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Quantum scars correspond to enhanced probability densities along unstable classical periodic
orbits. In recent years, research on quantum scars has extended to various systems including the
many-body regime. In this work we focus on the formation, prevalence, and stability of linear
“bouncing-ball” (BB) scars in two-dimensional (2D) quantum wells. These scars have relevance as
effective and controllable channels in quantum transport. We utilize imaginary time propagation
to solve the 2D Schrödinger equation within an arbitrary external confining potential, specifically
the quantum well model with external perturbations. We show how BB scars begin to emerge
with a single perturbative peak, such as a repulsive bump or attractive dip that simulates the
effect of a charged nanotip in the system. We then identify the optimal size of the perturbative
peak to maximize the prevalence of these scars. Finally, we investigate the stability of BB scars
against external noise and find that some of them are remarkably robust. This suggests promising
opportunities for further applications of BB scars in quantum transport.

I. INTRODUCTION

A quantum eigenstate of a classically chaotic sys-
tem is formally defined to be scarred by a periodic or-
bit if its density on the classical invariant manifolds
near and along that periodic orbit is systematically en-
hanced beyond the classically expected density. [1] This
phenomenon, first discovered, named, and explained by
Heller in 1984, presents a counterintuitive manifestation
of both quantum-classical correspondence and the quan-
tum suppression of classical chaos. [2] Without scarring,
one might expect the eigenstate probability densities of
a classically chaotic system to uniformly cover position
space up to quantum fluctuations, reflecting ergodicity
of classical chaos. Gutzwiller’s trace formula [3, 4] sup-
ports this expectation, suggesting no single periodic orbit
dominates the quantum density of states. However, con-
trary to this misleading assumption, scarred states flour-
ish in the gaps left by the quantum ergodicity theorems of
Shnirelman [5], de Verdiere [6], and Zelditch [7]. Along
with the theoretical advancements [8–18], experimental
evidence of scars has nowadays accumulated within a vast
selection of experiments [19–32].
In addition to the conventional scarring according to

Heller’s original work [2], the concept of quantum scars
has recently expanded into three distinct areas: relativis-
tic, many-body, and variational. While scars in rela-
tivistic quantum systems share the same origins as the
conventional scarring [33], they differ in features such
as their recurrence with energy variation and the poten-
tial to exhibit chirality [34–36]. Many-body scars, on the
other hand, are special states in many-body Hilbert space
that evade thermalization at finite energy densities [37–
39], recently linked to conventional scarring. [40, 41].
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These states cause persistent oscillations of local observ-
ables without relying on (near)integrability or the protec-
tion provided by a global symmetry [42–44]. The third
category is variational (or perturbation-induced) scar-
ring [45–50]. This type of scarring resembles conventional
scarring but emerges as a result of the combined effects of
perturbations and near-degeneracies in the unperturbed
system, as determined by the variational principle, which
is why it is referred to as perturbation-induced.

Within the classification of quantum scars, a fasci-
nating subspecies is the probability density condensa-
tion along an orbit linked to the bouncing motion of a
classical particle. In the context of a stadium-shaped
billiard, these highly non-ergodic ”bouncing-ball” (BB)
eigenstates are restricted to vertical bouncing motions
between the straight walls and can be shown [51] to per-
sist even at infinite energy. This finding indicates that
while they survive at high energies, they represent an in-
creasingly smaller fraction of the total number of states,
aligning with the quantum ergodicity theorem. Similar
BB scars also arise in the context of variational scarring
within a disordered quantum dot [46, 48], attributed to
unperturbed states with negligible angular momentum.
In these systems, BB scars are defined as the quantum
equivalent of radial, linear back-and-forth motion.

In this paper, we explore variational BB scars in a two-
dimensional (2D) quantum well (QW). First, we confirm
earlier findings that strongly scarred eigenstates, which
display features of BB motion, can be generated by a sin-
gle, localized perturbation, such as a potential bump or
dip created by a nanotip. A key aspect of our study is
the extension of the analysis to include both positive and
negative perturbations in the potential. We also clarify
how these BB scars emerge from degenerate sets of states
in the weak-perturbation limit. Next, we show that the
strength and frequency of these scars can be optimized
by tailoring the scar-generating perturbation, enabling
control over the scar’s orientation. Additionally, we find
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that these scars are robust against noise from other per-
turbations, such as impurities.

II. MODEL SYSTEM

We consider a 2D QW described by the following
generic single-electron Hamiltonian in atomic units:

H =
1

2
∇2 + Vext + Vtip + Vimp, (1)

composed of the external confinement Vext, perturbing
nanotip Vtip and impurity noise Vimp. This kind of Hamil-
tonian is directly relevant for modeling semiconductor
QWs influenced by impurities (see, e.g., Refs. [52–54]).
It serves as an excellent platform for studying quan-
tum chaos by comparing it to classical billiards with
realistic soft walls. This comparison involves a statis-
tical analysis of energy levels, scarring, and ergodic-
ity. [47] Additionally, these types of open QWs are suit-
able for wave function imaging based on energy shifts
in single-particle resonances induced by an atomic force
microscopy tip [55, 56], enabling indirect observation of
conductance fluctuations resulting from scarred states.
Moreover, the scarred eigenstates of an electron in a QW
can be measured via quantum tomography (see, e.g.,
Ref. [57]) or directly mapped with scanning tunneling
microscopy, as presented in Ref. [58].
We have here chosen the external potential Vext =

1
2
r5,

which serves as a prototypical framework for investigat-
ing variational scarring; it represents a natural ”sweet
spot” for studying this phenomenon. In the absence of
impurities, the confinement of the QW also establishes
the energy scales and the integrability of the system.
Notably, the geometry of a periodic orbit (PO) is in-
dependent of its energy in our QW, which belongs to
a specific class of homogeneous potentials. As a result,
different POs can be easily enumerated using just two in-
tegers: [46] after a oscillations around the radial turning
points, the particle has traveled around the origin b times
before returning to its original configuration. The most
notable PO is a five-pointed star: the orbit closes on itself
after two rounds around the origin (a = 2) during five ra-
dial oscillations (b = 5) [45]. Additionally, there are two
special POs: circular orbits (which involve no radial mo-
tion) and BBs (which have no angular momentum), the
latter being the central focus of this study.
On the quantum side, the eigenstates |r,mð of the

unperturbed, circularly symmetric system are labeled
by two quantum numbers (r,m), corresponding to ra-
dial and angular motion, respectively. In the absence
of a magnetic field, the states |r,±mð are exactly de-
generate. Moreover, there are also near-degeneracies,
or quasi-degeneracies, intimately connected to classical
POs. According to the Einstein-Brillouin-Keller quanti-
zation rules, with fixed Maslov indices leading to a Bohr-
Sommerfeld-like consideration, if a state defined by quan-
tum numbers (r,m) is nearby in action to a classical PO

with a ratio a/b in the radial and angular oscillation fre-
quencies, the relative states |r+ka,m−kbð, where k ∈ N,
will consequently be nearby in energy. These groups of
nearly-degenerate states are informally known as a res-
onant set, which, along with exact degeneracies, consti-
tutes the first component of the scar recipe.

The second essential component for variational scar-
ring involves a perturbation applied to the system. The
perturbation induced by a nanotip takes the form of a
potential bump or dip centered at location r0, expressed
as

Vtip = AT exp

(

|r− r0|
2

2σ2
T

)

, (2)

where AT and σT denote the amplitude and width of
the nanotip perturbation. This type of Gaussian pro-
file is a well-validated approximation for local perturba-
tions caused by a conducting nanotip. When sufficiently
strong, the nanotip generates a distinct set of scarred
eigenstates in the perturbed system out of a specific res-
onant set. Due to the connection between the states in
the resonant set and classical motion, some linear com-
binations of the resonant set will lead to an interference
pattern tracing out a path of a classical PO. Furthermore,
because of the spatially localized nature of the perturba-
tion, these scarred states are favored according to the
variational principle: scars showcased in Fig. 1 can effec-
tively maximize or minimize the perturbation by orient-
ing so that they either coincide with or avoid the nanotip,
respectively. These two scenarios for a BB scar are dis-
played in Fig. 1.

Besides the nanotip, real QW devices are often affected
by impurities and imperfections. This class of perturba-
tion can be modeled by adding randomly located bumps
to the otherwise smooth confining potential, yielding the
total noise

Vimp = AN

∑

i

exp

(

|r− ri|
2

2σ2
N

)

, (3)

where the impurities are uniformly distributed through-
out the confining potential, with an average density of
one impurity per unit square. Similarly to the perturba-
tion caused by the nanotip, the individual bumps of the
noise are assumed to be Gaussian-like with amplitude
AN and width σN , but restricted to individually weaker
perturbations than the nanotip. For simplicity, we fur-
ther assume the impurity perturbations to share the same
amplitude and width. This kind of disorder mode has
been studied with density-functional theory [59, 60] and
the diffusive quantum Monte Carlo approach [54]. More-
over, the role of such impurities within a QW can be
quantitatively identified through the measured differen-
tial magnetoconductance displaying the quantum eigen-
states [53].
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FIG. 1. (a) Examples of eigenstates in a 2D quantum well
perturbed by a potential bump with AT = 50 and σT = 1.5.
(b), (c) Rectangular areas where the normalized probability
densities are calculated in order to detect BB scars. In (b) the
perturbation parameters are the same as in (a) but in (c), the
perturbation is a potential dip with AT = −50 and σT = 1.5.

III. RESULTS

To compute the first 3025 eigenstates of the Hamilto-
nian (1), we utilize itp2d software [61] that utilizes the
imaginary time propagation (ITP) algorithm as it is par-
ticularly effective for 2D problems. A Gaussian potential
induces a perturbation in the confining potential: a bump
with a positive amplitude or a potential dip with a neg-
ative amplitude. As illustrated in Fig. 1, the perturba-
tion is positioned along the x-axis of the 2D plane in the
location (2,0). Due to the variational principle, the BB
scars are either horizontally oriented to pin themselves to
the perturbation or vertically oriented to avoid the per-
turbation. These differently oriented BB scars are then
detected by integrating the amount of normalized proba-
bility densities inside rectangular horizontal and vertical
areas which are shown in Fig. 1. By establishing thresh-
olds for the probability densities, we can distinguish BB
scars from other types of scars and analyze their emer-
gence.

A. Formation of bouncing-ball scars

In order to further understand the development of BB
scarring in a rotationally symmetric system under per-
turbation, we first analyze the weak-perturbation limit.
Specifically, we focus on the behavior of the integrated
probability density in the horizontal BB area depicted in
Fig. 1(b) across the eigenstates. Figure 2 compares the
integrated probability densities across the spectra of a
clean system (a) and a perturbed system (b) for the first
1000 eigenstates. The perturbation is a repulsive bump
with parameters AT = 4 and σT = 0.235. We find clear
spikes in (b) when a perturbation is included, indicating
increased concentration within the detection box. These
spikes appear in a repeating pattern, resulting from tran-
sitions between degenerate resonant sets of eigenstates.
One such resonant set is highlighted with red boxes in
Fig. 2. Similar behavior can also be observed with an
attractive dip for the case of a vertical detection box.
Figure 3 offers an in-depth view of the integrated prob-

ability densities of the resonant set highlighted in Fig. 2.
In this analysis, the amplitude of the perturbation varies
around zero, transitioning from an attractive dip (neg-
ative AT ) to a repulsive bump (positive AT ), while the
perturbation width is fixed at σ = 0.235. In Fig. 3(a),
the densities are integrated over the horizontal detection
box, and in (b), over the vertical box. The colors in
the graphs represent different state numbers within the
resonant set. As illustrated, most states are only slightly
affected by the perturbation’s presence. However, certain
states—associated with BB scars—are highly responsive
to it, leading to significant changes in the regions where
their probability densities are concentrated. The proba-
bility densities increasingly occupy the detection boxes,
indicating the emergence of BB scars.

B. Prevalence of different bouncing-ball scars

The prevalence of BB scars can be assessed by calcu-
lating their occurrences among all the eigenstates using
two differently oriented detection boxes, as illustrated in
Fig. 1, and applying a threshold for the integrated prob-
ability density. To concentrate on relatively strong BB
scars, we establish a threshold of 0.90, meaning that over
90% of the probability density must be localized within
the box. A total of 3025 eigenstates are solved for the
model system. However, we exclude the first 300 eigen-
states because they are primarily confined to the center
of the system (within the detection box) and therefore
contribute to the scar count despite their BB character-
istics. For illustration, the first 300 states are included
in Fig. 2 above.
Figure 4 elucidates the effect of the perturbation pa-

rameters onto the prevalence of BB scars in the model
system. The prevalence is here defined as the ratio of
detected BB scars to the number of solved eigenstates.
As shown, distinct regions in the figure indicate that by
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FIG. 2. Comparison of the integrated probability densities of states between a clean system (a) and a system perturbed by a
repulsive bump with AT = 4 and σT = 0.235 (b).
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FIG. 3. Integrated probability densities of the degenerate resonant set states (see Fig. 2) in (a) horizontal and (b) vertical
detection boxes that overlap with the perturbation; see Fig. 1(b). As the amplitude of the perturbation is varied some eigen-
states linked to bouncing-ball scars within the resonant set are more significantly influenced by the presence of a perturbation.

adjusting the amplitude AT or width σT of the pertur-
bation, the number of BB scars can be controlled and
maximized. This effect is evident for both perturbation
types, as depicted in Figs. 4(a) and (b), which repre-
sent the cases of a repulsive bump and an attractive dip,
respectively. However, a comparison of the two figures
indicates that the efficiency of BB scar induction varies
between the two types of perturbations. Counterintu-

itively, the repulsive bump proves to be more effective,
requiring smaller parameters to achieve a higher preva-
lence of BB scars compared to the attractive dip. More-
over, the maximum number of BB scars is attained with
the bump rather than the dip. Nevertheless, this out-
come is reasonable, as a bump creates a repulsive region
that pushes states away, potentially distorting or scatter-
ing them more significantly than a dip, which may trap
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FIG. 4. Proportion of BB scars with different perturbation
parameter combinations. A repulsive bump is used as the
perturbation in (a) and an attractive dip in (b).

some states locally but does not disrupt the overall spec-
trum as much. Therefore, in relative terms, a positive
perturbation (bump) can be interpreted as a stronger
perturbation than a negative one.

As described in Sec. II, BB scars can orient them-
selves in two different ways with our single perturba-
tion configuration. For experimental applications, it is of
importance to understand how these orientations mani-
fest with both perturbation types. Figure 5 displays the
prevalence of these two orientations for each perturbation
type. A perturbation parameter combination of AT = 50
and σT = 1.5 is used for the bump, while AT = −50
and σT = 1.5 are used for the dip. These parameters
yield the highest proportion of BB scars, marked by red
crosses in Fig. 4. The BB ratio is shown as a function of
detection box threshold to observe changes in orientation
when more spread-out BB scars are included. Figure 5
reveals clear orientation preferences for both perturba-
tion types: strong BB scars tend to pin themselves to
the bump, while they avoid the dip. On the other hand,
these preferred orientations reverse when more spread-
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FIG. 5. Bouncing-ball scar ratios for different perturbation
types and scar orientations. Amplitude AT = 50 is used for
the bump and AT = −50 for the dip, with the width being
σT = 1.5 for both.

out BB scars are considered.

C. Robustness against noise

Physical systems often contain unwanted impurities,
making it essential for BB scars to be robust in such
environments. Figure 6 demonstrates the gradual degra-
dation of a single BB scar in state n = 2167 as noise
increases. The primary perturbation is a repulsive bump
with AT = 50 and σT = 1.5, while the noise amplitude
starts at AN = 5 in panel (a) and increases in increments
of one in each subsequent panel. As shown, the BB scar
gradually spreads out, and the probability density is no
longer concentrated within either detection box. How-
ever, not all BB scars disperse in the same manner; some
remain within the detection box for a longer duration as
noise levels rise.
The impact of noise on the prevalence of BB scars can

be statistically examined by calculating the BB ratios as
noise levels increase. We again use perturbation param-
eters AT = 50 for the primary bump and AT = −50
for the primary dip, with the width being σT = 1.5, as
these values yield a high proportion of BB scars. Next,
we introduce repulsive bumps as noise, which are ran-
domly distributed within the potential well. The seed
for these random locations is a controllable variable, en-
abling comparisons of the same location configurations
under different noise strengths. The amplitude-to-width
ratio of the noise bumps is the same as in the primary
bumps and dips.
Figure 7 depicts the effect of noise on the prevalence

of BB scars, with BB ratios calculated for ten different
noise location configurations. The graphs display aver-
ages across these configurations, and the shaded areas in-
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FIG. 6. Demonstration of the degradation of a bouncing-ball
scar in state n = 2167 as the amplitude of the external noise
(green dots) increases from (a) five to (b) six, (c) seven, and
(d) eight. The repulsive bump (red circle) has AT = 50 and
σT = 1.5.
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FIG. 7. Relative proportion of bouncing-ball scars out of
all eigenstates as a function of noise amplitude, presented as
percentages of the main perturbation. The lines correspond to
averages of ten different noise location configurations, and the
shaded areas around the lines illustrate standard deviation.

dicate standard deviations. The results reveal that there
is a minimal decline in BB ratios until the noise ampli-
tude reaches 4% of the main perturbation amplitude,
after which the ratios gradually decrease as the noise
amplitude increases. The critical amplitude threshold

of 4% likely results from the selected width of the detec-
tion box: as noise increases, the strong BB scars begin to
spread out and fill the detection box, eventually leaking
out at around 4%. Nevertheless, even after exceeding
this threshold, the decline remains gradual, highlighting
the resilience of BB scars. A similar robustness was ob-
served with attractive noise bumps serving as noise (not
shown), exhibiting behavior closely resembling that in
Fig. 7.

An interesting phenomenon occurs when the noise am-
plitude approaches approximately 20%. At this point,
the high-amplitude noise bumps significantly disrupt the
system, leading to a diminished effect of the main pertur-
bation. This combined influence creates new BB scars,
which may realign themselves in response to the noise
bumps. In other words, multiple orientations can now
optimize the perturbation based on the variational prin-
ciple, resulting in a loss of control over the orientation of
the BB scars.

IV. CONCLUSIONS

In summary, we have demonstrated that a two-
dimensional quantum well, perturbed by a single Gaus-
sian bump or dip in the confining potential—simulating
the effect of a quantum nanotip—leads to the formation
of linearly shaped bouncing-ball scars. We explicitly
highlight the pathway that some of the states in the
degenerate set take to transform into BB scars, with
their orientations determined by the variational prin-
ciple. Our findings reveal that the prevalence of BB
scars can be controlled by tuning the perturbation
parameters, enabling the maximization of scar formation
with carefully chosen characteristics. Specifically, a
repulsive Gaussian bump generates strong, spatially
localized BB scars, while an attractive dip mainly causes
the scars to avoid the perturbation. Additionally, we
have demonstrated that BB scars are robust against
external noise, maintaining their structure even under
perturbative disruptions. The ability to design and
stabilize these scars suggests potential applications for
BB scars as controllable channels in quantum transport,
opening new possibilities for exploiting quantum states
even in impurity-plagued nanostructures.
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[54] A. D. Güçlü, J.-S. Wang, and H. Guo, Disordered quan-
tum dots: A diffusion quantum monte carlo study, Phys.
Rev. B 68, 035304 (2003).

[55] M. Mendoza and P. A. Schulz, Wave-function mapping
conditions in open quantum dot structures, Phys. Rev.
B 68, 205302 (2003).

[56] I. V. Zozoulenko, A. S. Sachrajda, P. Zawadzki, K.-F.
Berggren, Y. Feng, and Z. Wasilewski, Conductance fluc-
tuations in a rectangular dot at constant magnetic fields,
Phys. Rev. B 58, 10597 (1998).

[57] T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin,
and D. Glattli, Quantum tomography of an electron, Na-
ture 514, 603 (2014).

[58] Z. Ge, A. M. Graf, J. Keski-Rahkonen, S. Sli-
zovskiy, P. Polizogopoulos, T. Taniguchi, K. Watanabe,
R. Van Haren, D. Lederman, V. I. Fal’ko, et al., Direct
visualization of relativistic quantum scars in graphene
quantum dots, Nature 635, 841 (2024).

[59] K. Hirose and N. S. Wingreen, Ground-state energy
and spin in disordered quantum dots, Phys. Rev. B 65,
193305 (2002).

[60] K. Hirose, F. Zhou, and N. S. Wingreen, Density-
functional theory of spin-polarized disordered quantum
dots, Phys. Rev. B 63, 075301 (2001).

[61] P. Luukko and E. Räsänen, Imaginary time propagation
code for large-scale two-dimensional eigenvalue problems
in magnetic fields, Computer physics communications
184, 769 (2013).


