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Abstract

Plants form symbiotic relationships with mycorrhizal fungi, which are vital for soil carbon .nc
nutrient cycling. In the Arctic, one of the most soil carbon rich biomes of the world, herbi - res
can strongly influence vegetation, but their impacts on mycorrhizal fungi communiti~< a, 4
subsequently on soil carbon and nutrient cycling are uncertain. We collected soils froi » 15 sets
of herbivore exclusion fences across the Arctic. We sequenced across both ITS .. 2ns and
partial SSU region with two sets of amplicons to determine the composit'an ¢ "< il r .ycorrhizal
fungi communities and how these are impacted by herbivory, climate, an { e. ~ohic properties.
Herbivore exclusion had an overall weak effect on the arbuscular mycnrrhi. il (AM) fungi
community across the tundra, but the effect was variable across site~ nH an.erences among
sites were correlated with changes in AM composition. Ectomycor hi .al ingi had the highest
number of species, followed by AM. Consistent Arctic wide dif’- rences observed in mycorrhizal
fungi communities were generally tied to edaphic and climatic pro, =rties, whereas herbivores
seem to influence mycorrhizal species predominantly at i ~ lividual sites. Soil carbon storage is
affected by the composition of mycorrhizal fungi and <'..”*< i1, *he proportion of mycorrhizal
types will have subsequent impacts on carbon in Arct = .oils .

Key words: Amplicon sequencing; Arbuscular m» zor.n! ‘a; Arctic; Ectomycorrhiza; Ericoid
mycorrhiza; Herbivory

1. Introduction

Large mammalian herbivores cci. modify plant communities through selective foraging
which may allow herbivores to im',ac. ™iture carbon (C) and nutrient cycling in the Arctic
(Olofsson et al., 2009; Vowles et & 207 7a; Sundqvist et al., 2019; Lindén et al., 2021). For
instance, herbivores may giv: eve “reen shrubs a competitive advantage as herbivores
preferentially consume decidw ~us shrubs, forbs, and graminoids (Christie et al., 2015; Vowles
and Bjork, 2019). By a.” ring dominance patterns among plant functional groups, herbivores
can indirectly affect ~vco: “'zal fungi communities (Vowles et al., 2018; Vowles and Bjork,
2019; Ahonen et ¢' 202., Ylanne et al., 2021; Castaio et al., 2023). Trampling and waste
deposition by be. “ivo. ~s may also benefit mycorrhizal fungi by increasing soil temperature and
nutrient avaii. Mility (wWang et al., 2018, 2023; Yan et al., 2018; Ylanne et al., 2018; Kytoviita and
Olofsson, ~u. "\. 1.« magnitude of herbivore impact has been shown to be sensitive to local
climate, v. here or instance herbivores have the largest effect on shrub radial growth at
inte’ .ne’.ite, -ctic air temperature ranges (Vuorinen et al., 2022). Herbivory mediated changes
ir tho 1or inance of different plant functional groups will affect their associated types of
m, ~orrhizal fungi, where deciduous shrubs primarily associate with ectomycorrhizal fungi
(EcM), ericaceous shrubs which are predominantly evergreen associate with ericoid mycorrhizal
fungi (ErM), and grasses and forbs primarily associate with arbuscular mycorrhizal fungi (AM)
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(Smith and Read, 2008; Vowles and Bjork, 2019). The proportion of different plant functional
types and their associated mycorrhizal fungi can alter soil properties which feedback onto the
dominant vegetation and mycorrhizal fungi (Clemmensen et al., 2015, 2021; Castafio et ¢ .,
2023). These multi-trophic interactions between herbivores and soil fungi may be impc ta,.” “_r
Arctic ecosystems as climate change continues (Vowles and Bjork, 2019; Yldanne eta, 27.1),
however, they have not been evaluated across the Arctic.

Soil fungi are likely to respond to herbivory-driven shifts in vegetat'an a 'd ;0il properties,
as they generally have close connections to the plant species comprising *he ~onununity (Parker
et al., 2022). These soil fungi, including both saprotrophic and mycorrhizal ."ingi, play a key role
in the cycling of soil C and nutrients globally (Read and Perez-Morer~ 200, A6gberg and Read,
2006; Orwin et al., 2011; Averill et al., 2014), including in nutrient- Yo" r e :0systems
(Clemmensen et al., 2021; Parker et al., 2021) such as most Arr ¢ co.....unities (Shaver and
Chapin, 1991; Schulze et al., 1994; Jonasson et al., 2001; Clemmer. =n et al., 2006). Mycorrhizal
fungi function as a C sink in soils, as they receive photosy~ ‘hates from their host plant, and as a
result are less C limited than saprotrophic fungi and ce~ “hei. Yy outcompete free living
microbes for organic nitrogen (N) (Hogberg and Reac 27.06 Orwin et al., 2011; Averill et al.,
2014). Different mycorrhizal groups, such as ecte .., 2riinza, ericoid mycorrhiza and arbuscular
mycorrhiza have been linked to different degree - i re .alcitrance of soil organic material where
shifts in mycorrhizal dominance along a gra‘.ien. from AM-EcM-ErM corresponds to slower C
turnover and subsequently higher C storage " th- soil (Phillips et al., 2013; Clemmensen et al.,
2015, 2021; Parker et al., 2021; Fani. rtal., 202.° Thus, clarifying the distribution of different
mycorrhizal groups is important for unac 'standing the Arctic’s future C storage potential
(Dahlberg and Biltmann, 2013).

Climatic conditions can atic “t regional processes of mycorrhizal fungi distribution, but do
not necessarily describe finer -ale patterns (Mikryukov et al., 2023). However, soil conditions,
which are more varia. 'v than climate at the site level, may have stronger effects on mycorrhizal
fungi communities, in sorn. ~ rases acting as stronger drivers than vegetation (Dumbrell et al.,
2010; Grau et al., ?)17; . ~nnett and Classen, 2020). The amount of nutrients in the soil and the
form they take. . ~. 0, ~anic or inorganic, impact the abundance and production of mycorrhizal
fungi (Avolio ~-al., .>09; Nicolas et al., 2019). EcM fungi are lower in abundance when
inorganic . .. hig. {Kjgller et al., 2012) potentially due to the benefit of the mycorrhizal
relations. ‘o to ne plant host decreases under such conditions and the plants subsequently
redv.e .ein. *stment into mycorrhizal symbionts. The proportion of fungi can also be
imne ~.ed! y the differences in soil C as saprotrophs are less competitively excluded when labile
L - abundant (Bodeker et al., 2016; Marafién-Jiménez et al., 2021). Likewise, soil temperature
and peecipitation can affect the balance of mycorrhizal types in the soil as fungi have different
optimal growth conditions (Ruotsalainen and Kytoviita, 2004; Kytoviita, 2005). As soils warm,
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productivity and subsequently microbial activity may increase in the tundra, with the strengtf
of this change connected to soil moisture (Geml et al., 2015).

Arctic regions have experienced approximately 2-4 times greater warming since 19 ¢
than the rest of the globe (Rantanen et al., 2022). This warming trend has led to veg=tal Jn
shifts (Myers-Smith et al., 2011; Elmendorf et al., 2012a, 2012b; Bjorkman et al., 701 2u.0),
which have resulted in aboveground productivity increases and a general gree~:. ~ trenuin
Arctic communities (Myers-Smith et al., 2020). Increasing productivity hz s the o ,cer :ial to
decrease the long-term C storage in tundra soils (Hartley et al., 2012), wbicr, ~urrently account
for nearly 50% of global terrestrial belowground C pool (Schuur et al., 201% Crowther et al.,
2016; Van Gestel et al., 2018; Bjorkman et al., 2020). In addition, shif*ing pia.it abundance and
composition potentially impact decomposition rates, C turnover a d .ut ient cycling as
microbial communities shift concomitantly (Ekblad et al., 2013 The ...going climate-driven
shifts in tundra vegetation (Elmendorf et al., 2012b; Bjorkman et " 2018), are expected to
trigger changes in soil fungal communities as well. For inst ince, shrub species are expanding
and becoming more prevalent (Myers-Smith et al., 207”* wi. ~h should correspond to increases
in EcM and ErM depending on shrub type (Vowles et | 20 8; Vowles and Bjork, 2019;
Clemmensen et al., 2021; Parker et al., 2022); wk _.« °s wunidra communities with a greater
proportion of grass and forb species, which may » cor e more prevalent under high intensity
grazing, should correspond with an increase in .1 tungi (Walker et al., 2006; Berner et al.,
2020; Betway-May et al., 2022). Thus, the a. min7 Ace of functionally distinct shrub or graminoid
vegetation in the landscape may be riajor dete minant of the fungal community in tundra
ecosystems (Vowles and Bjork, 2019).

Tundra ecosystems are con. ‘risec of multiple community types, such as heath and
meadow communities, whicl na. ~ ditferent dominant mycorrhizal types according to their
dominant vegetation (Martin. "-Garcia et al., 2015; Sizonenko et al., 2020; Clemmensen et al.,
2021; Defrenne et al., ?223). Thus, factors that influence the proportion of plant functional
types, such as herbivnry, \ il affect the proportion of different mycorrhiza types in the soil as
well (Dahlberg and 3iltr,.~nn, 2013; Martinez-Garcia et al., 2015; Grau et al., 2017). These
community type. are artially determined by the strength of herbivory at each location, where
no or low he: " ivory . :ay allow for easier expansion of deciduous shrubs (Myers-Smith et al.,
2011; Par' .. ~ta. 2021), moderate herbivory could give ericaceous shrubs an advantage by
consumi, ~ higt y competitive deciduous shrubs (Vowles et al., 2017a), and high herbivory
pror ote , gra. = and forb species (Olofsson and Post, 2018). Although AM fungi form
as~o ‘.tior s with almost 80% of terrestrial plant species globally (Smith and Read, 2008), AM
v gi are generally limited in distribution in Arctic communities due to their low tolerance to
cold Wang et al., 2002; Ruotsalainen and Kytoviita, 2004; Kytoviita, 2005; Kilpeldinen et al.,
2016). However, AM fungi species may respond quickly to climate warming if their host-species
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become more prevalent and climate conditions for AM fungi improve (Olsson et al., 2004;
Hollister and Flaherty, 2010; Gao et al., 2016; Newsham et al., 2017; Bennett and Classen,
2020).

Our study aims to investigate the effect of large mammalian herbivores on my-ort izal
fungal communities across multiple Arctic sites. We use a network of large mammalia »
herbivore exclosures to evaluate the effect of herbivores on mycorrhizal fungi -~ ~vbosi..on and
the proportion of mycorrhizal types, alongside edaphic and climate prop ~rtie. 2 .d\ :getation
dynamics. We hypothesise that i) large mammalian herbivores will impac* n. ~orrnizal fungi
community composition through soil property and vegetation community « hYanges as a
response to the combined effects of selective foraging, waste deposi+inn, ai.u trampling.
However, we predict that the observation of this effect will likely | = < ce- :pecific due to the
differences between Arctic community types and the magnitur.: of 1.c. uivory pressure. We also
hypothesise that ii) mycorrhizal fungi communities will shift acros. *he Arctic due to differences
in climate and vegetation. We predict ErM will be most sr. :cies rich under dominant ericaceous
shrub cover, EcM under dominant deciduous shrub co**~~ ai. ' AM under dominant grass and
forb vegetation. Furthermore, iii) we hypothesise a g =7 .er ichness of ErM species when
herbivores are present, but only in sites where h7. ... ‘ore exclusion significantly alters
mycorrhizal fungi community composition, as ev r sre¢ 1 ericaceous shrubs may increase when
deciduous shrubs are suppressed by herbivr res. “inally, iv) we also predict that soil properties,
such as pH and soil C and N, will influence ti. ~ ore portion of each mycorrhizal type, where non-
acidic, low C:N ratio soil conditions L ~ efit AM s, ~cies the most.

2. Materials and Method¢

2.1. Site descriptions

The study was conducte.’ at 15 sites across the tundra; five sites in Sweden, four in
Finland, two in USA, t. " «in Canada, one in Iceland, and one in Russia (Fig. 1; Tab. 1). The site
designations listed ir Tab. " ' .ill be used throughout the paper to refer to those sites. Most of
the sites had thre: 1erbiv “re exclosure fences paired with three ambient plots of equal size,
except for SAP1 . ~d . “vhich had one large fence and ambient plot for each), ERK (which had
15 0.25 m? fe. ~es anJ 15 ambient plots), UTQ (which had 12 1 m? fences and 12 ambient plots),
and YUK1 anie ? (v hich had three replicate 1 m? fences and three ambient subplots for each of
the two s. =s; F 3. S1). Sites that had large fences and ambient plots (i.e. > 1 m?) were sampled
from riv. suby'ts (approx. 1 m2) within each plot, while sites with small fences (i.e. <1 m?)
w.re am’.{ed once within each plot. The term herbivory used throughout this manuscript is
s, nifically referring to the effects of large mammalian herbivores including foraging, trampling
and waste deposition, events that all interact to influence vegetation and soil properties.



211  Herbivory effect is used to denote the effects of excluding these herbivores from the fenced
212  plots.
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214 Fig. 1. Map of site locations with pie charts showing proportion of mycorrhiza types with the size of the pie charts
215 scaled to the number of unique mycorrhizal fungi species within sites. The bioclimatic zones for Subarctic, Oroarctic,
216 Low Arctic, and High Arctic are included (Berner et al., 2024).
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Table 1. Description of each site contributing to the data. SAP and YUK both consisted of two subsites that were

217

initially sampled as replicates. # fences and paired ambient plots refer to the number of fences at the site and

218

therefore also the number of paired ambient plots, i.e. ABI has three fences and three ambient plots. Two of the KLP
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while the third fence covered an area of 562 m?. SAP fences were also different

7

2

fences covered an area of 1994 m

sizes, so they are treated as separate sites. Soil moisture class is an approximation of moisture conditions at each

site.
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2.2. Soil sampling

Soil samples were collecw. 1 at each site during the 2020 growing season usinga 2 cm
diameter soil corer to - depth of 10 cm, with five cores retrieved per subplot. Since the fenced
area varies betweer _ “as, \...ee separate sampling schemes were followed depending on site
configuration ‘Tak. 1, Fig. S1). Soil samples were immediately put in a bag with silica gel, and
frozen at -20 °~ a. ~oo0.. as possible before being shipped to the University of Gothenburg,
Sweden, whei. they were stored at -20 °C until processed. Each soil sample was sieved at 2 mm
and freez :-dni. 1 tor 24 hours to be dry stored until further analyses. All soil samples within a
fence or a, ~hie it plot were homogenized into a single composite soil sample for DNA
extr cti.n In *al, there were 116 soil samples across all sites.

< 3. Extraction and sequencing

The Qiagen DNeasy PowerSoil Pro extraction kit was used to isolate environmental DNA
from the processed soil samples following the manufacturer’s protocol. DNA was extracted

1 5/ plot

343

YUK2 64°55'49" N, 138° 16' 23" W

Yukon sites -
south

Canada
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from approximately 250 mg of soil from each sample. The samples were then checked using
Qubit dsDNA High Sensitivity Assays for the presence and concentration of DNA in the samnle
prior to PCR and stored in -20 °C until further analyses.

Two sets of PCR were performed using two pairs of primers targeting different reg ans of
the fungal genome. ITS1, IT2, and partial LSU regions were amplified using a ITSTm—.R5 .rimer
pair (ITSIm: 5’-TCCGTAGGTGAACCTGC-3’; LR5: 5’-TCCTGAGGGAAACTTCG-3’) t~ _ »turc general
fungal groups (Eshghi Sahraei et al., 2022). Partial SSU region was amplifi=d u. ir , ar
SSU515Fngs—AML2 primer pair (SSU515Fngs: 5'-GCCAGCAACCGCGGTAA-?’; . ML.: 5'-
CCCAAACACTTTGGTTTCC-3’) to target AM fungi specifically. A reaction vol. me of 50 pL was
used for PCR with 5 pL each of template DNA, forward and reverse r~imer a..d 0.5 pL of
Phusion High-Fidelity DNA polymerase. Thermocycling conditions ar .ne 'TSIm—LR5 region
were an initial denaturation at 98 °C for 30 s followed by 25 cy~ 2s 0\ ..cnaturation at 98 °C for
10 s, annealing at 59 °C for 45 s and extension at 72 °C for 45 s, wi." a final extension for 10
minutes after the final cycle. Thermocycling conditions fcr the SSU515Fngs—AML2 primer pair
were an initial denaturation at 98 °C for 30 s followed »~ 20 « *<les of denaturation for 10 s,
annealing at 58 °C for 30 s and extension at 72 °C for 0 , ai d a final extension for 7 minutes
after the final cycle. A total of 232 PCR products *.<. cicaned using Agencourt AMpure XP
magbeads (Beckman Coulter, Brea, CA, USA) anc ~ 4an ified using Qubit dsDNA High Sensitivity
Assays prior to pooling for equimolar conce itra. 7ns. A maximum volume of 48 ulL was used for
samples with too low concentration. Sampic - we’ 2 then sequenced by Uppsala Genome Centre
(UGC, Science for Life Laboratory, D. »*. of Immu. ology, Genetics and Pathology, Uppsala
University, BMC, Box 815, SE-752 37 Uk, “A' A) in Uppsala, Sweden using two SMRT cells on the
Sequel platform (Pacific Bioscienc s, M\ nlo Park, CA, USA).

2.4. Bioinformatics

Circular consensus seque. ~e (CCS) reads (218,250 total, Table S1) were demultiplexed
and primers removed - *the ITS1m-LR5 samples using cutadapt v4.4 (Martin, 2011). Reads
were checked in bo*". ‘irec..uns and any reads where primers were detected in the reverse
direction wer’ rev. -se cornplemented prior to downstream filtering. The SSU515Fngs—AML2
samples were " 21 "new. demultiplexed from Uppsala Genome Centre, so only primers had to be
removed. Rea. - from all samples were pooled for the two primers sets and analysed with the
DADA2 p’oseln. » (version 1.26.0). Amplicons were filtered using the filterAndTrim function with
default pa. ~mr .ers except for maxEE = 2, minLen = 50, and rm.Phix = TRUE, denoised with
DAL A2 “ur ctio. using default parameters, and chimeras removed using the removeBimera
fuact ~ Jenoised ASVs for the ITSIm—LR5 primer readswere taxonomically assigned with
PIu ~F SH matching v2.0.0 (Abarenkov et al., 2010) which performs open-reference clustering
with the UNITE database (v9.0; Nilsson et al., 2019) at thresholds from 97% - 99% sequence
similarity. The 97% threshold was selected for downstream statistics as it limited duplication of

10



273  species assignments for species hypotheses (SH) (although duplication was still high;

274  approximately 70%). After taxonomic assignment, 1837 unique SH’s that were taxonomicallv
275  assigned to family or below were sorted into functional guilds using FUNGuild (Nguyen e al,
276  2016) and 539 SHs corresponding to mycorrhizal fungi were selected for further analys. . 57 7
277 identified as orchid mycorrhiza were removed from further analysis. All mycorrhizal v, ~«

278  referred to throughout the paper refer to fungi not plants, unless otherwise specii.* . nd

279  species is used to refer to the generated SHs. It is important to note that the 1 Jil” a-signments,
280  much like the SHs themselves, are tentative and an SH can be assigned intc mu -in! _ potential
281  guilds depending on the level of taxonomic assignment. ErM fungal specie " arc ~specially

282  difficult as they are often facultative and do not necessarily form mycu.. 7 unless conditions
283  areright. Indeed, all SHs assigned as ErM were also co-assigned to _chV but were retained as
284  ErM only in the analyses. SHs identified as EcM were manually 7 s, -ed ‘o exploration type
285 following Agerer (2001). Taxonomy was assigned for the SSU51_ "ngs—AML2 ASVs using the
286  assignTaxonomy function from DADA2 with default setting ., using a local download of the

287  MaarjAM database as the reference (Opik et al., 2010). SS¢ ~15Fngs—AML2 ASVs which could
288  not be assigned to order were removed from further ine ysis. Additionally, all ASVs assigned
289  were compared to the ITSIm-LR5 assignments and ar. AS* s overlapping in assignment at

290 species level were removed from the AM fungal ser Je \ce dataset. All of the 26 identified

291  species from the SSU515ngs—AML2 dataset re=~re. =~* AM species. A final total community

292  dataset was produced by combining the IT” 'm—L. 5 SH’s assigned to taxonomy and identified
293  as mycorrhizal fungi, with the SSU515ngs—AM. sH’s taxonomically assigned as

294  Glomeromycota across all samples (T.. 'e S1). All three datasets used species presence/absence
295  data and not relative abundance /1. “nces between sites due to low sequencing depth, unless
296 otherwise stated for a specific tes (Fig. ,13).

297 2.5. Soil and climate g »pel.es

298 All soil samples were also analysed for pH, soil organic matter (SOM) content, total C,
299  total N, 613C and 6°N. Fi. *. nH was measured after adding 50 ml water to 10 g soil (except for
300 SAP and YUK samp'2s w. ‘ch used 150 ml to 5 g and 50 ml to 5 g, respectively as they contained
301  ahigher amoun’ of ¢ ~anic material) and allowing to settle overnight before measuring with a
302  pH meter (M~ rohn. <91 pH meter). A second pH measurement was performed after adding 0.5
303 ml(1.5ml* -SA. and YUK) 2M KCl to reach a final concentration of 0.02 M KCI, which removes
304 any potc tial e ‘ect of soil electrolyte concentration on the measurements (Kome et al., 2018).
305 SOM ... mec sured using Loss-on-Ignition method where the soil was heated at 550 °C for 8
306  heu. - vith mass loss approximating the mass of organic material in the sample. Total C, 613C,
307 . *al N and &N were analysed on an elemental analyser (GSL, Sercon Ltd., Crewe, UK) coupled
2,8 o an .sotope ratio mass spectrometer (20-22, Sercon Ltd., Crewe, UK).
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Daily mean near-surface air temperature and precipitation data were retrieved from
CHELSA-W5ES downscaled climate data for the period 1979-2016 for each site (version 1.1°
Karger et al., 2017). The CHELSA-W5ES5 v1.1 has a horizontal resolution of 1km, which is :
downscaled product of its previous version, W5E5 v1.0, using the CHELSA V2.0 algorith. 1
(Karger et al., 2017, 2022). These data were used to determine mean annual tempe: ..«
(MAT), maximum annual temperature, minimum annual temperature, mean grow..._ < ‘ason

temperature, maximum growing season temperature, minimum growing seas on ’ eriperature,
mean annual precipitation (MAP) and mean growing season precipitation ¢ ~ro. " tk _ sites.

2.6. Vegetation data

Plant species abundance was evaluated previously for elever ui e sites using point
intercept method (Goodall, 1952) on subplots within all exclosur=s = «d t .eir paired controls
across our study system. For LAN, RIG, RIR, and SON a total of .. * subplots were used (Sundqvist
et al., 2019), KEV used 12 subplots, ABI and TOO used 8 suhplots (Li.idén et al., 2021), and AUD
used 24 subplots (Kushbokov et al., 2023). In each subplo., species abundance was determined
by lowering pins at 25—100 pins at even spacing and cur- .ing .ne number of times that the
vegetation intercepted the pins. All data were norma. - 2d t , 100 pins per subplot and averaged
per plot (Vaisanen et al., 2014). These data were rur n~r used to calculate the abundance of
plant functional groups (grasses, sedges, forbs. e. ‘rer .en and deciduous dwarf shrubs, and tall
deciduous shrubs).

2.7. Statistics

All data analyses were carried ~ut v. '+, R (version 4.2.2, (R Core Team, 2022). The
phyloseq package (McMurdie anc Holm: s, 2013) was used for handling bioinformatic data, and
relevant functions from the v/, n a.._ ecodist packages (Goslee and Urban, 2007; Oksanen et
al., 2022) were used for con. wunity dissimilarity ordinations. The mycorrhizal fungi
communities were split into thre - main datasets: ECM/ErM species (from the ITS1m - LR5
primer pair sequences,, . M species (from the SSU515Fngs - AML2 primer pair sequences), and
total mycorrhizal cc mn. 'nity (both datasets merged); hereafter referred to as ECM/ErM, AM,
and total comin’ini, in the results. Mycorrhizal fungi species presence/absence (P/A) data was
used for ordin (tior.. as we had low sequence sampling depth for relative abundance
differences het\v_ ~en our sites.

To .. vesti jate the impact of herbivory and soil conditions on mycorrhizal fungi
com aur .t ce "position between plots we use Canonical Correspondence Analysis (CCA) as a
cr as. ainf J ordination according to mycorrhizal species composition dissimilarity based on
pr sence/absence matrices, using Bray-Curtis distances, against soil properties and treatment.
Variable selection was performed by correlation matrix and variance inflation factor tests to
reduce multicollinearity in the resulting independent variables. The final model for the CCA
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ordinations was the community dissimilarity matrix against Site, Treatment, pH, total C, C:N
ratio, 813C, and 615N. A follow-up Analysis of Variance (ANOVA) was also performed to
evaluate the effect of the independent variables on the mycorrhizal fungi community. A
Permutational Analysis of Variance (PERMANOVA) was also performed to evaluate the
dissimilarity of mycorrhizal fungi communities between plots, after using the ordiRz. -~
function from vegan for forward model selection as the models were overfit with v.. *. ||
parameters (Tab. S3). For the ECM/ErM and total mycorrhizal fungi communit es. ,i*= and total
N were selected, and for the AM community, Site, Treatment, C:N, and Pre ~ipi. ‘*ir , were
selected. Treatment was added to all models as it is the parameter of inte est.

The differences between sites in mycorrhizal community comr~<ition .vere evaluated
against mean air temperature and precipitation using a separate C -2 Ar ANOVA was
performed to evaluate the effect of these climate properties o~ the u..oimilarity in mycorrhizal
fungi composition between sites.

Another CCA was used to evaluate community dissin'arity influenced by vascular plant
functional types (deciduous tall shrubs, deciduous dwv arf nruws, evergreen dwarf shrubs,
grasses, sedges/rushes, and forbs) for the eleven sites vith vegetation data available, as plant
community is expected to be a major driver of n ycr.r* izal community composition. Differences
in soil properties between treatments, fenced anc. "'~"enced plots, were calculated using
student’s t-test for each site individually.

All statistics use an alpha of 0.™5 and p-va. ‘es between 0.1 and 0.05 are referred to as
marginally significant which may be app. ~oriate due to the low replication in this study.

3. Results

3.1. Fungal guilds

Three major typ. - of mycorrhizae were captured by the sequence data: EcM, ErM, and
AM (Fig. 1, Fig. 2). Te~ethc " *ese corresponded to 38% of the total fungal reads in the dataset.
Across all samoles 50 ui."que mycorrhizal fungi species within 3 phyla, 6 classes and 13 orders
were captured (, 7. 2, Among these species, EcM accounted for 82%, while ErM comprised 2%
and AM cont. ned t1.: remaining 14%. The ErM identified to species were assigned to the
phylum A cu. “vcu'a, specifically, the order Helotiales. EcM were a mix of Basidiomycota and
Ascomyc. *a, ac '0ss three classes and nine orders. The herbivore exclosure treatment generally
did r ot : .fect he mean number of species of either total mycorrhizal fungi, or of ECM/ErM, or
A" 1.\ 1gi. espectively (Fig. 3). However, the mean number of total mycorrhizal fungi species,
a,. 1 EcM/ErM species, was higher in KLP, ECM/ErM were fewer in LAN, and AM were higher in
UTQ 1n exclosures compared to ambient plots (Fig. S2). Further, the composition of
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379  ectomycorrhizal fungi exploration types at each plot was not affected by exclusion of
380  herbivores (Fig. S3 and S4).

381 Phylum Class Order guild

382 Fig. 2. Overall proportion of unique mycorrhizal species separated into phylum, class, order and guild across all
383 sites. The height of each rectangle represents the number of species belonging to that group, and connections

384 between columns indicate the proportion which belongs to both groups. EcM refers to ectomycorrhiza, ErM to
385  ericoid mycorrhiza, and AM to arbuscular mycorrhiza.

386
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Fig. 3. Difference of exclosure from ambient conditions in mean number of species of each mycorrhizal type at each
site. Error bars represent 85% confidence intervals around the mean (corresponding to a o = 0.05 test; see Payton
et al., 2000, 2003). The sites SAP1, SAP2, YUK1, and YUK2 have no error bars as there was one composite sample
for the ambient and exclosure condition at each of these sites and so they couldn’t be compared.
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3.2. Mycorrhizal fungi community composition

A consistent pattern of differentiation in mycorrhizal fungi communities occurred fo- ™
three subsets of mycorrhizal data in the ordination analyses, where the Russian, North
American and Icelandic sites (UTQ, ERK, YUK, TOO and AUD) were broadly separated frc n tne
Fennoscandian sites (Fig. 4; Fig. S5). Site was significant for all three subsets of mvco: "hi..
fungi communities (Fig. 4A: Fizg3 = 2.196, p < 0.001; B: F146; = 2.718, p < 0.001: ©* Fyyq, - 2.264,
p <0.001).

The separation of the ECM/ErM community in the cluster with Russ. 'n, . =landic, and
North American sites UTQ, ERK, YUK, TOO and AUD, and the Fennoscc ~iat. <luster is primarily
driven by the genera Cortinarius, Entoloma, and Lactarius being mr.c . bundant in
Fennoscandia, and Russula more abundant in the non-Fennoscanc = ¢ sit :s (Fig. S5A).

In the AM community dataset CCA, pH was significantly cor. ~lated with community
composition where the vector pointed primarily towards [ G, as well as some individual plots in
KEV, ERK, and ABI (Fig. 4B: F1¢; = 1.917, p = 0.046). The AM . ~nera Acaulospora, Diversispora,
Glomus, and Claroideoglomus increase with pH along th’, g adient (Fig. S5B). In addition, total C
was marginally significant and increased towards "™% .. _.arily with a tendency of all cold sites
moving in the same direction (Fig. 4B: F15; =1.7 1 p=1.063). Treatment (removal of
herbivores) was also marginally significant 2.« . 2ai.y followed the same direction as total C
(Fig. 4B: F161 = 1.474, p = 0.076) with the A\ ' genr s Ambiospora showing species specific
responses either increasing or decre asing along e total C and treatment gradient (Fig. S5B). In
cold sites, the AM genera Pacispora, Pu. “glomus and Scutellospora contributed more species
compared to warmer sites (Fig. SF 3).

Total C was marginally <5, “ficaiily related to the total mycorrhizal community
composition and increased a. “ng a gradient towards the coldest sites ERK, TOO, UTQ and YUK
(Fig. 4C: F1 g3 = 1.257, 2 = 0.068). rhe separation of the cold sites seems to be driven by
increased abundance ot Cidiodendron spp. and Fayodia gracilipes, as well as a decreased
abundance of Lactc rius . ~o. and Polyozellus umbrinus (Fig. S5C). A few other EcM genera (e.g.
Mycosymbioces, Rus. ‘'la, Tomentella) had some mixed species-specific responses along this
gradient (Fig. 5C).., nother distinct pattern in the total mycorrhizal community is the
separatior ~f Riu in the ordination space, driven by the AM genera Acaulospora, Diversispora,
Glomus, - nd Cl roideoglomus, but also by EcM fungi in the genera Entoloma (Fig. S5C).

O erall, .~e soil CCA models accounted for a small proportion of variance within the
n yco. “hi- s data (ranging from 6.7-18.4% in the first two axes). Significant effects on
my “arrhizal fungi composition were found for pH and total C, however there were no
significant effects of SOM, total N, 63C or 6'°N for any mycorrhizal fungi community. Individual
site CCAs identified a significant treatment effect in RIG (F;, = 1.350, p = 0.042), and marginally
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significant treatment effects in LAN and TOO (LAN: F, , = 1.250, p = 0.074; TOO: F, 4, =1.215,p =
0.067; Fig. S6). The number of AM fungal species tended to increase in exclosures when

treatment effects were observed (Fig. S6).
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432

Fig. 4. Canonical Correspondence Analysis (CCA) plot of Bray-Curtis dissimilarity matrix based on the presence of

433 mycorrhizal species for: a) the EcM/ErM community composition, b) the AM community composition (note that no
434 AM species was found in SON and AUD), and c) the total community composition. Each point corresponds to a
435 plot’s mycorrhizal community ordinated relative to other plots by their dissimilarity in community composition.
436 Triangles are exclosure plots while circles are ambient plots. Vectors belong to soil property predictors (TC = total
437 carbon; pH) significant in at least one of the mycorrhizal communities, with thicker vectors indicating the property
438 is significant at an alpha of 0.1 for that specific community. Altogether the graphs account for 7% - 18% of variance
439  in mycorrhizal species composition between sites.
440 When evaluating climate variables across the sites, mean air temperature was a
441  significant explanatory variable for ECM/ErM and total mycorrhizal fungi communities, and
442  marginally significant for AM fungi communities (Fig. S7A: Fy 1, = 1.472, p = 0.005; B: F; 1, =
443  2.043,p=0.059; C: Fy 1, = 1.390, p = 0.020), while precipitation was marginally significant across
444  all mycorrhizal communities (Fig. S7A: Fy 1, = 1.254, p = 0.058; B: F; 1, = 1.644, p =0.100; C: Fy 1,
445 =1.248, p =0.062). Both mean air temperature and precipitation tended to increase towards
446  the Fennoscandian and Icelandic sites, and away from the North American and Russian sites.
447  Overall, the climate CCA models accounted for 21.2-33.4% of the variance within the site-level
448  mycorrhiza data in the first two axes.
449 The PERMANOVA supported the CCA by indicating site as significant for all three
450 mycorrhizal community datasets (Tab. 2). Additionally, total N was found to be significant for
451  the EcM/ErM and total communities, with treatment marginally significant in the total
452  community. The model for total community accounted for approximately 34% of the variation
453  within the data, predominantly due to site differences.
454 Table 2. PERMANOVA model output for three subsets of the mycorrhizal community. Model structure was
455 determined based on forward model selection criteria. TN refers to total N, and C:N ratio is Carbon:Nitrogen ratio.
456 Bold values indicate significant difference between treatment conditions within the indicated site below alpha 0.1,
457  bold and italic indicate significance below 0.05.
Model
Community  structure Site Treatment TN C:N Precipitation
R? F p R? F p R? F p R? F p R? F p
Site +
EcM/ErM Treatment+ | 0.291 3.151 0.001 0.008 1.081 0.379 0.014 1.828 0.026
Ll
AM (T:f;aiment * | 0436 4524 0.001| 0010 1213 0.308 0010 1279 0264 | 0013 1676 0.146
Precipitation
Site + 0.316 3.551 0.001 0.012 1.558 0.062 0.013 1.724 0.033
Total Treatment +
TN
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3.3. Vegetation influence

The CCA using relative cover of plant functional types (PFT) as predictors was significant
for explaining dissimilarity in mycorrhiza data (F,755 = 1.876, p < 0.001; Fig. 5). Site (F1g55 =
2.416, p < 0.001) and percent cover of sedges (F; 55 = 1.790, p < 0.027) were significant factors
for explaining difference in mycorrhizal fungi composition. The effect of sedges on mycorrhizal
fungi dissimilarity was likely driven primarily by RIG as the vector points almost exclusively
towards those plots.

CCA2 (4.4%)

Treatment
. Ambient

A Exclosure

5 4 3 2 A 0 1
CCA1 (5.3%)

Fig. 5. CCA analysis comparing mycorrhizal communities between sites based on percent cover of Plant Functional
Types (PFT) at each site with available data. Each point corresponds to a plot’s mycorrhizal community ordinated
relative to other plots by their dissimilarity in community composition. Triangles are exclosure plots while circles are
ambient plots. Vectors belong to percent cover of PFT predictors with thicker vectors indicating the property is
significant at an alpha of 0.1. D_tall = Deciduous tall shrub, D_dwarf = deciduous dwarf shrub, E_dwarf = evergreen
dwarf shrub. Sedges were the only PFT that showed a significant correlation with the mycorrhizal fungi data.
Altogether the PFTs account for 9.7% of the variance in the mycorrhizal fungi community composition.

19



474

475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

502

503
504
505
506
507
F,8
500

4. Discussion

4.1 Mycorrhizal communities across the Arctic

EcM comprised the majority of mycorrhiza species in our data as they made up 8. % o.
the species identified. The EcM species in our study were distributed across 34 famii»s .- h the
most species-rich family accounting for 10% of the unique species. A previous study . ~ “rctic
EcM found that the majority of sequences belonged to four families indicatin: a'.g’" degree of
dominance of a few taxa (Timling et al., 2012). Similar proportions of taxor. "mic ~~.ers to our
data were previously found in tundra sites (Blaalid et al., 2014; Geml et al., 201.; Botnen et al.,
2020), which also showed more EcM species than ErM, although not to ...~ + 2gree shown in
this study. Two ErM species were identified in our data; however, ne* were ubiquitous across
all sites. Previous studies have found more ErM species, predor .na. *Iv "1 Helotiaceae and
Hyaloscyphaceae (Van Geel et al., 2020; Fanin et al., 2022). How. ‘er, this difference may be
partially attributed to the different biogeographic areas e\ iluated in the studies, as neither
were focused on tundra ecosystems, as well as differences . ~ detection of rare species in the
samples as our sequencing depth was low. The most sre’ al 'nt ErM species in our data,
Pezoloma ericae, was likewise the most abundant Frivi -~ _ies in a grazing study in northern
Fennoscandia (Ylanne et al., 2021). They found 1 1a* gr. zing conditions and plant composition
influenced the abundance of P. ericae. The r~_. ~in..., 14% of species were AM which, while
well-known elsewhere, are vastly understt.. ied in tundra communities (Ruotsalainen and
Eskelinen, 2011; Vétrovsky et al., 2023). The lai_= number of AM species hypotheses identified
in this study indicates a necessity to «u. 0t protocols to include these species when evaluating
soil fungi in the tundra, otherwise con. 1unity evaluations may be incomplete. This is especially
important in communities with a\ ‘eh 2 Jundance of grass and forb species (Ravolainen et al.,
2020; Gignac et al., 2022; Spi .zer . * al., 2022), as these species have shown a tendency to
increase with warming in somc 'ocations(Bjorkman et al., 2020). However, AM fungi have
shown variable respo:. =s to herbivory, even with increases in their plant partners (Kytoviita
and Olofsson, 2021) "ette. - aderstanding of the drivers of AM community change may aid
understandins of 7' e van. tion in grass and forb community responses in the tundra.

4.2 Large ¥ arb "are impacts on mycorrhizal fungi composition

Larg ... “m, "alian herbivores had a weak effect on only AM fungal species across our
sites, wh. e An bispora spp. seems to be the most sensitive genera to herbivory across Arctic
sites 11 ,is\ apposition to our hypothesis iii, where we expected herbivory to increase the
n''m .r of erM fungi by increasing ericaceous shrubs. Rather, the effect of herbivory on
n. ‘corrhizal fungi community composition depends on the dominant vegetation when
herbivores are present, the specific site conditions (such as edaphic and climatic properties),
and the strength of the herbivory pressure. It is possible that changes in the cover of sedges
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and differences in pH across the sites contributed to the consistent weak effect on AM fungi.
The response of AM fungi to herbivory is not consistent across previous studies (Ruotsalainen
and Eskelinen, 2011; Kytoviita and Olofsson, 2021); however, herbivory has been demon tr- .e.
to decrease AM colonization of plant roots in acidic, non-fertile sites with the opposite
response in non-acidic sites with high soil fertility (Ruotsalainen and Eskelinen, 2011, ™«
difference in the response of AM fungi to herbivory could therefore be tied to loca., .~
conditions, as AM fungi were also impacted by pH in our study. Although, it w i1s 7.5 argued
that the difference in AM colonization is primarily due to vegetation differr nce wt asre
nutrient-rich non-acidic communities have a higher proportion of graminc'ds o 4 forbs and
nutrient-poor acidic communities have more ericaceous shrubs (Ruotsa.. 7« 1 and Eskelinen,
2011). Higher proportion of graminoid vegetation that associates v ith 1M fungi can be
observed under heavy grazing conditions (Barthelemy et al., 20" 7). “«ur ' .ata suggested that the
cover of primarily non-mycorrhizal sedges (Muthukumar et al., . "04; Tedersoo, 2017) had the
largest correlation with mycorrhizal fungi community com’ osition aissimilarity. This may be
due to some sedges being capable of forming AM associat: ns (Muthukumar et al., 2004) while
Kobresia sp. can form EcM associations (Tedersoo, 2C +7) which may contribute to the
observed dissimilarity in mycorrhizal fungi communiti. re'_ ted to differences in sedge cover.
The sites where significant herbivory impacts we re .07 2rved did not have similar vegetation
communities, but all showed a greater numb~- oy **” species present in the ambient condition.
The strength of herbivory pressure appliec ‘talo ation can shift the current vegetation
towards a more graminoid dominated commu. y (Olofsson et al., 2001, 2004; van der Wal,
2006; Vowles et al., 2017b), where cc.. munities with high grazing pressure increase in AM and
saprotrophic fungal abundance (A'.ui.. 1 eval., 2021). High grazing pressure also includes
increased trampling and snow coi ‘oact’ yn of a site which can warm the soil during the growing
season potentially releasing /.M "ngi from their cold limitation, although it also makes winter
soil temperatures colder (Yan 't al., 2018; Ylanne et al., 2018; Fischer et al., 2022). Changes in
conditions suitable foc. .M fungi, such as warmer temperatures and grass dominated plant
communities, may in~reas t"eir prevalence in the tundra.

In suppu.t o1 e prediction derived from hypothesis i, the herbivory effect was not
consistent acr ss v. = Arctic for ECM/ErM or total mycorrhizal fungi communities. Herbivory had
previously bee,. ‘dentified as an important driver for Arctic EcM and ErM fungi community
composit on (1 mling et al., 2012; Santalahti et al., 2018; Vowles and Bjork, 2019; Botnen et al.,
2020; V/an C~~. et al., 2020; Ahonen et al., 2021), however, these conclusions were for single
site: ar a4 r st ac.oss the Arctic. In our data, herbivory had a local scale impact at four sites.
Harbive ., likely impacts mycorrhizal fungi communities within a site by changing local
veg. “ation and soil conditions; for example, herbivore driven changes in evergreen shrub

abundance and differences in C:N ratio had large effects on the total soil fungi community at
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the Norwegian-Finland border (Yldanne et al., 2021). Abiotic conditions have also been shown "o
have a large effect on mycorrhizal fungi composition differences (Dumbrell et al., 2010; Gran e.
al., 2017; Bennett and Classen, 2020), and can be more important for fungal community
composition than vegetation composition (Grau et al., 2017). Although many studies ir. lic. ~ .
close connection between plant functional types and mycorrhizal types (Vowleseta. .22 §;
Vowles and Bjork, 2019; Ahonen et al., 2021; Ylanne et al., 2021), EcM do not have .~ g host
species specificity in the tundra (Ryberg et al., 2011; Abrego et al., 2020). The abi' ¢y of
individual plants to form multiple types of mycorrhizae, which varies by sp” -ie. ~n~’
environmental gradient (Abrego et al., 2020), makes the complex relation. hips “~etween PFTs
and mycorrhizal types difficult to elucidate.

4.3 Soil properties influence mycorrhizal fungi comn ur.ty composition

In support of hypothesis iv, soil properties were found to incide with mycorrhizal fungi
composition where total C varies along with the total mycerrhizal tungi community, and pH and
total C shifts with AM fungi community. Soil C can be diffe =ntially affected by different types of
mycorrhizal fungi (Wurzburger and Brookshire, 2017) .ei- .ed .0 differences in their resource
acquisition strategies and their response to increases * inc ganic N (Kjgller et al., 2012;
Wurzburger and Brookshire, 2017; Averill et al., .01’ ). Mycorrhizal fungi community
composition was correlated with the total soil C\v ~te which pointed primarily towards the
North American and Russian sites. Increase. in sc ' C have been linked to higher cover of EcM
forming tundra plants and relative abundance -7 ccM fungi corresponding to heath
communities (Clemmensen et al., 20. ). Converseiy, AM plants reduced soil C relative to soil-
only controls while EcM plants did -._* (W . zburger and Brookshire, 2017). pH has been
identified as an important driver . f fung a3l community composition; however, it was argued as a
correlative property and not *.i.c Main driver of fungal community change (Ruotsalainen and
Eskelinen, 2011; Hewitt et ai., 2013). Previous studies have also found impacts of warming on
fungal communities (“eml et al., 2015, 2021; Shi et al., 2021), but these effects differed
between tundra habitats , rimarily related to soil moisture. Warming impacts on fungal
community compo itioi, vere stronger in moist communities than dry (Geml et al., 2021) and
may decrease tt ~ m, ~arrhizal component of the fungal community (Geml et al., 2015);
however, the* : was o response to warming in an AM community (Shi et al., 2021). Our data
show an ir-, ~ct « € air temperature on all mycorrhizal fungi communities, but that may be due
to the la. e gra lient in air temperature among sites. In addition, our data showed a significant
preci.... ‘iol, “radient among the sites that was consistently correlated to mycorrhizal fungi
com ».nit composition, but not for AM fungi specifically. The large gradient in precipitation
« dair temperature that our study sites span account for at least 20% of the variance among
the s..es in mycorrhizal fungi composition. Overall, large scale changes in water and C
availability and acid-stress are likely regional drivers for mycorrhiza composition.
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Overall, herbivory is likely acting locally on mycorrhizal fungi communities while large-
scale patterns coincide with climatic gradients in the Arctic. The variation in vegetation
communities across the tundra likely influences how readily mycorrhizal fungi types will ea“ ¢
to altered biotic or abiotic conditions. The simultaneous interaction between bottom-u »
processes by climate and edaphic properties and top-down processes by herbivores +.* ‘otic
interactions on vegetation communities determines the species likely to comprise .. ~
mycorrhizal fungi community in an area. Additionally, it is important to evalu: ce ¥ o*h ECM/ErM
and AM fungi species in tundra ecosystems as AM species were found to b > m. = - :nsitive to
changes in herbivory and constitute a substantial portion of the mycorrhi. 3l fu. 7i community.
Thus, changes in the balance between AM-EcM-ErM in the tundra wili ... ~<t ‘ikely have
associated consequences on total soil C, and may influence the car acr ; nf the tundra soils to
store C.
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