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1 Introduction

The study of generalized global symmetries [1] has been instrumental in advancing our
understanding of quantum field theory (QFT) and string theory. Notably, generalized global
symmetries, including non-invertible symmetries, are ubiquitous in 2D QFTs, garnering
significant attention over the past several years (see, for instance, [2, 4–9]). Non-invertible
symmetries are described by the mathematical notion of (higher) fusion categories (see,
e.g., [10]), thus they are sometimes also referred to as categorical symmetries.

A useful approach for investigating categorical symmetries is to extend the 2D spacetime
manifold into a 3D bulk, where a topological field theory (TFT) lives. This methods works
due to the topological nature of generalized global symmetries, which are symmetries captured
by topological operators in QFTs [1]. Such topological information is encoded in the 3D TFT
with two boundaries. One of the boundaries is physical, containing all local information of
the 2D theory one is interested in, whereas the other boundary is topological and determines
boundary conditions. This construction allows the decoupling of the global structure of a
2D QFT from its complicated local information, providing a clean approach to generalized
global symmetries. The 3D bulk TFT is now commonly referred to as a symmetry TFT
(SymTFT) (see, e.g., [3, 11–19]).1

In many cases, the 3D bulk is auxiliary. This is because it is possible to move the
topological boundary, merge it with the physical boundary, and thereby achieve a genuine 2D
system. However, there are cases where the 3D TFT does not admit any topological boundary

1See also [20–36] for a partial list of more recent work.
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condition, so it is not possible to collapse the 3D bulk into a 2D system. The 3D TFT is
now intrinsic, instead of auxiliary, and the corresponding 2D theory living on the physical
boundary is known as a relative QFT [19]. In many works in literature, the term “relative
QFT” is frequently also employed to indicate the physical boundary theory of the SymTFT
with a topological boundary. To avoid ambiguity, in this paper we introduce the notion of
intrinsically relative QFT to denote a theory whose bulk TFT does not admit any topological
boundary condition. In other words, the bulk TFT is intrinsic instead of auxiliary.

When the SymTFT bulk admits a topological boundary, the 2D system obtained via
shrinking the bulk is called an absolute QFT. If a SymTFT admits multiple boundary
conditions, it will have multiple absolute QFT descendants, which are connected via topological
manipulations, e.g., finite gauging and stacking local counterterms/SPT phases. This leads
to a powerful aspect of the SymTFT, namely it can capture the anomalies for non-invertible
symmetries. Consider an absolute QFT associated with a certain topological boundary
condition for the SymTFT with a non-invertible symmetry. An attempt to gauge this
symmetry would amount to changing the topological boundary condition. If the new boundary
condition is not allowed by the SymTFT, then we end up with an obstruction to gauging,
which corresponds to a ’t Hooft anomaly for the non-invertible symmetry (see, e.g., [37–40]).

A powerful perspective for studying QFTs and their symmetries involves embedding
them into string theory. Several works have been devoted to building generalized global
symmetries from a top-down perspective in QFTs that admit a string theory realization via
geometry engineering or brane probes. There are two primary questions in this approach:
how to build topological symmetry operators and how to derive the SymTFTs. For a QFT
engineered at a conical singularity Y , topological symmetry operators originate from either
branes wrapping cycles “at infinity” along ∂Y [41–43] (see also [44–49]), or geometric fibers
degenerated “at infinity” [50]. The non-topological dynamics of these asymptotic boundary
objects (branes or fibers) is decoupled from the QFT localized at the conical singularity, but
its topological effects remain. The SymTFT for the QFT, on the other hand, is obtained
from the dimensional reduction of the topological sector of 10D/11D supergravity actions
along the asymptotic boundary ∂Y [51] (see also [26, 29, 33, 35, 41, 45, 50, 52–55]).

Despite extensive work from this top-down perspective, the focus has predominantly been
on QFTs in spacetime dimensions greater than 2 (D > 2). Furthermore, to our knowledge,
a string theory approach for anomalies of non-invertible symmetries has yet to be explored
in the literature. The purpose of this paper is to provide a systematic study of aspects of
SymTFTs and anomalies of non-invertible symmetries in 2D QFTs from a string theory point
of view. The main setup we will work on is an infinite class of 2D QFTs engineered on
D1-branes probing toric Calabi-Yau 4-fold singularities. This class of 2D QFTs enjoys a nice
intersecting brane construction, known as the brane brick model [56–59]. This stringy setup,
which we will review in section 4, provides a geometric way to investigate many aspects
of 2D gauge theories. In this work we will see how the geometry gives rise to categorical
symmetry structure of this 2D QFTs.
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Organization of the paper.

We start in section 2 by reviewing some known aspects of SymTFTs and the defect group. We
start with intermediate defect groups and their polarizations (pairs), and then discuss how this
information is nicely described by SymTFTs and their topological boundary conditions. We
discuss how the intrinsic relativeness of a QFT is extracted from the absence of a topological
boundary condition of a SymTFT, equivalently from the absence of a Lagrangian subgroup
of the defect group. For relative QFTs with absolute QFT descendants, we discuss how the
gauging and anomalies of the finite symmetries are captured from the SymTFT and the
defect group’s point of view. In particular, we discuss how the anomalies of non-invertible
symmetries can be reformulated in terms of the defect group language, in the case when
non-invertible symmetries are derived from gauging invertible ones.

In section 3, we give a lightning review of the main stage of this paper: 2D QFTs
engineered from Calabi-Yau 4-folds probed by D1-branes. This is an infinite family of theories
that enjoys a quiver gauge theory description, as well as a Type IIA intersecting brane
realization known as brane brick models.

Section 4 presents a systematic investigation of aspects of categorical symmetries for
these 2D QFTs from IIB string theory. We start with an explicit derivation of 3D SymTFTs
from the topological sector of the IIB supergravity, as well as intermediate defect groups
from the geometric data. By investigating the topological boundary conditions, as well as
the possible polarization choices, we find that the resulting 2D QFTs can be intrinsically
relative and propose a sufficient condition for it. For cases of 2D absolute QFTs, we obtain
two general classes of polarizations, which enjoy invertible and non-invertible symmetries,
respectively, connected by finite gauging. The anomalies of the (non)-invertible symmetries
are then captured by obstruction to certain topological boundary conditions. From the
brane perspective, we show how the non-invertible symmetry line operators can be explicitly
computed from dimensionally reducing the brane worldvolume action. The polarizations and
anomalies for finite symmetries are then translated from the possible brane configurations,
which are allowed to end “at infinity”.

In section 5, we illustrate our ideas in explicit examples. We first consider an infinite class
of theories for the Y (p,k)(P2) geometry, and discuss a sufficient condition for the associated 2D
QFTs to be intrinsically relative theories. We then consider Y (2,0)(P1 ×P1), whose associated
2D QFTs admit many polarizations, one of which enjoys a non-anomalous non-invertible
symmetry Rep(D4). The final example we present is C4/Z4, for which we show that the
corresponding 2D QFT enjoys an anomalous non-invertible symmetry.

2 SymTFTs, defect groups, and anomalies

This work focuses on the categorical finite symmetries of 2D QFTs associated with toric
Calabi-Yau 4-folds in Type IIB string theory. The main methodologies employed are the defect
group and the Symmetry TFT (SymTFT). In this section, we provide a concise overview
of these two notions, with a particular emphasis on how they capture essential information
regarding a QFT, such as its defect group, relativeness, and anomalies of (non-invertible)
finite symmetries.
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Let us start with a short review of the intermediate defect group in even-dimensional
QFTs following [50]. For QFTs in 2k-dimensional spacetime, associated with self-dual gauge
fields, there are “light” excitations and “heavy” defects, both with (k − 1)-dimensional
worldvolumes in spacetime. The charges associated with light objects reside in the lattice Λ,
while those of heavy objects are within the dual lattice Λ∗, which is a refinement of Λ known
as Q-refinement [60]. The intermediate defect group,2 denoted as D and defined as

D = Λ∗/Λ, (2.1)

quantifies the non-integer nature of the Dirac pairing among (k − 1)-dimensional charged
defects. The quotient in the above equation is interpreted as equivalence classes under
screening of dynamical objects [61]. At this level, a 2k-dimensional QFT lacks an inherent
scalar-valued partition function. Instead, it possesses a partition vector, characteristic of
a relative QFT [19].

Establishing a consistent quantum field theory with a well-defined partition function on
any closed spacetime manifold necessitates selecting a sublattice for the (k − 1)-dimensional
objects, ensuring the Dirac pairing be integral. This selection corresponds to picking a
Lagrangian subgroup L ⊂ D, often termed as choosing a polarization [62] (see also, e.g., [19,
50, 63]). Given a choice of L, the resulting absolute QFT enjoys a (k − 1)-form global
symmetry, given by L∨ = D/L, which can be embedded in the following exact sequence

1 → L → D → L∨ → 1. (2.2)

The results of picking polarizations can, in general, be classified into three cases.

• Case 1: intrinsically relative QFT. There is no Lagrangian subgroup of D. This,
in general, happens in 2k = 4s + 2 = 2, 6, 10, · · · dimensions, where the defect group D
is equipped with a symmetric Dirac pairing, i.e., there exists non-trivial self-pairing for
defects. In this case, the associated QFT does not allow a well-defined partition function
on a 2k-dimensional spacetime manifold but only captures a partition vector. As a
result, this QFT should be defined as the boundary theory of a (2k + 1)-dimensional
topological field theory (TFT), where the partition vector is the boundary state of the
Hilbert space for the TFT [19]. From now on, we will refer to this type of relative QFTs
as intrinsically relative to distinguish them from those admitting polarizations.3

• Case 2: absolute QFT with non-anomalous symmetry. There is a Lagrangian
subgroup L ⊂ D, and the exact sequence in (2.2) splits. The (k − 1)-form global
symmetry L∨ can then be uplifted as a Lagrangian subgroup L∨ ∼= L back into the
defect group D so that D = L ⊕ L [63]. This means the (k − 1)-form global symmetry
L∨ is non-anomalous. Gauging this symmetry leads to another absolute QFT, whose

2The “intermediate” here is named after the fact that the flux operators associated with the (k − 1)-
dimensional defects belong to the intermediate cohomology class Hk(M2k,D).

3In this context, due to the fact that all defects are, strictly speaking, topological operators in (2k + 1)-
dimensional TFT, there is no clear notion of distinguishing them as charged objects or symmetry operators.
Therefore, it is not clear how to rigorously define global symmetries associated with the defect group for the
relative QFT.
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associated polarization is given by L. This amounts to regarding an absolute QFT
as not just one Lagrangian subgroup L, but a pair of Lagrangian subgroups (L, L),
known as a polarization pair [50]. The gauging is then simply the flip manipulation
(L, L) → (±L, L), where “+” and “−” correspond to the case 2k = 4s and 2k = 4s + 2,
respectively.4 Namely, the gauged theory is associated with the polarization L with
global symmetry L

∨ ∼= L. Notably, there are possibly multiple uplifts of L∨ for a given
L. This encodes the absolute QFTs with the same polarization L but is distinguished
by stacking symmetry-protected topological (SPT) phases/local counterterms, which
also naturally encodes the discrete torsion choices for the gauging.

• Case 3: absolute QFT with anomalous symmetry. There is a Lagrangian
subgroup L ⊂ D, but the exact sequence in (2.2) does not split. In this case, L∨ cannot
be embedded back in the defect group D as a subgroup. According to the discussion in
Case 2, this means one cannot gauge L∨ symmetry to arrive at another polarization.
This obstruction to gauging captures a ’t Hooft anomaly for the (k − 1)-form symmetry
L∨.

In principle, only in the above Case 1, a 2k-dimensional TFT is necessarily introduced.
However, we will see below that even for relative QFTs admitting polarizations, it is also useful
to introduce a one-dimensional higher TFT to capture the information of global symmetries
and their anomalies. The associated TFT is known as a symmetry TFT (SymTFT) [3, 11–
22, 26, 53], which will be the main focus of the rest of this section.

2.1 SymTFTs and gapped boundary conditions

A SymTFT is the (D+1)-dimensional TFT capturing the generalized global symmetries
of a D-dimensional QFT [3, 11–22, 26, 53]. In many cases, the SymTFT is defined on a
bulk manifold MD+1 with two boundaries. One boundary is physical, encoding the local
information of the D-dimensional QFT we are interested in. This boundary QFT is exactly the
relative QFT as we discussed before, intuitively speaking “relative” to a (D+1)-dimensional
bulk [19]. The other boundary is topological, imposing gapped boundary conditions for
fields in the SymTFT, which specifies the global structure of the QFT. Under the TFT
quantization, there are boundary states in the Hilbert space associated with the physical
boundary ⟨Bphys| and the topological boundary |Btop⟩. The partition function of the resulting
D-dimensional QFT is then given by the inner product

ZBphys,Btop = ⟨Bphys|Btop⟩. (2.3)

This can be understood as shrinking the SymTFT bulk slab and ending up with a well-defined
D-dimensional absolute QFT. See figure 1 for an illustration. This corresponds to picking
a polarization for the relative QFT [19, 50, 62, 63].

4There are more involved cases that a pair of Lagrangian subgroups (L, L) still do not fully specify the
global structure of a QFT, but only up to generalized charge conjugations. In those cases, a polarization pair
is defined by a generator of L and a generator of L. We refer the reader to [50] for more details.
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Figure 1. Absolute QFT as a SymTFT slab. The red line denotes an operator terminating on the
gapped boundary Btop, and the green line denotes an operator linking with it. After shrinking the
slab, the resulting theory has a well-defined partition function Z. The green loop is the symmetry
operator measuring the charge of the heavy defect labeled by the red point.

From the operator algebra perspective, picking gapped boundary conditions corresponds
to picking the Lagrangian subalgebra5 generated by a subset of operators in the SymTFT [64].
Generally speaking, TFT fields can pick the Dirichlet condition or the Neumann (i.e., free)
condition at the gapped boundary. This will enable some topological operators to terminate
on the topological boundary (red line in figure 1) while others continue along the topological
boundary (green loop in figure 1 after pulling into the bulk). On the one hand, those
continuing along the topological boundary are topological operators that generate the global
symmetry for the absolute QFT. On the other hand, the Lagrangian subalgebra is generated
by operators terminating on the gapped boundary with trivial linking and thus can be
condensed simultaneously.

An illustrative example is the SymTFT for 4D su(2) N = 4 super Yang-Mills (SYM)
theory [14],

S5 = 2π

2

∫
M5

b2 ∪ δc2, (2.4)

where b2 and c2 are Z2-valued cochains, under the defect group D = Z(e)
2 × Z(m)

2 , respectively.
The spectrum of surface topological operators for this 5D TFT reads

U(m,n)(M2) = exp
(

πi

∫
M2

mb2 + nc2

)
, (2.5)

where m, n ∈ {0, 1}. Using the TFT quantization

[bij(x), ckl(y)] =
i

π
ϵijklδ(x − y), (2.6)

one obtains the non-trivial linking generated by

U(1,0)(M2)U(0,1)(M ′
2) = U(0,1)(M ′

2)U(1,0)(M2)eπi Link(M2,M ′
2). (2.7)

5A Lagrangian subalgebra L ⊂ A is a maximally isotropic subspace with respect to the natural scalar
product in A.
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On the physical boundary, local information (i.e., local operators and their correlation
functions) of the SYM gives rise to the relative QFT with Lie algebra su(2). The global
form of the gauge group, however, is captured by the gapped boundary conditions on the
topological boundary. For example, the gauge group SU(2) is associated with the following
boundary condition

b2 Dirichelt, c2 Neumann. (2.8)

The Lagrangian subalgebra corresponding to this boundary condition is generated by

{U(0,0), U(1,0)}, (2.9)

within which all operators have trivial linking, thus can be simultaneously condensed. This
aligns with the fact that U(0,0) and U(1,0) can terminate on the gapped boundary because
of the Dirichlet condition for b2.

Lagrangian subgroups and polarization pairs.

From the defect group perspective, a Lagrangian subalgebra associated with the gapped
boundary conditions can be alternatively derived from a Lagrangian subgroup of the defect
group: L ⊂ D. The integral Dirac pairing of the sublattice required by a QFT with a well-
defined partition function corresponds to the trivial linking between topological operators,
which builds a Lagrangian subalgebra of the TFT.

The correspondence between the defect group and the SymTFT is discussed in detail in,
e.g., [50, 63]. Briefly speaking, given an intermediate defect group in a 2k-dimensional QFT
with a generic form D = ⊕iZNi and its corresponding Dirac pairing, one can write down a
SymTFT with quadratic single-derivative action (namely Chern-Simons or BF-type terms),

SsymTFT[bi] =
∫

M2k+1

1
2biQijδbj , (2.10)

where bi is the background gauge field for ZNi ⊂ D, and the matrix Qij is the coefficient
of the Q/Z-valued bilinear Dirac pairing on the defect group D [50, 63]. A Lagrangian
subgroup of the defect group with integral Dirac pairing is then translated into a gapped
boundary condition of the SymTFT. This boundary condition then specifies a subset of
k-dimensional topological operators in the SymTFT with trivial linking relations, generating
a Lagrangian subalgebra.

Now, back to the 4D su(2) SYM example, one can easily see the defect group is given by

D = Z(e)
2 × Z(m)

2 , (2.11)

whose background fields are b2 and c2, respectively. The defect group is equipped with an
anti-symmetric Dirac pairing (

0 1
2

−1
2 0

)
. (2.12)

– 7 –
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Denote elements in the defect group as (a, b) ∈ D, where a ∈ Z(e)
2 and b ∈ Z(m)

2 . The
Lagrangian subgroup for the global form SU(2) is given by

LSU(2) = Z(m)
2 , (2.13)

whose generating element (0, 1) enjoys integer Dirac pairing under (2.12). The 1-form global
symmetry G

(1)
SU(2) for the resulting absolute SU(2) theory is then given by condensing the

symmetry operators for Z(m)
2 , namely treating it as the “gauged” part via the quotient

G
(1)
SU(2) = L∨

SU(2) ≡ D/Z(m)
2 (2.14)

We remark that picking a gapped boundary condition/Lagrangian subalgebra may not
fully fix the global structure of an absolute QFT. For example, after choosing the global form
of the gauge group SU(2), one can decide whether to further stack a Z2 symmetry-protected
topological (SPT) phase exp

(
iπ
2
∫

M4
P(b2)

)
to the theory, with P(b2) the Pontryagin square

of b2. Following the notation in [65], we denote the theory with and without SPT stacking as
SU(2)0 and SU(2)1, respectively. These two theories, associated with the same Lagrangian
subgroup, translate in two possible embeddings of L∨ in D as another Lagrangian subgroup L

L∨
SU(2) → L = Z(e)

2 ,

or L∨
SU(2) → L = Z(d)

2

(2.15)

so that

L ⊕ L = D, (2.16)

where Z(d)
2 is the diagonal Z2 subgroup of D.

The fully specified global structure of the theory is then given by a pair of Lagrangian
subgroups (L, L)

SU(2)0 : (L = Z(m)
2 , L = Z(e)

2 ),

SU(2)1 : (L = Z(m)
2 , L = Z(d)

2 ),
(2.17)

As we discussed previously in this section, this is a refined notion of polarization known
as the polarization pair [50].

2.2 Relativeness: SymTFTs without any gapped boundary condition

It is not always possible to pick gapped boundary conditions for a given SymTFT. Alternatively
speaking, SymTFTs exist whose spectrum of operators does not allow any Lagrangian
subalgebra. In this case, one can only introduce a physical boundary for the SymTFT. The
relative QFT living on the physical boundary does not admit any polarization/absolute
QFT descendants. For the sake of clarity, we will refer to this type of QFT as intrinsically
relative. Instead of a well-defined partition function in (2.3), the best one can do for this type
of theory is to define a partition vector |Bphys⟩ in the Hilbert space from the quantization
of the corresponding SymTFT.

– 8 –
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An illustrative example is a (4s + 3)-dimensional SymTFT such as a U(1)2 Chern-
Simons theory

S4s+3 = 2
4π

∫
M4s+3

c2s+1 ∧ dc2s+1, (2.18)

where c2s+1 is a (2s + 1)-form U(1) field. The topological operators of this theory are

Um(M2s+1) = exp
(

im

∫
M2s+1

c2s+1

)
, m ∈ Z2 (2.19)

which, in the case of s = 0, are just Wilson loops for 3D Chern-Simons Theory. Since we are
just working in the case of Chern-Simons level k = 2, there is only one non-trivial operator
U1(M2s+1) with self-linking (see, e.g., [1])

U1(M2s+1)U1(M ′
2s+1) = U1(M ′

2s+1)U1(M2s+1)eπi Link(M2s+1,M ′
2s+1). (2.20)

Therefore, there is no subset of operators with trivial linking, i.e., no Lagrangian subalgebra.
This implies that there is no well-defined gapped boundary conditions for c2s+1. This means on
the physical boundary, the (4s+2)-dimensional QFT does not admit any polarization/absolute
QFT descendent. In other words, its relativeness to the bulk SymTFT is inevitable.

No Lagrangian subgroup.

This relativeness can also be seen from the perspective of the defect group. The defect
group for the (4s + 2)-dimensional QFT whose SymTFT is U(1)2 Chern-Simons theory is
given by a single factor

D = Z2 (2.21)

with the symmetric Dirac pairing matrix, which in this case is just a 1 × 1 matrix with
a single element

1
2 . (2.22)

As discussed in the 4D su(2) SYM case (2.13), one attempts to find a Lagrangian
subgroup of the defect group associated with a possible well-defined gapped boundary
condition. However, one necessary condition for a Lagrangian subgroup is

|L|2 = |D|, (2.23)

with |G| the order of the group G.6 Therefore, Z2 has no Lagrangian subgroup; thus, this
SymTFT does not admit a gapped boundary condition. That is to say, the associated (4s+2)
QFT is intrinsically relative.

When s = 0, (2.18) is a 3D U(1)2 Chern-Simons theory. One possible associated relative
QFT is a 2D chiral CFT without modular-invariant partition function but with conformal
blocks as the partition vector, e.g., the chiral WZW model. When s = 1, (2.18) is equivalent
to a 7D Chern-Simons theory for 3-form gauge field c3. One possible class of the associated
intrinsically relative QFTs includes 6D superconformal field theories (SCFTs) with the defect
group Z2, e.g., A1 N = (2, 0) SCFT.

6For more details of Lagrangian subgroups and their refined treatment via Heisenberg groups, we refer the
reader to [14, 63, 66] for physical discussions and [67] for a mathematical review.
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2.3 Anomalies: obstructions to certain gapped boundary conditions

Generally speaking, there are two notions for defining the ’t Hooft anomalies of a global
symmetry. One is defined as the obstruction of gauging the symmetry, while the other is
defined as the obstruction to a symmetry-protected trivially gapped phase. For invertible
symmetries, these two notions coincide, while for non-invertible symmetries, they can be
non-equivalent [68]. In this work, we will use the former notion and translate the gauging
obstruction as the obstruction to certain gapped boundary conditions for SymTFTs [37–40].

2.3.1 Anomalous invertible symmetries

For invertible global symmetries, anomalies are nicely captured by (D + 1)-dimensional
invertible TFTs via the anomaly inflow construction [69]. The resulting invertible TFTs can
then be embedded into SymTFTs by promoting all fields to be dynamical. For example, an
anomalous Z2 symmetry with background field A1 in 2D QFT can be described by a 3D term

π

∫
M3

1
2A1 ∪ δA1, (2.24)

Z2 twisted Dijkgraaf-Witten theory.

The anomaly term (2.24) can be embedded into a 3D SymTFT as a Dijkgraaf-Witten
theory [70] by promoting A1 into a dynamical field a1 with a H3(U(1),Z2) = Z2 twist,

S3 = 2π

2

∫
M3

a1 ∪ δâ1 +
2π

4

∫
M3

a1 ∪ δa1. (2.25)

Picking the gapped boundary condition

a1 Dirichlet, â1 Neumann (2.26)

leads to a 2D absolute QFT with Z2 symmetry generated by exp
(
πi
∫

M1
â1
)

with anoma-
lies (2.24). This “electric” boundary condition is allowed, since exp

(
πi
∫

M1
a1
)

has trivial
self-linking such that

{1, exp
(

πi

∫
M1

a1

)
} (2.27)

generates a Lagrangian subalgebra.
An attempt to gauging the Z2 symmetry amounts to condensing the Z2 symmetry

operator exp
(
πi
∫

M1
â1
)
, leading to a naive “magnetic” boundary condition

a1 Neumann, â1 Dirichlet. (2.28)

However, unlike the line operator for a, the topological line exp
(
πi
∫

M1
â1
)

has a non-trivial
self-linking (see, e.g., [71])

⟨exp
(

πi

∫
M1

â1

)
exp

(
πi

∫
M ′

1

â1

)
⟩ ∼ eπi Link(M1,M ′

1). (2.29)

This means it cannot generate a Lagrangian subalgebra and be condensed. Therefore, the
“magnetic” boundary condition (2.28) is obstructed, capturing anomalies for the Z2 symmetry.
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U(1)4 Chern-Simons theory.

In addition to the Dijkgraaf-Witten theory (2.25), another SymTFT able to realize the
anomaly (2.24) is similar to the previous relativeness example (2.18), but this time a U(1)4
Chern-Simons theory,

S3 = 4
4π

∫
M3

c1 ∧ dc1, (2.30)

where c1 is a 1-form U(1) gauge field. The line operator spectrum of this theory is given by
Wilson lines (2.19) with m ∈ Z4. The essential difference from the U(1)2 case in (2.18) is now
the operator U2(M1) has trivial self-linking. Therefore, it is possible to pick a Lagrangian
subalgebra generated by

{1, U2(M1)} (2.31)

and define an associated gapped boundary condition

c1|∂M3 = A1, (2.32)

with A1 a Z2-valued gauge field. This boundary condition leads to a 2D absolute QFT with
a Z2 symmetry, whose anomaly is captured by (2.24).

This anomaly can be easily seen from the operator algebra perspective. Notice that (2.31)
is the only possible Lagrangian subalgebra because all other line operators have non-trivial
linkings. This obstruction to other boundary conditions by condensing topological operators
implies the anomaly.

Anomaly as an obstruction to polarization pair.

In the defect group language, the anomalies of Z2 symmetry can be interpreted as the
obstruction to a polarization pair. Let us briefly discuss how this works for both the
Dijkgraaf-Witten theory and the Chern-Simons theory as SymTFTs.

For the twisted Dijkgraaf-Witten theory (2.25), the associated 2D relative QFT has
the defect group

D = Z(a)
2 × Z(̂a)

2 (2.33)

with a symmetric Dirac pairing matrix (
1
2

1
2

1
2 0

)
. (2.34)

The Lagrangian subgroup corresponding to the gapped boundary condition (2.26) is given by

L = Z(̂a)
2 ⊂ D (2.35)

generated by (0, 1) ∈ D, due to the integer Dirac pairing

(0, 1)
(

1
2

1
2

1
2 0

)(
0
1

)
∈ Z (2.36)
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It is straightforward to check all other non-trivial subgroups of D do not have integer Dirac
pairing; thus, the global symmetry

L∨ = D/Z(̂a)
2 (2.37)

cannot be uplifted to any Lagrangian subgroup. This obstructs the polarization associated
with L = Zâ

2 to be promoted into a polarization pair, which implies the global symmetry
L∨ of the absolute QFT is anomalous.

For the U(1)4 Chern-Simons theory, the associated 2D relative QFT has the defect group

D = Z4 (2.38)

with a single 1×1 matrix element 1
4 as the symmetric Dirac pairing. The Lagrangian subgroup

corresponding to the gapped boundary condition (2.32) is given by

L = Z2 ⊂ D, (2.39)

due to the integer Dirac pairing 1
4 × 22 ∈ Z. The global symmetry Z2 = L∨ ≡ D/Z2 of the

resulting absolute theory cannot be embedded back in D = Z4 as a Lagrangian subgroup.
This is due to the fact that the short exact sequence

1 → L = Z2 → Z4 → L∨ = Z2 → 1 (2.40)

does not split. This obstructs the polarization associated with L = Z2 to be promoted as a
polarization pair, which implies the anomaly of the Z2 symmetry.

2.3.2 Anomalous non-invertible symmetries

The anomalies of non-invertible symmetries can be captured following the same philosophy
as those of invertible symmetries. Namely, starting with a polarization/gapped boundary
condition, referred to as “electric”, whose corresponding absolute QFT enjoys a non-invertible
symmetry, the obstruction to its “magnetic” boundary condition via simultaneously condensing
topological operators implies the anomaly for the non-invertible symmetry [38–40].

An illustrative example is discussed in [38], where the authors constructed an anomalous
non-invertible symmetry given by the Z2 ×Z2 Tambara-Yamagami (TY) fusion category [72].
Here, we briefly review their result. Consider a 2D QFT enjoying a Z(a)

2 ×Z(b)
2 ×Z(c)

2 symmetry
with anomalies captured by a 3D invertible TFT

π

∫
M3

1
2A1 ∪ δA1 + A1 ∪ B1 ∪ C1, (2.41)

where A1, B1 and C1 are Z2 cochains as background fields for Z(a)
2 ,Z(b)

2 and Z(c)
2 , respectively.

Gauging the Z(b)
2 ×Z(c)

2 symmetry, the topological line operator L(M1; a) for Z(a)
2 then fails to

be gauge-invariant, but can be cured by stacking a 1D Z2×Z2 Dijkgraaf-Witten theory [38, 53]

N (M1; b1, c1) ≡ L(M1; b1, c1)
∫

Dϕ̂0Dϕ0 exp
(

πi

∫
M1

ϕ̂0 ∪ δϕ0 + ϕ0 ∪ b1 − ϕ̂0 ∪ c1

)
, (2.42)
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where ϕ0 and ϕ̂0 Z2-valued 0-cochains and b1, c1 are dynamical fields from promoting B1, C1
via gauging. This non-invertible defect line generates a Z2 × Z2 Tambara-Yamagami (TY)
fusion categorical symmetry [72], which we will denote as TY(Z2 × Z2).

Note that this categorical symmetry is inherited from the invertible symmetry Za
2. Its

anomaly can then be regarded as also inherited from the self-anomaly given by the first term
in (2.41). More specifically, one can consider embedding this anomaly TFT into a SymTFT

S3 = 2π

2

∫
M3

a1 ∪ δâ1 + b1 ∪ δb̂1 + c1 ∪ δĉ1 +
1
2a1 ∪ δa1 + a1 ∪ b1 ∪ c1. (2.43)

The absolute QFT enjoying the TY(Z2 × Z2) categorical symmetry is given by the following
“electric” gapped boundary condition

a1, b̂1, ĉ1 Dirichlet, â1, b1, c1 Neumann (2.44)

under which the topological line operator

Lâ1,b1,c1
(M1) =

∫
Dϕ̂0Dϕ0 exp

(
πi

∫
M1

â1

)
exp

(
πi

∫
M1

ϕ̂0 ∪ δϕ0 + ϕ0 ∪ b1 − ϕ̂0 ∪ c1

)
(2.45)

corresponds to the symmetry generator N (M1; b1, c1) (2.42). It is computed in [38] that
there is always a non-trivial linking for Lâ1,b1,c1

(M1)

⟨Lâ1,b1,c1
(M1)Lâ1,b1,c1

(M ′
1)⟩ ∼ eπi Link(M1,M ′

1) ̸= 1, (2.46)

due to the term 1
2a1 ∪ δa1 in the SymTFT. This non-trivial linking prevents the operator

Lâ1,b1,c1
(M1) from forming any Lagrangian subalgebra, implying the obstruction to the

“magnetic” gapped boundary condition on which the Lâ1,b1,c1
(M1) line can terminate.

Anomaly from obstruction to polarization pair.

Let us try understanding this anomaly for non-invertible symmetries from the defect group
and the polarization pair perspective. The single-derivative terms in SymTFT (2.43) show
that the associated 2D relative QFT has the defect group

D = Z(a)
2 × Z(̂a)

2 × Z(b)
2 × Z(̂b)

2 × Z(c)
2 × Z(ĉ)

2 , (2.47)

with the Dirac pairing matrix 

1
2

1
2 0 0 0 0

1
2 0 0 0 0 0
0 0 0 1

2 0 0
0 0 1

2 0 0 0
0 0 0 0 0 1

2
0 0 0 0 1

2 0


. (2.48)

This defect group admits many Lagrangian subgroups with integral Dirac pairing under (2.48).
One of them is L1 = Z(̂a)

2 × Z(̂b)
2 × Z(ĉ)

2 , corresponding to an absolute 2D QFT with global
symmetry,

L∨
1 = D/L1 ∼= Z(a)

2 × Z(b)
2 × Z(c)

2 , (2.49)
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with the anomaly TFT as shown previously in (2.41). One might try promoting this
polarization L1 into a polarization pair, but will then find out the Z(a)

2 × Z(b)
2 × Z(c)

2 does not
enjoy a integral Dirac pairing under (2.48). This means L∨

1 cannot be embedded into D as a
Lagrangian subgroup, which implies the obstruction to gauging the full L∨

1 symmetry.
However, it is possible to gauge part of the L∨

1 , namely the Z(b)
2 × Z(c)

2 symmetry.7 The
resulting polarization is given by flipping the role of b, c with b̂, ĉ, resulting in the Lagrangian
subgroup L2 = Z(̂a)

2 × Z(b)
2 × Z(c)

2 . The associated quotient L∨
2 of the defect group reads

L∨
2 = D/L2 ∼= Z(a)

2 × Z(̂b)
2 × Z(ĉ)

2 . (2.50)

However, in the presence of the cubic term in (2.43), L∨
2 is not the genuine global symmetry

for the absolute QFT, but it is promoted to a non-invertible symmetry.

L∨
2 → G = TY(Z2 × Z2) (2.51)

This promotion can be understood as replacing the direct product in L∨
2 between Z(a)

2 and
Z(̂b)

2 × Z(ĉ)
2 with a Z(a)

2 extension of the invertible fusion category Vec(Z(̂b)
2 × Z(ĉ)

2 ).8,9 The
result of this non-trivial group extension is exactly the TY(Z2 ×Z2) non-invertible symmetry.

Now it is also straightforward to see why this non-invertible symmetry is anomalous. An
attempt to gauge this non-invertible symmetry translates in promoting L∨

2 into a Lagrangian
subgroup in order to build a polarization pair refined from the L2 polarization. However, one
can check that Z(a)

2 ×Z(̂b)
2 ×Z(ĉ)

2 does not enjoy a integral Dirac pairing, due to the 1
2 element

labeled in red in the pairing matrix (2.48). Therefore, L∨
2 cannot be uplifted to a Lagrangian

subgroup of D, implying the anomaly which the descendent global symmetry G =TY(Z2×Z2)
suffers from.10 Note that the 1

2 in red in (2.48) is exactly the coefficient responsible for the
self-anomaly term 1

2A1 ∪ δA1 in (2.41), which we have argued from the SymTFT gapped
boundary condition point of view, is the origin of the anomaly for the non-invertible symmetry.

3 2D QFTs from Calabi-Yau 4-folds

In this paper, we will focus on 2D (0, 2) gauge theories engineered on D1-branes probing
toric Calabi-Yau 4-folds.11 These theories can be efficiently encoded in terms of brane brick
models, which are obtained from D1-branes at Calabi-Yau 4-fold singularities by T-duality.
We refer the reader to [56–59] for detailed discussions.

A brane brick model is a Type IIA brane configuration consisting of D4-branes wrapping a
3-torus T3 and suspended from an NS5-brane that wraps a holomorphic surface Σ intersecting
with T3. The holomorphic surface Σ is the zero locus of the Newton polynomial defined

7More precisely, we mean to gauge the Z(b)
2 × Z(c)

2 without discrete torsion.
8We use the notation Vec(G)=Rep(C[G]∗) as the category of G-graded vector spaces.
9In general, TY(G) fusion category (G is a finite group) can be derived from a Z2 extension of the Vec(G)

fusion category. Physically speaking, this implies the theory is self-dual under gauging the G symmetry. See,
e.g., [68, 73–75] for more discussion on this Z2 extension.

10So far there is no universal construction for polarization pairs of QFTs with non-invertible symmetries.
We hope to come back to this problem in the future, and strongly welcome other researchers to do so.

11The amount of SUSY may be enhanced depending on the geometry.
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Figure 2. Brane brick model for C4. Here we show multiple copies of the unit cell.

0 1 2 3 4 5 6 7 8 9
D4 × × × · × · × · · ·
NS5 × × ———– Σ ———— · ·

Table 1. Brane brick model configuration.

Brane Brick Model Gauge Theory Periodic Quiver
Brick U(N) Gauge group Node

Oriented face Bifundamental chiral field from Oriented (black) arrow
between bricks i and j node i to node j (adjoint if i = j) from node i to node j

Unoriented square face Bifundamental Fermi field between Unoriented (red) line
between bricks i and j nodes i and j (adjoint if i = j) between nodes i and j

Edge J- or E-term Plaquette encoding
a J- or an E-term

Table 2. Dictionary between brane brick models and 2d (0, 2) gauge theories.

by the toric diagram of the Calabi-Yau 4-fold. As an example, figure 2 shows the brane
brick model for C4. The corresponding QFT is the (8, 8) theory obtained from dimensionally
reducing 4D N = 4 SYM to 2D.

Table 1 summarizes the basic ingredients in a Brane Brick Model. The (246) directions
are compactified on a 3-torus, while the 2D gauge theory lives on the (01) directions common
to all the branes.

Brane brick models, or equivalently their dual periodic quivers, fully specify the 2D
(0, 2) quiver gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-
folds. The dictionary connecting brane brick models to the corresponding gauge theories
is summarized in table 2.

Brane brick models streamline the connection between gauge theory and the underlying
geometry (see, e.g., [57, 59, 76, 77]). Additional results on brane brick models can be
found in [78–80].

Before moving to the general discussion of categorical symmetries of the brane brick
models, we remark that in general, the gauge groups for the brane brick model can be
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∏
i U(N + Mi), with Mi the number of fractional branes on i-th quiver node. In the context

of finite categorical symmetries in this work, the concrete form of the gauge groups would
not matter much. However, their diagonal U(1) center may lead to continuous U(1) 1-form
symmetries, which may have interesting interplay (e.g., mixed anomalies or 2-groups [81])
with the non-invertible finite symmetries. We leave this for a future work.

4 Aspects of generalized symmetries in 2D from string theory

Having reviewed how 2D QFTs can be engineered from Calabi-Yau 4-folds in Type IIB string
theory, in this section, we discuss how to extract categorical symmetries for this infinite class
of theories from the geometric data. In particular, we will present a general prescription
for deriving 3D SymTFTs via dimensional reduction of the topological sector of type IIB
supergravity. Furthermore, we also discuss how the topological operators in the 3D SymTFTs
can be derived from the brane worldvolume actions via the construction of branes “at infinity”.
The gapped boundary conditions are translated into boundary conditions for various IIB
fluxes “at infinity”, under which the dimensionally reduced brane worldvolume actions serve
as charged objects generating the Lagrangian subalgebra and symmetry operators for the
associated absolute 2D QFTs.

4.1 3D symmetry TFTs from type IIB string theory

Consider 2D QFTs associated with singular Calabi-Yau 4-folds Y , whose base spaces are
Sasaki-Einstein 7-manifold, probed by D1-branes. The IIB string theory background reads

M2 × Y → M3 × ∂Y (4.1)

where M2 is the 2D spacetime where the D1-branes worldvolume extending, living on the
boundary of a 3D bulk manifold M3 = M2 × R≥0. The asymptotic boundary ∂Y is given
by the Sasaki-Einstein base space of Y .

To compute a SymTFT supported on M3, we ought to dimensionally reduce the topolog-
ical sector of IIB string theory on ∂Y . The relevant topological action involves various IIB
fluxes, among which we are interested in F5, G3, and H3 which are electrically (resp. magnet-
ically) sourced by D3 (resp. D3), D1 (resp. D5), and F1 (resp. NS5)-branes, respectively.12

Technically, the dimensional reduction starts from treating the various IIB supergravity
fluxes as elements in differential cohomology classes H̆∗(∂Y ) (see, e.g., [62, 82, 83]) sitting
in the exact sequences

0 → Hp−1(∂Y ;R/Z) → H̆p(∂Y ) → Ωp
Z(∂Y ) → 0 (4.2)

and
0 → Ωp−1(∂Y )/Ωp−1

Z (∂Y ) → H̆p(∂Y ) π→ Hp(∂Y ;Z) → 0 (4.3)
where Ωp−1(∂Y ) (resp. Ωp−1

Z (∂Y )) denotes closed differential p-forms (resp. with integral
periods).13 To be explicit, we assume the following cohomology classes for ∂Y :

H∗(∂Y ;Z) =
{
Z, 0,Zb2 ⊕ Γ2, 0,Γ4,Zb5 ,Γ6,Z

}
, (4.4)

12In this work we consider the IIB string theory background without 7-branes.
13The first sequence is physically referred to as the field-strength sequence, while the second one is for the

characteristic class. We refer the reader to [83] for more details.
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which covers an infinite family of Calabi-Yau 4-fold singularities, including orbifolds C4/Γ
with isolated singularities, as well as cones over Y p,k(B4) with base space B4 = P1 × P1 or
B4 = P2 [84]. In the above cohomology classes, b2 and b5 are, respectively, the second and the
fifth Betti numbers, and Γn is the torsional part of the n-th cohomology class. In particular,
we have b2 = b5 and Γ6 = Γ2 due to Poincaré duality and universal coefficient theorem [85].14

Due to the self-duality of the 5-form field strength F5, a consistent way to capture the
relevant terms in IIB supergravity action is to write down a topological action defined on
an auxiliary 11D manifold M11 (see, e.g., [36, 45, 50, 53, 62, 88–92])

S11
2π

=
∫

M11

1
2F5 ∧ dF5 − F5 ∧ H3 ∧ G3 (4.5)

and then perform the cohomology uplift [36, 50, 53, 83]

S11
2π

→
∫

M11

1
2 F̆6 ⋆ F̆6 − F̆6 ⋆ H̆3 ⋆ Ğ3. (4.6)

In the above expression, IIB fluxes are uplifted into differential cohomology elements15

F̆6 ∈ H̆6(M11), H̆3 ∈ H̆3(M11), Ğ3 ∈ H̆3(M11), (4.7)

and the ⋆ symbol defines a bilinear product operation on Cheeger-Simons characters H̆k1(Md)×
H̆k2(Md) = H̆k1+k2(Md) [93, 94]. In particular, the integral (4.6) describes a perfect pairing
H̆k1(Md)× H̆d+1−k1(Md) → R/Z.16 The case of our interest is M11 = N4 × ∂Y , where the
auxiliary 4-manifold N4 has the boundary ∂N4 = M3 supporting the SymTFT to be derived.
Under this decomposition of M11, we can expand the F̆6, H̆3 and Ğ3 based on (4.4)

F̆6 =
∑

j

ă
(j)
4 ⋆ t̆2(j) +

∑
i

ă
(i)
2 ⋆ t̆4(i) + · · · ,

H̆3 =
∑

j

b̆
(j)
1 ⋆ t̆2(j) + · · · ,

Ğ3 =
∑

j

c̆
(j)
1 ⋆ t̆2(j) + · · · ,

(4.8)

where t̆2(j) and t̆4(i) are generators respectively corresponding to Γ2 and Γ4, with indices j

and i run over the generators. In the above expansion (4.8), we only make the torsional
part explicit while suppressing the non-torsional part in “· · · ”. This is because we only focus
on finite symmetries in this work. We defer the investigation of the non-torsional part and
its associated continuous symmetries to future work.

Performing the dimensional reduction via integrating over ∂Y , we arrive at a 4D action

S4
2π

=
∫

N4

1
2
∑
i1,i2

Λi1i2 ă
(i1)
2 ⋆ ă

(i2)
2 +

∑
i,j1,j2

∆ij1j2 ă
(i)
2 ⋆ b̆

(j1)
1 ⋆ c̆

(j2)
1 , (4.9)

14In principle, one can perform the analysis for any internal geometries with conical singularities, even for
non-Calabi-Yau geometries. For example, it would be interesting to investigate the symmetry structure for
exotic 2D (0,1) QFTs associated to Spin(7) backgrounds [86, 87], which we defer to future work.

15There are some subtitles with this auxiliary 11D formalism under differential cohomology uplift. See [36].
16We refer the reader to [51, 82, 83, 89] for physical perspective review of differential cohomology and [95]

for a more mathematical one.
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where Λi1i2 and ∆ij2j2 are linking numbers defined by

Λi1i2 ≡
∫

∂Y
t̆4(i1) ⋆ t̆4(i2) mod 1,

∆ij1j2 ≡ −
∫

∂Y
t̆4(i) ⋆ t̆2(j1) ⋆ t̆2(j2) mod 1.

(4.10)

These linking numbers can be derived from intersection numbers between divisors of the
Calabi-Yau 4-fold Y [52, 53].17 We further assume M3 = ∂N4 satisfying H2(M3,Z) = 0 so
that ă2 supported on N4 can be trivialized to ă1 on M3 [36]. This allows us to write down
a 3D action in terms of ordinary cochains

S3
2π

=
∫

M3

1
2Λi1i2a

(i1)
1 ∪ δa

(i2)
1 +

∑
i,j1,j2

∆ij1j2a
(i)
1 ∪ b

(j1)
1 ∪ c

(j2)
1 . (4.11)

It is easy to see from (4.11) that there are three classes of 0-form finite symmetries
Γ(a(i)),Γ(b(j)) and Γ(c(j)), with background fields a(i), b(j) and c(j), respectively. The geometric
counterparts of these three symmetries are

Γ(a(i)) = Γ(i)
4 , Γ(b(j)) = Γ(j)

2 , Γ(c(j)) = Γ(j)
2 , (4.12)

where Γ2 = ⊕iΓ(i)
2 and Γ4 = ⊕jΓ(j)

4 are torsional cohomology generators of H∗(∂Y ;Z)
in (4.4). However, the action (4.11) is incomplete. This can be seen by noticing that for Γ(a(i))

symmetries, the first term in (4.11) encodes the dual quantum symmetry information (if
possible gauging is allowed) since it is single-derivative in the form of Dijkgraaf-Witten/Chern-
Simons. Similarly, we need the information about the possible gauging of Γ(b(j)) and Γ(c(j))

and the dual quantum symmetries, for which the single-derivative terms are missing in (4.11).
According to [53] (see also, e.g., [26, 51] for a similar discussion in higher-dimensional

setups), these extra terms for Γ(b(j)) and Γ(c(j)) symmetries can be added by the following
argument. Notice that the first term in (4.11) is single-derivative and comes from the linking
between the following two wrapped D3-branes

D3-brane on γ
(i1)
3 , D3-brane on γ

(i2)
3 , (4.13)

where γ
(i1)
3 and γ

(i2)
3 are torsional 3-cycles dual to two generators of the cohomology class

TorH4(∂Y ;Z) = Γ4. The corresponding differential cohomology generators are t̆4(i1) and t̆4(i1).
The linking invariant between these two torsional 3-cycles is encoded in the first linking pairing
in (4.10). Similarly, one can consider the linking pairs between the following wrapped branes

F1-string on γ
(j1)
1 , NS5-brane on γ5(j2),

D1-string on γ
(j1)
1 , D5-brane on γ5(j2),

(4.14)

where γ
(j1)
1 and γ5(j2) are torsional 1-cycle and 5-cycle dual to the cohomology class

TorH2(∂Y,Z) = Γ2 and TorH6(∂Y,Z) = Γ6, respectively. The linking invariant between
these two torsional cycles can be computed via the differential cohomology pairing

Ωj2
j1

≡
∫

∂Y
t̆2(j1) ⋆ t̆

(j2)
6 mod 1, (4.15)

17For toric Calabi-Yau manifolds, intersection numbers between various divisors can be computed following,
e.g., chapter 7 of [96].
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where t̆
(j2)
6 is the j2-th generator of H̆6(∂Y ) associated to Γ6 = ⊕jΓ6(j). These give rise to

two more classes of 0-form finite symmetries

Γ(̂b(j)) = Γ6(j), Γ(ĉ(j)) = Γ6(j) (4.16)

whose background fields are b̂(j) and ĉ(j), corresponding to correspond to NS5 and D5-branes
in (4.14) respectively, in obvious notations.

Adding the extra terms from the pairing (4.14) and (4.15), we end up with the 3D
SymTFT action

S3 =2π

∫
M3

1
2Λi1i2a

(i1)
1 ∪ δa

(i2)
1 +Ωj2

j1
b

(j1)
1 ∪ b̂1(j2) − Ωj2

j1
c

(j1)
1 ∪ ĉ1(j2)+

+
∑

i,j1,j2

∆ij1j2a
(i)
1 ∪ b

(j1)
1 ∪ c

(j2)
1 .

(4.17)

Before investigating this general SymTFT, we remark that though in this work, we derive
the single-derivative terms in (4.17) from the flux non-commutativity and the associated
brane linking in (4.13) and (4.14), there is an alternative way to derive these terms via
dimensionally reducing the kinetic terms directly in 10D IIB supergravity action in terms
of the non-harmonic differential forms (see e.g., [26, 97]).

4.1.1 Defect group and relativeness

Let us start with the defect group. The defect group for the SymTFT (4.17) can be read
from (4.12) and (4.16)

D =
∏

i

Γ(a(i)) ×
∏
j

(
Γ(b(j)) × Γ(̂b(j))

)
×
∏
j

(
Γ(c(j)) × Γ(ĉ(j))

)
= Γ4 × (Γ2 × Γ6)× (Γ2 × Γ6),

(4.18)

where the Γ’s are given by the geometric data (4.4). Using the condition Γ2 = Γ6 below (4.4),
we obtain the defect group

D = Γ4 × (Γ(b)
2 × Γ(̂b)

2 )× (Γ(c)
2 × Γ(ĉ)

2 ), (4.19)

where we use indices to distinguish various Γ2 factors.
The Dirac pairing for the defect group, as we discussed around (2.10), is given by the

single-derivative terms in the SymTFT, i.e., the first line in (4.17). It is easy to see that for
the Γ2 part of the defect group, there always exist Lagrangian subgroups in the form of

Γ2 × Γ2 ⊂ (Γ(b)
2 × Γ(̂b)

2 )× (Γ(c)
2 × Γ(ĉ)

2 ), (4.20)

associated with purely “electric” or “magnetic” gapped boundary conditions. For example,
the subgroup Γ(̂b)

2 × Γ(ĉ)
2 corresponds to the gapped boundary condition

b(j) and c(j) Dirichlet, b̂(j) and ĉ(j) Neumann (4.21)

for all j. This matches the fact that for this part of the defect group, the Dirac pairing is
anti-symmetric, analogous to the su(2) SYM example in section 2.1.
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However, the Γ4 part in the defect group is not guaranteed to have a Lagrangian subgroup.
Recall one necessary condition for a Lagrangian subgroup is (2.23), which means only if
the |Γ4| = m2, m ∈ Z can a Lagrangian subgroup of Γ4 possibly exist. In other words, if
|Γ4| is not a complete square, then there is no well-defined gapped boundary condition that
can be picked for a(i) fields. Intuitively, this can be understood since the single-derivative
terms for a(i) in the SymTFT (4.17) may just include Chern-Simons-type terms similar
to (2.18) where no gapped boundary condition can be defined. According to the discussion
in section 2.2, in these cases, the associated 2D QFTs are intrinsically relative. Therefore,
we end up with the following statement:

A sufficient condition for relativeness: Let T be a 2D QFT engineered from a Calabi-Yau
4-fold Y probed by D1-branes. Then T is an intrinsically relative QFT if |TorH4(∂Y ;Z)|
is not a complete square.

This relativeness for 2D QFTs is reminiscent of an infinite class of 6D SCFTs as relative
theories [50, 63, 98, 99]. In fact, the relativeness of 6D SCFTs and our interested 2D
QFTs enjoy a related string theory origin, namely the flux-noncommutativity for the self-
dual F5 flux in IIB string theory. After dimensional reduction to the topological sector of
IIB compactification, this flux-noncommutativity leads to the obstruction of a well-defined
boundary condition “at infinity” for lower-dimensional fields inherited from F5. In the
SymTFT language, this translates into the self-linking of the operators built on D3-branes
and, as a result, prevents any Lagrangian subalgebra/gapped boundary condition. We will
illustrate this top-down approach to the 2D relativeness with an explicit example in section 5.

4.1.2 Non-invertible symmetries and their anomalies

After discussing the case when 2D QFTs are intrinsically relative, let us now consider the
case when Calabi-Yau 4-folds Y with the order of Γ4 = TorH4(∂Y ;Z) a complete square,
and further assume the SymTFT (4.17) admits gapped boundary conditions. We can split
the Γ4 generators as

Γ4 = ⊕iΓ(i)
4 = ⊕kΓ(k)

4 ⊕l Γ(l)
4 , (4.22)

and then, without loss of generality, assume a standard “electric” gapped boundary condition,
picking a Dirichlet condition for the following fields

a
(k)
1 , b

(j)
1 , c

(j)
1 Dirichlet, (4.23)

The resulting absolute QFT enjoys three classes of invertible finite symmetries

G(a(k)) = Γ(k)
4 , G(b(j)) = Γ(j)

2 , G(c(j)) = Γ(j)
2 , (4.24)

whose respective background gauge fields are those given in (4.23).
For these three classes of invertible symmetries, there are mixed anomalies from the

relevant cubic terms in the SymTFT (4.17)∫
M3

∑
k,j1,j2

∆kj1j2a
(k)
1 ∪ b

(j1)
1 ∪ c

(j2)
1 . (4.25)
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According to [100], which we also reviewed in section 2.3, gauging two of the three classes
of symmetries will promote the leftover one to non-invertible symmetries. In fact, based on
our discussion around (4.20), it is always possible to gauge the G(b(j)) and G(c(j)) symmetry
and end up with a “magnetic” boundary condition

a
(k)
1 , b̂1(j), ĉ1(j) Dirichlet. (4.26)

The resulting absolute QFT under this condition has two classes of invertible symmetries

G(̂b(j)) = Γ(j)
2 , G(ĉ(j)) = Γ(j)

2 (4.27)

as quantum symmetries from gauging G(b(j)) and G(c(j)). Furthermore, it also has non-
invertible symmetries whose topological lines obey the fusion rule

N(k) ⊗N(k) = ⊕gη
(g)
(b(j)) ⊕g η

(g)
(c(j)),

N(k) ⊗ η
(g)
(b(j)) = η

(g)
(b(j)) ⊗N(k) = N(k),

N(k) ⊗ η
(g)
(c(j)) = η

(g)
(c(j)) ⊗N(k) = N(k),

η
(g)
(b(j)) ⊗ η

(h)
(b(j)) = η

(gh)
(b(j)),

η
(g)
(c(j)) ⊗ η

(h)
(c(j)) = η

(gh)
(c(j)),

(4.28)

where η
(g)
b(j) (resp. η

(g)
c(j)) is the symmetry operator corresponding to the group element g of

G(b(j)) (resp. η
(g)
c(j)). The right-hand side of the first line in the above fusion rule is the sum

over all symmetry operators for G(b(j)) and G(c(j)), which is the condensation defect [101] for
1-gauging of the G(b(j)) × G(c(j)) symmetry. Using the identification of the G(b(j)) × G(c(j))

to the geometric torsional group Γ(j)
2 , we realize the categorical symmetry generated by the

fusion rules (4.28) is the TY(Γ(j)
2 × Γ(j)

2 ) fusion category [72].

Anomalies.

It is then natural to ask whether these non-invertible symmetries are anomalous. The relevant
single-derivative terms in the SymTFT (4.17) read

2π

∫
M3

1
2Λk1k2a

(k1)
1 ∪ δa

(k2)
1 . (4.29)

It is easy to see that when the diagonal element of Λk1k2 is non-vanishing (mod 1), the
invertible G(a(k)) symmetry has a self-anomaly. Under the Dirichlet condition (4.23) for a

(k)
1 ,

this self-anomaly can be expressed in terms of the background field profile A
(k)
1 as

2π

∫
M3

1
2ΛkkA

(k)
1 ∪ δA

(k)
1 . (4.30)

For example, the self-anomaly in (2.24) for Z2 symmetry corresponds to the case when A
(k)
1

is a Z2 background gauge field and Λkk = 1
4 .

The non-invertible symmetry generated by N(k) in (4.28) is derived from promoting
the invertible Ga(k) symmetry. According to [38] and our discussion in section 2.3, these
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non-invertible symmetries will also inherit the self-anomalies of G(a(k)). From the topological
operator perspective, the invertible symmetry Ga(k) and its non-invertible symmetry promotion
are generated by a certain topological operator L(k) in the SymTFT bulk, while the invertibility
(resp. non-invertibility) of the symmetry is determined by the behavior of the operator under
the gapped boundary conditions (4.23) (resp. (4.26)):

L(k) →
{

D(k), under (4.23)
N(k), under (4.26) (4.31)

where D(k) is the invertible symmetry operator for G(a(k)). The self-anomaly for the G(a(k))

symmetry and the non-invertible symmetry generated by N(k) then shares the same origin,
namely the topological line operator L(k) in the SymTFT is not endable on the gapped
boundary, implying the obstruction to the gauging. We will illustrate this idea via explicit
examples in section 5.

We conclude this subsection by the following remarks. The derivation for the SymTFTs
and categorical symmetries we have done so far is purely via the geometric data. A natural
question is whether the same result can be derived from the 2D field-theory information
via brane brick models. In a similar stringy setup, namely 4D QFTs on D3-branes probing
Calabi-Yau 3-folds, it was recently shown in [55] that the (co)homology data for finite global
symmetries can be directly derived from the quiver data. We believe the (co)homology data
in (4.4) can be similarly computed from the quivers and J- and E-terms. Indeed, it is computed
in, e.g., [57] that the generators of Calabi-Yau 4-folds can be derived explicitly in terms of
the gauge-invariant chiral operators of 2D QFTs. It would be interesting to further study
how to derive the geometric data determining the categorical symmetries, including the Betti
numbers b2 and b5, from the field-theory information, which we leave this for future work.

4.2 Topological operators from branes

As we reviewed in section 2, starting with a (D+1)-dimensional SymTFT, the relativeness and
the categorical symmetry structure for the associated D-dimensional QFT can be investigated
via the topological operators and their linkings in the SymTFT bulk. In principle, after
obtaining the general SymTFT (4.17), which we also rewrite here for the ease of reading

S3 =2π

∫
M3

1
2Λi1i2a

(i1)
1 ∪ δa

(i2)
1 +Ωj2

j1
b

(j1)
1 ∪ b̂1(j2) − Ωj2

j1
c

(j1)
1 ∪ ĉ1(j2)+

+
∑

i,j1,j2

∆ij1j2a
(i)
1 ∪ b

(j1)
1 ∪ c

(j2)
1 ,

(4.32)

one can try to perform the analysis of deriving topological operators from a purely field-
theoretic perspective. However, given that SymTFT enjoys a string theory embedding, it
is natural to expect there are also stringy counterparts for their topological operators. We
will show in this subsection that this is indeed the case. Following the idea introduced
in [41–44] (see also, e.g., [26, 45, 46, 48, 53, 102]), we will present a top-down approach
to topological defect line operators within the above SymTFTs, where the 1D TFT action
living on the line operator is derived from the topological sector of the brane worldvolume
action via dimensional reduction.
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Let us consider D3-branes, coupled to the self-dual F5 flux, which is the IIB origin of
the a(i) fields in the SymTFT. The topological sector of a D3-brane worldvolume theory
is given by the Wess-Zumino term [103]

SWZ
D3 =

∫
Dv1 exp

(
2πi

∫
M4

C4 + C2 ∧ (dv1 − B2) + · · ·
)

(4.33)

where we only write explicitly terms relevant to our following discussion and suppress other
terms into · · · . In the above expression, v1 is the dynamical U(1) gauge field from the open
string fluctuation, while C4, C2 and B2 are closed string sector background fields, electrically
coupled to D3-brane, D1-, and F1-string charges.

Due to the topological nature of the Wess-Zumino terms, it is certain that the dimensional
reduction of (4.33) will give rise to a topological operator. However, Wess-Zumino terms do
not capture all the topological effects of the dimensionally reduced D3-brane physics. Recall
that in the derivation of the SymTFT (4.17), the cubic terms come from the topological
sector

∫
C4 ∧ dB2 ∧ dC2 of the IIB string theory, but the single-derivative terms are inherited

from the kinetic terms, which are not topological in 10D. Similarly, in the case of reducing
the brane worldvolume action, there are also lower-dimensional topological effects captured
by the Dirac-Born-Infeld action [104]. The relevant part for us is the kinetic term for the
dynamical U(1) field from the open string sector,∫

M4
dv1 ∧ ⋆M4(dv1). (4.34)

Including the effect of this kinetic term, one can write down a generalized topological action
defined on an auxiliary 5-manifold N5 with ∂N5 = M4 (see, e.g., [45, 53])

Stop
D3 =

∫
Df̂2Df2 exp

(
2πi

∫
N5

F5 + f̂2 ∧ df2 + G3 ∧ (f2 − B2)
)

. (4.35)

Note that now f2, F5 and G3 are all U(1) connections in N5 instead of field-strengths.
Now consider the case we are interested in, namely D3-brane wrapping on a torsional

3-cycle γ
(i)
3 , corresponding to the cohomology H4(∂Y ;Z). Similarly to the dimensional

reduction of the IIB supergravity discussed in section 4.1, we uplift the brane action in
terms of differential cohomology

Stop
D3 →

∫
D ˘̂

f3Df̆3 exp
(
2πi

∫
N2×γ

(i)
3

F̆6 + ˘̂
f3 ⋆ f̆3 + Ğ3 ⋆ (f̆3 − H̆3)

)
. (4.36)

Expanding ˘̂
f3 and f̆3 as

˘̂
f3 =

∑
j

˘̂
ϕ

(j)
1 ⋆ t̆2(j) + · · · ,

f̆3 =
∑

j

ϕ̆
(j)
1 ⋆ t̆2(j) + · · · ,

(4.37)
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together with the expansion for F̆6, Ğ3 and H̆3 given in (4.8), we can dimensionally re-
duce (4.36) into

∫ ∏
j

D ˘̂
ϕ

(j)
1 Dϕ̆

(j)
1 exp

2πi

∫
N2

∑
i′

Λii′ ă
(i′)
2 −

∑
j1,j2

∆ij1j2

(
˘̂
ϕ

(j1)
1 ⋆ ϕ̆

(j2)
1 + c̆

(j1)
1 ⋆ (ϕ̆(j2)

1 − b̆
(j2)
1 )

).

(4.38)
Using ∂N2 = M1, we reduce the result in terms of ordinary cochains and write down the
following topological line operator

LD3
(i) = exp

(
2πi

∫
M1

∑
i′

Λii′a
(i′)
1

)
(4.39)

×
∫ ∏

j

Dϕ̂
(j)
0 Dϕ

(j)
0 exp

−2πi

∫
M1

∑
j1,j2

∆ij1j2

(
ϕ̂

(j1)
0 ∪ δϕ

(j2)
0 + c

(j1)
1 ∪ ϕ

(j2)
0 − b

(j2)
1 ∪ ϕ̂

(j1)
0

)
from D3-brane on γ

(i)
3 , where Λii′ and ∆ij1j2 are linking numbers defined in (4.10). Recall

that ϕ
(j)
0 and ϕ̂

(j)
0 are from the expansion via ⊕jΓ(j)

2 = Γ2 = TorH2(∂Y ;Z) generators, it is
easy to see the above line operator is a stacking of an invertible line operator (the first line
in (4.39)) and a non-invertible line built from a path integral over 1D twisted Γ(j1)

2 × Γ(j2)
2

Dijkgraaf-Witten theories (the second line in (4.39)).
Similarly, one can derive line operators from respectively a F1-string and a D1-string

wrapping on torsional 1-cycle γ
(j)
1 , for which the result simply is

LF1
(j) = exp

2πi

∫
M1

∑
j′

Ωj
j′b

j′

1

 , LD1
(j) = exp

2πi

∫
M1

∑
j′

Ωj
j′c

j′

1

 . (4.40)

which are invertible line operators.

4.2.1 Revisiting relativeness, non-invertible symmetries and their anomalies

The relativeness, non-invertible symmetries, and their anomalies discussed in section 4.1 can
now be revisited from the topological operators’ perspective. Here, we briefly present a rough
discussion and leave the explicit investigation with examples in section 5.

The possible intrinsic relativeness for the 2D QFT is due to the linking

⟨LD3
(i1)(M1)LD3

(i2)(M ′
1)⟩, (4.41)

which in general is non-trivial due to the SymTFT term 2π
∫

M3
1
2Λi1i2a

(i1)
1 ∪ δa

(i2)
1 , similarly

to (2.46) (see also appendix B in [38]). This non-trivial linking can prevent the existence
of a maximally isotropic subspace for {LD3

(i) }, which aligns with the case when Γ4 does not
have a Lagrangian subgroup, as discussed in section 4.1.1.

Now consider the case when the linking invariant (4.41) for the set {LD3
(i) } admits a

Lagrangian subalgebra. Then, there are (at least) two gapped boundary conditions that
can be picked: the “electric” one (4.23) and the “magnetic” one (4.26). The resulting
invertible (4.24) and the non-invertible symmetries (4.28) for the respective absolute QFTs
can be seen as follows.
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• Under the “electric” condition (4.23), F1-string and D1-string can terminate on the
boundary due to the Dirichlet condition for b

(j)
1 and c

(j)
1 fields. This means F1-string

and D1-string serve as local heavy objects charged under G(b(j)) = Γ(j)
2 , G(c(j)) = Γ(j)

2
symmetries in (4.24) with their worldsheets wrapping on cone(γ(j)

1 ), stretching between
the D1-branes worldvolume (where the 2D QFT is engineered) and infinity (where the
asymptotic boundary ∂Y is located). At the same time, their magnetic dual NS5-brane
and D5-brane, serve as the topological operators at infinity along ∂Y . For the L(k) line
from D3-brane, the non-invertible part from Dijkgraaf-Witten theories, i.e., the second
line in (4.39), gets trivialized, while the invertible part survives as a topological line in
the 2D QFT. This leads to the generator D(k) for the Ga(k) symmetry in the absolute
QFT,

LD3
(k) → D(k) ≡ exp

(
2πi

∫
M1

∑
i

Λkia
(i)
1

)
. (4.42)

In total, the 2D QFT enjoys an invertible symmetry (4.24), which we reproduce below
for ease of reading:

G(a(k)) = Γ(k)
4 , G(b(j)) = Γ(j)

2 , G(c(j)) = Γ(j)
2 , (4.43)

See figure 3 (a) for a schematic illustration of the brane configuration under this “electric”
boundary condition.

• Under the “magnetic” condition (4.26), F1-string and D1-string are still dynamical
along the asymptotic boundary ∂Y in string theory (or field-theoretically, gapped
boundary of the SymTFT). This means F1-string and D1-string serve as topological
line operators generating the quantum symmetries G(̂b(j)) ×G(ĉ(j)) in (4.27) via gauging
the G(b(j)) × G(c(j)) symmetry. NS5-brane and D5-brane, ending at infinity along ∂Y ,
build the charged objects for this quantum symmetry. For the LD3

(k) line from D3-branes,
both invertible and non-invertible parts are not trivialized. Therefore, in the resulting
2D QFT, one ends up with a non-invertible line defect N(k) as well as two invertible
defects ηb(j) and ηc(j)

LD3
(k) → N(k), L

(F1)
(j) → ηb(j) , L

(D1)
(j) → ηc(j) , (4.44)

whose fusion rules are given by (4.28), generating

G = TY(Γ(j)
2 × Γ(j)

2 ) fusion categorical symmetry. (4.45)

See figure 3 (b) for a schematic illustration of the brane configuration under this
“magnetic” boundary condition.

Note that the above discussion also reproduces (4.31), namely the invertible symmetry Ga(k)

and its non-invertible symmetry promotion correspond to the same operator in the SymTFT
bulk, whose stringy origin is a D3-brane.

The anomalies of these non-invertible symmetries are encoded back in the linking
invariant (4.41). If elements in the set {LD3

(k)} ⊂ {LD3
(i) } generating the Ga(k) and the non-

invertible defects N(k) always have non-trivial linking among them, then it is not possible to
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Figure 3. Brane origins of symmetry operators and charged objects under different polarizations,
namely different topological boundary conditions. r is the coordinate of the radial direction for the
conical singularity of the Calabi-Yau 4-fold Y . At r = 0, we have the singularity probed by D1-branes,
while at r = ∞, boundary conditions for various SymTFT fields are picked. Symmetry operators
are engineered from branes at r = ∞ (colored in green), while charged defects are built from branes
terminating at r = ∞ (colored in red).

simultaneously condensing all lines in {LD3
(k)}. This implies an anomaly via the obstruction to

the gapped boundary condition as an obstruction to gauging the Ga(k) symmetry or gauging
the non-invertible symmetry generated by N(k).

4.2.2 Hanany-Witten transition

One of the typical properties of non-invertible symmetry operators is their behavior when
passing through the charged objects. In 2D, moving a non-invertible line operator past a
genuine local operator leaves behind another topological line attached to a defect operator
and a T-shape junction. See figure 4 (a).

This non-trivial action of non-invertible symmetries admits a string theory interpretation
as the Hanany-Witten transition [105]. Consider the “magnetic” polarization (4.26) where
the associated 2D QFTs enjoy TY(Γ(j)

2 × Γ(j)
2 ) categorical symmetry. One can build local

charge operators from

(p, q) 5-brane wrapping on cone(γ5(j)) (4.46)

where p and q label the D5-brane and NS5-brane charges, respectively. Recall that these
wrapping branes are sources for the b̂ and ĉ fields in the SymTFT (4.17), implying their
linkings with D1-strings and F1-strings, as discussed in (4.14). Therefore, the above (p, q)
5-brane gives rise to the local operator carrying charge (q, p) under the invertible part
G(̂b(j)) × G(ĉ(j)) within the TY(Γ(j)

2 × Γ(j)
2 ) categorical symmetry:

(p, q) 5-brane wrapping on cone(γ5(j))
↕

(q, p)-charged local operator under G(̂b(j)) × G(ĉ(j)).
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La

Lb Lb= (−1)

D3-brane

(p, q) 5-brane
D3-brane

(p, q) 5-brane
(p, q)-string

(a) (b)

Figure 4. (a) Motion of the non-invertible symmetry operator passing through a local operator.
A topological line is created, attaching to the non-invertible line and the local operator. (b) This
non-trivial action is realized in string theory as the Hanany-Witten transition. The string theory
origins for various field-theoretic objects are given by (4.39), (4.40), and (4.46).

Now, consider a wrapped D3-brane moving through this (p, q) 5-brane along the transverse
direction of the 2D spacetime. A (p, q)-string18 will be created and attached between the D3-
brane and the (p, q) 5-brane. This created string is exactly the topological line operator (4.40)
generating the G(̂b(j)) × G(ĉ(j)) symmetry. This Hanany-Witten transition configuration
exactly matches the non-trivial action of the non-invertible symmetry line on local charged
objects. See figure 4 (b). We remark that this Hananay-Witten origin for actions of non-
invertible symmetries is ubiquitous for QFTs admitting string theory embeddings. See,
e.g., [41, 44, 45, 53].

5 Examples

In this section, we discuss explicit examples of 2D QFTs engineered from Calabi-Yau 4-folds
with D1-brane probes. The following three subsections correspond to the three facets of our
general discussion in previous sections: intrinsic relativeness, non-invertible symmetries, and
the manifestation of their anomalies as obstructions to gauging. For simplicity, we will only
provide quiver diagrams but not the full J- and E-terms, since we are not making use of them.

5.1 Y p,k(P2): when are they intrinsically relative?

In section 4.1.1, we obtained a sufficient condition for the intrinsic relativeness of 2D QFTs
associated with Calabi-Yau 4-folds. We now apply this condition to an infinite class of
Calabi-Yau 4-folds, namely cones over Sasaki-Einstein 7-manifold Y = Y p,k(P2).

The toric data of this class of Calabi-Yau 4-folds is given by a convex polytope with
Z4 coordinates [84]

p1 = (0, 0, 0, 1), p2 = (0, 0, p, 1), p3 = (1, 0, 0, 1), p4 = (0, 1, 0, 1), p5 = (−1,−1, k, 1). (5.1)

The associated 2D QFTs living on D1-brane probes have quiver gauge theory descriptions
constructed in [106], to which we refer the reader for more details.

The Sasaki-Einstein base space Y p,k(P2) gives rise to the asymptotic boundary ∂Y , with
the cohomology classes [84]

H∗(S7/Z2;Z) =
{
Z, 0,Z⊕ Zgcd(p,k), 0,Γ4,Z,Zgcd(p,k),Z

}
, (5.2)

18For the reader not familiar with the notation: A (p, q)-string is a type IIB S-duality covariant bound state
carrying p charges of F1-string and q charges of D1-string.
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where Γ4 = Z2/⟨(0,−3p + k), (k, p)⟩. Using the Smith normal form decomposition,19 we
can derive the general result (see also [52])

Γ4 = Zgcd(p,k) × Z k(3p−k)
gcd(p,k)

. (5.3)

It is easy to see the second, fourth, and sixth cohomology classes are purely torsional:
TorH(i)(S7/Z2;Z2) = H(i)(S7/Z2;Z2), i = 2, 4, 6. For each of these classes, there is one
corresponding differential cohomology generator

t̆i ∈ H̆ i(S7/Z2). (5.4)

The expansion of differential cohomology uplifts of various IIB fluxes in this example is

F̆6 = ă4 ⋆ t̆2 + ă
(1)
2 ⋆ t̆4(1) + ă

(2)
2 ⋆ t̆4(2) · · · ,

H̆3 = b̆1 ⋆ t̆2 + · · · ,

Ğ3 = c̆1 ⋆ t̆2 + · · · ,

(5.5)

where we label the background fields for Zgcd(p,k) and Z k(3p−k)
gcd(p,k)

by cochains ă
(1)
1 and ă

(2)
1 ,

respectively. The corresponding SymTFT terms in (4.17) read

2π

∫
M3

Λi1i2a
(i1)
1 ∪ δa

(i2)
1 . (5.6)

As we discussed in section 2 and section 4.1.1, a sufficient condition for intrinsic relative-
ness is when |Γ4| is not a perfect square, due to the absence of the Lagrangian subgroup of
the defect group. For this class of theories, we arrive at the following statement:

The 2D QFT for Y p,k(P2) is intrinsically relative if k(3p − k) is not a perfect
square.

One can perform a similar analysis for other classes of theories, e.g., orbifold singularities
and Y p,k(P1 ×P1), and obtain the sufficient condition for 2D QFTs being intrinsically relative.
In the following subsections, we will focus on Calabi-Yau 4-folds admitting absolute QFTs
and their non-invertible symmetries, possibly with anomalies.

5.2 Y 2,0(P1 × P1): Rep(D4) symmetry

Let us now consider the Calabi-Yau 4-fold given by the cone over the Sasaki-Einstein 7-
manifold Y 2,0(P1×P1), which belongs to an infinite class of geometries known as Y p,k(B4) [84],
where B4 denotes a four-dimensional base space that is either P1 × P1 or P2. The 2D QFTs
associated with this general class of Calabi-Yau 4-folds were systematically constructed and
studied in [106]. The toric data for Y 2,0(P1 × P1) is given by the polytope with the following
vertex coordinates in Z4 [106]

p1 = (1, 1, 0, 0), p2 = (1, 0, 1, 0), p3 = (1,−1, 0, 0), p4 = (1, 0,−1, 0), p5 = (1, 0, 0, 2),
s = (1, 0, 0, 1), q = (1, 0, 0, 0)

(5.7)
19See the computation, e.g., https://en.wikipedia.org/wiki/Smith_normal_form.
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Figure 5. Quiver diagram for Y 2,0(P1 × P1) probed by D1-branes.

The associated 2D QFT living on D1-brane probes enjoys a quiver gauge theory description,
with quiver diagram given in figure 5.20,21 We refer the reader to [76, 106] additional details
on this theory.

The SymTFT for finite symmetries of this 2D QFT was constructed in [53]. Here, we
revisit the result and present some further discussion. The cohomology classes of Y 2,0(P1 ×
P1) read

H∗(Y 2,0(P1 × P1);Z) =
{
Z, 0,Z2 ⊕ Z2, 0,Z⊕ Z2 ⊕ Z2,Z2,Z2,Z

}
(5.8)

The differential cohomology generators for torsional parts read

t̆2 ∈ H̆2(Y 2,0(P1 × P1)), t̆6 ∈ H̆6(Y 2,0(P1 × P1))
t̆4(1) ∈ H̆4(Y 2,0(P1 × P1)), t̆4(2) ∈ H̆4(Y 2,0(P1 × P1)),

(5.9)

The expansion of uplifts of various IIB fluxes is

F̆6 = ă4 ⋆ t̆2 + ă2 ⋆ t̆4(1) + ˘̂a2 ⋆ t̆4(2) · · · ,

H̆3 = b̆1 ⋆ t̆2 + · · · ,

Ğ3 = c̆1 ⋆ t̆2 + · · · .

(5.10)

20For a given Calabi-Yau 4-fold, the associated 2D gauge theories are not unique. Here we pick one of the
phases for the Y (2,0)(P1 × P1) found in [106]. Different 2D QFTs for a given geometry are connected via the
N = (0, 2) triality [107].

21It is natural to ask how the non-invertible symmetries interplay with triality. As happens for ordinary
global symmetries, we expect the dual QFTs connected by triality to enjoy the same non-invertible global
symmetries. This can be understood since they share the same asymptotic boundary geometry in the string
theory background. Despite this general expectation, it would still be interesting to implement non-invertible
symmetries at the level of quivers and see how they interplay with the quiver mutations (i.e., field-theory
trialities).
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The linking numbers between various cohomology generators are given by [53]

Λ21 = Λ12 =
∫

t̆4(1) ⋆ t̆4(2) mod 1 = 1
2 ,

∆i = −
∫

t̆4(1) ⋆ t̆2 ⋆ t̆2 mod 1 = 1
2 ,

Ω =
∫

t̆2 ⋆ t̆6 = 1
2 .

(5.11)

Substituting these linking numbers in the general form of the SymTFT (4.17), one obtains
the SymTFT for the Y 2,0(P1 × P1) theory [53]

S3 = 2π

2

∫
M3

a1 ∪ δâ1 + b1 ∪ δb̂1 + c1 ∪ δĉ1 + a1 ∪ b1 ∪ c1 (5.12)

where all fields are Z2 cochains, whose differential cochain counterparts are in (5.10) under
obvious notations.

The topological line operators in this SymTFT can be computed from brane actions
explicitly, following the steps in section 4.2. Substituting the linking numbers (5.11) into the
general results for wrapped D3-brane (4.39), F1-string and D1-string (4.40), one obtains

LD3
(1) = exp

(
πi

∫
M1

â1

)
×
∫

Dϕ̂0Dϕ0 exp
(

πi

∫
M1

ϕ̂0 ∪ δϕ0 + c1 ∪ ϕ0 − b1 ∪ ϕ̂0

)
,

LD3
(2) = exp

(
πi

∫
M1

a1

)
, LF1 = exp

(
πi

∫
M1

b1

)
, LD1 = exp

(
πi

∫
M1

c1

)
.

(5.13)

In addition to the four line operators above, it is also possible to derive other two operators
from NS5-brane and D5-brane wrapping on the torsional 5-cycle γ5, following the same
steps in section 4.2,

LNS5 = exp
(

πi

∫
M1

b̂1

)
×
∫

Dϕ̂0Dϕ0 exp
(

πi

∫
M1

ϕ̂0 ∪ δϕ0 + c1 ∪ ϕ0 − a1 ∪ ϕ̂0

)
,

LD5 = exp
(

πi

∫
M1

ĉ1

)
×
∫

Dϕ̂0Dϕ0 exp
(

πi

∫
M1

ϕ̂0 ∪ δϕ0 + a1 ∪ ϕ0 − b1 ∪ ϕ̂0

)
,

(5.14)

“Electric” boundary condition for anomalous (Z2)3 symmetry. The generic “electric”
boundary condition (4.23) in this example is

a1, b1, c1 Dirichlet, â1, b̂1, ĉ1 Neumann. (5.15)

Under this boundary condition, on the one hand, the three invertible line operators in the
second line of (5.13) are trivialized along the gapped boundary. This, in turn, leads to
the fact the D3-brane on γ

(2)
3 , F1-string and D1-string on γ1 can end “at infinity”, serving

as the heavy charged objects. See figure 6 (a) for a schematic depiction. On the other
hand, the three non-invertible lines LD3

(1), LNS5 and LD5 are reduced to their invertible parts,
generating the three Z2 symmetries

G(0) = Z(a)
2 × Z(b)

2 × Z(c)
2 , (5.16)
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Figure 6. Brane origins for local operators in 2D QFTs for Y (2,0)(P1 × P1) under various boundary
conditions at infinity. The global symmetries for these three polarizations are discussed in the main
text as (a) Anomalous (Z2)3 symmetry, (b) Rep(D4) symmetry, and (c) D4 symmetry.

aligning with the general form in (4.24) for the resulting absolute QFT. This (Z2)3 symmetry
has an anomaly given by the following 3D invertible TFT

exp
(

πi

∫
M3

A ∪ B ∪ C

)
, (5.17)

where A, B, and C are background profiles for the a1, b1 and c1 under Dirichlet gapped
boundary conditions.22

“Magnetic” boundary condition for Rep(D4) symmetry. The generic “magnetic”
boundary condition (4.26) via gauging the Z(b)

2 × Z(c)
2 symmetry is

a1, b̂1, ĉ1 Dirichlet, â1, b1, c1 Neumann. (5.18)

Under this boundary condition, on the one hand, line operators LD3
(2), LNS5 and LD5 trivialize

along the gapped boundary, on which they terminate and serve as charged defects for the 2D
QFT. See figure 6 (b) for an illustration. Interestingly, the non-invertible part of LD3

(1) survives
in this case. Together with the invertible topological lines LF1 and LD1, this generates a
non-invertible symmetry with TY(Z2 × Z2) fusion rules

LD3
(1) ⊗ LD3

(1) = 1⊕ LF1 ⊕ LD1 ⊕ LF1LD1,

LD3
(1) ⊗ LF1 = LF1 ⊗ LD3

(1) = LD3
(1),

LD3
(1) ⊗ LD1 = LD1 ⊗ LD3

(1) = LD3
(1),

LF1 ⊗ LF1 = LD1 ⊗ LF1 = 1.

(5.19)

The fusion rules, in general, do not fully fix the fusion category. For the TY(Z2 × Z2) non-
invertible symmetry, there are four fusion categories that obey the same fusion rules, three of
which are non-anomalous, namely Rep(D4),23 Rep(Q8) and Rep(H8)24 (see, e.g., [5, 9, 73, 74]).

22This anomaly is usually referred to as a type III anomaly, especially in the condensed-matter literature.
See, e.g., [108].

23We use the notation Dn for order-2n dihedral group. D4 group in our notation has order 8, which
sometimes is referred to as D8 in other literature.

24H8 is the eight-dimensional Kac-Paljutkin Hopf algebra [109].
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In order to identify the non-invertible symmetry with the above fusion rules, we can consider
gauging the full non-invertible symmetry, which corresponds to the “dyonic” gapped boundary
condition below for the SymTFT.

“Dyonic” boundary condition for D4 symmetry. Starting with the “electric” boundary
condition with (Z2)3 symmetry, we can consider gauging the Z(a)

2 symmetry, and end up
with the following “dyonic” boundary condition

â1, b1, c1 Dirichlet, a1, b̂1, ĉ1 Neumann. (5.20)

Under this condition, there are three Z2 symmetries Z(̂a)
2 , Z(b)

2 and Z(c)
2 with respective

background field profiles Â, B and C under Dirichlet boundary conditions. See figure 6 (c)
for brane origins of charged defects under this polarization. However, the genuine global
symmetry here is not a direct product of the three Z2 factors, due to the extra condition

δÂ = BC (5.21)

inherited from the equation of motion of a in the SymTFT. According to [108] (see also [5, 110–
112]), the above equation leads to a group extension Z(̂a)

2 ⋊ (Z(b)
2 × Z(c)

2 ) = D4.25

The “magnetic” boundary condition (5.18) can then be derived from gauging the whole
D4 symmetry. Note that the non-invertible topological line LD3

(1) generating the Rep(D4)
symmetry under “magenetic” condition now ends at infinity and becomes charged defects
under “dyonic” condition. See figure 6 (c) for an illustration. This identifies the non-invertible
symmetry with TY(Z2 × Z2) fusion rules (5.19) as the Rep(D4) categorical symmetry [5]
and aligns with the fact that the Rep(D4) symmetry is non-anomalous and gaugeable with
D4 quantum symmetry.

We conclude this subsection by remarking that this top-down SymTFT picture matches
the generalized gauging of Rep(D4) symmetry discussed in [73, 74]. Namely, starting with the
“magnetic” boundary condition for Rep(D4) symmetry, topological manipulations change this
boundary condition to others, realizing different gauging choices of the Rep(D4) symmetry.
A portion of the generalized gauging for Rep(D4) and its top-down SymTFT configuration
is shown in figure 7.

5.3 C4/Z4: anomalies of the non-invertible symmetry

The local Calabi-Yau 4-fold C4/Z4 is defined by the following orbifold action

(z1, z2, z3, z4) → (eπi/2z1, eπi/2z2, eπi/2z3, eπi/2z4). (5.22)

The toric data of C4/Z4 is given by the polytope whose vertices have the following Z4

coordinates

p1 = (1, 1, 0, 0), p2 = (1, 0, 1, 0), p3 = (1, 0, 0, 1), p4 = (1,−1,−1,−1), q = (1, 0, 0, 0). (5.23)

The associated 2D QFT living on D1-brane probes has a quiver gauge theory description.
Figure 8 shows the corresponding quiver diagram. We refer the reader to [56] for detailed

25We thank Yunqin Zheng for pointing out relevant references. We also thank Jonathan J. Heckman, Max
Hübner and Hao Y. Zhang for discussions on this point.
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Figure 7. Some gauging manipulations for Rep(D4) symmetry and their top-down SymTFT picture.
The “electric” and “dyonic” boundary conditions can be realized via gauging the Z2 × Z2 subcategory
and gauging the whole Rep(D4), respectively. The resulting quantum symmetry for the “electric”
polarization is denoted by VecωIII

(Z2)3 , meaning a (Z2)3 symmetry with type III anomaly [108].

Figure 8. Quiver diagram for C4/Z4 probed by D1-branes.

information on this theory.
The asymptotic boundary in this case is simply the seven-dimensional lens space S7/Z4,

whose cohomology classes read

H∗(S7/Z2;Z) = {Z, 0,Z4, 0,Z4, 0,Z4,Z} . (5.24)

The expansion of differential uplifts of various IIB fluxes is the same as in C4/Z4

F̆6 = ă4 ⋆ t̆2 + ă2 ⋆ t̆4 + · · · ,

H̆3 = b̆1 ⋆ t̆2 + · · · ,

Ğ3 = c̆1 ⋆ t̆2 + · · · ,

(5.25)
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The linking numbers between various cohomology generators can be computed as (see also [52])

Λ21 = Λ12 =
∫

t̆4 ⋆ t̆4 mod 1 = 1
4 ,

∆i = −
∫

t̆4 ⋆ t̆2 ⋆ t̆2 mod 1 = 1
4 ,

Ω =
∫

t̆2 ⋆ t̆6 = 1
4 .

(5.26)

Substituting these linking numbers in the general form of the SymTFT (4.17), one
obtains the SymTFT for the C4/Z4 theory

S3 = 2π

4

∫
M3

1
2a1 ∪ δa1 + b1 ∪ δb̂1 + c1 ∪ δĉ1 − a1 ∪ b1 ∪ c1, (5.27)

where all gauge fields are Z4-valued cochains, whose differential cochain counterparts are
in (5.25) under obvious notations. The defect group is given by

D = Z(a)
4 × Z(b)

4 × Z(̂b)
4 × Z(c)

4 × Z(ĉ)
4 , (5.28)

with Dirac pairing matrix extracted from the coefficients of the single-derivative terms in
the SymTFT 

1
4 0 0 0 0
0 0 1

4 0 0
0 1

4 0 0 0
0 0 0 0 1

4
0 0 0 1

4 0

 . (5.29)

The topological line operators from D3-branes, F1-strings and D1-strings can be computed
from the general form in (4.39) and (4.40) using the linking number (5.26):

LD3 = exp
(

πi

2

∫
M1

â1

)
×
∫

Dϕ̂0Dϕ0 exp
(

πi

2

∫
M1

ϕ̂0 ∪ δϕ0 + c1 ∪ ϕ0 − b1 ∪ ϕ̂0

)
,

LF1 = exp
(

πi

2

∫
M1

b1

)
, LD1 = exp

(
πi

2

∫
M1

c1

)
.

(5.30)

One can compute similarly line operators from NS5-branes and D5-branes wrapping on the
torsional 5-cycle. Their concrete expression is not important for our following discussion,
so we will just simply donote them as LNS5 and LD5.

“Electric” boundary condition for Z2 × (Z4)2 symmetry. First, consider the polar-
ization with the following Lagrangian subgroup

L = Z(a)
2 × Z(̂b)

4 × Z(ĉ)
4 . (5.31)

The corresponding gapped boundary condition of the SymTFT for b1 and c1 are standard
Dirichlet boundary conditions, while for a1 it is a bit special:

a1|∂M3 = A1. (5.32)
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Figure 9. Brane origins for local operators in 2D QFTs for C4/Z4 under various boundary conditions
at infinity. (L(D3))2 is engineered from a collection of two D3-branes. The global symmetries for these
three polarizations are discussed in the main text as (a) Anomalous Z2 × (Z4)2 symmetry, and (b)
Anomalous TY(Z4 × Z4) non-invertible symmetry.

Similarly to (2.32), the above condition constrains the Z4-valued a1 to a Z2-valued background
gauge field profile A1, implying the quotient by Z(a)

2 ⊂ Z(a)
4 Lagrangian subgroup. In the

SymTFT language, this is to say LD3 does not compose any Lagrangian subalgebra, namely
there is no gapped boundary for it to ends. However, condensing the subalgebra 1⊕ (LD3)2

is admitted, and it define a topological boundary on which (LD3)2 can end. From the string
theory perspective, this means the boundary condition at infinity does not allow a single
D3-brane to end, but a collection of two D3-branes can terminate at infinity, giving rise to
the charged defect. See figure 9 (a) for an illustration.

The resulting absolute QFT enjoys an invertible (Z2)3 global symmetry, as discussed
in the general form (4.24), reading

G = L∨ = Z∨
2 × Z(b)

4 × Z(c)
4 , (5.33)

with Z∨
2 = Z(a)

4 /Z(a)
2 due to the exact sequence

1 → Z(a)
2 → Z(a)

4 → Z∨
2 → 1. (5.34)

Furthermore, this Z2 × (Z4)2 symmetry suffers from anomalies captured by the following
invertible 3D TFT

2π

4

∫
M3

A1 ∪ δA1 − A1 ∪ B1 ∪ C1. (5.35)

where B1 and C1 are Dirichlet boundary profiles for b1 and c1 fields. In the above invertible
TFT, the first term shows a self ’t Hooft anomaly for the Z∨

2 symmetry, while the second
cubic term captures a mixed anomaly between Z∨

2 , Z(b)
4 and Z(c)

4 .

“Magnetic” boundary condition for anomalous TY(Z4 × Z4) symmetry. Based
on our discussion in section 4, one can gauge the Z(b)

4 × Z(c)
4 symmetry and end up with

the following Lagrangian subgroup

L = Z(a)
2 × Z(b)

4 × Z(c)
4 . (5.36)
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The corresponding gapped boundary condition of the SymTFT for a1 is not changed, but
now b̂1 and ĉ1 get Dirichlet boundary conditions. In order to read the global symmetry for
the resulting absolute QFT, notice that the associated quotient for the defect group is

L∨ = D/L ∼= Z∨
2 × Z(̂b)

4 × Z(ĉ)
4 . (5.37)

However, this is not the genuine global symmetry. Instead, with the presence of the cubic
anomaly term (2π/4)

∫
M3

A1 ∪ B1 ∪ C1 in (5.35) under the “electric” polarization, the Z∨
2

part is not a direct product with the other two factors but is promoted to a non-trivial Z2
extension.26 The resulting symmetry reads

TY(Z(̂b)
4 × Z(ĉ)

4 ) fusion categorical symmetry. (5.38)

The fusion rules, falling in the general form (4.28), for this non-invertible symmetry can be
computed explicitly from the topological line operators engineered from D3-brane, F1-string
and D1-string in (5.30).

According to our discussion in sections 2.3.2 and 4.2.1, it is now straightforward to see
that this non-invertible symmetry is anomalous. Let us assume this symmetry is gaugeable.
From the defect group point of view, this is to say there is a polarization for which the
Lagrangian subgroup is given by the L∨ uplift. However, due to the 1

4 factor in red in (5.29),
L∨ cannot be embedded back in the D as a Lagrangian subgroup. This means the assumed
polarization of the defect group obtained from gauging the TY(Z4 × Z4) symmetry, in fact,
does not exist, implying this non-invertible symmetry is anomalous. From the SymTFT and
its string theory origin point of view, this translates to the fact that only a collection of two
D3-branes wrapping on torsional 3-cycles are allowed to end at infinity, due to the self-linking
property of D3-branes. This prevents the existence of a “dyonic” boundary condition (named
after the Y (2,0)(P1 × P1) example in section 5.2), where other lines built from D3-branes can
terminate. In other words, the boundary condition after an attempt of gauging TY(Z4 × Z4)
symmetry is obstructed, implying an anomaly of this non-invertible symmetry.
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