L))

Check for
Updates

Semantic Logical Relations for Timed Message-Passing
Protocols

YUE YAO, Carnegie Mellon University, USA

GRANT IRACI, University at Buffalo, USA

CHENG-EN CHUANG, University at Buffalo, USA
STEPHANIE BALZER, Carnegie Mellon University, USA
LUKASZ ZIAREK, University at Buffalo, USA

Many of today’s message-passing systems not only require messages to be exchanged in a certain order but
also to happen at a certain time or within a certain time window. Such correctness conditions are particularly
prominent in Internet of Things (IoT) and real-time systems applications, which interface with hardware
devices that come with inherent timing constraints. Verifying compliance of such systems with the intended
timed protocol is challenged by their heterogeneity—ruling out any verification method that relies on the
system to be implemented in one common language, let alone in a high-level and typed programming
language. To address this challenge, this paper contributes a logical relation to verify that its inhabitants (the
applications and hardware devices to be proved correct) comply with the given timed protocol. To cater to the
systems’ heterogeneity, the logical relation is entirely semantic, lifting the requirement that its inhabitants are
syntactically well-typed. A semantic approach enables two modes of use of the logical relation for program
verification: (i) once-and-for-all verification of an arbitrary well-typed application, given a type system, and
(ii) per-instance verification of a specific application / hardware device (a.k.a., foreign code). To facilitate mode
(i), the paper develops a refinement type system for expressing timed message-passing protocols and proves
that any well-typed program inhabits the logical relation (fundamental theorem). A type checker for the
refinement type system has been implemented in Rust, using an SMT solver to check satisfiability of timing
constraints. Then, the paper demonstrates both modes of use based on a small case study of a smart home
system for monitoring air quality, consisting of a controller application and various environment sensors.

CCS Concepts: « Theory of computation — Linear logic; Type theory; Process calculi.

Additional Key Words and Phrases: Semantic logical relations, Timed message-passing protocols, Instant-based
temporal session types, Intuitionistic linear logic

ACM Reference Format:

Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek. 2025. Semantic Logical Relations
for Timed Message-Passing Protocols. Proc. ACM Program. Lang. 9, POPL, Article 59 (January 2025), 32 pages.
https://doi.org/10.1145/3704895

1 Introduction

The computing landscape has gradually been shifting to applications targeting distributed and
heterogeneous systems, including Internet of Things (IoT) and real-time systems applications. Such
applications are predominantly concurrent, employ message-passing, and often interface with foreign

Authors’ Contact Information: Yue Yao, Carnegie Mellon University, Pittsburgh, USA, yueyao@cs.cmu.edu; Grant Iraci,
University at Buffalo, Buffalo, USA, grantira@buffalo.edu; Cheng-En Chuang, University at Buffalo, Buffalo, USA, chengenc@
buffalo.edu; Stephanie Balzer, Carnegie Mellon University, Pittsburgh, USA, balzers@cs.cmu.edu; Lukasz Ziarek, University
at Buffalo, Buffalo, USA, Iziarek@buffalo.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART59

https://doi.org/lo.l 145/3704895

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

https://doi.org/10.1145/3704895
https://doi.org/10.1145/3704895
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704895&domain=pdf&date_stamp=2025-01-09

59:2 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

code—code inaccessible to the application developer. For example, consider a smart home system
for monitoring air quality. The controller of the system, an IoT application, bases its decision on
readings it receives from various environment sensors (e.g., BME680 [Bosch 2024]), spread across
the home, measuring the surrounding air temperature, humidity, pressure, etc. Such sensors are
hardware devices that the developer of the controller must interact with through a protocol defined
by the manufacturer in a specification (“datasheet”). Another characteristic of such applications is
their need to comply with the timing constraints dictated by the hardware devices’ protocol. For
example, when measuring air quality, the BME680 sensor can only provide readings after heating
up an internal component for 30ms, after which it requires an additional 20ms to cool down. Any
application that uses the sensor must account for its protocol and timing requirements.
This naturally leads to the research question that we address in this paper:

How to enable application developers to write timed message-passing programs that
comply with the timing constraints of the underlying hardware devices’ protocols?

This question raises the following challenges; the techniques to overcome them are the core
contribution of our paper:

(1) distillation of a common specification language for timed message-passing protocols to prescribe
the sequencing and timing of interactions between applications and devices;

(2) distillation of a common operational model, capturing the execution behavior both of running
applications and devices;

(3) development of a compositional verification framework, allowing the proof that the operational
models of the applications and devices satisfy their specifications. Compositionality (a.k.a.,
modularity) allows applications and devices to be verified separately and guarantees that
they can be combined to a verified whole (without the need to re-verify the whole).

To address Challenge 1, we use types as a specification language. In particular, we build on the
types developed for process calculi [Igarashi and Kobayashi 2001; Kobayashi 1997] and specifically
on session types [Honda 1993; Honda et al. 1998, 2008]. Session types are behavioral types that
prescribe the protocols of message-passing concurrent programs and enjoy strong theoretical
foundations, including a Curry-Howard correspondence between the session-typed 7-calculus and
linear logic [Caires and Pfenning 2010; Kokke et al. 2019; Lindley and Morris 2015; Toninho 2015;
Toninho et al. 2013; Wadler 2012]. The connection to linear logic endows programming languages
developed for logic-based session types with various desirable properties, such as protocol adherence
and deadlock freedom. The latter ensures global progress and is a result of linearity, which imposes
a tree structure on the runtime configurations of processes.

Among these logic-based session types, we chose the family based on intuitionistic linear logic
[Caires and Pfenning 2010; Toninho 2015; Toninho et al. 2013], which distinguishes the provider
from the client side of a protocol. This distinction naturally accommodates the separation between
hardware devices (i.e., providers) and application programs (i.e., clients), present in our target
domain. To facilitate expression of timing constraints, we extend intuitionistic linear logic session
types (ILLST) with temporal predicates, resulting in timed intuitionistic linear logic session types
(TILLST). TILLST adopts an instant-based model of time [SEP 1999], treating points in time (i.e.,
instants) as primary notions, and allows temporal predicates to quantify over such points in time
to prescribe at which instant(s) communications must happen relative to a global clock. TILLST sets
itself apart from session types based on timed automata [Bartoletti et al. 2017; Bocchi et al. 2019,
2014] not only in terms of its logical foundation, but also in the underlying model of time. Automata-
based session types come equipped with local clocks, which require explicit synchronization (i.e.,
clock resets) to simulate a global notion of time.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:3

To address Challenge 2, we use a labelled transition system (LTS) [Milner 1980, 1999; Sangiorgi
and Walker 2001] to express how applications and hardware devices exchange messages and thus
compute. The fundamental notion underlying an LTS is the one of a transition labelled with an
action, conveying the readiness of a participating entity to engage in an exchange. Actions range
over outputs (ie., sends), inputs (i.e., receives), and the empty action. An empty action denotes an
actual computation, i.e., a reduction, which happens when two entities with complementary, i.e.,
dual, actions meet and exchange a message as a result. We chose an LTS as our operational model
because it is agnostic of the literal syntax used to represent communicating entities, catering to the
heterogeneity of our target domain. Moreover, the duality of actions mirrors the provider-client
distinction in ILLST: when a provider is ready to output, its client will (eventually) be ready to
input, and vice versa. To accommodate timing considerations, our LTS denotes the instant at which
an entity is ready to engage in an exchange, in addition to the action. We refer to the resulting LTS
as timed LTS.

To address Challenge 3, we use logical relations [Girard 1972; Pitts and Stark 1998; Plotkin
1973; Statman 1985; Tait 1967] as our verification framework. Logical relations are a device to
prescribe the properties of valid programs in terms of their computational behavior and are defined
by considering the types of the underlying language. As such, a logical relation can be viewed as
defining “inhabitance” of valid terms in a type. Logical relations enjoy compositionality, ensuring that
any two inhabitants can be composed to a compound inhabitant, as dictated by the type structure.
An important characteristic of logical relations is their constructive standpoint: logical relations
define the semantics of a program in terms of how it runs. This insight fueled the semantic typing
approach [Constable et al. 1986; Martin-Lof 1982; Timany et al. 2024], which lifts the requirement
that terms inhabiting the logical relation ought to be (syntactically) well-typed. Such a semantic
approach allows proving inhabitance not only of well-typed terms—via the “fundamental theorem”
of the logical relation—but also of untyped terms, provided they exhibit the computational behavior
prescribed by the logical relation. Because of this property, cross-language logical relations have
been successfully employed, for example, for compiler correctness proofs [Benton and Hur 2009;
Chlipala 2007; Minamide et al. 1996] and soundness of language interoperability [Patterson et al.
2022].

We chose logical relations as our verification framework precisely because of semantic typing.
The logical relation that we contribute enables semantic typing of both the applications and devices
in our target domain and is the core contribution of this paper. Next, we summarize the (1) key
features of our logical relation and then highlight (2) two modes of use of our logical relation: (a)
once-and-for-all verification of an arbitrary well-typed application, given a type system, and (b)
per-instance verification of a specific application / hardware device (a.k.a., foreign code). Because
logical relations are compositional, both modes of use work synergistically, allowing us to combine
components verified by either method to a verified whole. The subsequent sections should be read
as a “teaser”, conveying the main ideas, which we will formally develop in §3-§5.

1.1 A Timed Semantic Session Logical Relation (TSSLR)

Our logical relation is defined by structural induction on timed intuitionistic linear logic session
types (TILLST), our specification language for timed message-passing protocols (Challenge 1), and
prescribes the computational behavior of its inhabitants in terms of a timed LTS, our operational
model for applications and devices in our target domain (Challenge 2). We refer to our logical
relation as timed semantic session logical relation (TSSLR), to convey its purely semantic nature and
grounding in TILLST. To the best of our knowledge, TSSLR is the first logical relation facilitating
the verification of timing constraints for message-passing protocols. It is also the first entirely
semantic logical relation for session types; prior logical relations for session types [Balzer et al.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:4 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

2023; Caires et al. 2013; Derakhshan et al. 2021, 2024; DeYoung et al. 2020; Pérez et al. 2012, 2014;
van den Heuvel et al. 2024] demand inhabitants to be syntactically well-typed. Besides facilitating
semantic typing for timed message-passing protocols, TSSLR has the following unique features:

1.1.1 Nameless Families of Configurations. The handling of names—identifiers such as channels and
locations—can become tedious in formal developments. All too often, we end up either renaming
existing names, for example upon receiving a channel, or maintaining equivalence classes of
names. These strategies are not only cumbersome but also error-prone. But even more so, formal
developments usually do not even depend on a particular choice of a name! Linear logic can
come to help, because it guarantees that a name is only shared between two runtime entities (e.g.,
sensor and controller), facilitating local reasoning about names. Intuitionistic linear logic—due
to its provider-client distinction-moreover allows a provider (e.g., sensor) to be polymorphic in
the name it is referred to by its client (e.g., controller). Our development takes advantage of these
properties and introduces the notion of a nameless family of configurations. Configurations are the
terms inhabiting our logical relation, nameless families of configurations are polymorphic in the
choice of a name by their clients. Our TSSLR defines inhabitance in terms of nameless families of
configurations to accommodate arbitrary choices of names.

1.1.2 Computable Trajectories. Labelled transition systems (LTS) [Milner 1980, 1999; Sangiorgi
and Walker 2001] describe concurrent interactions in a local way, isolating a particular entity
that is ready to engage in an action, while “framing off” entities unaffected by the action. The
understanding is that any number of ready entities with mutually complementary actions can
reduce concurrently. For timed message-passing protocols, however, the term “concurrent” is too
liberal, because it does not prescribe which reductions among the concurrent ones must happen
simultaneously. Transitions in our timed LTS therefore are additionally annotated with the instant
at which an exchange may happen. To complement this local description of a potential computation
with a global perspective, we introduce the notion of a trajectory. A trajectory is a function that
returns for each instant in time the configuration of all entities at that particular instant. We
can thus think of a trajectory as a description of how a configuration evolves over time. To assert
that a trajectory is the result of applying a sequence of timed LTS reductions, which validates
that trajectory, we introduce the notion of a computable trajectory. A computable trajectory is a
pair, consisting of the trajectory and a validating sequence of reductions. In case of simultaneous
reductions, there exists a validating sequence of reductions for each permutation of simultaneous
reductions, but any of these suffices to assert computability. The value of the notion of a trajectory is
precisely that it “collapses” all simultaneous local LTS reductions to one global reduction step. Our
TSSLR is phrased in terms of computable trajectories and is thus polymorphic in the equivalence
class of instantaneous LTS reduction sequences for a configuration’s trajectory.

1.1.3 Algebra for Computable Trajectories. With the definition of computable trajectories in our
hands, it is convenient to define operations on computable trajectories, resulting in an algebra for
computable trajectories. To gather an intuition for what operations may be suitable, it is helpful to
remind ourselves that a computable trajectory essentially describes how a configuration evolves
over time. With that intuition in mind, it is sensible to expect that trajectories can be: (a) interleaved,
describing the evolution of the concurrent composition of two configurations; (b) partitioned, to
truncate a trajectory relative to a given instant; and (c) concatenated, to sequentially compose
two trajectories. As we will see in §4.2, our computable trajectory algebra facilitates an elegant
definition and proof of the usual forward and backwards closure properties of logical relations,
generalized to account for the passage of time.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:5

1.2 Two Modes of Use of TSSLR

Thanks to its semantic formulation, our TSSLR facilitates program verification in two ways:

(1) once-and-for-all verification of an arbitrary well-typed application, given a type system;
(2) per-instance verification of a specific application / hardware device (a.k.a., foreign code).

Mode 1 requires development of a suitable type system that is strong enough to ensure that any
well-typed term computes as prescribed by the logical relation. This proof, i.e., that any well-typed
term inhabits the logical relation, is referred to as the fundamental theorem of the logical relation
(FTLR). The benefit of Mode 1 is, in a sense, its “economy of scale”: By carrying out, once and for all,
a difficult proof (proof of the FTLR), per-program verification reduces to a type checking problem.
If a decidable type checking algorithm exists, then program verification becomes automatic.

Type systems are by design recursively enumerable and thus never complete with respect to
the intended semantics (i.e., inhabitance does not necessarily imply well-typedness). As a result,
they may reject perfectly good programs. This is where Mode 2 comes to help. Here, inhabitance of
a term is proved directly, without a type system as an intermediary. The benefit of Mode 2 is its
impartiality: Any “computational object” can be certified, as long as it can be shown to compute as
prescribed by the logical relation. Mode 2 is therefore indispensable to the verification of systems
in our application domain.

1.2.1 Mode of Use 1: Refinement Type System for TILLST. To facilitate Mode of Use 1 of our TSSLR,
we contribute a refinement type system for TILLST. The dependency of TILLST types on temporal
predicates manifests in the typing judgment of our type system: a term is typed relative to a context
of temporal propositions, in addition to the usual variable context. Temporal dependencies between
communications are expressed using temporal variables, whose free occurrences are collected in
a separate context as well. To guarantee that any term that has a valid derivation using our type
system also inhabits our TSSLR, we prove the corresponding fundamental theorem.

We have implemented a type checker for our type system. The type checker is implemented in
Rust and uses an SMT solver to check satisfiability of temporal predicates. Type checking is thus
incomplete; our benchmark suite of examples, however, type checks successfully.

1.2.2 Mode of Use 2: Per-Device Inhabitance Proof. We illustrate Mode of Use 2 of our TSSLR, by
providing a proof that the BME680 environment sensor inhabits our TSSLR. To carry out this proof,
we translate the BME680’s specification [Bosch 2024] given by the manufacturer to a corresponding
TILLST type as well as timed automaton, a term that can stepped using our timed LTS. As we show
in §5, this translation is straightforward because the manufacturer’s datasheet effectively defines a
timed automaton.

1.2.3 Mode of Use 1+ Mode of Use 2: Whole System Verification. A semantic logical relation really
comes to shine when combining both modes of use. For example, given the timed protocol as a
TILLST type, we can develop the controller of our smart home device using our refinement language
and prove it correct using our type checker (Mode of Use 1). Then, we compose our controller
with the BME680 sensor, certified to be correct by Mode of Use 2. Compositionality of the logical
relations method guarantees correctness of the entire system as a result. As we will see in §4.2,
compositionality is guaranteed by the statement of the fundamental theorem, which takes an open
well-typed term (e.g., controller), closes it with values assumed to inhabit the logical relation (e.g.,
sensor), and asserts inhabitance of the resulting closed term (e.g., sensor + controller). Because the
definition of our TSSLR does not require its inhabitants to be well-typed, the substituted values
(e.g., sensor) do not have to be well-typed, accommodating foreign code.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:6 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

Our example of a smart home device also showcases that semantic logical relations are synergistic
with other verification methods. Although we provide ourselves a proof of inhabitance of the
BMEG680 sensor in § 5, a proof of inhabitance carried out by any other method will suffice. For
example, the manufacturer could utilize the UPPAAL tool suite [Bengtsson et al. 1995] to prove
that the BME680 sensor complies with the timed automaton specified [Bosch 2024] and thus assert
its inhabitance in our TSSLR.

1.3 Summary and Contributions

In the remainder of this paper, we first give a motivating example (§2), the air quality monitoring
system, detailing its specification and introducing the reader to the protocol specification language
TILLST, contributed by this paper, as well as the implementation of the controller in a process
language. While our motivating example is an instance of a real-time and (or) embedded system,
our work can see applications beyond real-time and embedded systems; our methods and results
are not specialized to those domains. Communicating systems with timing concerns also include
web servers and email servers. For instance, the SMTP protocol [Klensin 2001] for email exchange
prescribes timeouts in addition to message format specifications.

In §3, we then develop our semantic logical relation TSSLR, featuring our timed LTS, nameless
families of configurations, computable trajectories, and algebra for computable trajectories. The two
modes of use of our logical relation are developed in §4 and §5, which contribute a refinement
type system for TILLST to facilitate Mode of Use 1 (§4.1) and proof of inhabitance of the BME680
sensor in our logical relation, showcasing Mode of Use 2 (§5). The proof of correctness of the whole
system, showcasing Mode of Use 1 + Mode of Use 2, is given in §5, as a consequence of the proof
of the fundamental theorem, given in §4.2. §6 details our Rust type checker implementation, §7
comments on related work, and §8 concludes with an outlook on future work.

Artifact and Technical Report. Our type checker for the TILLST refinement type system is available
as an associated artifact. An extended version of this paper, which includes an appendix with
formalization and proofs, is available as a technical report [Yao et al. 2024b].

2 Protocol Specification in TILLST

This section revisits the air quality monitoring system mentioned in § 1 and illustrates how to
specify the underlying protocol using timed intuitionistic linear logic session types (TILLST) and
how to implement the controller in a process language. This process language coincides with the
term language of our refinement type system, which we introduce in §4.1 and prove to inhabit our
logical relation in §4.2, for well-typed terms. § 5 completes the example by giving a representation
of the environment sensors and a proof of their inhabitance in the logical relation.

2.1 Air Quality Monitoring System

Let’s revisit the air quality monitoring system mentioned in §1 in more detail. The system has
three components: two environment sensors, x and y, connected to one central controller. Sensor x
is placed in the bedroom and y is placed in the living room. The task of the controller is to decide
in a timely manner, whether it needs to run the air-conditioner, by sending a Boolean representing
its decision. To complete the task, the controller must configure both sensors and then collect
data from them, according to the protocols dictated by the sensor specification. The controller
should report true if the temperature in either room gets too high or the air quality in the bedroom
degrades too much. The exact conditions are not important here. The aggregation of multiple data
sources to synthesize a clearer, more informative signal is known as sensor fusion [Das et al. 2012].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:7

Sensor fusion requires a controller to juggle multiple time sensitive communications, challenging
to program correctly.

The sensor is modeled against the BME680 4-in-1 environment sensor [Bosch 2024]. The BME680
sensor measures surrounding temperature, humidity, pressure, and air quality. Interaction with
the BME680 is via a hardware message-passing bus called 12C [Semiconductors 2021], and the
sensor operates as a state machine. Initially, the sensor is in a low-power stand-by state. In this
mode, the controller can send configuration messages to choose the desired measurement type.
Additionally, the sensor can be set to either report continuously and periodically (normal mode) or
to perform just one set of measurements (forced mode). After configuration, the sensor reports data
for each enabled measurement sequentially by sending corresponding messages. It then returns to
the standby state, potentially after a cooldown period.

Let’s consider how we can specify the forced mode operation of the sensor in TILLST, required by
our controller. We model two options that have very different timing requirements: (1) temperature
only and (2) temperature followed by air quality. While the sensor measures temperature effectively
instantaneously, in order to measure air quality, the sensor needs to first heat-up an internal
component before taking a measurement. The heating takes 30 ms. After that, the sensor must cool
down for 20 ms before it returns to standby. If both temperature and air quality data are requested
(option 2), heating cannot start before the temperature results are read to prevent interference
and inaccurate measurements. This means that our controller must wait an appropriate duration
between temperature and air quality measurements.

The timing constraints involved in these protocols complicates programming even with just
a singular sensor. The controller in our example, however, interleaves operations on both the
bedroom and living room sensors. In the following sections we will see how TILLST types and
processes allow us to specify and verify protocols cleanly and effectively.

2.2 Protocol Specification Language and Process Term Language

Before being in a position to specify the protocol for our example and implement the controller,
we first must acquaint ourselves with timed intuitionistic linear logic session types (TILLST) and
a suitable process language. TILLST enrich intuitionistic linear logic session types [Caires and
Pfenning 2010; Toninho 2015; Toninho et al. 2013] with temporal predicates. The syntax of TILLST
and the process language is given below. The most distinguishing feature of our language is the
superscript t.p, where t is a time variable and p serves as a predicate on t. Table 1 conveys the
protocol semantics. We first focus on the core process calculus constructs and discuss support for
the exchange of functional values in §2.2.3.

Session Types A :=1"F | A} @'F Ay | A} @' Ay | Ay &P Ay | A} —='P A,
Time Tu=t|init|T+i
Prop pu=T|LpiApelpiVpp1Ope | Ti=L | T <D
Process P,Q :=close’? |wait’x;Q | A"?(x : A1)P | app’x (P);Q | P, P P,
| splitT x;y.Q | switchL™” ;P | switchR? ;P
| case x {Q; | Qo) | of fer™ {P; | P,} | selLlTx; Q| selRTx;Q
| fwd?x | spawn’P;x.Q
2.2.1 Timed Process Term Language. Our language is a process language, where run-time processes

of the form proc[a](P) compute by communicating with each other over named channels. Each
process executes some code P called its process term. When it is clear from the context, we refer to

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:8 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

the process executing P as just the process P. Among the channels by which a process proc[a](P)
is connected to other processes, we designate one channel, a, as its offering channel. Process P
is said to provide for, or to be the provider of, its offering channel a. For all the other channels, P
assumes the role of a client. The distinction of provider and client roles of a process is the hallmark
of an intuitionistic system. It has a profound impact on the design (§4.1) and semantics (§3 and
§4.2) of the system. The separation supports a wide range of metatheoretic properties, including
and not limited to deadlock freedom (Thm. 4.7).

We begin with the process terms, denoted by P, Q. Process terms can have occurrences of
free and bound variables (denoted by x, y), for which we adopt the usual conventions to denote
binding. Variables range over names of runtime channels. Process terms can be classified into
three groups, depending on the channel they immediately operate on. Provider processes, such
as close’? and of fer’? {P; | P,}, act on the offering channel. Because the offering channel of a
process is distinguished, provider processes do not name the channel explicitly. Client processes,
such aswaitfx; Q and casel x {Q1 | Q2}, act on the channel variable x. In either case, process
terms are typically sequences, consisting of the next communication action and a continuation
process. For example, provider process switchL!? ; P (switchR"? ; P) sends message left (right)
and then continues with P. Dually, the client process case” x {Q; | Q;} receives the message over
x and continues with Q; (Qz). An overview of all process terms with description is given in Table 1.
Processes fwd” x and spawn”P ; x . Q have judgmental roles and constitute the third group. The
process fwd! x forwards any actions from and to channel x to it’s offering channel, therefore
identifying them. Process spawn’ P ; x . Q spawns P as a separate process and binds its offering
channel to x for use in the continuation Q.

In addition to specifying what actions a process should take, processes also carry timing related
information as superscripts. In this regard, providers and clients again take on distinct roles. A
provider process has a predicate ¢.p as a superscript, indicating at what time it is willing to take the
action. Here ¢ is a variable ranging over points in time (denoted T) and p is a proposition involving ¢.
The exact definition is inessential and will be clarified shortly. A predicate t.p constrains a message
exchange to only occur at times T such that the proposition p holds true for ¢ substituted with
T (i.e, {T/t}p is true). In other words, provider processes limit the message exchange to a time
window, while promising to engage in the exchange at any valid choice of time. Client processes,
on the other hand, carry a concrete choice of time T as superscripts. The chosen T is expected to
satisfy the predicate set up by the provider of the referenced channel, in addition to some other
requirements guaranteeing that time moves forward. For example, the process of fer’? {P; | P,}
offers to receive either left or right at any time satisfying p. Its client selL”x ; Q chooses to send
left at exactly time T.

2.2.2 TILLST: Protocol Specification Language. The sequences of actions that a process takes over
its offering channel constitutes its protocol. Session types (denoted by A, B) are behavioral types
that prescribes such protocols. Generally, the superscript of a session type indicates the time at
which a communication action may occur, while the connective indicates the nature of the action
itself. The connectives include sequencing and branching constructs. Sequencing is expressed by
operators ® and —o. The type A; — A; indicates that, after the receipt of a channel of type A;,
the protocol transitions to behaving as A,. Conversely, the type A; ® A, denotes the sending of a
channel of type A;. Branching is expressed by the types A; & Az and A; @ A, , offering a choice
between the sessions A; and A; and making a choice between the sessions A; and A;, resp. The
choice is conveyed by receiving and sending labels left or right, reminiscent of products and
sums in functional languages. The type 1 denotes the end state of a protocol. The connectives
come from intuitionistic linear logic, given ILLST’s foundation. Table 1 lists all connectives, with

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:9

Table 1. TILLST types and process terms.

Role Type (A) Process Term (P) Time Action Cont.
Provider 1%P close! send closing signal cls none
Ay PP Ay AMP(x: A()P accept channel, bindtox P
Acting on A ®P Ay P P Py any T spawn P; and send it I
providing Ay ®'P Ay switchL!? ;P st. {T/t}p send left P
channel AL ®'P Ay switchRiP ;P send right P
P@T:A A &P A, offer!? {P;| P} accept left or right P; or P,
14?7 waitTx;Q wait for closing signal cls Q.
Client Ay =P Ay app’x(P);Q spawn P and send it Q
A ®P Ay splitlx;y.Q fixed T receive channel, bindtoy Q
Actingon A; @'P Ay casel x{Q1 | Q2} st.{T/t}p receive left or right Q1 or Qs
chan.x: A Ay &P Ay sellTx;Q send left 0
Ay &P Ay selRTx;Q send right 0
Judgmental rules fwdeT fixed T forward x to offerring ch'annel
spawn' P;x . Q spawn P and connect to it on x

corresponding process terms. Due to the provider-client distinction, each connective has a term for
the provider and client.

The Logic and Model of Time. The language presented uses a straightforward model for time.
Every point in time is essentially an integer offset i away from one distinguished initial point in
time init. This model of time is discrete, linear, and unbounded. Points in time can be compared
for equality and satisfy less-or-equal-to relations. Propositions p include the whole quantifier-free
fragment of first order logic. This choice of logic is expressive enough for our examples and many
real-world applications.

2.2.3 Exchange of Functional Values. Our language may be easily extended to support evaluating,
sending, and receiving functional expressions. Let e be the syntactic sort of expressions in a (typed)
functional language of your choice. For the sake of simplicity, we assume e is at least terminating
and pure. Lifting those restrictions presents difficulties largely orthogonal to the development of
this paper. Let 7 be the sort of types in said language. For the sake of our sensor example, let us
assume that the language includes at least Booleans (bool) and integer numbers (int).

Functional Types 7 :z=bool | int|...

Functional Expressions e :=x | true | false|n|...
Session Types A u=---| !;'p.A | ?;’P.A
Process P :=---|produce’?e;P | consumel y;x.Q
| query’” ;x . P | supply” x(0) ; Q
We extend the session types and process terms accordingly. Sessions types ! ;’p .Aand ? ;’p LA
allow sending a functional value of type 7 and receiving a value of type 7, resp. Provider process
produce’? e ; P evaluates e to a value and then sends it over the offering channel. The message

is intended for the client process consume’ y ; x . Q, which binds the message to a variable x. Be
aware that we are overloading variable names x, y for both channel and functional variables. The

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:10 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

pair query’? ; x . P and supply” x(v) ; Q perform analogous actions, with provider/client roles
switched.

2.3 Code for the Controller

We now have the tools to prescribe the protocols for the sensor (Agmesse) and the controller (Apyp):

A t1.50 <t
Agveego = At &0 Arg

L | L2.t1 <l 13.12<13
AT Tremp 1
&\ hh1<ty t3.1o+30 ms<ts ty.13+20 ms<ty
ATG = Trem " Toas |

ty.ly=t; | 13.11+50 ms<t3 1t4.t4:t3

A t1.tp<t
Anub = AsMesse —© ' °" " Apmeeso —© ! bool

Suppose we start the protocol at time £. Notice that ¢, is free everywhere. The protocol of the
sensor starts by accepting a configuration message of either left or right, choosing between
measuring just the temperature (Ar) or both temperature and air quality ! (Arg). The message
simultaneously puts the sensor into (forced) operational mode ?. The message can happen at
anytime t; after initial time #, (¢;.tp < t1). If A7 is selected, the temperature result (a functional value
of type Ttemp) is immediately available for collection. This is conveyed by the predicate t,.t; < 5,
licensing the client to receive the functional value at any time #; in the future of #. This illustrates
an important feature of the language, we are now in a position to appreciate:

TILLST supports binding the actual time of communication for future reference.

A more precise reading of the type Aguegso is that a process may accept a left or right at any
time that follows fy, and let t; be the actual time at which the exchange occurs. This now-bound
point in time #; may be used both for specifying protocols in types, which we are seeing now, and
for choosing the time of future actions, which we will see when we examine the process term for
the controller. Wrapping up this branch, because only temperature is collected, the sensor may be
shut-down any time after the temperature is received, a point in time now-bound at #;, conveyed
by the predicate t; < t3. On the other hand, if A is selected, then the sensor temperature result
is immediately available, as before. After the temperature result is collected at f,, the subsequent
air quality result (7g,s) is only available after 30 ms, allowing enough time for the sensor to warm
up. This is expressed by t; + 30 ms < t3. Finally, after the collection of both results at time 3, the
sensor takes 20 ms to cool down before it can be closed at 4.

The controller type Ay, uses higher-order channels, which are channels whose messages are
names of other channels. At some time #; (or t;, since t; = t) after t,, the controller simultaneously
gets hold of two channels, each connected to a sensor. Upon receiving the pair of sensors, the
controller has 50 ms to compute and make available a bool response, ready for collection at t3.
Then, the controller is immediately terminated at t5 (£4 = t3).

The ability to prescribe the relative timing between actions is critical for this specification. Many
protocols, including this one, require a client to “wait” or “sleep” for a fixed or variable amount of
time between consecutive actions. Existing modeling tools and languages based on timed automata
(e.g., [Bocchi et al. 2019]) address this via imperative clock resets (as shown in §5). However, these
are not the only kinds of timing requirements. Other common requirements include the action
takes place “no-later” or “no earlier” than some other action, or that the action “leaves enough
room” for some other action. These timing requirements can be logically complicated to express

IThe BME680 datasheet [Bosch 2024] refers to the feature that measures air quality as “gas” measurement, hence the letter
“o
2We combine the configuration of measurement and mode selection, which have no timing requirements between them.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:11

indirectly via clock resets. TILLST accommodates these and introduces a rich declarative language
for timing specification, allowing for intuitive and natural timing specifications.
We turn now to the process term for the controller, using Table 1 as a guide:

) A qhbe<ti . . toty=ti (. .
P @ty :: Apjup = A7 (xx - Apmesso) A2 (Y - Asvesse) Prub
selR%x ; u; « consume® x;

sellL"y; uy « consume’ y;wait'y;

t1+30 ms tH+50 ms . .

U1 < consume x;wait X

produce’"1*%9=% NeedAC(uy, uz, v;) ; close! ="

As dictated by its protocol, the controller initializes at ¢y, then simultaneously accepts two channels
x and y, each connected to a sensor. Recall that y connects to the living room sensor, from which
we only require temperature, and x connects to the bedroom sensor, from which we require both
the temperature and air quality data. After receiving the channels, the controller interleaves actions
to the sensors. It first sends right to x, selecting both measurements and receives the temperature
results, all done at t; at which the channels where received. Instead of waiting on the subsequent
air quality results, it turns its attention to y. It configures, collects from, and then closes y. It then
reads the air quality result from x at t; + 30 ms and closes it at ¢, + 50 ms, namely 20 ms after
the previous step. Finally, it computes the bool through some defined algorithm NeedAC in the
functional language and then closes itself.

The ability of a process to interleave actions on different channels as a client, without revealing
this interleaving as part of its offering protocol, preserves abstraction and is one of the key benefits
of intuitionism. To meet timing requirements, applications need to be able to put multiple processes
in motion. If we were to modify the example to collect temperature and air quality data from both
x and y, then both sensors must be configured to warm up in parallel to meet the output deadline.
Intuitionism again helps here, as the session type only prescribes what happens over the offering
channel, processes have the freedom to re-order client actions as they see fit.

3 Semantics through Timed Semantic Session Logical Relation (TSSLR)

The heterogeneity of our target domain requires the semantics of programs, i.e., how programs
run (a.k.a., communicate), to be the front and centerpiece of the development. In this section,
we begin this exploration by looking at the dynamic semantics, which concerns the stepping of
programs through time using a timed labelled transition system. We will then distill the meaning of
session types based on their role as classifiers for program behavior through the lens of the logical
relations method. In §5, we build on this foundation to show that the implementation of the BME680
environment sensor discussed in §2 inhabits our logical relation. Thanks to semantic typing and
the use of a timed labelled transition system, these “foreign objects” can be easily accommodated by
simply extending the list of transition rules while maintaining an almost identical proof structure.

3.1 Dynamic Semantics

The dynamics describes a transition system that models computation as evolving with time in a
way that is consistent with our instant-based model of time. In this section, we will set up a timed
labeled transition system, where transitions are labeled by both the action (if any) taken and the
time at which it takes place.

At runtime, a program amounts to a configuration Q of processes, defined as:

Conf Qu=1|procla](P) | fwd[a](b) | Q1 ® Q,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:12 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

The nullary configuration is written as “1”. The runtime incarnation of a process term P is
proc[a](P), where a is the providing channel of the process. The forwarding configuration
fwd[a] (b) identifies runtime channels a and b by forwarding all messages between them. Finally,
Q1 ® Q; denotes the concurrent composition of two configurations.

As usual, structural congruence rules identify configurations up to reordering. Nullary configu-
rations may be dropped silently, and forwarding configurations may be dropped after renaming
the channels referenced accordingly. Structural congruence is set up to be a congruent equivalence
relation. Below we are showing the critical rules. For the complete set of rules see the full paper [Yao
et al. 2024b].

[C-SToP]

[C-FwD]
18Q=0Q proc[a](P) ® fwd[b](a) = proc[b](P)

[C-Comm] [C
Q=000 fwd[c](b) & fwd[b](a) = fwd[c](a)

-CTR]

Next, we define the timed labelled transition system. The judgment Q +—z—> Q' asserts that at time

T the configuration Q is ready to step to Q’ taking action a. Actions « are defined as follows:
Action a:x=c¢|a!b|a?b|a!left|a!right|a?left|a?right|a!cls|a?cls

The action ¢ is the nullary, silent > action, corresponding to an actual reduction step of the
configuration. Silent actions are usually omitted. Non-silent actions always carry a message, a
channel over which the message propagates, and a direction. The symbol “!” means send and

the symbol “?” means receive. Messages may be labels, channel names, or the closing signal. For

left
example, Q F—"", O’ means that configuration Q at time T may send the label 1eft over channel

a and become Q’.

Our transition system allows any pair of compatible processes to communicate anywhere within
the configuration. This is achieved by structural congruence in conjunction with the framing and
communication rules.

o ’ =
Qo Qs Qs Q)

T [D-FrRAME] T - [D-Comm]
Ql®Qz?Ql®Qz Ql®Qz'?Ql®Q;

The premise of rule [D-FraMmE] “frames off” the surrounding configuration Q,, allowing us to
isolate Q; for a local transition.
Two processes are compatible to communicate if they are willing to take complementary (a.k.a.,

dual) actions. Complementary actions are defined as follows, with @=a

a?left £ alleft a?right £ al!right a!left £ a?left a'!right £ a?right

tx¢ a?bzalb a'bza?b a?cls £a'cls alcls£a?cls

In [D-Comm], if a pair of processes is willing to take complementary actions, then they com-

municate and both transition. The overall step involving both processes is silent because the
communication happens “internally”.

3Commonly known as 7 transitions in the 7-calculus literature. We choose ¢ to avoid conflicting with functional types.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:13

[D-fwd] proc[a] (fwd'b) P fwd[a](b)
[D-spawn] proc[a](spawn’P;x.Q) o proc[b](P) ® proclal({b/x}Q)

D-11] proclal(wait’b; Q) = proclal (Q)

[D-&L1] procla](sell”h; Q) .ﬂ) proc[a](Q)
[D-&12] procla](selRTh: Q) ~®™, procla](Q)
Dol proclal(csse™b (01| 0) 2 proclal (1)
D-012] proclal(case” b{Q: | 02)) o proclal(Qz)
D-eL] proclal(split! bsy. Q)+ proclal({c/y}Q)

[D-— L] proc[a](app’b (P);Q) 'b% proc[a](Q) ® proc[c](P)

WrTH PREMISE {T/t}p:

[D-1] proc[a](close’?) rﬂ;i 1
[D-& 1] proc[a](offert? {P, | P,}) % proc[a]({T/t}P,)
[D-& 2] proc[a](offer’? {P, | P,}) .Tghﬂ proc[a]({T/t}P)

a'left

[D-® R1] proc[a](switchL?? ;P) r—) proc[a] ({T/t}P)

[D-® R2] proc[a](switchR"? ;P) 'T) proc[a]({T/t}P)

[D-®] proc[a](P; ®'P Py) 'a% procla] ({T/t}P,) ® proc[c]({T/t}P:1)
[D-—o] proc[a] (AP (x : A)P) % proc[a]({T,c/t,x}P)

Fig. 1. Timed labelled transitions Q 0% Q.

Fig. 1 lists the remaining timed labelled transition rules of our system. Clients can only step at a
time T, dictated by the client, or in the case of [D-fwd] and [D-spawn], specified by the process
term. All provider rules require {T/t}p, meaning that the time of interaction must satisfy the
demand imposed. The rules of Fig. 1 give our instant-based model of time computational meaning:
computation happens at an instant. Messages between processes are sent and received at exactly
the same instant. In particular, there is no notion of an in-flight message.

To describe the computation of a configuration over a period of time, silent labelled transitions
can be “chained” together, each happening at progressing times. For example, the reductions
Qr— Q- 7—> Q, — Q' take an initial configuration Q, starting at T, to a configuration Q’

n+l

at T’ such that T < T; < Tjy; < T’ for all i. This chaining is expressed by the judgment
T, Q—" T'> Q

asserting that an initial configuration Q at T computes and reaches Q’ at T’. Configurations Q and Q’
are called the initial and terminal configurations, resp. The judgment is a generalization of the usual

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:14 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

< o: D0 Op o
[G-refl] [G-stepT]
stepT%;T2 (o): T1’ Q—* 73, Q’

refl¥ B 0—* O 0

Oy, Q' —" Tz’ Q”

[G-stepC]

stepc%g' (c):Sr, 0" TZ, Q”

Fig. 2. Timed multistep reduction judgment

multistep reduction relation, which not only requires performing an instantaneous computation
step but also advancing the clock. To convey which of these steps are performed, we annotate the

judgment with proof terms o. The resulting multistep reduction judgment o : T, Q" T/, Q’

is defined in Fig. 2. These rules define both the judgment and syntax of its proof terms o. Rule [G-
stepC] steps the configuration while maintaining time and rule [G-stepT] explicitly advances the
time to some time in the future. Proof terms o syntactically represent sequences of silent transition
steps with monotonically increasing time, and are referred to simply as sequences.

The aforementioned dynamics is inherently non-deterministic. At each step, the judgment allows
the choice between progressing time or progressing the configuration. Not all such choices are
fruitful. For example, choosing to advance time from T to T’ for a configuration Q at T, will rule
out any pending silent step Q i Q’ at T, possibly resulting in a stuck configuration.

3.2 Timed Semantic Session Logical Relation

As emphasized earlier, session types prescribe and classify process behavior on their offering
channel. Given a session type A, we are interested in capturing precisely the runtime behavior
that a configuration of processes must exhibit in order to comply with the protocol prescribed
by A. For our logical relation, we thus define a family of sets L][A] @ T, indexed by session type
A, that characterizes configurations that are providers of protocol A at time T. To account for the
provider-client distinction inherent to intuitionism, we must complement this characterization
with a family of sets L*[A]] @ T, indexed by session type A, that characterizes configurations that
a client may use as prescribed by type A at time T. These two characterizations account for the
dual roles providers and clients assume with regard to timing considerations, (see §2.2.1): whereas
providers specify temporal predicates and assert availability at any valid choice of time, clients
satisfy temporal predicates and may choose a suitable valid time.

We define the sets L[A] @ T and L*[A] @ T in §3.2.2. These definitions rely on our timed
labelled transition system and multistep reductions introduced in §3.1. For the latter we find it
convenient to adopt a more global perspective and work instead with the notion of computable
trajectories, which we define precisely in §3.2.1. Trajectories (denoted by r, s) are functions from
points in time to configurations, characterizing the program execution state at each point in time.
We are especially interested in the subset of trajectories that can be realized by some sequence o.
Intuitively, o is a discrete but computable counterpart for the more convenient notion of trajectories.
Towards this end we define a relation R(r ; o) asserting r is computed by the sequence o. An
element of the relation is termed a computable trajectory, or just trajectory for short. Section §3.2.1
defines three operations on computable trajectories, a computable trajectory algebra, each shown to
respect the computability relation and shown to commute and cancel properly.

e An interleaving operator r; ® r, combines two computable trajectories into one describing
the execution of their concurrent composition.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:15

e The partitioning operators r; [T and r, 77 access the before-T and after-T component of the
trajectory, resp.

e Dually, the concatenation operator r; @ r; pieces two trajectories of connected domains
together.

3.2.1 Computable Trajectories. In the following sections, unless explicitly stated or deducible from
the context, we assume that processes, configurations, and syntactic elements of the temporal logic
are all closed.

As discussed, the execution of a program through time can be understood in terms of functions
from points in time to configurations, namely trajectories.

Definition 3.1 (Temporal intervals). A temporal interval I is either bounded or unbounded:
e Bounded) [T, L) 2{T | T < T < T}
e (Unbounded) [T,0) 2 {T" |T < T}

Definition 3.2 (Trajectories, lines, segments). A trajectory is a function I — Conf.If I is unbounded,
then it is said to be a line, otherwise it is said to be a segment. The set of trajectories over interval I
is denoted by Cj.

Not all trajectories are computational by nature. For example, take the reals as a model, the
function that sends all rational numbers to proc[a](switchL!? ; P) and irrational numbers to
proc[a](switchR"?;P) certainly does not result from our dynamics. We are interested in functions
that result from our dynamics. This motivates the following set of definitions.

Definition 3.3 (c?). c? (—) is the constant function sending I to Q;

Definition 3.4 (Ext?(r)). Function Ext?(—) extends the domain leftward to T of its argument
trajectory by sending the additional inputs to Q. Full definitions are available in the full paper [Yao
et al. 2024b)].

Definition 3.5 (Computable trajectory). Let R(r ; o) be the strongest relation satisfying:
Q .
. R(C[T’T,) ;
o R(r;stepCF? (0)) if R(r;0).
) ﬂ(EXt?(r) ; stepT%T,(0))if R(r; o).
An element (r, o) of the relation is called a computable trajectory, or just trajectory. Computable

trajectories are denoted by w. The trajectory (r, o) is more precisely called a computable line, if r is
a line, and a computable segment, if r is a segment.

refl?), where T’ may be co.

Intuitively, R(r ; o) takes a discrete description of computation over time, given by ¢, and fills in
the gaps by (1) assuming that the configuration stays unchanged until the next silent transition
step and (2) maintaining the last configuration indefinitely into the future, if the trajectory is a line.

Definition 3.6. Let w = (r, o) be a computable trajectory. The domain of w, write Dom(w), is the
domain of r. For all T € Dom(w), define w(T) £ r(T).

Definition 3.7 (S 1,,1,) (Q ; Q") and S| 7.00)(Q)). Let S; 1, 1) (Q ; Q') denote the set of computable
trajectories (r, o) such that (1) r € C[p, 1), (2) initial configuration of ¢ is Q, and (3) if r is a
segment then the terminal configuration of ¢ is Q’, otherwise formally write Q" = -. Further define
S[T00) (Q) = 5[7,00) (5).

From a computable segment we can recover a sequence (proof in the full paper [Yao et al. 2024b]):

LEMMA 3.8. IfW € S[Tl,Tz)(QI 5 Qz), theno : Tl, Ql —" Tzs Qz.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:16 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

Computable trajectories are functions with computability receipts. Therefore, it is natural to
consider and define common operations on functions for computable trajectories. The subtlety of
the operations lies in the handling of the receipts, that is the operations on trajectories must be
justified by operations on sequences. These operations on the sequences are constructive, therefore
proofs carried out with computable trajectories yield effective ways to determine schedules.

In this section, we describe the operations and the necessary properties they satisfy, for the exact
construction please refer to the full paper [Yao et al. 2024b].

Definition 3.9 (Equivalence). Trajectories wy € S, (Q;; Q) and w, € S, (Q, ; Q5) are said to be
equivalent on interval I, wy ~ wy, iff for all T € I, wi(T) = wy(T).
In particular, if I = I} = [, and w; ~ w,, write just w; ~ wy.

The equivalence relations on computable trajectories treat them as functions. We remark that
wy ~1 wy is reflexive, symmetric, and transitive by definition.
We will now define a pair of operators that are dual to each other.

Definition 3.10 (Concatenation). The concatenation operator w; @ w; concatenates trajectories
with connected domains:

c@ S 1,1 (Q15Q2) = Si1,1) (Q2 5 Q3) = Sy1y,1) (Q Q)
Concatenation of trajectories coincides with the constituents on the domain each is defined:
COROLLARY 3.11. Vw1, W2, Wi ~Dom(w,) (W1 @ W2) and wa ~pom(w,) (W1 @ wo).

Proof in the full paper [Yao et al. 2024b]. Additionally, given a trajectory and a point in its domain,
it is possible to partition the domain by this point, motivating the following pairs of operators.

Definition 3.12 (Partition). The left and right partition of w by time T s.t. T € [T, T) are:
LTS3, (@15 Q) = Sy (Q5w(T))
T S11,1) (Q15 Q) = 1) (w(T) 5 Q)
A trajectory coincides with its parts on each domain (proof in the full paper [Yao et al. 2024b]):
COROLLARY 3.13. For allw and T € Dom(w), w [T ~pom(wiry W and w 17 ~pom w17y W.
The operators are therefore dual in the following sense:
LEMMA 3.14. Forallw and T € Dom(w), w ~ (w [T) @ (w 17)

PRrOOF. Take arbitrary T’ € Dom(w). If T > T, then ((w [7) @ (w TH)(T") = (w T))(T") =
w(T"). Otherwise, ((w [T) @ (w TO)NT’) = (w |T)(T") = w(T"). O

Partitioning and concatenation both operate on the trajectory of a monolithic configuration.
The computation of a compound configuration through time consists of multiple configurations
computing through time concurrently. This motivates us to define the interleaving operator:

Definition 3.15 (Interleaving). The interleaving operator has the following signature:
® S) (Q5 Q) = Sirr) (Q23 Q) = S (U ® Q15 Q2 ® Q)

The operator is constructed such that (proof in the full paper [Yao et al. 2024b]):

COROLLARY 3.16. For all wy and wy and T, w; @ wo(T) = (wi(T)) ® (w2(T)).

As a further corollary, partitioning and concatenation distribute over interleaving.

COROLLARY 3.17. For all wy € 5;(Qy; Q) and wy € S;(Qy; Q7)) and for allT € I,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:17

o (wi®wy) [T~ (w1 1) ® (wy [T) and (wi ® wa) T ~ (w1 17) ® (wy 17).
e (wilTow, |T)@ (w1 TT@w2 17) ~ wi @ wy

Proor. Fix arbitrary T’ € I and case split between T’ > T and T’ < T, in either case proceed by
straightforward computation. O

The interleaving operator is named after the critical setup in its construction: to obtain a singular
sequence from two sequences by interleaving instantaneous steps from both sequences while
maintaining monotonic ordering in time. In other words, the computational content of the proof
constitutes an algorithm for scheduling process execution.

Computable trajectories not only facilitate a succinct definition of our logical relation, but also
greatly benefit the proof of the fundamental theorem of our logical relation.

3.2.2 Logical Relation. One difficulty presented by session-typed languages is the handling of
names. Channel names are runtime values that clients use to distinguish between providers.
Although the name of the providing channel is recorded as part of the provider’s syntax proc[a] (P),
the semantic of the provider does not, and should not, meaningfully depend on the channel name.
We introduce nameless families to semantically capture this. Nameless families are the actual
inhabitants of our logical relation.

Definition 3.18. A nameless family of configurations Q is a family of configurations differing only
in the choice of a single (root) process offering channel name. Formally that is for some fixed P and
Q, Q[a] = proc[a](P) ® Q for all indices a.

The definition can be point-wise extended to computable trajectories. When it is clear from the
context, we may speak of nameless families of trajectories and configurations by just “trajectories”
and “configurations”, resp.

Our logical relation necessitates defining an auxiliary sort A of urgent types, inspired by [Bocchi
et al. 2019]:

ﬂ::=1|A1®A2|A1—0A2|A1®A2|A1&A2

Urgent types represent a session at a client-instantiated time, right before the communication has
occurred. The definition is not recursive: the component types (if any) are regular timed session
types. We can instantiate a type A at some point in time T, rendering it urgent.

Definition 3.19 (Urgency instantiation A |p). Let A |1 be the urgent type of A instantiated at T:

1>

17 | 21
(A1 ®'7 Ay) |1 = ({T/t}A) ® ({T/t}Az)
(Ay =P A) Ip = ({T/t}A1) — ({T/t}Az)
(A1 @' Ay) I = ({T/t}A1) ®© ({T/t}A,)
(A &P Ag) |1 2 ({T/1}A1) & ({T/t}As)

1>

>

Our logical relation distinguishes itself from tradition in that it is defined for pairs (w, Q),
called temporal computability pairs, where the components are nameless families of computable
trajectories and configurations, satisfying w € S| 7.0 (2). Here Q is the initial configuration and w
is the evidence that it carries to substantiate its semantic property. Intuitively, the logical relation
classifies initial configurations by examining their proposed trajectories at various points in time
according to the types they advertise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:18 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

(W, Q) e LX[A"P] @ T iff VI'AT/t}p A (T’ 2T) = w(T') e V*[A|lp] @ T’
(W, Q) e LIAP]@T iff VI'{T/t}p = (T"2T)AwW(T') e V[Alp] @ T’

QevM™[]@T i Va.Qla] PSS,
QeVM[A &A@ T iff Va3Iw,3Q st Qla] +-“?1T—eft—> Qi [a] and (w1, Q1) € L®[A;]@ T, and
a?’right

Aw,3Q; s.t. Q[a] 'T) Q3 [a] and (wy, Q;) € LX) [Az]@ T.

Qe VP[A, 0 A]J@T iff Vaeither
1
Iw13Q s.t. Q[a] ra'lT—Eft> Q1 [a] and (wy, Q) € L) [A1]@ T, or
'righ
Jw,3Q; st. Q[a] r.“%‘l Q[a] and (wa, @2) € L*) [45]@ T.
QeV®[A @A]@T iff VadeIw w329, st. Q[d] .“TL Qi[c] ® Qs al,

(wi, Q1) € LP[A]]@ T and (w2, Q) € LF[A]@ T.
QeV[A; oA @T iff VavVwiVQq st if (w1, Q1) € L¥[A;] @ T then

Veaw,3Q; s.t. Q[a] %» Qs [a] and (wa, Q1[c] ® Q) € L[A] @ T.
Qe (V*[[Al —0 Azﬂ @ T iff VaVWl\'/Q] s.t.if <W1,Q]> € .C[[A]ﬂ @ T then
Veaw,3Q; s.t. Q[a] »“TL Qs [a] and (wa, Q1[c] ® Q2) € L*[As] @ T.

Fig. 3. Timed semantic session logical relation.

We define four (unary) relations:
(w,Q)e L*[A] @ T Interpreting latent configurations to be used with evidence w.
Qe VA @T Interpreting urgent configuration to be used.
(w,Q)e LIA]@T Interpreting latent configuration as provider with evidence w.
QeV[A]@T Interpreting urgent configuration as provider.

All four relations take the current time T as an input, indicating that meaning of a type is time-
dependent. Two latent relations classify initial configurations whose advertised services are yet to
occur, therefore they require a proposed computable trajectory from Q to justify their semantic
inhabitance. They are akin to expression interpretations in traditional logical relations. On the
other hand, the urgent relations classify configurations after a time of interaction has been picked
and fixed. They are akin to value interpretations in traditional logical relations. The logical relations
are defined inductively over A in Fig. 3.

3.2.3 Support for Functional Value Exchange. We briefly sketch modifications required to support
communicating functional values. First, actions a are enriched with a complementary pair of
actions: a ! val(v) and a ? val(v) for sending and receiving value v over a. Let e || v be a suitably
defined big-step evaluation judgment for functional expressions. The transition rules now include
transitions engendering these actions:

[D-''L] proc[a](consumel b;x.Q) '% procla]({v/x}Q)
[D-21] proclal (supply” b(o): 0) - proclal (Q) where e I o
WitH PREMISE {T/t}p:

[D-1] proc[a](produce’? v ; P) v@ proc[a](P) wheree | v
[D-2] proclal(query? ;. P) 2 procfal({o/x}P)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:19

This completes the necessary changes to the transition system. On the logical relation side, we
start by defining 57 A|; £ 1,- {T/t}Aand ?:P A|; £ 2. {T/t}A.

The logical relation is then enriched to account for the two additional session types by adding to
the V*®[-]@ T cases:

a'val(v)

Qe VM1, A)@ T 2 Va3w;30Q1.(Qa] > Qilal) A (w1, 21) € LP[A]l@T) A (v € [7])

a?val(v)
—_

Qe V™2, A)J@ T 2 Va3w;3Q1.(Qa] Qila]) AV(v € [r]) (w1, Q1) € LP[A]@ T

Here [r] denote some suitable logical relation defined for the functional language. The exact
detail of the definition depends on the language features available in the functional layer. However,
for a wide range of choices it is well studied. These definitions here says that the process must be
willing to send (receive) a functional value, and that it continues to behave according to A after the
message exchange. If the process sends then the value sent must be well-behaving. Otherwise, it
may assume that the value it received is well-behaving.

4 Automatic Verification Through Refinement Type System for TILLST

This section explores Mode of Use 1 of our logical relation, once-and-for-all verification using a
type system. To facilitate this mode, we first develop a refinement type system for TILLST (§4.1)
and then show that well-typed terms inhabit the logical relation (§4.2)

4.1 Refinement Type System for TILLST

Our refinement type system considers the process language introduced in §2.2.1 and assigns TILLST
types to them. The resulting typing rules are shown in Fig. 4 and employ the judgment

G;F|A+rP@T: A

The judgment differs from the usual judgment found in ILLST systems by its dependence on the
temporal variables in G and propositions in . It reads as “at time T, process term P provides a
session of type A, given the typing of channels in A and assuming truth of the propositions in ¥ . We
call attention to the dependencies on the temporal variable context G: the linear channel context A,
propositional context 7, the time of assertions T, and the type A are all scoped under context G.
The time T is the time at which the judgment is asserted. The validity and meaning of typing
thus depends on T. As usual, we give the typing rules in a sequent calculus, where the conclusion
denotes the protocol state before the message exchange and the premises the protocol states after
the message exchange. Therefore, the time at the conclusion must precede that of the premises.
Judgmentally, a type A? at time T internalizes a family of derivations indexed by time instances
t > T such that p is true. This is enforced in the right rules by asserting the premises at time
variable ¢ along with the premise p + T < t. Use of the type A"?, on the other hand, is required to
occur at some concrete time T’ that is accessible from “now” and satisfies the predicate p. This is
enforced in the left rules by typing the premises at a fixed future T’ (T < T’) satisfying p(T).
Since right rules bind the time of communication ¢ for typing the providing process’ continuation,
premises of right rules extend G with the variable t and ¥ with the proposition p, allowing temporal
predicates of future interactions to refer to the times of past interactions. Left rules, on the other
hand, update the type of the channel variable interacted with for the continuation, substituting 7’
for t in A.
TILLST adopts a global notion of time, in the sense that time expressions reference points in
time that are commonly known and agreed upon. In particular, a closed time expression means
the same for all processes. Furthermore, time passes at the same pace for every process. When a

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:20 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

[CuT]
G;FIMrP@T:=A
[FWD] G;T|Az,x:A,I—Q@T::C
G:FrA<A @T G FrAxA @T
G:iFlx:Ar fud’x@T = A’ G;:F|ALAykspawn’Pix.Q@T:C
[1R] [1L]
G.t;Fp(t)rT <t G;FIArQ@T =C G;FrT<T G;Fr+p(T)
G;F|0rclose’ @T ::11P g;'}“-lA,x:lt'pl—waitr,x;Q@T::C
[®R]
G.t;Fop(t) | AM+rPL@t A [®L]
G.t;F,p(t) |[Ag - P @t Ay G;F|Ax:{T[t}ALy : {T' /t}A2r Q@T = C
Gt Fp(t)rT<t G:FrT<T G;Frp(T)
G;F| A AP @"PP,@T A P A,y G F|Ax:A &P A+ splitT x;y.0@T = C
[~ L]
[~ R] G;FIMrP@T = {T'[t}A
G.t;Fp(t) | Ax:Air P, @t Ay G;FlAyx:{T/t}A;r Q@T ::C
G t;Fpt)rT<t G;FrT<T G;Frp(T)
G FIArAP(x: AP, @T = Ay —='P A, G F AL Agx: Ay —OI‘PAgi-appT,x(P);Q@T::C
[®R1] [R2]

G.t;Fp(t) |ArP@¢t A G t;Fp(t) |ArP@t: A
G.t;Fp(t)r T<t G.t;Fpt)r T <t
G:F|Arswitchl'P;P@T A &' A G;F|Ar switchRIP;P@T :: A ' A,

[® L] [&R]
G FIAx AT [t} A+ Q1 @T = C G.t; Fop(t) |[AFPL@t A
G:FIAx: AT [t}A2+ Q; @T == C Gt Fip(t) [Ar P @t Ay
G;FrT<T G;Frp(T) Gt Fp(t)FT <t
G F|Ax:A &P Ayr caseT x {01 | 02} @T = C G:F|Ar offer’? (P, | P} @T :: Ay &P Ay
[& L1] [& L2]
G FIANx:{T/t} A1+ Q@T ::C G FIANx:{T/t}A2+ Q@T ::C
G;FrT<T G;F+pT) G;FrT<T G;FrpT)
G F|Ax: A &P Ay rsellTx;0@T=C G:F|Ax:A &P AyrselRT x;0@T=C

Fig. 4. Process term typing rules of TILLST.

process advances time to communicate over some channel x in A, the same amount of time passes
for the remaining channels in A. To see this consider the two types:

A A X _Otl.toﬁt15t0+15 (X ®t2.f2=t1+10 C), B L X _Ot1.t()St1Sf(]+10 (X ®t2.t2:t1+10 C)

Both A and B accept a process of some generic type X, work on it, and then return it after 10 units
of time, counting from reception of X. The difference is that B needs it within 10 units of time from
now, but A can wait a bit longer. Suppose we are programming a client P:

G:;F |x:Ay:Bz:X+rP@t=D.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:21

Process P must send the process z : X to x and y in some order. Here are four possible implementa-
tions P; where i = {1, 2, 3,4}:

Py 2 app”x (fwd(z)); split®x;z. app™¥y (fwd(z));split®*®y;z.---

P, £ app™®y (fwd(z)) ; split® 3 y; z . app™*x (fwd(z)) ; split"*® x;z.---
Ps 2 app”™x (fwd(z)) ; split®® x; z. app* Py (fwd(z)) ; split®*®y;z. .-
Py £ app™*Sy (fwd(z)) ; split®Cy; z . app™*®x (fwd(z));split"*® x;z.---

P; and P, will type-check while P; and P4 will not. Process P; immediately sends z to x, and
sends z again immediately to y once it receives z back. It barely makes the deadline imposed by
y in the second send. Process Ps, in contrast to Py, waits 3 units of time in the first send, causing
it to miss the deadline in the second send. Process P, switches the order between x and y, giving
it a bit of slack. It chooses to wait for 3 units for the first send and an additional 2 units for the
second send. Process Py, in contrast to P,, waits 6 units for the first send, causing the second send
to miss the deadline. In all cases, as a process P; spends time with either participant x or y, time
also progresses for the other participant, reducing the window-of-communication.

The above example provides a context for us to discuss an important asymmetry between types
as antecedents versus succedents. When an antecedent x : A’? moves from T to a future T’, part of
the internalized derivations at T, specifically those between T and T’, are no longer internalizable
at this new time T, as connectives only internalize derivations concerning the future. At the same
time the client loses access to these derivations because time progresses equally for both parties.
For antecedents, we impose semantic requirements only for the reachable times; for succedents,
we require all times under quantification to be reachable and well-behaving.

As a consequence of this asymmetry, the identity rule [Fwp] and the cut-rule [CuT] both carry
an extra premise. The definitions are available in Fig. 5.

The premise A~ A’ @ T (termed forward-retyping) in [Fwp] picks out the part of A that remains
reachable at T and rewrites the type accordingly to A’. Its effect is to ensure that a forward does not
happen “too late”, i.e, that the process providing along x must be available at least for the entire
period that the forwarding process promises to be available to its client. Without it the system
would be unsound. To see what goes wrong otherwise, consider the following process:

<t< <t< . <t<
X : lt'to_t—t°+5,y . lt.to_t_to+5 - waltt°+2x : fwdt°+2y @ to = lt.to_t_to+5

The process starts at t, and waits until y + 2 to close x, then it starts forwarding y. Itself advertises
to be available t, < t < #, + 5 along its providing channel, which includes t, + 1. At this time,
however, it will not be available as it is waiting to communicate with x. This is a soundness problem
pertaining specifically to [Fwp].

A dual problem of completeness arises in the [CuT] rule. The premise A x A’ @ T (termed
cut-retyping) in [CuT] allows the cut as long as the reachable parts of A’ at T are covered by A,
effectively allowing A to be cut against an A” with a broader quantification. To see why it is useful,

let us consider another example. Suppose at time #; + 2 we have a provider P and client Q satisfying:
AMFP@to+2:100%250 Ay 5 10t L O @ tg+2:C

Process Q expects to be able to close x at any time following #,, and P is a process that can be closed
at any time after ¢, + 2. However, since the typing is derived at #; + 2, the earliest possible time that
Q can communicate through x is the current time #; + 2. Therefore, this cut should be permitted,
despite the fact that the types provided and used are syntactically different.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:22 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

G.t;F.qrp G.t;F,.qFp G.t;F,qrT<t
Gt;F,qrT<t G.t;F,qr AixA, @t
Gt;Fr1?>x1"@T G:F A &P Ay =B & 1B, @T
G.t;F.qrp Gt;F.qrT<t G.t;F.qrp G.t;F,qrT<t
G.t;F.qr A=A @t Gt F.qr A=A @t
Q;TI—Al @t'pAZNBl @t'qu@T Q;?”FAl ®t'pAz><B1 ®t'qB2@T
G.t;F.qFp G t;F.qrT<t
G.t;F.qr A=A @t G.t;F. T<tqrp
g;f(‘:"Al—Ot'pAszl—Ot'qu@T Q;Tl-lt'[’lxlt‘q@T
G t;F, T<tqrp G, t;F,T<tqrp
Gt;F, T<tqrAxA @t Gt;FT<tqrAxA @t
G FrA &P A, xB &1B,@T G :FrA oPA~xB o9B,@T
G.t;F,T<tqrp G.t;F, T<tqrp
G ;T T<tqrAix<A@t G.t;F.T<tqrAxA @t
G FrA ®?AxB &1B,@T G;FrA —o'?AxB ©-"1B,@T

Fig. 5. Retyping rules of TILLST.

4.2 Fundamental Theorem

To prove that all process terms with valid derivations using the rules in Fig. 4 inhabit our TSSLR,
and thus are timely, we prove the fundamental theorem of the logical relation. The theorem is stated
for open terms, allowing our program to be composed with other objects, as long as they inhabit
the logical relation. We first introduce auxiliary definitions to account for open process terms, then
state the fundamental theorem. Because process terms contain both free channel variables and
temporal variables, both contexts need to be accounted for.

Definition 4.1 (6 € L*[A] @ T). A sub-forest for context A is a map & from A to temporal
computability pairs. We say § € L*[A] @ T iff forall (x: A) € A, 6, € L*[A] @ T

Definition 4.2 (A > P @ T :: A). A (runtime) channel substitution for A is a map y from A to
channel names. Wesay A > P @ T :: Aiff forall 6 € L*[A] @ T and for all substitutions y, 3w s.t.
(W, (Q)ep Qcly(x)]) ® proc[-](7(P))) € L[A] @ T, where Qy is initial configuration of .

Definition 43 (G ;¥ | A > P@T :: A). Let ¢ be any assignment of time variables t € G
such that ¢ satisfies 7. Let ¢ be the substitution function induced by the assignment. Then
¢(8) > ¢(P) @ ¢(T) :: p(A)

THEOREM 4.4 (FTLR). If G;F |ArP@T :AthenG;F |A>P@T :: A

Proof in the full paper [Yao et al. 2024b]. Additionally, the usual forward and backward closure
property is now generalized to account for the passage of time. For the forward direction, given
(w,Q) € L*[A] @ T, the right partition of the computable trajectories at any future time T’
inhabits the same type at T’. Dually, for the backwards direction, inhabitance in the type is preserved
for any past time as long as there is a way to extend the trajectories to that past time.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:23

LEMMA 4.5 (FORWARD AND BACKWARD CLOSURE). (Proof in the full paper [Yao et al. 2024b])
o If(w,Q) € L*[A] @ T thenVT' (T' > T) = (w1l ,w(T") e L*[A] @ T’
o Ile S S[T',T)(Ql ;Qz) and <W2,Qg> € .E[[A]] @ T, then ((W] @ Wz),Ql> € .L[[A]] @ T'.

Semantically, the retyping relations A< B @ T and A< B @ T allow us to translate between
L*[-] @ T and L]-] @ T, captured in the following two lemmas:

LEMMA 4.6 (SEMANTIC RETYPING). (Proof of its generalization in the full paper [Yao et al. 2024b])

o If(w,Q) e L*[A] @ T and A<B @ T then{(w,Q) € L[B] @ T.
o If(w,Q)e LIA] @ T and A< B @ T then {w,Q) € L*[B] @ T.

The proofs of Lem. 4.5 and Lem. 4.6 greatly benefit from the abstractions afforded by computable
trajectories and are essentially carried out by equational reasoning in terms of the trajectory algebra.

As an immediate result of Thm. 4.4, we can prove the following adequacy theorem for closed
terms of type 1'#:

THEOREM 4.7 (ADEQUACY). IfP @ init :: 154710 thep
alcls

do.o: init, proc[a](P) —" initm, Q, and for some Q s.t. Q ——— 1,

init+n

Proor. By the fundamental theorem (Thm. 4.4) we have 0 > P @ T :: A because temporal
context is empty. There exists w s.t. (w, Q) € L[12=1M"] @ init. where Q = proc[-](P).

alcls

Let T £ init + n. Therefore, w(T) € V[1] @ T. That is for any a, w(T)[a] = 1. Obtain the
desired sequence by additionally consulting w[a] |Te Siinitinit+n) (procla] (P) ; w(T)). |

Because silent transitions can only occur at a time satisfying their respective predicate as imposed
by the process term, existence of a sequence o suffices to ensure that no process missed its “deadline”
during the computation. In particular, Thm. 4.7 entails deadlock-freedom as well as termination for
the process term P in question.

Support for Functional Value Exchange. We briefly sketch the necessary changes to support
functional value exchange. For the type system, we will introduce another context I' containing
assumptions of form x : 7, asserting x holds a functional value of type 7. The context T is struc-
tural, and assumptions within may be contracted and weakened at will. This modification will be
propagated throughout the system. On the fundamental theorem side, Def. 4.3 will be modified to
include substitutions for functional variables. This change propagates throughout the proofs.

5 Whole System Manual Verification: TSSLR In Action

In this section, we will once more revisit the smart home example introduced in §1 and §2.1. We
start by reviewing our progress so far: In § 2, we distilled TILLST types representing the protocols
of the sensor (Agyesse) and controller (Ayy,) and provided a process implementation (Pyyp,). With
the rules in §4.1, we can easily check (e.g., using our type checker in §6) that our implementation
inhabits the proposed type (Puyp @ to :: Anup). By the fundamental theorem (Thm. 4.4), proved in
§4.2, we conclude that Py, adheres to the protocol prescribed by Ayyp. That is:

to;+ |+ > Py @ to :: Anup

This is where we are right now.

However, clients of the hub device would appreciate an end-to-end whole system guarantee:
when the controller is connected to the sensors, the entire, heterogeneous system will still behave
according to the protocol. Concretely, suppose that we have protocol-adhering sensors connected

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:24 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

on channels a and b, represented by some configuration Q, and Q;. We would like to ensure that
the configuration

Qo £ Q,®Qp ®proc[—](spawn’ Py, ; x . app’ x (fwd’ a) ; app” x (fwd’b) ; fwd” x)

| 13.T+50 ms<t3 1t4

ool 4=t Formally, that is:

Fw.(w, Qo) € L[IH0mssh qltish] @ T

The goal of this section is to provide such a whole-system guarantee.

Our immediate obstacle is that we do not have a representation for these sensors. The sensors
are unlikely to be programmed in the process language proposed in §2.2.1. Additionally, we do
not have, and will not have, access to the code inside the sensors. On top of this, the origins of
the timing requirements are often non-computational (e.g., warming up an internal component),
therefore it is likely infeasible to model the sensor using terms in our calculus.

What we are given is an operational manual (datasheet) for the sensor. These documents often
model the operation of the sensor as a state machine, either directly with a figure or indirectly
with textual descriptions. In the case where timing is relevant, state machines can be enriched
with timing information, resulting in Timed Automata [Alur and Dill 1994]. Fig. 6 shows the state
machine that we extracted from the BME680 specification [Bosch 2024].

adheres to the type

t > 20, ?cls

t > 30, !val(vgas), t

Fig. 6. BME680 Sensor specified using Timed Automaton

We provide a quick introduction on timed automata. Timed automaton come with a sequence of
named timers, termed clocks. The initial reading of the clock is always zero. As one steps through
the states, the clocks constantly tick up. Here, we just have one clock ¢. Transitions in a timed
automaton have three parts: a clock condition, an action, and a set of clocks to “reset”. For example,

for the transition S, ——————— Ss, the condition ¢ > 30 specifies that the transition is only
t>30,!val (vgas)t

enabled if the clock reads above or equal to 30; the action of this transition is to send a functional
value for air quality; finally clock ¢ is reset (becomes zero) after taking this transition. If the condition
part of the transition is missing, then the transition is always enabled. If clock resets are omitted,
then no clock will be reset. For this transition, because the previous transition from S; to S4 resets
the clock ¢, this effectively means that this transition must wait for 30 ms. As one can see, this style
of modeling is imperative in the treatment of time. Clocks in this setting can be viewed as shared
variables, incremented and accessed periodically and concurrently with the executing process.

We can faithfully represent this automaton in our system by making slight adjustments. First, we
enrich our configuration syntax with a new process form sensor(a;S;[T]), representing an instance
of the automaton that is currently at state S; and entered S; at time T. This induces other necessary,
but inessential changes to structural congruence. The definition of nameless configurations also
needs to be extended to include this new process form. To represent the transitions, we introduce
the new transition rules in Fig. 7. Each transition corresponds to exactly one rule.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:25

[So-L] T<T / sensor(a;Sy[T]) ﬁ%ﬁe sensor(a;S[Ti])
origh
[Ss—R] T<T / sensor(a;S[T]) 'ar;_gt) sensor(a;S,[T1])
1
?val(vtemp)
[S1] T<Ti v:Ttemp / sensor(a;S{[T]) lm%) sensor(a;S;[Ti])
1
[S3] T<T / sensor(a;S;[T]) yels, 1
1
!val (0temp)
[S;] T<Ti 0:Ttemp / sensor(a;S;[T]) n% sensor(a;S4[Ti])
1
Ival (vgas)
[S4] T+30<T; v:T5s /[sensor(a;S;[T]) rivaTvg—% sensor(a;Ss[T1])
1
[Ss] T+20<T, / sensor(a;Ss[T]) yels, 1

1

Fig. 7. Rules for representing BME680 sensor

The remainder of the argument goes as follows:
(1) Show that the sensor(—;Sy[T]) can be semantically assigned the type Agmesseo-

3w s.t. (w, sensor(—;S[T])) € L[Apvesse] @ T
(2) Observe that by typing rules (recall that temporal context is empty, both x, y has type Apmesso):

...+ spawn! Py ;2. app’ z (Fwd”x) ; app’ z (fwdTy) ; fwd’z @ T =: !EO'Q'SO ms<ts qtate=ts

(3) Appeal to the result of Thm. 4.4 with channel substitution [x — a,y — b] and subforest
[x + sensor(a;Sy[T]),y +> sensor(b;Sy[T])] and conclude what we want to show.

The challenges of the proof concentrate in the first step. Towards it, we provide the following
proof sketch. The idea is that we build up our proof by consecutively analyzing each state, by

proving the following sub-goals in order:
(1) 3w s.t. (w, sensor(—:S5[T])) € L[14T*0<t] @ T
) 3w s.t. (w, sensor(—;8,[T])) € L1056 quti2ost] @ T

) dw s.t. (w, sensor(—;5;[T])) € £H!Z‘jf”. !;z;tszwosg. Ll L3 20mS<t] @ T

(2
(3
(4) 3w s.t. (w, sensor(—;S3[T])) € L[15T=] @ T
(5) 3w s.t. (w, sensor(—:5;[T])) € L[1 215t 1B-0s6] @ T

TTemp
These goals analyze the automaton in reverse topological order, each building up from before.
In each case, the proof mostly constitutes unfolding definitions and making observations. Two
exemplary proof cases can be found in the full paper [Yao et al. 2024b].

6 Rust Implementation
We implemented our refinement type system for TILLST as a DSL for Rust, whose syntax can be
found in the full paper [Yao et al. 2024b]. Our implementation includes a type checker, but no
code generation. We chose Rust for its strong support for systems applications in both language
design and tooling, witnessed by several prior session type encodings [Chen et al. 2022; Jespersen
et al. 2015]. While those encodings remain within the Rust type system, we opted for a DSL
to support temporal predicates. Fig. 8 shows the DSL type of sensor hub from § 1.2.2. Macro
Irtsm{...} delimits DSL blocks that the Rust compiler passes to our parser and type checker.

Types generally take the form of TyOp < t where p, ...>, where TyOp is the name of the

type operator, t where p represents predicate t.p, and the remaining arguments are continuation

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:26 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

session types. Type operators ExChoice, Lolli, Produce and Unit, stands for @, —o, !, and 1
resp. We apply the typing rules from §4.1 in a syntax-directed traversal of the process and use Rust
for the functional layer.

I'rtsm { type BME680 = ExChoice <t1 where Geq<tl, te>, TEMP, TEMP_AIR>
type HUB = Lolli <t1 where Leq<te, t1>, BME680,
Lolli <t2 where Eq<t2, t1>, BME680,
Produce <sort_bool, t3 where Leq<Shift<tl, 50>, t3>,
Unit <t4 where Eq<t4, t3>>>>> L)

Fig. 8. The sensor hub type in the TILLST Rust DSL

The challenge in implementing TILLST is the temporal judgment G ; ¥ + p. In the full paper [Yao
et al. 2024b] we establish an encoding of our temporal predicates into FOL. Our implementation
uses this to generate queries to an SMT solver. We encode the temporal model via sorts for
times and durations with assertions of the axioms. On the provider side, we check the judgment
G.t;F,p(t) v T <t to ensure the provider is not too late. On the client side, we must check two
judgments. First, we examine if the client communicates at the right time: G;# + T < T’. Then, we
ensure the communication can go forward in time: G ; F + p(T’). We thus encode G ; F + p as the
question: is there an assignment of temporal variables in which ¥ and not p? An unsat result is then
interpreted as validating the judgment, otherwise a type error is generated. For each judgment, the
type checker writes out a query in the solver-agnostic SMT-LIB2 format and invokes the solver
with a timeout. This yields a sound decision, but one that may be incomplete.

In practice cvc5[Barbosa et al. 2022], our choice of SMT solver, is capable of answering the
queries needed to type check the range of examples we have implemented. Examples include the
keyless entry protocol on modern automobiles [Wouters et al. 2019] and a radar collision detector
for airplane traffic control [Kalibera et al. 2009]. These examples, including the running smart home
example, can be found in the full paper [Yao et al. 2024b].

7 Related Work

Logical Relations for Session Types. Prior work on logical relations for session types is relatively
young, starting out with unary logical relations for proving termination [DeYoung et al. 2020;
Pérez et al. 2012, 2014] and then tackling binary logical relations for proving parametricity [Caires
et al. 2013] and noninterference [Balzer et al. 2023; Derakhshan et al. 2021, 2024; van den Heuvel
et al. 2024]. Except for the work by van den Heuvel et al. [2024], which targets cyclic process
networks based on classical linear logic session types, all the remaining logical relations are
developed for intuitionistic linear logic session types, like ours. Our logical relation is most closely
related to the unary logical relations for termination; TSSLR asserts not only termination, and
thus deadlock freedom, but also timeliness. In contrast to any existing logical relations for session
types, TSSLR does not require its inhabitants to be syntactically well-typed. As result, our work
facilitates semantic typing and enables both once-and-for-all verification, given a type system, and
per-instance verification of foreign code; both modes are indispensable in our target domain.

Being entirely semantic, our logical relation builds on the foundations laid by Constable et al.
[1986]; Martin-Lof [1982]; Timany et al. [2024], brought to scale in the context of the Iris framework
[Jung et al. 2018b]. Iris has fueled a multitude of verification efforts, contributing Iris-based program
logics targeting per-instance verification of functional program correctness. In this context, we
highlight RustBelt by Jung et al. [2018a], which combines both modes of use of logical relations to
prove the Rust core language and selected libraries memory safe and race free.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:27

Intuitionistic Metric Temporal Logic (IMTL). Our refinement type system for TILLST is related to
work by de Sa et al. [2023] on Intuitionistic Metric Temporal Logic (IMTL), an intuitionistic account
of Metric Temporal Logic (MTL) [Koymans 1990; Ouaknine and Worrell 2005]. Metric Temporal
Logic (MTL) [Koymans 1990; Ouaknine and Worrell 2005] extends linear temporal logic (LTL)
[Pnueli 1977] with temporal intervals. Rather than interpreting propositions over models, as is done
in prior work on MTL, de Sa et al. view temporal logic through the lens of the propositions-as-types
paradigm, focusing on how propositions are proved. A similar endeavor has been undertaken prior
by Kojima and Igarashi [2011], albeit for linear temporal logic (LTL) [Pnueli 1977] and a reduced
set of temporal modalities. The technical contributions by de S4 et al. comprise a syntactic proof of
cut elimination, entailing not only consistency of the logic, but also temporal causality (“future
events cannot affect the present”) and temporal monotonicity (“a proof can never move backwards
in time”). Similarly to TILLST, the authors assume an instant-based model of time, witnessed by
the fact that cut reductions happen at the judgmental present time. However, IMTL was conceived
as a logic, with cut reductions as the primary notion of computation. Our refinement type system
for TILLST, in contrast, relies on an actual execution dynamics, which really infuses meaning to an
instant-based model of time. Our dynamics is also fundamental to our semantic typing approach,
allowing us to show inhabitance of terms with or without a typing derivation.

Temporal Session Types. Our refinement type system for TILLST is also more distantly related to
extension of Honda-style session type systems, both binary [Honda 1993; Honda et al. 1998] and
multiparty [Honda et al. 2008], to support timing constraints. Adding the notion of a delay, they
connect session types to communicating timed automata [Alur and Dill 1994; Bengtsson et al. 1995;
Krcél and Yi 2006; Lampka et al. 2009].

In the multiparty session types setting, Bocchi et al. [2014] and Bartoletti et al. [2017] consider
temporal guards on communications. These systems assume access only to local clocks and a fixed
view of durations as rational numbers. Our type system is defined with respect to a single global
clock abstracted over a model of time. Temporal predicates may reference the time of any prior
event in the protocol. This matches our domain, where IoT and wireless device hardware maintains
synchronized clocks with known bounds on drift, e.g., [Bluetooth SIG 2023]. Work by Neykova
et al. [2017] uses a corresponding extension of the Scribble protocol description language [Honda
et al. 2011] to build runtime monitoring of protocol adherence. Multiparty reactive sessions (MRS)
by Cano et al. [2019] take a global view of time as discretized instants. This synchronous reactive
programming model of time has found applications to embedded systems problems via languages
such as Esterel [Berry 1999; Berry and Gonthier 1992] and Lustre [Halbwachs et al. 1991]. MRS
connects logical instants to the external world via reaction to events. This means constraints cannot
be directly specified using physical notions of time. Work by Brun and Dardha [2023] uses the
concept of timeouts to model message delivery failure, but similarly leaves correspondence between
timeout and physical time intentionally unspecified.

Bocchi et al. [2019] extend temporal guards to asynchronous binary session types. This too gives
access only to local views of time. The choice of asynchrony also leads to a subtyping relation
that is covariant on output and contravariant on input times. In a synchronous system, the time
both participants communicate must coincide. Safely substituting types in our synchronous system
requires retyping relations, which distinguish the client and provider roles. For systems applications
such as in §2, the distinction of which side may be more permissive is critical to correctness.

Rate-based session types (RBST) [Iraci et al. 2023] introduces a periodic construct to binary
session types that specifies parts of the protocol repeat at a fixed interval. Timing in this system is
attached only to control flow, with no association to specific communications. This is insufficient
to express narrower constraints on specific events, such as the exchange in §2. TILLST is also able

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

59:28 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

to express dynamic change to the connectivity in protocols, i.e. spawning of new processes, and
supports higher-order channels. It does this while still maintaining desirable properties of ILLST,
such as deadlock freedom, which RBST lacks.

Verification and Modeling of Embedded, Control, or Hybrid Systems. Generally, when it comes
to verification of computational systems, approaches can be broadly divided into external and
internal/integrated methods. External methods employed by tools such as UPPAAL [Bengtsson
et al. 1995] separate the implementation of the system from the modeling, specification, and proof.
The modeling may be approached by timed-automata, and the logic for specification can be a
domain specific logic such as (Differential) Dynamic Logic [Harel 1979; Platzer 2008]. Our type
theoretic method offers a different, internal and integrated approach, where the implementation
and the verification conditions are designed, expressed, and proved in unison in a singular language.
Concretely, through logical relations, type checking serves the role of program verification. Our
methods enjoy compositionality and support higher-order features (e.g., sending channel names).

While our approach is internal, the technical development supplements and embraces external
methods; it is synergistic with external verification methods thanks to the use of a logical relation.
As the example in §5 demonstrates, the modeling of the sensor and the proof of the verification
conditions as dictated by the logical relation can be approached with any number of external
verification methods. Therefore, our approach takes an inclusive and constructive stance when it
comes to existing verification works.

8 Conclusions

This paper contributes a compositional framework to enable the verification of timed message-
passing systems, such as IoT applications and real-time systems. The framework consist of a (a)
language to specify timed protocols, TILLST, rooted in intuitionistic linear logic session types, a
(b) timed labelled transition system to characterize how programs run, and a (c) logical relation,
TSSLR, to prove programs compliant with their specifications. To cater to the heterogeneity of its
application domain, the paper adopts a semantic typing approach, freeing programs to be proved
correct from any well-typedness constraint. As a result, the TSSLR can be used in two modes:
once-and-for-all verification, given a type system, and per-instance verification of foreign code.
The paper illustrates both modes based on the example of an IoT application, using a prototype
implementation for the type-based verification.

There exist various avenues to be explored as part of future work. Most immediate is support of
recursive behavior in terms of coinductive types, which have been shown to integrate smoothly
with a Curry-Howard interpretation of linear session types [Derakhshan and Pfenning 2022; Lindley
and Morris 2016], yet must be given a semantic typing interpretation. Another interesting future
research direction is to integrate the framework with a cost model to bound the execution time
of internal computation. Existing work [Das et al. 2018a,b] in the context of intuitionistic linear
session types may serve as a valuable starting point, but again, will have to be endowed with a
semantic typing interpretation.

Data-Availability Statement
Code and examples in §6 are available in the accompanied artifact [Yao et al. 2024a].
Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No.
(2211996 and 2211997) and upon work supported by the Air Force Office of Scientific Research under
award number FA9550-21-1-0385 (Tristan Nguyen, program manager). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation or the U.S. Department of Defense.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

Semantic Logical Relations for Timed Message-Passing Protocols 59:29

References

Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoretical Computer Science 126, 2 (1994), 183-235.
https://doi.org/10.1016/0304-3975(94)90010-8

Stephanie Balzer, Farzaneh Derakhshan, Robert Harper, and Yue Yao. 2023. Logical Relations for Session-Typed Concurrency.
CoRR abs/2309.00192 (2023). https://doi.org/10.48550/ARXIV.2309.00192 arXiv:2309.00192

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415-442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Massimo Bartoletti, Tiziana Cimoli, and Maurizio Murgia. 2017. Timed Session Types. Logical Methods in Computer Science
13,4 (2017), 1-47. https://doi.org/10.23638/LMCS-13(4:25)2017

Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 1995. UPPAAL - a Tool Suite for
Automatic Verification of Real-Time Systems. In DIMACS/SYCON Workshop on Verification and Control of Hybrid Systems
(Lecture Notes in Computer Science, Vol. 1066), Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag (Eds.). Springer,
232-243. https://doi.org/10.1007/BFB0020949

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-Indexing and Compiler Correctness. In 14th ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM, 97-108. https://doi.org/10.1145/1596550.1596567

Gérard Berry. 1999. The Constructive Semantics of Pure Esterel. Technical Report. Ecole des Mines de Paris and INRIA.

Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous Programming Language: Design, Semantics, Implemen-
tation. Science of Computer Programming 19, 2 (1992), 87-152. https://doi.org/10.1016/0167-6423(92)90005-V

Bluetooth SIG 2023. Bluetooth Core Specification. Bluetooth SIG. 5.4.

Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2019. Asynchronous Timed Session
Types - From Duality to Time-Sensitive Processes. In 28th European Symposium on Programming (ESOP) (Lecture Notes in
Computer Science, Vol. 11423). Springer, 583-610. https://doi.org/10.1007/978-3-030-17184-1_21

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014. Timed Multiparty Session Types. In 25th International Conference
on Concurrency Theory (CONCUR) (Lecture Notes in Computer Science, Vol. 8704). Springer, 419-434. https://doi.org/10.
1007/978-3-662-44584-6_29

Bosch. 2024. Gas Sensor BME680. https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme680/.

Matthew Alan Le Brun and Ornela Dardha. 2023. MAGu: Types for Failure-Prone Communication. In 32nd European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 13990). Springer, 363-391. https://doi.org/10.
1007/978-3-031-30044-8_14

Luis Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral Polymorphism and Parametricity in
Session-Based Communication. In 22nd European Symposium on Programming (ESOP) (Lecture Notes in Computer Science,
Vol. 7792). Springer, 330-349. https://doi.org/10.1007/978-3-642-37036-6_19

Luis Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In 21th International Conference
onf Concurrency Theory (CONCUR) (Lecture Notes in Computer Science, Vol. 6269). Springer, 222-236. https://doi.org/10.
1007/978-3-642-15375-4_16

Mauricio Cano, Ilaria Castellani, Cinzia Di Giusto, and Jorge A. Pérez. 2019. Multiparty Reactive Sessions. Technical Report
9270. INRIA.

Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite: A Judgmental Embedding of Session Types in Rust. In
36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
22:1-22:28. https://doi.org/10.4230/LIPIcs. ECOOP.2022.22

Adam Chlipala. 2007. A Certified Type-Preserving Compiler from Lambda Calculus to Assembly Language. In 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 54-65. https://doi.org/10.1145/
1250734.1250742

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, Robert Harper, Douglas J. Howe, Todd B.
Knoblock, Nax Paul Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. 1986. Implementing Mathematics
with the Nuprl Proof Development System. Prentice Hall. http://dl.acm.org/citation.cfm?id=10510

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018a. Parallel Complexity Analysis with Temporal Session Types.
Proceedings of the ACM on Programming Languages 2, ICFP (2018), 91:1-91:30. https://doi.org/10.1145/3236786

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018b. Work Analysis with Resource-Aware Session Types. In 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). ACM, 305-314. https://doi.org/10.1145/3209108.3209146

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.48550/ARXIV.2309.00192
https://arxiv.org/abs/2309.00192
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.23638/LMCS-13(4:25)2017
https://doi.org/10.1007/BFB0020949
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1007/978-3-662-44584-6_29
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.1145/1250734.1250742
https://doi.org/10.1145/1250734.1250742
http://dl.acm.org/citation.cfm?id=10510
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3209108.3209146

59:30 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

Siddharth Sankar Das, Nabajit Deka, Nishant Sinha, Sourav Dhar, Dipanjan Bhattacharjee, and Shantanu Gupta. 2012.
Environmental monitoring using sensor data fusion. In 2012 International Conference on Radar, Communication and
Computing (ICRCC). 83-86. https://doi.org/10.1109/ICRCC.2012.6450552

Luiz de Sa, Bernardo Toninho, and Frank Pfenning. 2023. Intuitionistic Metric Temporal Logic. In International Symposium
on Principles and Practice of Declarative Programming (PPDP). ACM, 9:1-9:13. https://doi.org/10.1145/3610612.3610621

Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. 2021. Session Logical Relations for Noninterference. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1-14. https://doi.org/10.1109/
LICS52264.2021.9470654

Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao. 2024. Regrading Policies for Flexible Information Flow Control in
Session-Typed Concurrency. In 38th European Conference on Object-Oriented Programming (ECOOP) (LIPIcs, Vol. 313).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 11:1-11:29. https://doi.org/10.4230/LIPICS.ECOOP.2024.11

Farzaneh Derakhshan and Frank Pfenning. 2022. Circular Proofs as Session-Typed Processes: A Local Validity Condition.
Logical Methods in Computer Science 18, 2 (2022), 8:1-8:51. https://doi.org/10.46298/LMCS-18(2:8)2022

Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. 2020. Semi-Axiomatic Sequent Calculus. In 5th International Conference
on Formal Structures for Computation and Deduction (FSCD) (LIPIcs, Vol. 167). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 29:1-29:22. https://doi.org/10.4230/LIPIcs.FSCD.2020.29

Jean-Yves Girard. 1972. Interprétation fonctionelle et élimination des coupures de I’arithmétique d’ordre supérieur. Ph.D.
Dissertation. Université Paris VIL

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The Synchronous Data Flow Programming
Language LUSTRE. Proc. IEEE 79, 9 (1991), 1305-1320. https://doi.org/10.1109/5.97300

David Harel. 1979. First-Order Dynamic Logic. Springer-Verlag, Berlin, Heidelberg.

Kohei Honda. 1993. Types for Dyadic Interaction. In 4th International Conference on Concurrency Theory (CONCUR) (Lecture
Notes in Computer Science, Vol. 715). Springer, 509-523. https://doi.org/10.1007/3-540-57208-2_35

Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida. 2011. Scribbling Interactions with
a Formal Foundation. In 7th International Conference on Distributed Computing and Internet Technology (ICDCIT) (Lecture
Notes in Computer Science, Vol. 6536). Springer, 55-75. https://doi.org/10.1007/978-3-642-19056-8_4

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In 7th European Symposium on Programming (ESOP) (Lecture Notes in
Computer Science, Vol. 1381). Springer, 122-138. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 273-284. https://doi.org/10.1145/1328438.
1328472

Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System for the Pi-calculus. In 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 128-141. https://doi.org/10.1145/360204.360215

Grant Iraci, Cheng-En Chuang, Raymond Hu, and Lukasz Ziarek. 2023. Validating IoT Devices with Rate-Based Session
Types. Proceedings of the ACM on Programming Languages 7, OOPSLA2, Article 278 (2023), 1589-1617 pages. https:
//doi.org/10.1145/3622854

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session Types for Rust. In Proceedings
of the 11th ACM SIGPLAN Workshop on Generic Programming (Vancouver, BC, Canada) (WGP 2015). Association for
Computing Machinery, New York, NY, USA, 13-22. https://doi.org/10.1145/2808098.2808100

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of
the Rust Programming Language. Proceedings of the ACM on Programming Languages 2, POPL (2018), 66:1-66:34.
https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28
(2018), €20. https://doi.org/10.1017/S0956796818000151

Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer, and Jan Vitek. 2009. CDx: a family of real-time Java
benchmarks. In Proceedings of the 7th International Workshop on Java Technologies for Real-Time and Embedded Systems
(Madrid, Spain) (JTRES '09). Association for Computing Machinery, New York, NY, USA, 41-50. https://doi.org/10.1145/
1620405.1620412

J. Klensin. 2001. RFC2821: Simple Mail Transfer Protocol.

Naoki Kobayashi. 1997. A Partially Deadlock-Free Typed Process Calculus. In 12th Annual IEEE Symposium on Logic in
Computer Science (LICS). IEEE Computer Society, 128-139. https://doi.org/10.1109/LICS.1997.614941

Kensuke Kojima and Atsushi Igarashi. 2011. Constructive linear-time temporal logic: Proof systems and Kripke semantics.
Information and Computation 209, 12 (2011), 1491-1503. https://doi.org/10.1016/].1C.2010.09.008

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. 2019. Better Late Than Never: A Fully-Abstract Semantics for Classical
Processes. Proceedings of the ACM on Programming Languages 3, POPL (2019), 24:1-24:29. https://doi.org/10.1145/3290337

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

https://doi.org/10.1109/ICRCC.2012.6450552
https://doi.org/10.1145/3610612.3610621
https://doi.org/10.1109/LICS52264.2021.9470654
https://doi.org/10.1109/LICS52264.2021.9470654
https://doi.org/10.4230/LIPICS.ECOOP.2024.11
https://doi.org/10.46298/LMCS-18(2:8)2022
https://doi.org/10.4230/LIPIcs.FSCD.2020.29
https://doi.org/10.1109/5.97300
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/360204.360215
https://doi.org/10.1145/3622854
https://doi.org/10.1145/3622854
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/1620405.1620412
https://doi.org/10.1145/1620405.1620412
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1016/J.IC.2010.09.008
https://doi.org/10.1145/3290337

Semantic Logical Relations for Timed Message-Passing Protocols 59:31

Ron Koymans. 1990. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2, 4 (1990), 255-299.
https://doi.org/10.1007/BF01995674

Pavel Krcal and Wang Yi. 2006. Communicating Timed Automata: The More Synchronous, the More Difficult to Verify.
In 18th International Conference on Computer Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 4144).
Springer, 249-262. https://doi.org/10.1007/11817963_24

Kai Lampka, Simon Perathoner, and Lothar Thiele. 2009. Analytic real-time analysis and timed automata: a hybrid method
for analyzing embedded real-time systems. In 9th ACM & IEEE International conference on Embedded software (EMSOFT).
ACM, 107-116. https://doi.org/10.1145/1629335.1629351

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In 24th European Symposium on
Programming (ESOP) (Lecture Notes in Computer Science, Vol. 9032). Springer, 560-584. https://doi.org/10.1007/978-3-662-
46669-8_23

Sam Lindley and J. Garrett Morris. 2016. Talking Bananas: Structural Recursion for Session Types. In 21st ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM, 434-447. https://doi.org/10.1145/2951913.2951921

Per Martin-Lof. 1982. Constructive Mathematics and Computer Programming. In Logic, Methodology and Philosophy of
Science VI. Studies in Logic and the Foundations of Mathematics, Vol. 104. Elsevier, 153-175. https://doi.org/10.1016/S0049-
237X(09)70189-2

Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer. https:
//doi.org/10.1007/3-540-10235-3

Robin Milner. 1999. Communicating and Mobile Systems: the m-calculus. Cambridge University Press.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. 1996. Typed Closure Conversion. In 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 271-283. https://doi.org/10.1145/237721.237791
Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed runtime monitoring for multiparty conversations.

Formal Aspects of Computing 29, 5 (2017), 877-910. https://doi.org/10.1007/S00165-017-0420-8

Joél Ouaknine and James Worrell. 2005. On the Decidability of Metric Temporal Logic. In 20th IEEE Symposium on Logic in
Computer Science (LICS). IEEE Computer Society, 188-197. https://doi.org/10.1109/LICS.2005.33

Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed. 2022. Semantic Soundness for Language Interoper-
ability. In 43rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 609-624.
https://doi.org/10.1145/3519939.3523703

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. 2012. Linear Logical Relations for Session-Based
Concurrency. In 21st European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7211). Springer,
539-558. https://doi.org/10.1007/978-3-642-28869-2_27

Jorge A. Pérez, Luis Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear Logical Relations and Observational
Equivalences for Session-Based Concurrency. Information and Computation 239 (2014), 254-302. https://doi.org/10.1016/
j.1c.2014.08.001

Andrew M. Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. Higher Order Operational
Techniques in Semantics (HOOTS) (1998), 227-273.

André Platzer. 2008. Differential Dynamic Logic for Hybrid Systems. 7. Autom. Reason. 41, 2 (Aug. 2008), 143-189.
https://doi.org/10.1007/s10817-008-9103-8

Gordon D. Plotkin. 1973. Lambda-definability and logical relations. Technical Report. University of Edinburgh.

Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 46-57. https://doi.org/10.1109/SFCS.1977.32

Davide Sangiorgi and David Walker. 2001. The r-calculus: a Theory of Mobile Processes. Cambridge University Press.

NXP Semiconductors. 2021. 12C-bus specification and user manual. Standard. NXP Semiconductors.

SEP. 1999. Stanford Encyclopedia of Philosophy: Temporal Logic. https://plato.stanford.edu/entries/logic-temporal/.

Richard Statman. 1985. Logical Relations and the Typed A-calculus. Information and Control 65, 2/3 (1985), 85-97. https:
//doi.org/10.1016/S0019-9958(85)80001-2

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type L. The Journal of Symbolic Logic 32, 2 (1967),
198-212. http://www.jstor.org/stable/2271658

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. Journal of
the ACM (JACM) (2024). To appear.

Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation. Ph.D. Dissertation. Carnegie
Mellon University and New University of Lisbon.

Bernardo Toninho, Luis Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic
Integration. In 22nd European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer,
350-369. https://doi.org/10.1007/978-3-642-37036-6_20

Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer. 2024. Information Flow Control in Cyclic Process
Networks. In 38th European Conference on Object-Oriented Programming (ECOOP) (LIPIcs, Vol. 313). Schloss Dagstuhl -

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/11817963_24
https://doi.org/10.1145/1629335.1629351
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1145/237721.237791
https://doi.org/10.1007/S00165-017-0420-8
https://doi.org/10.1109/LICS.2005.33
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
http://www.jstor.org/stable/2271658
https://doi.org/10.1007/978-3-642-37036-6_20

59:32 Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek

Leibniz-Zentrum fir Informatik, 40:1-40:30. https://doi.org/10.4230/LIPICS.ECOOP.2024.40

Philip Wadler. 2012. Propositions as Sessions. In ACM SIGPLAN International Conference on Functional Programming (ICFP).
ACM, 273-286. https://doi.org/10.1145/2364527.2364568

Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart Preneel. 2019. Fast, Furious and Insecure: Passive
Keyless Entry and Start Systems in Modern Supercars. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019, 3 (May 2019), 66-85. https://doi.org/10.13154/tches.v2019.13.66-85

Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek. 2024a. Semantic Logical Relations for Timed
Message- Passing Protocols (Artifact). https://doi.org/10.5281/zenodo.13937290

Yue Yao, Grant Iraci, Cheng-En Chuang, Stephanie Balzer, and Lukasz Ziarek. 2024b. Semantic Logical Relations for Timed
Message-Passing Protocols (Extended Version). arXiv:2411.07215 [cs.PL] https://arxiv.org/abs/2411.07215

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 59. Publication date: January 2025.

https://doi.org/10.4230/LIPICS.ECOOP.2024.40
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.13154/tches.v2019.i3.66-85
https://doi.org/10.5281/zenodo.13937290
https://arxiv.org/abs/2411.07215
https://arxiv.org/abs/2411.07215

	Abstract
	1 Introduction
	1.1 A Timed Semantic Session Logical Relation (TSSLR)
	1.2 Two Modes of Use of TSSLR
	1.3 Summary and Contributions

	2 Protocol Specification in TILLST
	2.1 Air Quality Monitoring System
	2.2 Protocol Specification Language and Process Term Language
	2.3 Code for the Controller

	3 Semantics through Timed Semantic Session Logical Relation (TSSLR)
	3.1 Dynamic Semantics
	3.2 Timed Semantic Session Logical Relation

	4 Automatic Verification Through Refinement Type System for TILLST
	4.1 Refinement Type System for TILLST
	4.2 Fundamental Theorem

	5 Whole System Manual Verification: TSSLR In Action
	6 Rust Implementation
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

