2024;Wang et al. 2024).
We use the results of the ABC rejection method to inform potential reduced models
where different terms are removed and test whether they are more representative of
the experimental data. This gives insight into terms that are not required to be included
in a biologically representative mathematical model.

Our goal is to determine which mechanisms of astrocyte proliferation, differenti-
ation, and apoptosis are essential to include in a mathematical model of embryonic
astrocyte migration in the retina to represent the underlying biology. In this paper, we
extend the mathematical model of Stepien and Secomb (2022) to include additional
components that may play a role in astrocyte spreading and differentiation such as the
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hyaloid artery. Applying ABC, we identify reduced models that may better represent
experimental data, and subsequently, identify individual terms that are not necessary.

2 Mathematical Model

We briefly review the continuum mechanical model of astrocyte spreading and differ-
entiation as described in Stepien and Secomb (2022) and introduce modifications of
the equations that are used in this study. Themathematical model is based on data from
the rat experimental model and is assumed to be driven by gradients in tension within
the astrocyte layer. Though the retina has a spherical geometry in vivo, experimental
measurements are often taken after the retina has been cut and flattened, and thus,
axial symmetry about the optic nerve head is assumed. Additionally, as astrocytes
migrate in a radial fashion away from optic nerve head (Fruttiger 2007), we consider a
one-dimensional spatial model that assumes radial symmetry (Fig. 1A). All variables
are represented as functions of radial position r and time t after embryonic day E15.
The time period of the model is from embryonic day E15 to the day of birth, E22/P0.

Themodel is derived from conservation ofmass and balance ofmomentum in radial
coordinates. Letting c1(r , t) and c2(r , t) be the density of APCs and IPAs on the retinal
surface, respectively, the following governing equations were derived in Stepien and
Secomb (2022),

APCs:
∂c1
∂t

= − 1

μr

∂

∂r

(
rc1T

′(ctot)
∂ctot
∂r

)
+ g1, (1a)

IPAs:
∂c2
∂t

= − 1

μr

∂

∂r

(
rc2T

′(ctot)
∂ctot
∂r

)
+ g2, (1b)

where μ is a viscous constant, ctot = c1 + c2 is the total astrocyte density, T (ctot) is
the tension function that describes how motion is driven at the edge, and g1 and g2 are
growth functions that can depend on proliferation, differentiation, and apoptosis.

In Stepien and Secomb (2022), the viscous constant for APCs was set to be twice
that of the viscous constant for IPAs to better capture the narrow high density region
of APCs at the outer edge of the astrocyte disk. In this study, however, we assume that
the viscous constant is the same for both the APCs and IPAs. Although rudimentary
exploration of parameter values in Stepien and Secomb (2022) failed to reveal a narrow
outer rim of APCs when the viscous constants are equal, the numerical method devel-
oped here for themodel with equal viscous constants is more robust than the numerical
method developed in Stepien and Secomb (2022) because it is stable for a larger range
of parameter values, and thus, it is better equipped to perform the parameter analysis
in this study.

We assume that the tension T in the cell layer is proportional to the difference
between two radii: the radius r̄ at which the tension drops to zero and the radius rast
of an astrocyte (including its cell processes), which is assumed to be proportional to

123



126 Page 4 of 28 T. L. Stepien

Fig. 1 Schematics of the model configuration and factors influencing astrocyte proliferation and differenti-
ation. A Top view of the spreading astrocyte layer, with radial domain r = [0, rmax] and astrocyte moving
boundary r = s(t) indicated. B Interactions of astrocytes, growth factors, and oxygen. Components in light
gray are not explicitly represented in themodel. Platelet derived growth factor (PDGFA) produced by retinal
ganglion cells (RGCs) and oxygen diffusing from the choroid and hyaloid artery promote proliferation of
APCs and IPAs. Leukemia inhibitory factor (LIF) produced by endothelial cells (ECs) and oxygen promote
differentiation of APCs into IPAs. C Timeline of levels of oxygen and growth factors within the retina.
Oxygen diffuses from the choroid and hyaloid artery; the partial pressure levels of choroid oxygen decrease
with time as the retina thickens while the levels of hyaloid artery oxygen remain constant. PDGFA is pro-
duced by RGCs starting at E18; PDGFA concentration increases with time due to increasing production
rate. LIF is produced by ECs starting at E15; LIF concentration increases with time as ECs spread radially

the radius of a disk with area equal to the retinal surface area per cell. This results in

T (ctot) = κ (rast − r̄) = κ

(
1√
πctot

− r̄

)
, (2)

where κ is a spring constant (Stepien and Secomb 2022). Parameters with values
known or derived from literature are given in Table 1.
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The terms that comprise the growth functions are the main focus of this study,
which are given in terms of proliferation, differentiation, and apoptosis rates by

APCs: g1(c1, c2, P, q1, q2) = gprolif,1(c1, c2, P, q1) (3a)

− gdiff(c1, P, q2) − gapop,1(c1),

IPAs: g2(c1, c2, P, q1, q2) = gprolif,2(c1, c2, P, q1) (3b)

+ gdiff(c1, P, q2) − gapop,2(c2),

where P is the partial pressure of oxygen (PO2) on the retinal surface, and q1 and q2
are growth factors to be described below. We retain all the terms that were included in
our previous model in Stepien and Secomb (2022), but we add more terms to test addi-
tional hypotheses about which mechanisms are essential to include in a mathematical
model of embryonic astrocyte migration and differentiation and which are negligible.
Figure 1B–C illustrates these potential factors and their levels over time.

For example, our previous model in Stepien and Secomb (2022) assumed that
oxygen is supplied only by the choroid vasculature, which is located posterior to
the retina and has begun developing during the embryonic development stage that
the model is attempting to describe (Berson 1965; Saint-Geniez and D’Amore 2004;
Anand-Apte and Hollyfield 2010). We previously neglected the oxygen supply from
the hyaloid artery (Shakib et al. 1968; Zhang et al. 1999), whose effect is restricted
to a small region around the optic nerve head, but included it in this study as the
hyaloid vasculature supplies oxygen and nutrients to the inner part of the eye before
the retinal vasculature is formed (Fruttiger 2007). Additionally, Stepien and Secomb
(2022) did not include apoptosis terms since cell death is assumed to be negligible
during the prenatal period (Chan-Ling et al. 2009). It is included in this study to test
if the mathematical model predicts the same hypothesis.

Proliferation is assumed to occur at a rate that depends on the levels of the A chain
of platelet-derived growth factor (PDGFA), q1, oxygen from the choroid, Xc, and
oxygen from the hyaloid artery, Xh , in a logistic form to represent the limitation of
cell proliferation by crowding on the retinal surface,

gprolif,i (c1, c2, P, q1) =
(

αi0 + αi1
q1

qmaxP
+ αi2Xc(r , P)

+αi3Xh(r)

)
ci

(
1 − c1 + c2

cmax

)
, i = 1, 2. (4)

The values of the proliferation rates α are to be estimated (Table 2).
Differentiation occurs at a rate that depends on the levels of leukemia inhibitory

factor (LIF), q2, oxygen from the choroid, Xc, and oxygen from the hyaloid artery,
Xh , in proportion to the amount of APCs present. A mass action term is also included,
resulting in

gdiff(c1, P, q2) =
(

β0 + β1
q2

qmaxL
+ β2Xc(r , P) + β3Xh(r) + β4

cmax
c2

)
c1. (5)
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126 Page 8 of 28 T. L. Stepien

Table 2 Model parameters with values that are to be estimated

Migration constant

Astrocyte migration constant μ force/area × (length/time)−1 = Pa h/mm

Hyaloid artery

Hyaloid partial pressure of oxygen Phy Dimensionless

Radius of hyaloid oxygen extent rhy Length = mm

Proliferation rates

Basal APC rate α10 1/time = h−1

APC rate with respect to PDGFA α11 1/time = h−1

APC rate with respect to choroid oxygen α12 1/time = h−1

APC rate with respect to hyaloid artery oxygen α13 1/time = h−1

Basal IPA rate α20 1/time = h−1

IPA rate with respect to PDGFA α21 1/time = h−1

IPA rate with respect to choroid oxygen α22 1/time = h−1

IPA rate with respect to hyaloid artery oxygen α23 1/time = h−1

Differentiation rates

Basal rate β0 1/time = h−1

Rate with respect to LIF β1 1/time = h−1

Rate with respect to choroid oxygen β2 1/time = h−1

Rate with respect to hyaloid artery oxygen β3 1/time = h−1

Mass action rate β4 1/time = h−1

Apoptosis rates

APC rate η1 1/time = h−1

IPA rate η2 1/time = h−1

The values of the differentiation rates β are to be estimated (Table 2).
Apoptosis occurs at a rate proportional to the amount of APCs or IPAs present,

gapop,i (ci ) = ηi ci , i = 1, 2. (6)

The values of the apoptosis rates η are to be estimated (Table 2).
The forms of the oxygen functions Xc and Xh are described in Sect. 2.2, and the

growth factors q1 and q2 are described in Sect. 2.3, after first stating the boundary and
initial conditions in Sect. 2.1.

2.1 Boundary and Initial Conditions

The domain of the astrocytes is considered to be r ∈ [0, s(t)], where s(t) denotes
the dynamic location of the outer edge of the astrocyte layer that forms a moving
boundary. The initial location of the edge is s(0) = s0, with value as given in Table 1.
Since we assume radial symmetry, we impose a no flux boundary condition at the
origin for the APC and IPA cell densities.
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On the moving boundary, s(t), we assume that there is a fixed radial tension, Te,
at the cell layer edge, following experimental evidence that traction forces are mainly
generated at the leading edge of migrating embryonic astrocytes (De Pascalis et al.
2018). Thus, for a given Te, the corresponding total cell density at r = s(t) is calculated
by inverting (2). We give the parameter values for Te and ce in Table 1.

FromStepien andSecomb (2022), the equationdescribing the velocity at themoving
edge of astrocytes, i.e., the Stefan condition, is given by

s′(t) = T ′(ce)
μ1

∂ctot
∂r

∣∣∣∣
r=s(t)

. (7)

At t = 0, the initial conditions for the APCs and IPAs are assumed to be

c1 = ce + (c′
e − ce)

(
1 −

(
r

s0

)2
)

, 0 ≤ r ≤ s0, (8)

and c1 = 0 elsewhere, and c2 = 0 everywhere. c′
e is a constant chosen to given an

appropriate initial rate of spreading, with value given in Table 1.

2.2 Oxygen Supply

Cell proliferation is dependent on oxygen availability for most cell types (Hubbi and
Semenza 2015) and oxygen availability has been identified as a driver of astrocyte
differentiation (Zhang et al. 1999; West et al. 2005; Duan et al. 2017). As in Stepien
and Secomb (2022), we assume that the contribution of oxygen from the choroid is
governed by Michaelis–Menten kinetics,

Xc(r , P) = P

Pm + P
, (9)

where P is the partial pressure of oxygen (PO2) from the choroid on the retinal surface.
The variable Pm is the PO2 at half-maximal consumption with value given in Table 1.

Todetermine an expression for P , we assume that oxygen diffusion from the choroid
is represented by a one-dimensional oxygen consumption model from Popel (1989)
that assumes zero-order kinetics,

Dα
∂2P

∂z2
= M0, (10a)

P = P0, at z = 0, (10b)
∂P

∂z
= 0, at z = L, (10c)

where D is the diffusivity and α is the solubility of oxygen in tissue, M0 is the
oxygen consumption rate, P0 is partial pressure of oxygen in the choroid with values
given in Table 1. We previously assumed that there is Michaelis–Menten dependence
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of consumption on the retinal surface in Stepien and Secomb (2022), but use the
simplified model (10) here to significantly reduce the computational time necessary
in our parameter analysis. L = L(r , t) is the thickness of retina (in µm), which was
fit to experimental data via regression in Stepien and Secomb (2022) and determined
to be

L(r , t) = LONH(t) − (
LONH(t) − Lperiph(t)

) (
r

rret(t)

)2

, r ≤ rret(t), (11)

and zero otherwise, where

LONH(t) = 14.33t + 98.78, (12a)

Lperiph(t) = 13.77t + 72.8, (12b)

rret(t) = 414.7t + 1029.2. (12c)

We assume that the form of the hyaloid artery contribution is a Hill-type function
that is maximal at the optic nerve head (r = 0),

Xh(r) = Phy

(
1 − r2

r2hy + r2

)
, (13)

where Phy and rhy are parameters describing the hyaloid partial pressure of oxygen and
radius of hyaloid oxygen extent, respectively, with values to be estimated (Table 2).

2.3 PDGFA and LIF Growth Factors

Various growth factors have been identified that play a role in the proliferation and
differentiation of APCs and IPAs. In particular, the A chain of platelet-derived growth
factor (PDGFA), which is produced by retinal ganglion cells (RGCs), promotes pro-
liferation (Mudhar et al. 1993; West et al. 2005; Fruttiger 2007; Tao and Zhang 2014)
and leukemia-inhibitory factor (LIF), which is produced by endothelial cells, promotes
differentiation (Mi and Barres 1999; Mi et al. 2001; Fukushima et al. 2009; Tao and
Zhang 2014).

Based on the model in Goriely et al. (2002), we assume that concentrations (in
ng/mL) of PDGFA, q1 and LIF, q2, satisfy the reaction–diffusion equations

∂qi
∂t

= Di

λ2r

∂

∂r

(
r
∂qi
∂r

)
+ ξi (r , t)

φ
− γi qi , i = 1, 2, (14)

where λ and φ are the tortuosity and porosity of the retina, respectively, D1 and D2
are the diffusivities of PDGFA and LIF in water, and γ1 and γ2 are the degradation
rates of PDGFA and LIF. See Table 1 for the values of these parameters. ξ1(r , t)
and ξ2(r , t) represent the amounts of PDGFA and LIF released into the interstitial
space per unit tissue volume per unit time. Based on experimental data, in Stepien and
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Secomb (2022) these functions were determined to be

ξ1(r , t) = ξ̄1
LRGC(r , t)

LRGC,max

(t − 3)

4
, r ≤ rret(t), t ≥ 3, (15a)

ξ2(r , t) = ξ̄2, r ≤ rendo(t) = 185t, (15b)

and zero otherwise, where the thickness of the RGC layer was fit to experimental data
via regression in Stepien and Secomb (2022) and determined to be

LRGC(r , t) = GCONH(t) − (
GCONH(t) − GCperiph(t)

) (
r

rret

)2

, r ≤ rret(t),

(16)

and zero otherwise, where

GCONH(t) = max
{
−3.79t2 + 31.02t − 23.16 , 0

}
, (17a)

GCperiph(t) = max
{
−2.49t2 + 23.81t − 24.12 , 0

}
. (17b)

The values of the maximum retinal ganglion cell layer thickness, LRGC,max, and the
production rates of PDGFA, ξ̄1, and LIF, ξ̄2, are given in Table 1.

It is assumed that PDGFA and LIF can diffuse outside of the growing astrocyte
layer, but that they are unlikely to diffuse far outside of the retina. We consider (14)–
(17) on a fixed domain r ∈ [0, rmax], where we set rmax to be significantly larger than
the radius of the retina during the time period that is being simulated. The boundary
condition q1 = q2 = 0 is imposed at r = rmax = 5 mm and a no flux condition is
imposed at the origin.

2.4 Simulations and Experimental Data

A front-tracking method based on the method of Marshall (1986) was developed to
numerically solve themodel equations andboundary and initial conditions as described
in the previous section. Please see Online Resource 1 Section A for details.

Sample simulations of each model considered in Sect. 4 are illustrated in Fig. 2.
These simulations represent best fits for each model. Taking the parameter sets that
resulted in the five smallest errors (Sect. 3.1) found using approximate Bayesian com-
putation (Sect. 3), we performed gradient descent using fminsearch in MATLAB.
The parameter set that resulted in the smallest error after using gradient descent are
used in the simulations shown.

The experimental data used for model fitting is illustrated in Fig. 2G in Chan-Ling
et al. (2009). It shows 2D stereological maps with the location of astrocyte precursor
cells (APCs) and immature perinatal astrocytes (IPAs) in rat retina whole mounts at
various embryonic ages. The radius of each cell type over time was determined by
measuring the average diameter shown in the maps, and the results are reported in
Table 3. Due to the nature of obtaining whole mounts, each time point comes from
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different rats, and thus variation from the values reported in Table 3 would be expected
in individual rats. However, the data as a whole indicates that the geometry of the APC
population is that of an expanding annulus while the IPA population is an expanding
disk.

In all themodels, the spatial distribution of theAPCs and IPAs qualitativelymatches
experimental data as shown in Fig. 2: the geometry of the APC population is that of
an expanding annulus while the IPA population is an expanding disk. However, there
is a larger difference in APC versus IPA cell density at the leading edge for Fig. 2C–E
than for Fig. 2A–B, indicating that the No APC Apoptosis (Sect. 4.3), No Uniform
(Sect. 4.4), and No Bio (Sect. 4.5) models fit the density patterning better than the Full
(Sect. 4.1) and No Hyaloid (Sect. 4.2) models. Additionally, the moving boundary
location fits the experimental data well for all models, with the Full model fitting the
best.

3 Parameter andModel Comparison Analysis Using Approximate
Bayesian Computation (ABC)

We aim to verify which aspects of the mathematical model developed in Sect. 2 are
essential to explain the patterning of APCs and IPAs during embryonic development
of the retina. We use the approximate Bayesian computation (ABC) rejection method
(Sunnåker et al. 2013; Liepe et al. 2014; Sisson et al. 2019) to determine representative
probability distributions of the parameters and inform potential model reductions. We
additionally will then compare between these various models.

We implement the ABC rejection method in the following steps:
(1)Prior distributionUseLatin hypercube (LH) sampling togenerate a near-random

sample of sets of parameter values from amulti-dimensional distribution,which allows
for sampling the multi-dimensional model parameter space efficiently (Sisson et al.
2019; Burkardt 2021). In particular, if there are n parameters to be estimated from
Table 2, there is an n-dimensional space of LH points. The set of all the i th elements
of the LH points forms a prior distribution for the i th parameter.

Upper and lower bounds of the parameter ranges are chosen based on a combination
of order of magnitude estimates of biologically relevant values and numerical simula-
tion outputs. For example, an upper bound forμ can be determined by setting an upper
bound for the initial time step (see equation (A2.a) in Online Resource 1 Section A).
Simulations with parameter values that were too large resulted in numerical errors.

(2) Posterior distribution Run a simulation for each parameter set and calculate
the error by comparing the simulation to experimental data (Sect. 3.1). If the error is
smaller than a specified threshold value τ , it is sufficiently close to the experimental
data and the parameter set is accepted. If the error is larger than the threshold τ , the
parameter set is rejected. The set of all the i th elements of the accepted parameter sets
forms a posterior distribution for the i th parameter.

We fit numerous probability distributions (Normal, Lognormal, Gamma, Exponen-
tial, Weibull, and Uniform) to each of the posterior distributions and then determine
the best fitting probability distribution by minimizing the 1-Wasserstein metric (earth
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Fig. 2 Cell densities of astrocyte precursor cells (APCs) and immature perinatal astrocytes (IPAs) and
the location of the moving boundary of astrocytes (×: observed astrocyte spread from experimental data).
Parameter values are listed in Online Resource 1 Section B. A Full model (Sect. 4.1); E = 2.5207. B No
Hyaloidmodel (Sect. 4.2);E = 2.9913.CNoAPCApoptosismodel (Sect. 4.3);E = 2.8072.DNoUniform
model (Sect. 4.4); E = 2.8046. E No Bio model (Sect. 4.5); E = 2.8495.

123



126 Page 14 of 28 T. L. Stepien

Table 3 Radius in mm of
astrocyte precursor cells (APCs)
and immature perinatal
astrocytes (IPAs) as measured
from Fig. 2G in Chan-Ling et al.
(2009)

E15 E16 E18 E19 E20 E21 E22/P0

APCs 0.17 0.33 0.5 0.67 1.67 2.17 2.67

IPAs 0 0.04 0.08 0.33 1 1.5 2

mover’s distance). This allows for a quantitative characterization of the posterior dis-
tributions and an additional assessment for skewness.

To deduce which mathematical model best fits the experimental data, one can com-
pare the marginal probabilities p(model | data) among various models. The ABC
rejection model selection algorithm in the joint space-based approach is to: (1) choose
amodel uniformly randomly froma set ofmodel indicators {m1,m2, . . . ,mk}, (2) sam-
ple parameters for that model from the prior distributions, (3) run a simulation for the
parameter set and calculate the error, (4) accept the model and parameter set if the
error is less than τ (Grelaud et al. 2009; Toni and Stumpf 2009). In this set up, we do
not use Latin hypercube sampling but instead sample the parameters from a uniform
prior distribution with the same lower and upper bounds.

The marginal posterior distribution is approximated by

p(mi | data) ≈ Number of accepted parameter sets for model mi

total Number of accepted parameter sets
. (18)

Then to compare models mi and m j , compute their posterior ratio

p(mi | data)
p(m j | data) = p(data | mi )

p(data | m j )

p(mi )

p(m j )
= Bi j

p(mi )

p(m j )
, (19)

where Bi j is the Bayes factor. Assuming that the model priors are equal, p(mi ) =
p(m j ), then the posterior ratio equals the Bayes factor (Grelaud et al. 2009; Toni and
Stumpf 2009; Francois and Laval 2011; Sunnåker et al. 2013). When the Bayes factor
is close to 1, the evidence against m j (and in favor of mi ) is very weak, and as the
Bayes factor increases, the evidence strengthens (Kass and Raftery 1995).

3.1 Error Function

The total error we define to compare between simulations and experimental data, E ,
consists of the sum of the errors due to three different aspects: time (Etime), radius
(Eradius), and density (Edensity).

The time error, Etime, penalizes the numerically calculated moving boundary of
the astrocytes either slowing down and stalling before the 7 simulated days between
E15–E22/P0 has elapsed or speeding up and advancing too far into the retina. We set
this numerically simulated time error to be the absolute error

Etime = ∣∣7 − (last simulated time point)
∣∣. (20)
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The radius error, Eradius, compares the distance that the astrocytes have spread over
time between the simulations, from the location of the moving boundary s(t), and
experimental data, from the radius of APCs as listed in Table 3 (Sect. 2.4). We note
that the data was collected on days E15–E16 and E18–E22/P0, so there is no data for
day E17. Additionally, since we specify that the initial disk radius s0 (Table 1) in the
numerical simulations is the same as the APC radius on day E15 (Table 3), there are
hence only 6 data points at which to measure differences. We set the radius error to
be the L1-norm

Eradius =
∑
t∈T

∣∣(actual radius) − (simulated radius)
∣∣, (21)

where the set T = {E16,E18,E19,E20,E21,E22/P0}.
The density error, Edensity, compares the density patterning of APCs versus IPAs.

The stereological maps from Fig. 2G in Chan-Ling et al. (2009) (Sect. 2.4) indicate
where APC density is higher versus where IPA density is higher. In particular, at
radii less than the IPA radius listed in Table 3, the density of IPAs is larger than the
APC density. At radii between the IPA radius and the APC radius listed in Table 3,
the density of APCs is larger than the IPA density. The density error is based on the
Jaccard distance, which is a measure of the distance between two sets, and is given
by

Edensity = 1

6

∑
t∈T

[(
1 − |AAPC

t ∩ BAPC
t |

|AAPC
t ∪ BAPC

t |
)

+
(
1 − |AIPA

t ∩ BIPA
t |

|AIPA
t ∪ BIPA

t |
)]

, (22)

where At is the set of spatial grid nodes in the simulation at time t (see Online
Resource 1 Section A for details on the finite difference numerical method) and Bt is
the set of spatial grid nodes corresponding to the experimental data, respectively. The
superscript “APC” denotes the set of grid nodes at which the APC density is larger
than (or equal to) the IPA density, and “IPA” denotes the opposite.

Summing the three errors (20)–(22) together and weighting Eradius twice as much
to assign a higher penalty for a mismatch of the moving boundary location, we obtain
the total error,

E = Etime + 2Eradius + Edensity. (23)

There are caseswherewe set the total error to a large number (in particular,E = 104)
to signify a very poor fit: (1) if the last simulated time point is strictly greater than
8, (2) if there is a numerical error and the last simulated time point is an imaginary
number, (3) if the APC or IPA cell density, c1 or c2, is negative at any spatial node at
any time, or (4) if the APC or IPA cell density, c1 or c2, is zero at every spatial node
at the last simulated time point.
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4 Results

As given in Table 2, there are 18 parameters to be estimated. We begin our analysis
by generating 500,000 LH points for the ABC rejection method for the full model
(Sect. 4.1). We impose the early stopping criteria requiring error value E < 104 so that
unrealistic model outcomes are immediately removed (Prangle 2016). The threshold
value τ for each model was chosen such that approximately 1% of the remaining
parameter sets in the prior distribution are accepted (see Online Resource 1 Section C).
We subsequently identify parameter values to set equal to zero by looking for right-
skewed posterior distributions, and analyze various nested reducedmodels (Sects. 4.2–
4.5).

4.1 Full Model (18 Parameters)

The posterior distributions obtained using the full model with all 18 parameters and
threshold value τ = 7.25 are illustrated in Fig. 3. We observe from Fig. 3 that the
posterior distributions best fit three different types of classic distributions: Uniform
U (lower, upper), Normal N (μ, σ ), andWeibullW (A, B), and the corresponding dis-
tribution parameters are given in Table 4.

To identify candidates for parameters that may not be essential to include in the
mathematical model, we look for parameters with histograms that have a heavy density
near zero and corresponding best fitting probability distribution that is right-skewed.
We set these parameters equal to zero in a reduced model in the next section.

Fig. 3 ABCposterior distributions of all 18 parameters to be estimated (Table 2) for the fullmodel (Sect. 4.1)
obtained from using Latin hypercube (LH) sampling with 500,000 LH points as prior distributions as
described in Sect. 3. The parameter sets with error (23) less than threshold τ = 7.25 are shown in the
histograms. The solid red curves represent the best fitting probability distribution via minimizing the 1-
Wasserstein metric (Table 4)
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Fig. 4 ABC posterior distributions of 13 parameters to be estimated (Table 2) for the model (Sect. 4.2)
without the hyaloid artery (α13, α23, β3, Phy, and rhy removed) obtained from using Latin hypercube (LH)
sampling with 500,000 LH points as prior distributions as described in Sect. 3. The parameter sets with
error (23) less than threshold τ = 5.25 are shown in the histograms. The solid red curves represent the best
fitting probability distribution via minimizing the 1-Wasserstein metric (Table 4) (Color figure online)

The hyaloid artery parameter Phy is a candidate to set equal to zero since the
histogram and the best fitting distribution is a highly right-skewedWeibull distribution
on the domain (Fig. 3/Table 4). Though some other parameters have left-skewed
distributions and the results may not capture their full posterior distribution, such
as α10, α11, α13, and η2, enlarging the domain of all parameters and re-running the
ABC rejection routine still resulted in a highly right-skewed distribution for Phy. Since
setting Phy = 0 essentially implies that Xh(r) = 0 (13), due to the presence of Xh(r)
in Eqs. (4), (5), and (13), this additionally means that terms with the hyaloid artery
parameters α13,α23, β3, and rhy should also be set equal to zero in themodel equations.
This results in a nested reduced model with 13 parameters that does not contain the
hyaloid artery.

4.2 ModelWithout the Hyaloid Artery (13 Parameters)

The posterior distributions obtained using the model with 13 parameters without the
hyaloid artery (α13, α23, β3, Phy, and rhy removed) with threshold value τ = 5.25 are
illustrated in Fig. 4.

We observe from Fig. 4 that the posterior distributions best fit four different types
of classic distributions: UniformU (lower, upper), Normal N (μ, σ ), Gamma �(a, b),
and Weibull W (A, B), and the corresponding distribution parameters are given in
Table 4. Aiming to reduce the model further, by examining the parameters with his-
tograms that have a heavy density near zero, we set the basal differentiation rate, β0,
and the APC apoptosis rate, η1, equal to zero in the following section as they are best
fit by right-skewed Weibull and Gamma distributions, respectively.
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Fig. 5 ABC posterior distributions of 11 parameters to be estimated (Table 2) for the model (Sect. 4.3)
without the hyaloid artery, basal differentiation, or APC apoptosis (α13, α23, β3, Phy, rhy, β0, and η1
removed) obtained from using Latin hypercube (LH) samplingwith 500,000 LH points as prior distributions
as described in Sect. 3. The parameter sets with error (23) less than threshold τ = 4.05 are shown in the
histograms. The solid red curves represent the best fitting probability distribution via minimizing the 1-
Wasserstein metric (Table 4) (Color figure online)

4.3 ModelWithout the Hyaloid Artery, Basal Differentiation, and APC Apoptosis
(11 Parameters)

The posterior distributions obtained using the model with 11 parameters without the
hyaloid artery, basal differentiation, and APC apoptosis (α13, α23, β3, Phy, rhy, β0,
and η1 removed) with threshold value τ = 4.05 are illustrated in Fig. 5.

We observe from Fig. 5 that the posterior distributions best fit three different types
of classic distributions: Uniform U (lower, upper), Normal N (μ, σ ), and Weibull
W (A, B), and the corresponding distribution parameters are given in Table 4. Aiming
to reduce the model further, we notice that none of the parameters have a heavy den-
sity near zero. Alternatively, we test two additional model reductions using different
criteria.

First, parameters that exhibit Uniform posterior distributions are insensitive, imply-
ing that changes in the parameter value do not result in much better or much worse
fits to the data. When parameters are insensitive, the usual procedure in sensitivity
analysis is to fix them to a single value (Saltelli et al. 2008). Hence, in Sect. 4.4 we
consider a reduced model with the APC proliferation rate with respect to the choroid
oxygen, α11, and the mass action rate, β4, set to zero, as both parameters are best fit
by Uniform distributions.

Second, as biological literature supports the assumptions that oxygen does not
play a large role in promoting differentiation of APCs and IPAs or in promoting IPA
proliferation, as we will discuss in Sect. 4.5, we consider a reduced model without
the IPA proliferation rate with respect to choroid oxygen, α22, and differentiation rate
with respect to choroid oxygen, β2.
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Fig. 6 ABC posterior distributions of 9 parameters to be estimated (Table 2) for the model (Sect. 4.4)
without the hyaloid artery, basal differentiation, APC apoptosis, APC proliferation with respect to choroid
oxygen, or mass action rate (α13, α23, β3, Phy, rhy, β0, η1, α11 and β4 removed) obtained from using
Latin hypercube (LH) sampling with 500,000 LH points as prior distributions as described in Sect. 3. The
parameter sets with error (23) less than threshold τ = 3.8 are shown in the histograms. The solid red curves
represent the best fitting probability distribution via minimizing the 1-Wasserstein metric (Table 4) (Color
figure online)

4.4 ModelWithout Uniform Distributions (9 Parameters)

The posterior distributions obtained using the model with 9 parameters without the
hyaloid artery, basal differentiation, APC apoptosis, APC proliferation with respect
to choroid oxygen, and mass action rate (α13, α23, β3, Phy, rhy, β0, η1, α11 and β4
removed) with threshold value τ = 3.8 are illustrated in Fig. 6.

We observe from Fig. 6 that the posterior distributions best fit two different types of
classic distributions: Normal N (μ, σ ) and Weibull W (A, B), and the corresponding
distribution parameters are given in Table 4. Aiming to reduce the model further, α12,
α21, β1 and β2 are right-skewed best fit by Weibull distributions.

While the differentiation rate with respect to choroid oxygen, β2, may be a realistic
choice to set equal to zero (see reasoning below in Sect. 4.5), setting the APC and
IPA proliferation rates with respect to PDGFA, α12 and α21, to zero is unlikely to be
physically-relevant since PDGFA has been experimentally identified as a promoter of
proliferation (Mudhar et al. 1993; West et al. 2005; Fruttiger 2007; Tao and Zhang
2014). As PDGFA release is associated with the presence of retinal ganglion cells
(RGCs), which mature over time, PDGFA is especially likely to have a nonzero influ-
ence on the proliferation rate of IPAs. If β2 is set to zero, then β1 could not also be set
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Fig. 7 ABCposterior distributions of 9 parameters to be estimated (Table 2) for themodel (Sect. 4.5)without
the hyaloid artery, basal differentiation, APC apoptosis, IPA proliferation with respect to choroid oxygen, or
differentiation with respect to choroid oxygen (α13, α23, β3, Phy, rhy, β0, η1, α22 and β2 removed) obtained
from using Latin hypercube (LH) sampling with 500,000 LH points as prior distributions as described in
Sect. 3. The parameter sets with error (23) less than threshold τ = 3.7 are shown in the histograms. The
solid red curves represent the best fitting probability distribution via minimizing the 1-Wasserstein metric
(Table 4) (Color figure online)

to zero since this would result in no astrocytes transitioning from APCs to IPAs in the
model.

4.5 ModelWithout Choroid Oxygen for Differentiation and IPA Proliferation (9
Parameters)

While oxygen has been identified as playing a role in promoting proliferation of most
cell types (Hubbi and Semenza 2015) and in promoting differentiation of astrocytes
(Zhang et al. 1999; West et al. 2005; Duan et al. 2017), the levels of oxygen available
during the later embryonic days of E15–E22/P0 may not be substantial enough to be
necessary to include in a mathematical model.

Since oxygen supply from the choroid decreases and no longer diffuses to the retina
by day E20 (Dollery et al. 1969; Braekevelt and Hollenberg 1970) and IPAs do not
appear in significant numbers until after E19 (Chan-Ling et al. 2009, Fig. 2G), there is
not a large amount of oxygen physically available to promote IPA proliferation. Thus,
it is reasonable that the IPA proliferation rate with respect to choroid oxygen, α22,
could be set to zero.

Duan et al. (2017) found that, since APC to IPA differentiation occurs far from
retinal blood vessels, only low levels of oxygen are necessary, while higher levels of
oxygen are required for IPAs to differentiate into mature astrocytes. It is reasonable
that the differentiation rate with respect to choroid oxygen, β2, could be set to zero if
the low levels of oxygen are essentially negligible levels of oxygen.
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Table 5 Marginal posterior distributions as approximated by (18) for various threshold values τ .m1 = Full
model (Sect. 4.1), m2 = No Hyaloid model (Sect. 4.2), m3 = No APC Apoptosis model (Sect. 4.3), m4 =
No Uniform model (Sect. 4.4), and m5 = No Bio model (Sect. 4.5)

τ p(m1 | data) p(m2 | data) p(m3 | data) p(m4 | data) p(m5 | data)

104 0.1982 0.1977 0.2005 0.2020 0.2017

35 0.2037 0.2009 0.1985 0.2001 0.1968

15 0.1910 0.2051 0.2107 0.1910 0.2022

The posterior distributions obtained using the model with 9 parameters without the
hyaloid artery, basal differentiation, APC apoptosis, IPA proliferation with respect to
choroid oxygen, or differentiation with respect to choroid oxygen (α13, α23, β3, Phy,
rhy, β0, η1, α22 and β2 removed) with threshold value τ = 3.7 are illustrated in Fig. 7.

We observe from Fig. 7 that the posterior distributions best fit four different types
of classic distributions: UniformU (lower, upper), Normal N (μ, σ ), Gamma �(a, b),
and Weibull W (A, B), and the corresponding distribution parameters are given in
Table 4. Aiming to reduce the model further, we notice that none of the parameters
have a heavy density near zero. Considering the parameters with Uniform posterior
distributions, the IPA proliferation rate with respect to PDGFA, α21, would not be a
realistic choice to set equal to zero, based on the reasoning discussed in the previous
Sect. 4.4. The other parameter with Uniform posterior distribution is the mass action
rate β4, which could potentially be set to zero as it was in the previous section.

4.6 Model Comparison

We use the ABC rejectionmodel selection algorithm in the joint space-based approach
(Sect. 3), sampling 150,000 parameter sets and report the marginal posterior distribu-
tions as approximated by (18) for various threshold values τ in Table 5. We notice that
since all the values are approximately 0.2, this implies that the Bayes factor (19) for
any two given models is approximately 1, and thus, there is weak evidence in favor of
any model against the others.

However, we observed that when running individual ABC rejection for eachmodel,
the number of parameter sets in the prior distribution after the early stopping criteria
was applied increased: 116,886 (Full model; Sect. 4.1); 309,848 (No Hyaloid model;
Sect. 4.2); 468,397 (No APC Apoptosis model; Sect. 4.3); 473,708 (No Uniform
model; Sect. 4.4); and 482,249 (No Bio model; Sect. 4.5). Additionally, the threshold
value τ that corresponded with a 1% acceptance rate decreased among these models.
Hence, this indicates that the reduced models may be better fits to the data, and a larger
number of parameter sets using the model selection algorithm should be tested as we
may not have sampled the space sufficiently.

From the numerical simulations illustrated in Fig. 2, we observe that the reduced
models reflect the characteristic rim of APCs better and additional quantitative density
data would be necessary to strengthen conclusions that could be made from model
selection. In the next section, we discuss how biological literature supports the model
reductions that arose from ABC rejection.
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5 Discussion

In this work, we extended a mathematical model of astrocyte spreading and dif-
ferentiation in the embryonic retina based on the previous model of Stepien and
Secomb (2022). In our mathematical model, the mechanics of astrocyte spreading
are represented by tension-driven growth, under the observation that traction forces
are mainly generated at the leading edge in experimental astrocyte migration (De
Pascalis et al. 2018). Various factors, such as oxygen supply and growth factor avail-
ability, promote astrocyte proliferation and differentiation from astrocyte precursor
cells (APCs) to immature perinatal astrocytes (IPAs). In Stepien and Secomb (2022),
a base mathematical model was developed to incorporate essential experimentally-
observed mechanisms. Here, our aim was to include additional mechanisms and then
compare between various nested reducedmodels using approximate Bayesian compu-
tation (ABC).Determining potentialmodel reductions via right-skewedABCposterior
distributions gives insights into nonessential mechanisms that can be removed from
the mathematical model equations.

In particular, based on the full mathematical model that we developed in Sect. 2,
the following mechanisms of proliferation and differentiation do not appear to play
a significant role: (1) oxygen supply from the hyaloid artery, (2) APC apoptosis,
(3) choroid oxygen in promoting differentiation of APCs into IPAs, and (4) choroid
oxygen in promoting IPA proliferation.

As the oxygen supply from the hyaloid artery does not effectively extend far from
the optic nerve head (Shakib et al. 1968; Zhang et al. 1999), it is not surprising
that our results indicate that it plays a negligible role. Indeed, this mechanism was
not included in the previous mathematical model of Stepien and Secomb (2022). Our
model reduction results here indicate that the choice to only include the choroid oxygen
supply was appropriate.

Experimental work in Chan-Ling et al. (2009) demonstrated that while many IPAs
underwent apoptosis, there was no evidence of APCs undergoing apoptosis. We
included the effect of apoptosis in the growth functions for both the APCs and IPAs
(3) for generality, however, our model reduction results here indicate that apoptosis of
APCs is not a necessary model component.

Oxygen is readily available from the choroid vasculature at the beginning of the
embryonic time period we focused on, yet the amount of oxygen that is able to diffuse
all the way to the nerve fiber layer, where astrocytes are located, decreases over time
as the retina thickens (Dollery et al. 1969; Braekevelt and Hollenberg 1970). As it has
been experimentally observed that only low levels of oxygen are needed for APC to
IPA differentiation (Duan et al. 2017), our model corroborates that the role of choroid
oxygen in promoting differentiation is negligible. Additionally, due to the decrease
of choroid oxygen supply to zero by day E20, there is not enough oxygen physically
available to significantly promote IPA proliferation, and thus, our model reduction
results here indicate that choroid oxygen promotion of IPA proliferation is not an
essential mechanism.

These model selection results using ABC are very promising, as they verify exper-
imental observations; however, future study should be done to continue analyzing the
hypotheses. Although we varied both the parameter ranges in specifying the prior
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distributions and the error function (23) used to calculate the difference between sim-
ulation output and experimental data to run multiple pre-tests of the ABC method,
before running the final tests in Sect. 4, the choice of the prior distributions for the
parameters and the error function can play a large role in the resulting posterior distri-
butions of accepted parameter values, so one must proceed with caution (Robert et al.
2011; Sunnåker et al. 2013). There are also other ABC implementations such as a
sequential Monte Carlo version of ABC called ABC-SMC (Toni et al. 2009; Drovandi
and Pettitt 2011; Sisson et al. 2007) that are more efficient in obtaining approximate
posterior distributions and performing model selection. However, as the experimen-
tal data set was small (Sect. 3.1), more detailed data would be necessary to do an
expansive parameter estimation and comprehensive model comparison such as more
replicates, quantified cell densities, and additional time points. The ABC rejection
method is useful for providing preliminary information about reasonable parameter
distributions and model choices even in cases of limited data.

Although astrocytes have long been thought to only passively support the cen-
tral nervous system (CNS), recent discoveries have indicated their role and treatment
potential in autism and neurological diseases such as traumatic brain injury, stroke,
epilepsy, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amy-
otrophic lateral sclerosis (ALS or Lou Gehrig’s disease) (Caiazzo et al. 2015; Lange
et al. 2012; Lepore et al. 2008; Proschel et al. 2014; Sloan and Barres 2014). As the
retina is the only part of the CNS that can be noninvasively observed and measured,
it is a convenient model system for the CNS, and obtaining information about the
mechanisms of spreading and differentiation of retinal astrocytes during embryonic
development is relevant to other parts of the CNS both during development and in
later stages of life.
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