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66 Abstract
67 Plants form symbiotic relationships with mycorrhizal fungi, which are vital for soil carbon and 
68 nutrient cycling. In the Arctic, one of the most soil carbon rich biomes of the world, herbivores 
69 can strongly influence vegetation, but their impacts on mycorrhizal fungi communities and 
70 subsequently on soil carbon and nutrient cycling are uncertain. We collected soils from 15 sets 
71 of herbivore exclusion fences across the Arctic. We sequenced across both ITS regions and 
72 partial SSU region with two sets of amplicons to determine the composition of soil mycorrhizal 
73 fungi communities and how these are impacted by herbivory, climate, and edaphic properties. 
74 Herbivore exclusion had an overall weak effect on the arbuscular mycorrhizal (AM) fungi 
75 community across the tundra, but the effect was variable across sites. pH differences among 
76 sites were correlated with changes in AM composition. Ectomycorrhizal fungi had the highest 
77 number of species, followed by AM. Consistent Arctic wide differences observed in mycorrhizal 
78 fungi communities were generally tied to edaphic and climatic properties, whereas herbivores 
79 seem to influence mycorrhizal species predominantly at individual sites. Soil carbon storage is 
80 affected by the composition of mycorrhizal fungi and shifts in the proportion of mycorrhizal 
81 types will have subsequent impacts on carbon in Arctic soils.

82 Key words: Amplicon sequencing; Arbuscular mycorrhiza; Arctic; Ectomycorrhiza; Ericoid 
83 mycorrhiza; Herbivory

84 1. Introduction
85 Large mammalian herbivores can modify plant communities through selective foraging 
86 which may allow herbivores to impact future carbon (C) and nutrient cycling in the Arctic 
87 (Olofsson et al., 2009; Vowles et al., 2017a; Sundqvist et al., 2019; Lindén et al., 2021). For 
88 instance, herbivores may give evergreen shrubs a competitive advantage as herbivores 
89 preferentially consume deciduous shrubs, forbs, and graminoids (Christie et al., 2015; Vowles 
90 and Björk, 2019). By altering dominance patterns among plant functional groups, herbivores 
91 can indirectly affect mycorrhizal fungi communities (Vowles et al., 2018; Vowles and Björk, 
92 2019; Ahonen et al., 2021; Ylänne et al., 2021; Castaño et al., 2023). Trampling and waste 
93 deposition by herbivores may also benefit mycorrhizal fungi by increasing soil temperature and 
94 nutrient availability (Wang et al., 2018, 2023; Yan et al., 2018; Ylänne et al., 2018; Kytöviita and 
95 Olofsson, 2021). The magnitude of herbivore impact has been shown to be sensitive to local 
96 climate, where for instance herbivores have the largest effect on shrub radial growth at 
97 intermediate Arctic air temperature ranges (Vuorinen et al., 2022). Herbivory mediated changes 
98 in the dominance of different plant functional groups will affect their associated types of 
99 mycorrhizal fungi, where deciduous shrubs primarily associate with ectomycorrhizal fungi 

100 (EcM), ericaceous shrubs which are predominantly evergreen associate with ericoid mycorrhizal 
101 fungi (ErM), and grasses and forbs primarily associate with arbuscular mycorrhizal fungi (AM) 

Plants form symbiotic relationships with mycorrhizal fungi, which are vital for soil carbon and Plants form symbiotic relationships with mycorrhizal fungi, which are vital for soil carbon and 
nutrient cycling. In the Arctic, one of the most soil carbon rich biomes of the world, herbivores nutrient cycling. In the Arctic, one of the most soil carbon rich biomes of the world, herbivores 
can strongly influence vegetation, but their impacts on mycorrhizal fungi communities and can strongly influence vegetation, but their impacts on mycorrhizal fungi communities and 
subsequently on soil carbon and nutrient cycling are uncertain. We collected soils from 15 sets subsequently on soil carbon and nutrient cycling are uncertain. We collected soils from 15 sets 
of herbivore exclusion fences across the Arctic. We sequenced across both ITS regions and of herbivore exclusion fences across the Arctic. We sequenced across both ITS regions and 
partial SSU region with two sets of amplicons to determine the composition of soil mycorrhizal partial SSU region with two sets of amplicons to determine the composition of soil mycorrhizal 
fungi communities and how these are impacted by herbivory, climate, and edaphic properties. fungi communities and how these are impacted by herbivory, climate, and edaphic properties. 
Herbivore exclusion had an overall weak effect on the arbuscular mycorrhizal (AM) fungi Herbivore exclusion had an overall weak effect on the arbuscular mycorrhizal (AM) fungi 
community across the tundra, but the effect was variable across sites. pH differences among community across the tundra, but the effect was variable across sites. pH differences among 
sites were correlated with changes in AM composition. Ectomycorrhizal fungi had the highest sites were correlated with changes in AM composition. Ectomycorrhizal fungi had the highest 
number of species, followed by AM. Consistent Arctic wide differences observed in mycorrhizal number of species, followed by AM. Consistent Arctic wide differences observed in mycorrhizal 
fungi communities were generally tied to edaphic and climatic properties, whereas herbivores fungi communities were generally tied to edaphic and climatic properties, whereas herbivores 
seem to influence mycorrhizal species predominantly at individual sites. Soil carbon storage is seem to influence mycorrhizal species predominantly at individual sites. Soil carbon storage is 
affected by the composition of mycorrhizal fungi and shifts in the proportion of mycorrhizal affected by the composition of mycorrhizal fungi and shifts in the proportion of mycorrhizal 
types will have subsequent impacts on carbon in Arctic soils.types will have subsequent impacts on carbon in Arctic soils.

Key words: Amplicon sequencing; Arbuscular mycorrhiza; Arctic; Ectomycorrhiza; Ericoid Key words: Amplicon sequencing; Arbuscular mycorrhiza; Arctic; Ectomycorrhiza; Ericoid 

Large mammalian herbivores can modify plant communities through selective foraging Large mammalian herbivores can modify plant communities through selective foraging 
which may allow herbivores to impact future carbon (C) and nutrient cycling in the Arctic which may allow herbivores to impact future carbon (C) and nutrient cycling in the Arctic 
(Olofsson et al., 2009; Vowles et al., 2017a; Sundqvist et al., 2019; Lindén et al., 2021). For (Olofsson et al., 2009; Vowles et al., 2017a; Sundqvist et al., 2019; Lindén et al., 2021). For 
instance, herbivores may give evergreen shrubs a competitive advantage as herbivores instance, herbivores may give evergreen shrubs a competitive advantage as herbivores 
preferentially consume deciduous shrubs, forbs, and graminoids (Christie et al., 2015; Vowles preferentially consume deciduous shrubs, forbs, and graminoids (Christie et al., 2015; Vowles 
and Björk, 2019). By altering dominance patterns among plant functional groups, herbivores and Björk, 2019). By altering dominance patterns among plant functional groups, herbivores 
can indirectly affect mycorrhizal fungi communities (Vowles et al., 2018; Vowles and Björk, can indirectly affect mycorrhizal fungi communities (Vowles et al., 2018; Vowles and Björk, 
2019; Ahonen et al., 2021; Ylänne et al., 2021; Castaño et al., 2023). Trampling and waste 2019; Ahonen et al., 2021; Ylänne et al., 2021; Castaño et al., 2023). Trampling and waste 
deposition by herbivores may also benefit mycorrhizal fungi by increasing soil temperature and deposition by herbivores may also benefit mycorrhizal fungi by increasing soil temperature and 
nutrient availability (Wang et al., 2018, 2023; Yan et al., 2018; Ylänne et al., 2018; Kytöviita and nutrient availability (Wang et al., 2018, 2023; Yan et al., 2018; Ylänne et al., 2018; Kytöviita and 
Olofsson, 2021). The magnitude of herbivore impact has been shown to be sensitive to local Olofsson, 2021). The magnitude of herbivore impact has been shown to be sensitive to local 
climate, where for instance herbivores have the largest effect on shrub radial growth at climate, where for instance herbivores have the largest effect on shrub radial growth at 
intermediate Arctic air temperature ranges (Vuorinen et al., 2022). Herbivory mediated changes intermediate Arctic air temperature ranges (Vuorinen et al., 2022). Herbivory mediated changes 
in the dominance of different plant functional groups will affect their associated types of in the dominance of different plant functional groups will affect their associated types of 

9999 mycorrhizal fungi, where deciduous shrubs primarily associate with ectomycorrhizal fungi mycorrhizal fungi, where deciduous shrubs primarily associate with ectomycorrhizal fungi 
100100 (EcM), ericaceous shrubs which are predominantly evergreen associate with ericoid mycorrhizal (EcM), ericaceous shrubs which are predominantly evergreen associate with ericoid mycorrhizal 
101101 fungi (ErM), and grasses and forbs primarily associate with arbuscular mycorrhizal fungi (AM) 



4

102 (Smith and Read, 2008; Vowles and Björk, 2019). The proportion of different plant functional 
103 types and their associated mycorrhizal fungi can alter soil properties which feedback onto the 
104 dominant vegetation and mycorrhizal fungi (Clemmensen et al., 2015, 2021; Castaño et al., 
105 2023). These multi-trophic interactions between herbivores and soil fungi may be important for 
106 Arctic ecosystems as climate change continues (Vowles and Björk, 2019; Ylänne et al., 2021), 
107 however, they have not been evaluated across the Arctic.

108 Soil fungi are likely to respond to herbivory-driven shifts in vegetation and soil properties, 
109 as they generally have close connections to the plant species comprising the community (Parker 
110 et al., 2022). These soil fungi, including both saprotrophic and mycorrhizal fungi, play a key role 
111 in the cycling of soil C and nutrients globally (Read and Perez-Moreno, 2003; Högberg and Read, 
112 2006; Orwin et al., 2011; Averill et al., 2014), including in nutrient-poor ecosystems 
113 (Clemmensen et al., 2021; Parker et al., 2021) such as most Arctic communities (Shaver and 
114 Chapin, 1991; Schulze et al., 1994; Jonasson et al., 2001; Clemmensen et al., 2006). Mycorrhizal 
115 fungi function as a C sink in soils, as they receive photosynthates from their host plant, and as a 
116 result are less C limited than saprotrophic fungi and can thereby outcompete free living 
117 microbes for organic nitrogen (N) (Högberg and Read, 2006; Orwin et al., 2011; Averill et al., 
118 2014). Different mycorrhizal groups, such as ectomycorrhiza, ericoid mycorrhiza and arbuscular 
119 mycorrhiza have been linked to different degrees of recalcitrance of soil organic material where 
120 shifts in mycorrhizal dominance along a gradient from AM-EcM-ErM corresponds to slower C 
121 turnover and subsequently higher C storage in the soil (Phillips et al., 2013; Clemmensen et al., 
122 2015, 2021; Parker et al., 2021; Fanin et al., 2022). Thus, clarifying the distribution of different 
123 mycorrhizal groups is important for understanding the Arctic’s future C storage potential 
124 (Dahlberg and Bültmann, 2013).

125 Climatic conditions can affect regional processes of mycorrhizal fungi distribution, but do 
126 not necessarily describe finer scale patterns (Mikryukov et al., 2023). However, soil conditions, 
127 which are more variable than climate at the site level, may have stronger effects on mycorrhizal 
128 fungi communities, in some cases acting as stronger drivers than vegetation (Dumbrell et al., 
129 2010; Grau et al., 2017; Bennett and Classen, 2020). The amount of nutrients in the soil and the 
130 form they take, i.e. organic or inorganic, impact the abundance and production of mycorrhizal 
131 fungi (Avolio et al., 2009; Nicolás et al., 2019). EcM fungi are lower in abundance when 
132 inorganic N is high (Kjøller et al., 2012) potentially due to the benefit of the mycorrhizal 
133 relationship to the plant host decreases under such conditions and the plants subsequently 
134 reduce the investment into mycorrhizal symbionts. The proportion of fungi can also be 
135 impacted by the differences in soil C as saprotrophs are less competitively excluded when labile 
136 C is abundant (Bödeker et al., 2016; Marañón-Jiménez et al., 2021). Likewise, soil temperature 
137 and precipitation can affect the balance of mycorrhizal types in the soil as fungi have different 
138 optimal growth conditions (Ruotsalainen and Kytöviita, 2004; Kytöviita, 2005). As soils warm, 
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139 productivity and subsequently microbial activity may increase in the tundra, with the strength 
140 of this change connected to soil moisture (Geml et al., 2015).

141 Arctic regions have experienced approximately 2-4 times greater warming since 1979 
142 than the rest of the globe (Rantanen et al., 2022). This warming trend has led to vegetation 
143 shifts (Myers-Smith et al., 2011; Elmendorf et al., 2012a, 2012b; Bjorkman et al., 2015, 2020), 
144 which have resulted in aboveground productivity increases and a general greening trend in 
145 Arctic communities (Myers-Smith et al., 2020). Increasing productivity has the potential to 
146 decrease the long-term C storage in tundra soils (Hartley et al., 2012), which currently account 
147 for nearly 50% of global terrestrial belowground C pool (Schuur et al., 2015; Crowther et al., 
148 2016; Van Gestel et al., 2018; Bjorkman et al., 2020). In addition, shifting plant abundance and 
149 composition potentially impact decomposition rates, C turnover and nutrient cycling as 
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154 in EcM and ErM depending on shrub type (Vowles et al., 2018; Vowles and Björk, 2019; 
155 Clemmensen et al., 2021; Parker et al., 2022); whereas tundra communities with a greater 
156 proportion of grass and forb species, which may become more prevalent under high intensity 
157 grazing, should correspond with an increase in AM fungi (Walker et al., 2006; Berner et al., 
158 2020; Betway-May et al., 2022). Thus, the dominance of functionally distinct shrub or graminoid 
159 vegetation in the landscape may be a major determinant of the fungal community in tundra 
160 ecosystems (Vowles and Björk, 2019). 

161 Tundra ecosystems are comprised of multiple community types, such as heath and 
162 meadow communities, which have different dominant mycorrhizal types according to their 
163 dominant vegetation (Martínez-García et al., 2015; Sizonenko et al., 2020; Clemmensen et al., 
164 2021; Defrenne et al., 2023). Thus, factors that influence the proportion of plant functional 
165 types, such as herbivory, will affect the proportion of different mycorrhiza types in the soil as 
166 well (Dahlberg and Bültmann, 2013; Martínez-García et al., 2015; Grau et al., 2017). These 
167 community types are partially determined by the strength of herbivory at each location, where 
168 no or low herbivory may allow for easier expansion of deciduous shrubs (Myers-Smith et al., 
169 2011; Parker et al., 2021), moderate herbivory could give ericaceous shrubs an advantage by 
170 consuming highly competitive deciduous shrubs (Vowles et al., 2017a), and high herbivory 
171 promotes grass and forb species (Olofsson and Post, 2018). Although AM fungi form 
172 associations with almost 80% of terrestrial plant species globally (Smith and Read, 2008), AM 
173 fungi are generally limited in distribution in Arctic communities due to their low tolerance to 
174 cold (Wang et al., 2002; Ruotsalainen and Kytöviita, 2004; Kytöviita, 2005; Kilpeläinen et al., 
175 2016). However, AM fungi species may respond quickly to climate warming if their host-species 
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176 become more prevalent and climate conditions for AM fungi improve (Olsson et al., 2004; 
177 Hollister and Flaherty, 2010; Gao et al., 2016; Newsham et al., 2017; Bennett and Classen, 
178 2020). 

179 Our study aims to investigate the effect of large mammalian herbivores on mycorrhizal 
180 fungal communities across multiple Arctic sites. We use a network of large mammalian 
181 herbivore exclosures to evaluate the effect of herbivores on mycorrhizal fungi composition and 
182 the proportion of mycorrhizal types, alongside edaphic and climate properties and vegetation 
183 dynamics. We hypothesise that i) large mammalian herbivores will impact mycorrhizal fungi 
184 community composition through soil property and vegetation community changes as a 
185 response to the combined effects of selective foraging, waste deposition, and trampling. 
186 However, we predict that the observation of this effect will likely be site-specific due to the 
187 differences between Arctic community types and the magnitude of herbivory pressure. We also 
188 hypothesise that ii) mycorrhizal fungi communities will shift across the Arctic due to differences 
189 in climate and vegetation. We predict ErM will be most species rich under dominant ericaceous 
190 shrub cover, EcM under dominant deciduous shrub cover, and AM under dominant grass and 
191 forb vegetation. Furthermore, iii) we hypothesise a greater richness of ErM species when 
192 herbivores are present, but only in sites where herbivore exclusion significantly alters 
193 mycorrhizal fungi community composition, as evergreen ericaceous shrubs may increase when 
194 deciduous shrubs are suppressed by herbivores. Finally, iv) we also predict that soil properties, 
195 such as pH and soil C and N, will influence the proportion of each mycorrhizal type, where non-
196 acidic, low C:N ratio soil conditions benefit AM species the most.

197 2. Materials and Methods

198 2.1. Site descriptions

199 The study was conducted at 15 sites across the tundra; five sites in Sweden, four in 
200 Finland, two in USA, two in Canada, one in Iceland, and one in Russia (Fig. 1; Tab. 1). The site 
201 designations listed in Tab. 1 will be used throughout the paper to refer to those sites. Most of 
202 the sites had three herbivore exclosure fences paired with three ambient plots of equal size, 
203 except for SAP1 and 2 (which had one large fence and ambient plot for each), ERK (which had 
204 15 0.25 m2 fences and 15 ambient plots), UTQ (which had 12 1 m2 fences and 12 ambient plots), 
205 and YUK1 and 2 (which had three replicate 1 m2 fences and three ambient subplots for each of 
206 the two sites; Fig. S1). Sites that had large fences and ambient plots (i.e. > 1 m2) were sampled 
207 from five subplots (approx. 1 m2) within each plot, while sites with small fences (i.e.  1 m2) 
208 were sampled once within each plot. The term herbivory used throughout this manuscript is 
209 specifically referring to the effects of large mammalian herbivores including foraging, trampling 
210 and waste deposition, events that all interact to influence vegetation and soil properties. 
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211 Herbivory effect is used to denote the effects of excluding these herbivores from the fenced 
212 plots.

213

214 Fig. 1. Map of site locations with pie charts showing proportion of mycorrhiza types with the size of the pie charts 
215 scaled to the number of unique mycorrhizal fungi species within sites. The bioclimatic zones for Subarctic, Oroarctic, 
216 Low Arctic, and High Arctic are included (Berner et al., 2024).
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Low Arctic, and High Arctic are included (Berner et al., 2024).Low Arctic, and High Arctic are included (Berner et al., 2024).
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217 Table 1. Description of each site contributing to the data. SAP and YUK both consisted of two subsites that were 
218 initially sampled as replicates. # fences and paired ambient plots refer to the number of fences at the site and 
219 therefore also the number of paired ambient plots, i.e. ABI has three fences and three ambient plots. Two of the KLP 
220 fences covered an area of 1994 m2, while the third fence covered an area of 562 m2. SAP fences were also different 
221 sizes, so they are treated as separate sites. Soil moisture class is an approximation of moisture conditions at each 
222 site.

Description of each site contributing to the data. SAP and YUK both consisted of two subsites that were 
initially sampled as replicates. # fences and paired ambient plots refer to the number of fences at the site and 
therefore also the number of paired ambient plots, i.e. ABI has three fences and three ambient plots. Two of the KLP therefore also the number of paired ambient plots, i.e. ABI has three fences and three ambient plots. Two of the KLP 

. SAP fences were also different . SAP fences were also different 
sizes, so they are treated as separate sites. Soil moisture class is an approximation of moisture conditions at each sizes, so they are treated as separate sites. Soil moisture class is an approximation of moisture conditions at each 
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223 2.2. Soil sampling

224 Soil samples were collected at each site during the 2020 growing season using a 2 cm 
225 diameter soil corer to a depth of 10 cm, with five cores retrieved per subplot. Since the fenced 
226 area varies between sites, three separate sampling schemes were followed depending on site 
227 configuration (Table 1, Fig. S1). Soil samples were immediately put in a bag with silica gel, and 
228 frozen at -20 °C as soon as possible before being shipped to the University of Gothenburg, 
229 Sweden, where they were stored at -20 °C until processed. Each soil sample was sieved at 2 mm 
230 and freeze-dried for 24 hours to be dry stored until further analyses. All soil samples within a 
231 fence or ambient plot were homogenized into a single composite soil sample for DNA 
232 extraction. In total, there were 116 soil samples across all sites.

233 2.3. Extraction and sequencing

234 The Qiagen DNeasy PowerSoil Pro extraction kit was used to isolate environmental DNA 
235 from the processed soil samples following the manufacturer’s protocol. DNA was extracted 
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236 from approximately 250 mg of soil from each sample. The samples were then checked using 
237 Qubit dsDNA High Sensitivity Assays for the presence and concentration of DNA in the sample 
238 prior to PCR and stored in -20 °C until further analyses. 

239  Two sets of PCR were performed using two pairs of primers targeting different regions of 
240 the fungal genome. ITS1, IT2, and  partial LSU regions were amplified using a  ITS1m–LR5 primer 
241 pair (ITS1m: 5’-TCCGTAGGTGAACCTGC-3’; LR5: 5’-TCCTGAGGGAAACTTCG-3’) to capture general 
242 fungal groups (Eshghi Sahraei et al., 2022). Partial SSU region was amplified using an 
243 SSU515Fngs–AML2 primer pair (SSU515Fngs: 5’-GCCAGCAACCGCGGTAA-3’; AML2: 5’-
244 CCCAAACACTTTGGTTTCC-3’) to target AM fungi specifically. A reaction volume of 50 µL was 
245 used for PCR with 5 µL each of template DNA, forward and reverse primer and 0.5 µL of 
246 Phusion High-Fidelity DNA polymerase. Thermocycling conditions for the ITS1m–LR5 region 
247 were an initial denaturation at 98 °C for 30 s followed by 25 cycles of denaturation at 98 °C for 
248 10 s, annealing at 59 °C for 45 s and extension at 72 °C for 45 s, with a final extension for 10 
249 minutes after the final cycle. Thermocycling conditions for the SSU515Fngs–AML2 primer pair 
250 were an initial denaturation at 98 °C for 30 s followed by 30 cycles of denaturation for 10 s, 
251 annealing at 58 °C for 30 s and extension at 72 °C for 30 s and a final extension for 7 minutes 
252 after the final cycle. A total of 232 PCR products were cleaned using Agencourt AMpure XP 
253 magbeads (Beckman Coulter, Brea, CA, USA) and quantified using Qubit dsDNA High Sensitivity 
254 Assays prior to pooling for equimolar concentrations. A maximum volume of 48 µL was used for 
255 samples with too low concentration. Samples were then sequenced by Uppsala Genome Centre 
256 (UGC, Science for Life Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala 
257 University, BMC, Box 815, SE-752 37 UPPSALA) in Uppsala, Sweden using two SMRT cells on the 
258 Sequel platform (Pacific Biosciences, Menlo Park, CA, USA). 

259 2.4. Bioinformatics

260 Circular consensus sequence (CCS) reads (218,250 total, Table S1) were demultiplexed 
261 and primers removed for the ITS1m-LR5 samples using cutadapt v4.4 (Martin, 2011). Reads 
262 were checked in both directions and any reads where primers were detected in the reverse 
263 direction were reverse complemented prior to downstream filtering. The SSU515Fngs–AML2 
264 samples were returned demultiplexed from Uppsala Genome Centre, so only primers had to be 
265 removed. Reads from all samples were pooled for the two primers sets and analysed with the 
266 DADA2 pipeline (version 1.26.0). Amplicons were filtered using the filterAndTrim function with 
267 default parameters except for maxEE = 2, minLen = 50, and rm.Phix = TRUE, denoised with 
268 DADA2 function using default parameters, and chimeras removed using the removeBimera 
269 function. Denoised ASVs for the ITS1m–LR5 primer readswere taxonomically assigned with 
270 PlutoF SH matching v2.0.0 (Abarenkov et al., 2010) which performs open-reference clustering 
271 with the UNITE database (v9.0; Nilsson et al., 2019) at thresholds from 97% - 99% sequence 
272 similarity. The 97% threshold was selected for downstream statistics as it limited duplication of 
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271271 with the UNITE database (v9.0; Nilsson et al., 2019) at thresholds from 97% - 99% sequence with the UNITE database (v9.0; Nilsson et al., 2019) at thresholds from 97% - 99% sequence 
272272 similarity. The 97% threshold was selected for downstream statistics as it limited duplication of 
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273 species assignments for species hypotheses (SH) (although duplication was still high; 
274 approximately 70%). After taxonomic assignment, 1837 unique SH’s that were taxonomically 
275 assigned to family or below were sorted into functional guilds using FUNGuild (Nguyen et al., 
276 2016) and 539 SHs corresponding to mycorrhizal fungi were selected for further analysis. 36 SH 
277 identified as orchid mycorrhiza were removed from further analysis. All mycorrhizal types 
278 referred to throughout the paper refer to fungi not plants, unless otherwise specified, and 
279 species is used to refer to the generated SHs. It is important to note that the guild assignments, 
280 much like the SHs themselves, are tentative and an SH can be assigned into multiple potential 
281 guilds depending on the level of taxonomic assignment. ErM fungal species are especially 
282 difficult as they are often facultative and do not necessarily form mycorrhiza unless conditions 
283 are right. Indeed, all SHs assigned as ErM were also co-assigned to EcM but were retained as 
284 ErM only in the analyses. SHs identified as EcM were manually assigned to exploration type 
285 following Agerer (2001). Taxonomy was assigned for the SSU515Fngs–AML2 ASVs using the 
286 assignTaxonomy function from DADA2 with default settings, using a local download of the 
287 MaarjAM database as the reference (Öpik et al., 2010). SSU515Fngs–AML2 ASVs which could 
288 not be assigned to order were removed from further analysis. Additionally, all ASVs assigned 
289 were compared to the ITS1m–LR5 assignments and any ASVs overlapping in assignment at 
290 species level were removed from the AM fungal sequence dataset. All of the 26 identified 
291 species from the SSU515ngs–AML2 dataset represent AM species. A final total community 
292 dataset was produced by combining the ITS1m–LR5 SH’s assigned to taxonomy and identified 
293 as mycorrhizal fungi, with the SSU515ngs–AML2 SH’s taxonomically assigned as 
294 Glomeromycota across all samples (Table S1). All three datasets used species presence/absence 
295 data and not relative abundance differences between sites due to low sequencing depth, unless 
296 otherwise stated for a specific test (Fig. S13). 

297 2.5. Soil and climate properties

298 All soil samples were also analysed for pH, soil organic matter (SOM) content, total C, 
299 total N, 13C and 15N. First, pH was measured after adding 50 ml water to 10 g soil (except for 
300 SAP and YUK samples which used 150 ml to 5 g and 50 ml to 5 g, respectively as they contained 
301 a higher amount of organic material) and allowing to settle overnight before measuring with a 
302 pH meter (Metrohm 691 pH meter). A second pH measurement was performed after adding 0.5 
303 ml (1.5 ml for SAP and YUK) 2M KCl to reach a final concentration of 0.02 M KCl, which removes 
304 any potential effect of soil electrolyte concentration on the measurements (Kome et al., 2018). 
305 SOM was measured using Loss-on-Ignition method where the soil was heated at 550 °C for 8 
306 hours with mass loss approximating the mass of organic material in the sample. Total C, 13C, 
307 total N and 15N were analysed on an elemental analyser (GSL, Sercon Ltd., Crewe, UK) coupled 
308 to an isotope ratio mass spectrometer (20-22, Sercon Ltd., Crewe, UK).
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309 Daily mean near-surface air temperature and precipitation data were retrieved from 
310 CHELSA-W5E5 downscaled climate data for the period 1979-2016 for each site (version 1.1; 
311 Karger et al., 2017). The CHELSA-W5E5 v1.1 has a horizontal resolution of 1km, which is a 
312 downscaled product of its previous version, W5E5 v1.0, using the CHELSA V2.0 algorithm 
313 (Karger et al., 2017, 2022). These data were used to determine mean annual temperature 
314 (MAT), maximum annual temperature, minimum annual temperature, mean growing season 
315 temperature, maximum growing season temperature, minimum growing season temperature, 
316 mean annual precipitation (MAP) and mean growing season precipitation across the sites.

317 2.6. Vegetation data

318 Plant species abundance was evaluated previously for eleven of the sites using point 
319 intercept method (Goodall, 1952) on subplots within all exclosures and their paired controls 
320 across our study system. For LAN, RIG, RIR, and SON a total of 20 subplots were used (Sundqvist 
321 et al., 2019), KEV used 12 subplots, ABI and TOO used 8 subplots (Lindén et al., 2021), and AUD 
322 used 24 subplots (Kushbokov et al., 2023). In each subplot, species abundance was determined 
323 by lowering pins at 25–100 pins at even spacing and counting the number of times that the 
324 vegetation intercepted the pins. All data were normalized to 100 pins per subplot and averaged 
325 per plot (Väisänen et al., 2014). These data were further used to calculate the abundance of 
326 plant functional groups (grasses, sedges, forbs, evergreen and deciduous dwarf shrubs, and tall 
327 deciduous shrubs).

328 2.7. Statistics

329 All data analyses were carried out with R (version 4.2.2, (R Core Team, 2022). The 
330 phyloseq package (McMurdie and Holmes, 2013) was used for handling bioinformatic data, and 
331 relevant functions from the vegan and ecodist packages (Goslee and Urban, 2007; Oksanen et 
332 al., 2022) were used for community dissimilarity ordinations. The mycorrhizal fungi 
333 communities were split into three main datasets: EcM/ErM species (from the ITS1m - LR5 
334 primer pair sequences), AM species (from the SSU515Fngs - AML2 primer pair sequences), and 
335 total mycorrhizal community (both datasets merged); hereafter referred to as EcM/ErM, AM, 
336 and total community in the results. Mycorrhizal fungi species presence/absence (P/A) data was 
337 used for ordinations as we had low sequence sampling depth for relative abundance 
338 differences between our sites.

339  To investigate the impact of herbivory and soil conditions on mycorrhizal fungi 
340 community composition between plots we use Canonical Correspondence Analysis (CCA) as a 
341 constrained ordination according to mycorrhizal species composition dissimilarity based on 
342 presence/absence matrices, using Bray-Curtis distances, against soil properties and treatment. 
343 Variable selection was performed by correlation matrix and variance inflation factor tests to 
344 reduce multicollinearity in the resulting independent variables. The final model for the CCA 
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345 ordinations was the community dissimilarity matrix against Site, Treatment, pH, total C, C:N 
346 ratio,  and  A follow-up Analysis of Variance (ANOVA) was also performed to 
347 evaluate the effect of the independent variables on the mycorrhizal fungi community. A 
348 Permutational Analysis of Variance (PERMANOVA) was also performed to evaluate the 
349 dissimilarity of mycorrhizal fungi communities between plots, after using the ordiR2step 
350 function from vegan for forward model selection as the models were overfit with the full 
351 parameters (Tab. S3). For the EcM/ErM and total mycorrhizal fungi communities, Site and total 
352 N were selected, and for the AM community, Site, Treatment, C:N, and Precipitation were 
353 selected. Treatment was added to all models as it is the parameter of interest.

354  The differences between sites in mycorrhizal community composition were evaluated 
355 against mean air temperature and precipitation using a separate CCA. An ANOVA was 
356 performed to evaluate the effect of these climate properties on the dissimilarity in mycorrhizal 
357 fungi composition between sites.

358  Another CCA was used to evaluate community dissimilarity influenced by vascular plant 
359 functional types (deciduous tall shrubs, deciduous dwarf shrubs, evergreen dwarf shrubs, 
360 grasses, sedges/rushes, and forbs) for the eleven sites with vegetation data available, as plant 
361 community is expected to be a major driver of mycorrhizal community composition. Differences 
362 in soil properties between treatments, fenced and unfenced plots, were calculated using 
363 student’s t-test for each site individually.

364  All statistics use an alpha of 0.05, and p-values between 0.1 and 0.05 are referred to as 
365 marginally significant which may be appropriate due to the low replication in this study.

366 3. Results

367 3.1. Fungal guilds

368 Three major types of mycorrhizae were captured by the sequence data: EcM, ErM, and 
369 AM (Fig. 1, Fig. 2). Together these corresponded to 38% of the total fungal reads in the dataset. 
370 Across all samples 150 unique mycorrhizal fungi species within 3 phyla, 6 classes and 13 orders 
371 were captured (Fig. 2). Among these species, EcM accounted for 82%, while ErM comprised 2% 
372 and AM contained the remaining 14%. The ErM identified to species were assigned to the 
373 phylum Ascomycota, specifically, the order Helotiales. EcM were a mix of Basidiomycota and 
374 Ascomycota, across three classes and nine orders. The herbivore exclosure treatment generally 
375 did not affect the mean number of species of either total mycorrhizal fungi, or of EcM/ErM, or 
376 AM fungi, respectively (Fig. 3). However, the mean number of total mycorrhizal fungi species, 
377 and EcM/ErM species, was higher in KLP, EcM/ErM were fewer in LAN, and AM were higher in 
378 UTQ in exclosures compared to ambient plots (Fig. S2). Further, the composition of 

ordinations was the community dissimilarity matrix against Site, Treatment, pH, total C, C:N 
 A follow-up Analysis of Variance (ANOVA) was also performed to 

evaluate the effect of the independent variables on the mycorrhizal fungi community. A 
Permutational Analysis of Variance (PERMANOVA) was also performed to evaluate the Permutational Analysis of Variance (PERMANOVA) was also performed to evaluate the 
dissimilarity of mycorrhizal fungi communities between plots, after using the ordiR2step dissimilarity of mycorrhizal fungi communities between plots, after using the ordiR2step 
function from vegan for forward model selection as the models were overfit with the full function from vegan for forward model selection as the models were overfit with the full 
parameters (Tab. S3). For the EcM/ErM and total mycorrhizal fungi communities, Site and total parameters (Tab. S3). For the EcM/ErM and total mycorrhizal fungi communities, Site and total 
N were selected, and for the AM community, Site, Treatment, C:N, and Precipitation were N were selected, and for the AM community, Site, Treatment, C:N, and Precipitation were 
selected. Treatment was added to all models as it is the parameter of interest.selected. Treatment was added to all models as it is the parameter of interest.

 The differences between sites in mycorrhizal community composition were evaluated  The differences between sites in mycorrhizal community composition were evaluated 
against mean air temperature and precipitation using a separate CCA. An ANOVA was against mean air temperature and precipitation using a separate CCA. An ANOVA was 
performed to evaluate the effect of these climate properties on the dissimilarity in mycorrhizal performed to evaluate the effect of these climate properties on the dissimilarity in mycorrhizal 

 Another CCA was used to evaluate community dissimilarity influenced by vascular plant  Another CCA was used to evaluate community dissimilarity influenced by vascular plant 
functional types (deciduous tall shrubs, deciduous dwarf shrubs, evergreen dwarf shrubs, functional types (deciduous tall shrubs, deciduous dwarf shrubs, evergreen dwarf shrubs, 
grasses, sedges/rushes, and forbs) for the eleven sites with vegetation data available, as plant grasses, sedges/rushes, and forbs) for the eleven sites with vegetation data available, as plant 
community is expected to be a major driver of mycorrhizal community composition. Differences community is expected to be a major driver of mycorrhizal community composition. Differences 
in soil properties between treatments, fenced and unfenced plots, were calculated using in soil properties between treatments, fenced and unfenced plots, were calculated using 

s t-test for each site individually.

 All statistics use an alpha of 0.05, and p-values between 0.1 and 0.05 are referred to as  All statistics use an alpha of 0.05, and p-values between 0.1 and 0.05 are referred to as 
marginally significant which may be appropriate due to the low replication in this study.marginally significant which may be appropriate due to the low replication in this study.

3.1. Fungal guilds

Three major types of mycorrhizae were captured by the sequence data: EcM, ErM, and Three major types of mycorrhizae were captured by the sequence data: EcM, ErM, and 
AM (Fig. 1, Fig. 2). Together these corresponded to 38% of the total fungal reads in the dataset. AM (Fig. 1, Fig. 2). Together these corresponded to 38% of the total fungal reads in the dataset. 
Across all samples 150 unique mycorrhizal fungi species within 3 phyla, 6 classes and 13 orders Across all samples 150 unique mycorrhizal fungi species within 3 phyla, 6 classes and 13 orders 
were captured (Fig. 2). Among these species, EcM accounted for 82%, while ErM comprised 2% were captured (Fig. 2). Among these species, EcM accounted for 82%, while ErM comprised 2% 
and AM contained the remaining 14%. The ErM identified to species were assigned to the and AM contained the remaining 14%. The ErM identified to species were assigned to the 
phylum Ascomycota, specifically, the order Helotiales. EcM were a mix of Basidiomycota and phylum Ascomycota, specifically, the order Helotiales. EcM were a mix of Basidiomycota and 
Ascomycota, across three classes and nine orders. The herbivore exclosure treatment generally Ascomycota, across three classes and nine orders. The herbivore exclosure treatment generally 
did not affect the mean number of species of either total mycorrhizal fungi, or of EcM/ErM, or did not affect the mean number of species of either total mycorrhizal fungi, or of EcM/ErM, or 
AM fungi, respectively (Fig. 3). However, the mean number of total mycorrhizal fungi species, AM fungi, respectively (Fig. 3). However, the mean number of total mycorrhizal fungi species, 
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379 ectomycorrhizal fungi exploration types at each plot was not affected by exclusion of 
380 herbivores (Fig. S3 and S4).

381

382 Fig. 2. Overall proportion of unique mycorrhizal species separated into phylum, class, order and guild across all 
383 sites. The height of each rectangle represents the number of species belonging to that group, and connections 
384 between columns indicate the proportion which belongs to both groups. EcM refers to ectomycorrhiza, ErM to 
385 ericoid mycorrhiza, and AM to arbuscular mycorrhiza.

386

Overall proportion of unique mycorrhizal species separated into phylum, class, order and guild across all Overall proportion of unique mycorrhizal species separated into phylum, class, order and guild across all 
sites. The height of each rectangle represents the number of species belonging to that group, and connections sites. The height of each rectangle represents the number of species belonging to that group, and connections 
between columns indicate the proportion which belongs to both groups. EcM refers to ectomycorrhiza, ErM to between columns indicate the proportion which belongs to both groups. EcM refers to ectomycorrhiza, ErM to 
ericoid mycorrhiza, and AM to arbuscular mycorrhiza.ericoid mycorrhiza, and AM to arbuscular mycorrhiza.
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387

388 Fig. 3. Difference of exclosure from ambient conditions in mean number of species of each mycorrhizal type at each 
389 site. Error bars represent 85% confidence intervals around the mean (corresponding to a  = 0.05 test; see Payton 
390 et al., 2000, 2003). The sites SAP1, SAP2, YUK1, and YUK2 have no error bars as there was one composite sample 
391 for the ambient and exclosure condition at each of these sites and so they couldn’t be compared.

Fig. 3. Fig. 3. Difference of exclosure from ambient conditions in mean number of species of each mycorrhizal type at each Difference of exclosure from ambient conditions in mean number of species of each mycorrhizal type at each 
site. Error bars represent 85% confidence intervals around the mean (corresponding to a site. Error bars represent 85% confidence intervals around the mean (corresponding to a 

390390 et al., 2000, 2003). The sites SAP1, SAP2, YUK1, and YUK2 have no error bars as there was one composite sample et al., 2000, 2003). The sites SAP1, SAP2, YUK1, and YUK2 have no error bars as there was one composite sample 
391391 for the ambient and exclosure condition at each of these sites and so they couldnfor the ambient and exclosure condition at each of these sites and so they couldn
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392 3.2. Mycorrhizal fungi community composition

393 A consistent pattern of differentiation in mycorrhizal fungi communities occurred for all 
394 three subsets of mycorrhizal data in the ordination analyses, where the Russian, North 
395 American and Icelandic sites (UTQ, ERK, YUK, TOO and AUD) were broadly separated from the 
396 Fennoscandian sites (Fig. 4; Fig. S5). Site was significant for all three subsets of mycorrhizal 
397 fungi communities (Fig. 4A: F14,83 = 2.196, p < 0.001; B: F14,61 = 2.718, p < 0.001; C: F14,83 = 2.264, 
398 p < 0.001).

399 The separation of the EcM/ErM community in the cluster with Russian, Icelandic, and 
400 North American sites UTQ, ERK, YUK, TOO and AUD, and the Fennoscandian cluster is primarily 
401 driven by the genera Cortinarius, Entoloma, and Lactarius being more abundant in 
402 Fennoscandia, and Russula more abundant in the non-Fennoscandian sites (Fig. S5A).

403 In the AM community dataset CCA, pH was significantly correlated with community 
404 composition where the vector pointed primarily towards RIG, as well as some individual plots in 
405 KEV, ERK, and ABI (Fig. 4B: F1,61 = 1.917, p = 0.046). The AM genera Acaulospora, Diversispora, 
406 Glomus, and Claroideoglomus increase with pH along this gradient (Fig. S5B). In addition, total C 
407 was marginally significant and increased towards ERK primarily with a tendency of all cold sites 
408 moving in the same direction (Fig. 4B: F1,61 = 1.701, p = 0.063). Treatment (removal of 
409 herbivores) was also marginally significant and nearly followed the same direction as total C 
410 (Fig. 4B: F1,61 = 1.474, p = 0.076) with the AM genus Ambiospora showing species specific 
411 responses either increasing or decreasing along the total C and treatment gradient (Fig. S5B). In 
412 cold sites, the AM genera Pacispora, Paraglomus and Scutellospora contributed more species 
413 compared to warmer sites (Fig. S5B).

414 Total C was marginally significantly related to the total mycorrhizal community 
415 composition and increased along a gradient towards the coldest sites ERK, TOO, UTQ and YUK 
416 (Fig. 4C: F1,83 = 1.257, p = 0.068). The separation of the cold sites seems to be driven by 
417 increased abundance of Oidiodendron spp. and Fayodia gracilipes, as well as a decreased 
418 abundance of Lactarius spp. and Polyozellus umbrinus (Fig. S5C). A few other EcM genera (e.g. 
419 Mycosymbioces, Russula, Tomentella) had some mixed species-specific responses along this 
420 gradient (Fig. S5C). Another distinct pattern in the total mycorrhizal community is the 
421 separation of RIG in the ordination space, driven by the AM genera Acaulospora, Diversispora, 
422 Glomus, and Claroideoglomus, but also by EcM fungi in the genera Entoloma (Fig. S5C).
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425 mycorrhizal fungi composition were found for pH and total C, however there were no 
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428 significant treatment effects in LAN and TOO (LAN: F1,4 = 1.250, p = 0.074; TOO: F1,4 = 1.215, p = 
429 0.067; Fig. S6). The number of AM fungal species tended to increase in exclosures when 
430 treatment effects were observed (Fig. S6).

431431431

 = 1.215, p =  = 1.215, p = 
0.067; Fig. S6). The number of AM fungal species tended to increase in exclosures when 
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432 Fig. 4. Canonical Correspondence Analysis (CCA) plot of Bray-Curtis dissimilarity matrix based on the presence of 
433 mycorrhizal species for: a) the EcM/ErM community composition, b) the AM community composition (note that no 
434 AM species was found in SON and AUD), and c) the total community composition. Each point corresponds to a 
435 plot’s mycorrhizal community ordinated relative to other plots by their dissimilarity in community composition. 
436 Triangles are exclosure plots while circles are ambient plots. Vectors belong to soil property predictors (TC = total 
437 carbon; pH) significant in at least one of the mycorrhizal communities, with thicker vectors indicating the property 
438 is significant at an alpha of 0.1 for that specific community. Altogether the graphs account for 7% - 18% of variance 
439 in mycorrhizal species composition between sites.

440 When evaluating climate variables across the sites, mean air temperature was a 
441 significant explanatory variable for EcM/ErM and total mycorrhizal fungi communities, and 
442 marginally significant for AM fungi communities (Fig. S7A: F1,12 = 1.472, p = 0.005; B: F1,12 = 
443 2.043, p = 0.059; C: F1,12 = 1.390, p = 0.020), while precipitation was marginally significant across 
444 all mycorrhizal communities (Fig. S7A: F1,12 = 1.254, p = 0.058; B: F1,12 = 1.644, p = 0.100; C: F1,12

445 = 1.248, p = 0.062). Both mean air temperature and precipitation tended to increase towards 
446 the Fennoscandian and Icelandic sites, and away from the North American and Russian sites. 
447 Overall, the climate CCA models accounted for 21.2-33.4% of the variance within the site-level 
448 mycorrhiza data in the first two axes. 

449 The PERMANOVA supported the CCA by indicating site as significant for all three 
450 mycorrhizal community datasets (Tab. 2). Additionally, total N was found to be significant for 
451 the EcM/ErM and total communities, with treatment marginally significant in the total 
452 community. The model for total community accounted for approximately 34% of the variation 
453 within the data, predominantly due to site differences.

454 Table 2. PERMANOVA model output for three subsets of the mycorrhizal community. Model structure was 
455 determined based on forward model selection criteria. TN refers to total N, and C:N ratio is Carbon:Nitrogen ratio. 
456 Bold values indicate significant difference between treatment conditions within the indicated site below alpha 0.1, 
457 bold and italic indicate significance below 0.05.

Community
Model 
structure Site Treatment TN C:N Precipitation

R2 F p R2 F p R2 F p R2 F p R2 F p

EcM/ErM
Site + 
Treatment + 
TN

0.291 3.151 0.001 0.008 1.081 0.379 0.014 1.828 0.026

AM

Site + 
Treatment + 
C:N + 
Precipitation

0.436 4.524 0.001 0.010 1.213 0.308 0.010 1.279 0.264 0.013 1.676 0.146

Total
Site + 
Treatment + 
TN

0.316 3.551 0.001 0.012 1.558 0.062 0.013 1.724 0.033

0.2910.291 3.1513.151 0.001

Treatment + 

PrecipitationPrecipitation

0.4360.436 4.5244.524

Site + 
Treatment + Treatment + 
TN

0.3160.316 3.551

Site Treatment
FF pp

Canonical Correspondence Analysis (CCA) plot of Bray-Curtis dissimilarity matrix based on the presence of Canonical Correspondence Analysis (CCA) plot of Bray-Curtis dissimilarity matrix based on the presence of 
mycorrhizal species for: a) the EcM/ErM community composition, b) the AM community composition (note that no mycorrhizal species for: a) the EcM/ErM community composition, b) the AM community composition (note that no 
AM species was found in SON and AUD), and c) the total community composition. Each point corresponds to a AM species was found in SON and AUD), and c) the total community composition. Each point corresponds to a 

s mycorrhizal community ordinated relative to other plots by their dissimilarity in community composition. s mycorrhizal community ordinated relative to other plots by their dissimilarity in community composition. 
Triangles are exclosure plots while circles are ambient plots. Vectors belong to soil property predictors (TC = total Triangles are exclosure plots while circles are ambient plots. Vectors belong to soil property predictors (TC = total 
carbon; pH) significant in at least one of the mycorrhizal communities, with thicker vectors indicating the property carbon; pH) significant in at least one of the mycorrhizal communities, with thicker vectors indicating the property 
is significant at an alpha of 0.1 for that specific community. Altogether the graphs account for 7% - 18% of variance is significant at an alpha of 0.1 for that specific community. Altogether the graphs account for 7% - 18% of variance 

When evaluating climate variables across the sites, mean air temperature was a When evaluating climate variables across the sites, mean air temperature was a 
significant explanatory variable for EcM/ErM and total mycorrhizal fungi communities, and significant explanatory variable for EcM/ErM and total mycorrhizal fungi communities, and 
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the Fennoscandian and Icelandic sites, and away from the North American and Russian sites. the Fennoscandian and Icelandic sites, and away from the North American and Russian sites. 
Overall, the climate CCA models accounted for 21.2-33.4% of the variance within the site-level Overall, the climate CCA models accounted for 21.2-33.4% of the variance within the site-level 

The PERMANOVA supported the CCA by indicating site as significant for all three The PERMANOVA supported the CCA by indicating site as significant for all three 
mycorrhizal community datasets (Tab. 2). Additionally, total N was found to be significant for mycorrhizal community datasets (Tab. 2). Additionally, total N was found to be significant for 
the EcM/ErM and total communities, with treatment marginally significant in the total the EcM/ErM and total communities, with treatment marginally significant in the total 
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PERMANOVA model output for three subsets of the mycorrhizal community. Model structure was PERMANOVA model output for three subsets of the mycorrhizal community. Model structure was 
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bold and italic indicate significance below 0.05.bold and italic indicate significance below 0.05.
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458 3.3. Vegetation influence

459 The CCA using relative cover of plant functional types (PFT) as predictors was significant 
460 for explaining dissimilarity in mycorrhiza data (F17,55 = 1.876, p < 0.001; Fig. 5). Site (F10,55 = 
461 2.416, p < 0.001) and percent cover of sedges (F1,55 = 1.790, p < 0.027) were significant factors 
462 for explaining difference in mycorrhizal fungi composition. The effect of sedges on mycorrhizal 
463 fungi dissimilarity was likely driven primarily by RIG as the vector points almost exclusively 
464 towards those plots.

465

466

467 Fig. 5. CCA analysis comparing mycorrhizal communities between sites based on percent cover of Plant Functional 
468 Types (PFT) at each site with available data. Each point corresponds to a plot’s mycorrhizal community ordinated 
469 relative to other plots by their dissimilarity in community composition. Triangles are exclosure plots while circles are 
470 ambient plots. Vectors belong to percent cover of PFT predictors with thicker vectors indicating the property is 
471 significant at an alpha of 0.1. D_tall = Deciduous tall shrub, D_dwarf = deciduous dwarf shrub, E_dwarf = evergreen 
472 dwarf shrub. Sedges were the only PFT that showed a significant correlation with the mycorrhizal fungi data. 
473 Altogether the PFTs account for 9.7% of the variance in the mycorrhizal fungi community composition.

The CCA using relative cover of plant functional types (PFT) as predictors was significant The CCA using relative cover of plant functional types (PFT) as predictors was significant 
 = 1.876, p < 0.001; Fig. 5). Site (F10,5510,55 =  = 

 = 1.790, p < 0.027) were significant factors  = 1.790, p < 0.027) were significant factors 
for explaining difference in mycorrhizal fungi composition. The effect of sedges on mycorrhizal for explaining difference in mycorrhizal fungi composition. The effect of sedges on mycorrhizal 
fungi dissimilarity was likely driven primarily by RIG as the vector points almost exclusively fungi dissimilarity was likely driven primarily by RIG as the vector points almost exclusively 

CCA analysis comparing mycorrhizal communities between sites based on percent cover of Plant Functional CCA analysis comparing mycorrhizal communities between sites based on percent cover of Plant Functional 
Types (PFT) at each site with available data. Each point corresponds to a plotTypes (PFT) at each site with available data. Each point corresponds to a plot
relative to other plots by their dissimilarity in community composition. Triangles are exclosure plots while circles are relative to other plots by their dissimilarity in community composition. Triangles are exclosure plots while circles are 
ambient plots. Vectors belong to percent cover of PFT predictors with thicker vectors indicating the property is ambient plots. Vectors belong to percent cover of PFT predictors with thicker vectors indicating the property is 
significant at an alpha of 0.1. D_tall = Deciduous tall shrub, D_dwarf = deciduous dwarf shrub, E_dwarf = evergreen significant at an alpha of 0.1. D_tall = Deciduous tall shrub, D_dwarf = deciduous dwarf shrub, E_dwarf = evergreen 
dwarf shrub. Sedges were the only PFT that showed a significant correlation with the mycorrhizal fungi data. dwarf shrub. Sedges were the only PFT that showed a significant correlation with the mycorrhizal fungi data. 
Altogether the PFTs account for 9.7% of the variance in the mycorrhizal fungi community composition.Altogether the PFTs account for 9.7% of the variance in the mycorrhizal fungi community composition.
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474 4. Discussion

475 4.1 Mycorrhizal communities across the Arctic

476 EcM comprised the majority of mycorrhiza species in our data as they made up 82% of 
477 the species identified. The EcM species in our study were distributed across 34 families with the 
478 most species-rich family accounting for 10% of the unique species. A previous study on arctic 
479 EcM found that the majority of sequences belonged to four families indicating a high degree of 
480 dominance of a few taxa (Timling et al., 2012). Similar proportions of taxonomic orders to our 
481 data were previously found in tundra sites (Blaalid et al., 2014; Geml et al., 2015; Botnen et al., 
482 2020), which also showed more EcM species than ErM, although not to the degree shown in 
483 this study. Two ErM species were identified in our data; however, they were ubiquitous across 
484 all sites. Previous studies have found more ErM species, predominantly in Helotiaceae and 
485 Hyaloscyphaceae (Van Geel et al., 2020; Fanin et al., 2022). However, this difference may be 
486 partially attributed to the different biogeographic areas evaluated in the studies, as neither 
487 were focused on tundra ecosystems, as well as differences in detection of rare species in the 
488 samples as our sequencing depth was low. The most prevalent ErM species in our data, 
489 Pezoloma ericae, was likewise the most abundant ErM species in a grazing study in northern 
490 Fennoscandia (Ylänne et al., 2021). They found that grazing conditions and plant composition 
491 influenced the abundance of P. ericae. The remaining 14% of species were AM which, while 
492 well-known elsewhere, are vastly understudied in tundra communities (Ruotsalainen and 
493 Eskelinen, 2011;  et al., 2023). The large number of AM species hypotheses identified 
494 in this study indicates a necessity to adapt protocols to include these species when evaluating 
495 soil fungi in the tundra, otherwise community evaluations may be incomplete. This is especially 
496 important in communities with a high abundance of grass and forb species (Ravolainen et al., 
497 2020; Gignac et al., 2022; Spitzer et al., 2022), as these species have shown a tendency to 
498 increase with warming in some locations(Bjorkman et al., 2020). However, AM fungi have 
499 shown variable responses to herbivory, even with increases in their plant partners (Kytöviita 
500 and Olofsson, 2021). Better understanding of the drivers of AM community change may aid 
501 understanding of the variation in grass and forb community responses in the tundra.

502 4.2 Large herbivore impacts on mycorrhizal fungi composition

503 Large mammalian herbivores had a weak effect on only AM fungal species across our 
504 sites, where Ambispora spp. seems to be the most sensitive genera to herbivory across Arctic 
505 sites. This is in opposition to our hypothesis iii, where we expected herbivory to increase the 
506 number of ErM fungi by increasing ericaceous shrubs. Rather, the effect of herbivory on 
507 mycorrhizal fungi community composition depends on the dominant vegetation when 
508 herbivores are present, the specific site conditions (such as edaphic and climatic properties), 
509 and the strength of the herbivory pressure. It is possible that changes in the cover of sedges 
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510 and differences in pH across the sites contributed to the consistent weak effect on AM fungi. 
511 The response of AM fungi to herbivory is not consistent across previous studies (Ruotsalainen 
512 and Eskelinen, 2011; Kytöviita and Olofsson, 2021); however, herbivory has been demonstrated 
513 to decrease AM colonization of plant roots in acidic, non-fertile sites with the opposite 
514 response in non-acidic sites with high soil fertility (Ruotsalainen and Eskelinen, 2011). The 
515 difference in the response of AM fungi to herbivory could therefore be tied to local soil 
516 conditions, as AM fungi were also impacted by pH in our study. Although, it was also argued 
517 that the difference in AM colonization is primarily due to vegetation differences where 
518 nutrient-rich non-acidic communities have a higher proportion of graminoids and forbs and 
519 nutrient-poor acidic communities have more ericaceous shrubs (Ruotsalainen and Eskelinen, 
520 2011). Higher proportion of graminoid vegetation that associates with AM fungi can be 
521 observed under heavy grazing conditions (Barthelemy et al., 2017). Our data suggested that the 
522 cover of primarily non-mycorrhizal sedges (Muthukumar et al., 2004; Tedersoo, 2017) had the 
523 largest correlation with mycorrhizal fungi community composition dissimilarity. This may be 
524 due to some sedges being capable of forming AM associations (Muthukumar et al., 2004) while 
525 Kobresia sp. can form EcM associations (Tedersoo, 2017), which may contribute to the 
526 observed dissimilarity in mycorrhizal fungi communities related to differences in sedge cover. 
527 The sites where significant herbivory impacts were observed did not have similar vegetation 
528 communities, but all showed a greater number of AM species present in the ambient condition. 
529 The strength of herbivory pressure applied at a location can shift the current vegetation 
530 towards a more graminoid dominated community (Olofsson et al., 2001, 2004; van der Wal, 
531 2006; Vowles et al., 2017b), where communities with high grazing pressure increase in AM and 
532 saprotrophic fungal abundance (Ahonen et al., 2021). High grazing pressure also includes 
533 increased trampling and snow compaction of a site which can warm the soil during the growing 
534 season potentially releasing AM fungi from their cold limitation, although it also makes winter 
535 soil temperatures colder (Yan et al., 2018; Ylänne et al., 2018; Fischer et al., 2022). Changes in 
536 conditions suitable for AM fungi, such as warmer temperatures and grass dominated plant 
537 communities, may increase their prevalence in the tundra.

538 In support of the prediction derived from hypothesis i, the herbivory effect was not 
539 consistent across the Arctic for EcM/ErM or total mycorrhizal fungi communities. Herbivory had 
540 previously been identified as an important driver for Arctic EcM and ErM fungi community 
541 composition (Timling et al., 2012; Santalahti et al., 2018; Vowles and Björk, 2019; Botnen et al., 
542 2020; Van Geel et al., 2020; Ahonen et al., 2021), however, these conclusions were for single 
543 sites and not across the Arctic. In our data, herbivory had a local scale impact at four sites. 
544 Herbivory likely impacts mycorrhizal fungi communities within a site by changing local 
545 vegetation and soil conditions; for example, herbivore driven changes in evergreen shrub 
546 abundance and differences in C:N ratio had large effects on the total soil fungi community at 
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 sp. can form EcM associations (Tedersoo, 2017), which may contribute to the  sp. can form EcM associations (Tedersoo, 2017), which may contribute to the 
observed dissimilarity in mycorrhizal fungi communities related to differences in sedge cover. observed dissimilarity in mycorrhizal fungi communities related to differences in sedge cover. 
The sites where significant herbivory impacts were observed did not have similar vegetation The sites where significant herbivory impacts were observed did not have similar vegetation 
communities, but all showed a greater number of AM species present in the ambient condition. communities, but all showed a greater number of AM species present in the ambient condition. 
The strength of herbivory pressure applied at a location can shift the current vegetation The strength of herbivory pressure applied at a location can shift the current vegetation 
towards a more graminoid dominated community (Olofsson et al., 2001, 2004; van der Wal, towards a more graminoid dominated community (Olofsson et al., 2001, 2004; van der Wal, 
2006; Vowles et al., 2017b), where communities with high grazing pressure increase in AM and 2006; Vowles et al., 2017b), where communities with high grazing pressure increase in AM and 
saprotrophic fungal abundance (Ahonen et al., 2021). High grazing pressure also includes saprotrophic fungal abundance (Ahonen et al., 2021). High grazing pressure also includes 
increased trampling and snow compaction of a site which can warm the soil during the growing increased trampling and snow compaction of a site which can warm the soil during the growing 
season potentially releasing AM fungi from their cold limitation, although it also makes winter season potentially releasing AM fungi from their cold limitation, although it also makes winter 
soil temperatures colder (Yan et al., 2018; Ylänne et al., 2018; Fischer et al., 2022). Changes in soil temperatures colder (Yan et al., 2018; Ylänne et al., 2018; Fischer et al., 2022). Changes in 
conditions suitable for AM fungi, such as warmer temperatures and grass dominated plant conditions suitable for AM fungi, such as warmer temperatures and grass dominated plant 
communities, may increase their prevalence in the tundra.communities, may increase their prevalence in the tundra.

In support of the prediction derived from hypothesis i, the herbivory effect was not In support of the prediction derived from hypothesis i, the herbivory effect was not 
consistent across the Arctic for EcM/ErM or total mycorrhizal fungi communities. Herbivory had consistent across the Arctic for EcM/ErM or total mycorrhizal fungi communities. Herbivory had 
previously been identified as an important driver for Arctic EcM and ErM fungi community previously been identified as an important driver for Arctic EcM and ErM fungi community 
composition (Timling et al., 2012; Santalahti et al., 2018; Vowles and Björk, 2019; Botnen et al., composition (Timling et al., 2012; Santalahti et al., 2018; Vowles and Björk, 2019; Botnen et al., 
2020; Van Geel et al., 2020; Ahonen et al., 2021), however, these conclusions were for single 2020; Van Geel et al., 2020; Ahonen et al., 2021), however, these conclusions were for single 
sites and not across the Arctic. In our data, herbivory had a local scale impact at four sites. sites and not across the Arctic. In our data, herbivory had a local scale impact at four sites. 
Herbivory likely impacts mycorrhizal fungi communities within a site by changing local Herbivory likely impacts mycorrhizal fungi communities within a site by changing local 

545545 vegetation and soil conditions; for example, herbivore driven changes in evergreen shrub vegetation and soil conditions; for example, herbivore driven changes in evergreen shrub 
546546 abundance and differences in C:N ratio had large effects on the total soil fungi community at 
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547 the Norwegian-Finland border (Ylänne et al., 2021). Abiotic conditions have also been shown to 
548 have a large effect on mycorrhizal fungi composition differences (Dumbrell et al., 2010; Grau et 
549 al., 2017; Bennett and Classen, 2020), and can be more important for fungal community 
550 composition than vegetation composition (Grau et al., 2017). Although many studies indicate a 
551 close connection between plant functional types and mycorrhizal types (Vowles et al., 2018; 
552 Vowles and Björk, 2019; Ahonen et al., 2021; Ylänne et al., 2021), EcM do not have strong host 
553 species specificity in the tundra (Ryberg et al., 2011; Abrego et al., 2020). The ability of 
554 individual plants to form multiple types of mycorrhizae, which varies by species and 
555 environmental gradient (Abrego et al., 2020), makes the complex relationships between PFTs 
556 and mycorrhizal types difficult to elucidate.

557 4.3 Soil properties influence mycorrhizal fungi community composition

558 In support of hypothesis iv, soil properties were found to coincide with mycorrhizal fungi 
559 composition where total C varies along with the total mycorrhizal fungi community, and pH and 
560 total C shifts with AM fungi community. Soil C can be differentially affected by different types of 
561 mycorrhizal fungi (Wurzburger and Brookshire, 2017) related to differences in their resource 
562 acquisition strategies and their response to increases in inorganic N (Kjøller et al., 2012; 
563 Wurzburger and Brookshire, 2017; Averill et al., 2019). Mycorrhizal fungi community 
564 composition was correlated with the total soil C vector which pointed primarily towards the 
565 North American and Russian sites. Increases in soil C have been linked to higher cover of EcM 
566 forming tundra plants and relative abundance of EcM fungi corresponding to heath 
567 communities (Clemmensen et al., 2021). Conversely, AM plants reduced soil C relative to soil-
568 only controls while EcM plants did not (Wurzburger and Brookshire, 2017). pH has been 
569 identified as an important driver of fungal community composition; however, it was argued as a 
570 correlative property and not the main driver of fungal community change (Ruotsalainen and 
571 Eskelinen, 2011; Hewitt et al., 2013). Previous studies have also found impacts of warming on 
572 fungal communities (Geml et al., 2015, 2021; Shi et al., 2021), but these effects differed 
573 between tundra habitats primarily related to soil moisture. Warming impacts on fungal 
574 community composition were stronger in moist communities than dry (Geml et al., 2021) and 
575 may decrease the mycorrhizal component of the fungal community (Geml et al., 2015); 
576 however, there was no response to warming in an AM community (Shi et al., 2021). Our data 
577 show an impact of air temperature on all mycorrhizal fungi communities, but that may be due 
578 to the large gradient in air temperature among sites. In addition, our data showed a significant 
579 precipitation gradient among the sites that was consistently correlated to mycorrhizal fungi 
580 community composition, but not for AM fungi specifically. The large gradient in precipitation 
581 and air temperature that our study sites span account for at least 20% of the variance among 
582 the sites in mycorrhizal fungi composition. Overall, large scale changes in water and C 
583 availability and acid-stress are likely regional drivers for mycorrhiza composition.
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581581 and air temperature that our study sites span account for at least 20% of the variance among and air temperature that our study sites span account for at least 20% of the variance among 
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583583 availability and acid-stress are likely regional drivers for mycorrhiza composition.
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584 Overall, herbivory is likely acting locally on mycorrhizal fungi communities while large-
585 scale patterns coincide with climatic gradients in the Arctic. The variation in vegetation 
586 communities across the tundra likely influences how readily mycorrhizal fungi types will react 
587 to altered biotic or abiotic conditions. The simultaneous interaction between bottom-up 
588 processes by climate and edaphic properties and top-down processes by herbivores and biotic 
589 interactions on vegetation communities determines the species likely to comprise the 
590 mycorrhizal fungi community in an area. Additionally, it is important to evaluate both EcM/ErM 
591 and AM fungi species in tundra ecosystems as AM species were found to be more sensitive to 
592 changes in herbivory and constitute a substantial portion of the mycorrhizal fungi community. 
593 Thus, changes in the balance between AM-EcM-ErM in the tundra will most likely have 
594 associated consequences on total soil C, and may influence the capacity of the tundra soils to 
595 store C.
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