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ABSTRACT: A new type of quiver theories, denoted twin quivers, was recently introduced for
studying 5d SCFTs engineered by webs of 5-branes ending on 7-branes. Twin quivers provide
an alternative perspective on various aspects of such webs, including Hanany-Witten moves
and the s-rule. More ambitiously, they can be regarded as a first step towards the construction
of combinatorial objects, generalizing brane tilings, encoding the corresponding BPS quivers.
This paper continues the investigation of twin quivers, focusing on their non-uniqueness, which
stems from the multiplicity of toric phases for a given toric Calabi-Yau 3-fold. We find that
the different twin quivers are necessary for describing what we call quiver tails, which in turn
correspond to certain sub-configurations in the webs. More generally, the multiplicity of twin
quivers captures the roots of the Higgs branch in the extended Coulomb branch of 5d theories.
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1 Introduction

Quantum Field Theories in 5d are notoriously hard to construct. In the case of supersymmetric
theories, String/M Theory provides various approaches to engineer 5d Superconformal Field
Theories (SCFTs). For instance, M-theory on a toric Calabi-Yau 3-fold (CY3) engineers a
5d SCFT in the transverse directions [1, 2].! An alternative realization of 5d SCFTs is on
the worldvolume of systems of webs of (p,q) 5-branes in type IIB String Theory [18, 19].
In fact, it turns out that these two approaches are related by dualities, and the (p, ¢)-web
corresponds to the spine of the toric diagram for the CY3 [19, 20].

An interesting piece of information about a 5d SCFT is its spectrum of BPS particles,
which can be encoded in a BPS quiver.? It turns out that the BPS quiver for a 5d theory

'The geometric engineering of 5d theories has been thoroughly studied beyond the toric case. See for
instance [3-17].
2See [21] for an introduction to BPS quivers.



engineered via M-theory on a toric CY3 coincides with the quiver on the worldvolume of
D3-branes probing the same geometry [22].> The latter is a problem with a long and honored
history that culminated with the introduction of brane tilings (also known as dimer models),
which significantly simplify the connection between geometry and quiver theories [23, 24].
Brane tilings can be represented by bipartite graphs on a 2-torus that encode the quiver
and superpotential of the corresponding gauge theories and, simultaneously, reduce the
determination of the associated CY3 to a combinatorial problem. They are physical brane
configurations, connected via T-duality to the D3-branes on toric CYj3’s.

Brane tilings have been generalized to bipartite field theories (BFTs), a class of quiver
theories defined by bipartite graphs on Riemann surfaces, which enjoy many of the combina-
torial properties and connections to toric geometry of brane tilings [25-29].* In the context of
BFTs, there is an interesting operation known as untwisting, which maps a bipartite graph on
Riemann surface to a new embedding of the same graph on a generically different Riemann
surface. For the brane tiling encoding the BPS quiver for a 5d SCFT engineered by M-theory
on a toric CY3s, the BFT obtained by untwisting is closely related to the (p,q)-web that
engineers it. This connection is related to mirror symmetry and is another manifestation of
the duality connecting both String/M Theory realizations of the 5d SCFT.

To visualize the Higgs branch of 5d theories, it is useful to terminate the legs of (p, q)-
webs on suitable 7-branes. This opens up the possibility of having more than one 5-brane
terminating on a given 7-brane. This imposes an extra constraint due to the s-rule, which
has far reaching consequences. In these cases, the (p, q)-web can be regarded as the spine of a
generalization of a toric diagram in which boundary edges are merged. The resulting polytopes,
which include white and black dots, are called generalized toric polygons (GTPs) [31-33].
GTPs raise natural new questions, including their geometric interpretation and whether the
corresponding BPS quivers are captured by some objects generalizing brane tilings.

Interesting progress along these lines was made recently in [34] and [35]. Twin quivers,
a new type of quiver theories that provide an alternative perspective on various aspects of
the webs of 5- and 7-branes associated to generic GTPs, including their mutations and the
s-rule, were introduced in [35]. Various methods for the construction of twin quivers were
introduced in [35]. Untwisting of brane tilings plays an important role in them. In view of
the toric case, it is natural to expect that twin quivers provide a first step towards the BPS
quivers of 5d SCFTs associated to GTPs and their geometric description.

This paper continues the investigation of twin quivers, focusing on the physical significance
of the ones obtained from brane tilings associated to multiple toric phases of a single underlying
CY3. This multiplicity was already noticed in [35]. Remarkably, we find that the different
twin quivers correspond to different chambers in the extended Coulomb branch of the 5d
SCFT sensitive to the roots of the Higgs branch. As a consequence, this provides a method
for constructing GTPs including white dots starting from standard toric theories.

This paper is organized as follows. Section 2 reviews the brane web and geometric
realizations of 5d theories, GTPs and twin quivers. Section 3 provides a first approach
to the issue of twin quivers arising from multiple toric phases. Section 4 starts the study

3To be precise, the BPS quiver is for the 5d theory on S* x RY3.
A closely related class of theories was considered in [30].



of brane webs, twin quivers and their mutations for theories associated to non-chiral Zy
orbifolds of the conifold. Section 5 considers additional toric phases for the same orbifolds
of the conifolds, introducing the concept of quiver tails. It also discusses how to assign
twin quivers for different points on the extended Coulomb branch using mirror symmetry.
In addition it considers the decoupling of tails and connects it to the operation of node
merging in the construction of twin quivers. Section 6 presents several additional examples.
Section 7 discusses the general structure of quiver tails obtained by mutation of twin quivers
containing an arbitrary number of bidirectional arrows between nodes. Section 8 proposes the
combination of quiver tails and gluing for generating twin quivers for general GTPs. Finally,
section 9 presents our conclusions and future directions.

2 Brane webs and twin quivers for 5d theories

5d SCFTs can be engineered on webs of 5-branes in Type IIB String Theory. Part of the
information on these webs can be efficiently encoded in the so-called generalized toric polygons
(GTPs) [31-33]. In turn, every GTP can be associated to a twin quiver, which provide, for
example, an alternative perspective on the mutations and s-rule of the associated webs. In
this section we review the engineering of 5d SCF'Ts using brane webs, and the construction
of the associated GTPs and twin quivers.

2.1 Basics on 5-brane webs for 5d SCFTs

Webs of 5-branes in Type IIB String Theory provide a powerful tool for studying the dynamics
of a large class of 5d SCFTs theories [19]. The 5-branes fully extend on the (01234) directions,

8 = 29 = 0 in the remaining directions.

span a line on the (56) plane and sit at the point 27 = z
Most of the interesting physics is captured by the configuration on the (56) plane, to which
we will refer as the plane of the web. The slopes of 5-branes on this plane are determined
by their (p, q) charges, with their intersections subject to (p,q) charge conservation at every
vertex. The (p, q) charges of every 5-brane are mutually coprime. The external (p, ¢) 5-branes
of the web, to which we will often refer as legs, are assumed to terminate on a [p, g] 7-brane.
Each 7-brane extends on the (01234789) directions and is pointlike on the plane of the web.
Multiple (p, q) 5-branes can end on a single [p, ] 7-brane. In those cases, there is an extra
constraint coming from supersymmetry in the form of the s-rule.’ In the context at hand,
the s-rule states that a maximum of |ps — ¢qr| (p,q) 5-branes can be supersymmetrically
suspended between a [p, q] 7-brane and an (r,s) 5-brane [31].

It is important to bear in mind that 7-branes come with a branch cut for the axio-dilaton
on the plane of the web. As it is standard, we will assume that such branch cuts point radially
away from the web, without crossing it. In addition, the length of a leg is not a parameter of

5The s-rule was originally introduced in [36] for D3-branes linked between D5/NS5, and it was subsequently
generalized to various other contexts. In [31], it was formulated for generic (p,q) 5-branes ending on [r, s]
7-branes (in particular, in terms of generalized toric polygons, later developed in [32]). More recently, it was
discussed in [37] using the fact that the SUSY condition for 5-branes ending on 7-branes is identical to that of
(p, q) strings ending on [r, s] 7-branes [38].



the low energy SCFT. Using this fact, we implicitly assume large legs, i.e. very separated
7-branes, so that the axio-dilaton is approximately constant over the scales of the web. This
justifies neglecting the curvature associated to the 7-branes.

5d SCFTs are intrinsically strongly coupled and isolated. They generically have a moduli
space which corresponds to the possible deformations of the web which do not change the
positions of the external 7-branes from which the web is suspended. In turn, the deformations
which change the positions of the 7-branes correspond to relevant deformations. Such
deformations trigger an RG flow to an IR effective theory, which sometimes corresponds to a
standard supersymmetric gauge theory, which in 5d is IR free.

The moduli space is divided into the Coulomb and Higgs branches, which are captured
by different deformations of the underlying brane web. On the Coulomb branch, the web is
deformed inside its plane. When the 5d SCFT admits a deformation to a gauge theory, these
moduli space directions correspond to the standard Coulomb branch, in which scalars in
vector multiplets take non-zero VEVs. On the other hand, along the Higgs branch, the web
is separated into consistent sub-webs which slide along the 7-branes in the (789) directions.
When the 5d SCFT admits a deformation to a gauge theory, these directions correspond to
the standard Higgs branch, where scalars in hypermultiplets take VEVs.

When the 5d SCFT has a deformation to a gauge theory, relevant deformations can be
regarded as supersymmetric VEVs for scalars in background vector multiplets coupled to
the global symmetries of the gauge theory. For this reason, the combination of the Coulomb
branch and relevant deformations is often referred to as the extended Coulomb branch.

Importantly for our purposes, the Higgs branch typically only touches the (extended)
Coulomb branch along some lower-dimensional manifold termed the root of the Higgs branch.
A prototypical example is the rank 1 E; theory in section 6.2, where the (extended) Coulomb
branch touches the Higgs branch only at the origin, and consequently the Higgs branch can
only be entered at the origin of the (extended) Coulomb branch.

2.1.1 Webs and Hanany-Witten moves

The 5-brane web engineering a given 5d SCFT is not unique. To begin with, the SL(2,7Z)
duality of Type IIB String Theory connects webs whose legs have charges differing by a
global SL(2,7Z) transformation. Let us cyclically order the legs counterclockwise, with an
arbitrary leg chosen as first. Consider two webs with legs whose charges are ¢; = (p;, ¢;) and
0= (pl,q}), with i =1,..., L, respectively. The two webs define the same 5d SCFT if there
is a matrix U € SL(2,Z) such that ¢, = U¥; for all i.

More interestingly, webs can be related by crossing 7-branes. As mentioned above, since
the length of a leg is not a parameter in the low energy SCF'T, one may shrink it by moving

5This is completely analogous to the position of flavor D6-branes in the direction parallel to color D3-branes
in the brane engineering of 3d gauge theories introduced in the seminal paper by Hanany and Witten [36]
(we would like to thank Amihay Hanany for discussion of this point). Not only this position does not have
a physical meaning in the gauge theory, but the study of what happens as it is varied lead to the discovery
of the Hanany-Witten transition. Similarly, 7-branes in our setups can be freely moved along their prongs,
in particular crossing them to the other side of the web, without changing the low energy 5d theory. It is
precisely this freedom that leads to the (in principle) infinitely many different descriptions of the same theory
connected by 7-brane motions that we discuss in this work.



the corresponding 7-brane along it until eventually crossing the rest of the web and sending it
away to a very large distance in the opposite direction. In order to comply with the standard
presentation discussed above, one has to rotate the branch cut of the crossed 7-brane, which,
as it sweeps other 7-branes, changes them accordingly (and consequently the 5-branes). More
precisely, the monodromy of a [pj,q;] 7-brane is

1—pjq; P}
My, o= 2 J : (2.1
(pj:4;) < _q]2 1+ pjq; )

Then, when the monodromy sweeps a [p;, g;] 7-brane counter-clockwise, it gets transformed

into a [p}, ¢/]7 = My, q,

is ng}qj).7 Of course, the (p;, g;) 5-branes ending on it change accordingly. Note that in the

) [pis ¢;)7 7-brane (if it is swept clockwise the transformation matrix

process the crossed 7-brane may require a different number of 5-branes ending on it than
originally, which is due to the Hanany-Witten effect [36].

Equivalently, the transition described above can be phrased as follows. First of all, let us
define the intersection number between two 7-branes j and 7 as follows

<£j,fz‘> = det <pj Qj> . (2.2)

Pi qi
The charge vectors satisfy the following relation

> Niti =0, (2.3)

where Nj is the number of 5-branes terminating on 7-brane i. Equation (2.3) is simply the
equilibrium condition for the (p,q)-web.

Crossing brane j corresponds to changing the charge vectors as follows

U = —L;
/) 75 7: f; =/l + <£j,€i>fj for <€j,fz‘> >0 (2.4)
=1 otherwise

In order to satisfy (2.3) after the mutation, N; must transform according to

N} = Z Ni(€;,6;) — N;, (2.5)

i€l

where L, is the set of 7-branes with (¢;,¢;) > 0. It is straightforward to show that (2.4) is
equivalent to (2.1). There is an equivalent transformation in which, for a given crossed 7-brane
J, the roles of the ¢;’s with (¢;,¢;) > 0 and (¢;,¢;) < 0 are exchanged in (2.4). More precisely,
this corresponds to replacing (¢;,¢;) by —(¢;, ¢;) everywhere in (2.4) and to moving the branch
cut around the web in the opposite direction, i.e. using the inverse of the monodromy matrix.

"Here we imagine a [p;, g;] 7-brane to be moved along its prong until crossed, and then its monodromy
rotated, thus sweeping the [p;, g;] 7-brane.
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Figure 1. A brane web and the corresponding toric diagram. The figure illustrates the concepts of
edge and side of the toric diagram.

side
:| edge

2.2 Geometric engineering and GTPs

Focusing on webs in which every 5-brane terminates on a different 7-brane, we can neglect the
7-branes and regard the external legs as semi-infinite segments. Such (p, ¢)-webs are related,
via graph dualization, to toric diagrams of toric CY 3-folds.® Indeed, the same 5d theory
can alternatively be obtained as the low energy limit of M-theory on R times the local CY
3-fold associated to the toric diagram [19, 20]. From this perspective, the extended Coulomb
branch corresponds to the Kéhler cone of the CY 3-fold (see e.g. [39] for a detailed account).
The interesting relations do not stop there, since the BPS spectrum of the 5d theory is
encoded in a quiver theory that is precisely the one defined by the brane tiling corresponding
to the toric diagram, i.e. the one for the 4d N/ = 1 gauge theory on the worldvolume of
D3-branes probing the CY3 [22]. Figure 1 shows a (p, ¢)-web and the related toric diagram.

While discussing the boundaries of toric diagrams, it is convenient to introduce the
concepts of sides and edges. We refer to a side as the line connecting two consecutive corners
of the toric diagram. Within a given side, an edge is a segment between two consecutive
points in the toric diagram. The difference between the two types of objects becomes relevant
for sides consisting of more than one edge. Edges of the toric diagram are in one-to-one
correspondence with legs of the dual (p, q)-web. Whenever a side of a toric diagram contains
multiple edges, the (p,q)-web has the same number of parallel legs. Figure 1 illustrates
these ideas in an example.

In order to accommodate for multiplicities larger than 1, generalized toric polygons
(GTPs) where proposed in [31] as generalizations of toric diagrams that encode such brane
configurations. 7-branes are represented on the boundary of a GTP as follows. If two parallel
legs of the (p, ¢)-web terminate on the same 7-brane, the dot that separates the corresponding
edges in the GTP is colored white. Similarly, n consecutive edges on a given side of the
GTP separated by n — 1 white dots represent n parallel legs of the web terminating on a
single 7-brane.’ Figure 2 shows a simple example.

8More precisely, graph dualization connects a triangulation of the toric diagram to a (p, q)-web. Different
triangulations map to different resolutions of the CY3 and to different points on the extended Coulomb branch
of the 5d theory.

9Similarly, white dots in the interior of a GTP capture the details of the 5-branes in the interior of the web,
including the possible Coulomb branch directions. We refer the reader to [31] as well as [32, 33] for details.
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Figure 2. A brane web in which multiple 5-branes terminate on the same 7-brane and the corre-
sponding GTP.

2.3 Constructing twin quivers

Twin quivers were introduced in [35] and provide a powerful new tool for the study of webs
of 5- and 7-branes (equivalently GTPs) and the corresponding 5d theories.!’ Twin quivers
have a node for every 7-brane, whose rank is given by the number of 5-branes ending on it. A
salient feature of twin quivers is that Hanany-Witten-type transitions on brane webs translate
into quiver mutations, i.e. Seiberg duality.!! On a related note, they give an alternative
perspective on the generalized s-rule that identifies supersymmetric brane configurations.
In this section, we quickly review a method for constructing the twin quiver associated to
general webs of 5-branes and 7-branes, equivalently to general GTPs, which was introduced
in [35]. Twin quivers heavily rely on various objects and operations that are standard
in the study of brane tilings (see below for more comments on brane tilings) and, more
generally, bipartite field theories BFTs [25-29]. They include zig-zag paths, untwisting and
the connection between zig-zag paths and geometry. We refer the reader to [35] for a review
of these ideas focused on applications to twin quivers, additional details and alternative
algorithms for determining twin quivers.

Let us consider a general brane web and denote as 7 the set of 5-brane legs with a given
orientation (p;,¢;) and indicate the number of such legs as N;.'2 The configuration also
contains J; < N; (p;,q;) 7-branes (denote each such leg by 7 — (pi,qi), with A=1,...,J;)
on which these 5-branes can end. The multiplicities, i.e. the numbers of 5-branes terminating
on each of the 7-branes, are kx) = {kgi), e k((]i)} We can alternatively discuss such a web in
GTP language, where it maps to a polytope with a general array of black and white dots on

10As explained in [35], the applications of twin quivers go well beyond such brane webs and 5d theories.

'We refer the reader to [40, 41] to detailed discussions of Seiberg duality for quivers, including the
transformation of the superpotential. In this paper we will formally apply the mutation rule even on U(1)
nodes of the quivers.

2In [35], zig-zag paths and the corresponding nodes in twin quivers were indicated with tilded indices, to
distinguish them from faces and quiver nodes in the original theories. Here, original refers to the theories
defined by the brane tilings associated to the toric diagram under consideration, which are connected to the
twin theories by untwisting. Since this paper is primarily devoted to twin quivers, we will omit the tildes to
simplify the notation. In the few occasions in which we present the original theories, such as figure 27, we
expect that the meaning of indices will be clear from the context.



Figure 3. A GTP, for which we only show the boundary, and the corresponding twin quiver.

its boundary. Each side ¢ contain N; edges, which are partitioned into subsets containing
{k:%i) yenn ,k(J?} edges, such that the edges in each subset are separated by white dots and
different subsets are separated by black dots.

The associated twin quiver is constructed as follows:

1. Regarding the polytope under consideration as a toric diagram (namely with all black
dots), construct the corresponding brane tiling.

2. Generate the BFT for QT by untwisting.'® This quiver has one node for every zig-zag
path of the original tiling/edge of the original toric diagram.

3. Finally, the IV; nodes associated to every side with /V; edges in the original toric diagram
are merged into J; nodes of ranks kgi), . ,k%).
While we have primarily focused on the quiver diagram, the procedure outlined above can
be refined to also produce the superpotential of the resulting twin quiver theory.'* figure 3

presents an example illustrating basic features of this construction.
As anticipated above, the twin quiver constructed in this way has a U(kfz)) gauge group

for each external leg with charge vector E_(j) and NZ?B = <Z(i), E(g)> bifundamentals from node
U(kf;)) to node U(kg)) if NXB > 0 and in the opposite direction if Ni}’ﬁ < 0.

3 Twin quivers for different toric phases

In the previous section, we reviewed the construction of the twin quiver associated to a
GTP /brane web. The construction involves the determination of a brane tiling/quiver theory
Q for a standard toric diagram, which is followed by untwisting and certain identifications
in the case of GTPs containing white dots. Generically, a given toric diagram is associated
to multiple brane tilings. These different quiver theories are known as toric phases and are

13By this, we mean the corresponding bipartite graph on a Riemann surface.
14This algorithm will be reported in future work.
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Figure 4. The dP, geometry has two toric phases, which gives rise to the two twin quivers shown in
this figure upon untwisting.

connected to each other by mutations (or, equivalently, Seiberg duality) on toric nodes..
At present, it is not known whether it is possible to determine the number of toric phases
exclusively from the geometry. It natural to ask how the non-uniqueness of @) reflects on the
twin quivers ). These issue was first noticed and addressed in [35], to where we refer the
reader for further details. It should be noted that while the original brane tiling lives on a
2-torus (for all phases), the bipartite graphs that describe the twin theories upon untwisting
live on a Riemann surface whose genus is equal to the number of internal points of the toric
diagram of the original Calabi-Yau 3-fold [42]. While this surface is not necessarily a 2-torus,
it is clearly the same for all the twin theories associated to the different toric phases.

In [35] it was shown that the twin quivers for a given GTP constructed using different
toric phases of @ differ by bidirectional arrows.'® This phenomenon can be understood
in general using the construction of twin quivers of section 2. After replacing the GTP
by a toric diagram (if necessary), let us refer to the two toric phases associated to it as
QT () and Q). The (sequence of) Seiberg duality transformation(s) connecting Qr (a)
and Q) corresponds to a reorganization of some of the zig-zag paths that preserves their
homology [43]. In this process, the intersections between zig-zag paths change, but they
appear/disappear in pairs, with opposite signs. Since nodes in QT,(a) and QT(b) correspond
to zig-zags, they only differ by bidirectional arrows. This property is preserved if the GTP
contains white dots and, correspondingly, nodes in the twin quiver are combined into higher
rank ones to form QGTP,(a) and QGTp(b). Figure 4 illustrate the non-uniqueness of the twin
quivers in an explicit example, in which the GTP is simply the standard toric diagram for
dP,. This example will be revisited in section 6.3.

It is important to emphasize that, as the example in figure 4 illustrates, the non-
uniqueness of the twin quivers is a generic phenomenon, which is present even for ordinary
toric diagrams/web configurations. In other words, it is unrelated to whether the brane

15Following the convention in the literature, we use the term toric node to indicate a node in the quiver with
two incoming and two outgoing chiral arrows. Equivalently, it corresponds to a four sided face in the brane
tiling. These nodes are special in that a Seiberg duality on them results in another quiver theory described by
a brane tiling [23].

161t is also possible to understand the superpotentials of these different twin quivers, but we leave a more
detailed discussion for future work.
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Figure 5. Brane web for N? hypermultiplets. On the right, the dual toric diagram is the one for a
non-chiral Zy orbifold of the conifold (here shown for N = 3).

web have multiple legs terminating on the same 7-brane or not. This is also reflected in
the fact that the Ni{,é introduced above are only sensitive to the antisymmetric part of the
connection matrix, and thus insensitive to bidirectional arrows in the quiver.

In this paper we will investigate the physical significance of the multiple twin quivers,
i.e. what properties or the corresponding brane webs they capture. We will see that these
capture different regions of the extended Coulomb branch of the 5d theory.

4 Conifold/Zn

Let us consider the brane web shown in figure 5, which describes N? free hypermultiplets
in 5d. This web can also be regarded as the M = 1 case of the 4y 3 family of theories
introduced in [44]. The corresponding GTP, is the ordinary toric diagram for a non-chiral
Zn orbifold of the conifold.

It is straightforward to construct the corresponding brane tiling, which is shown in
figure 6.7 It is obtained by appending N copies of the unit cell describing the conifold
theory.'® The orbifold action under consideration translates into the details of how these
copies are combined (see e.g. [23, 45, 47]).

The twin theory is obtained by untwisting the brane tiling. As expected from the
corresponding web and toric diagrams, it corresponds to a bipartite graph on a sphere with
2N + 2 punctures, each of which can be identified with a leg of the web. Figure 7 shows
the untwisted graph for N = 3.

The twin quiver, shown in figure 8, has a node for every 7-brane in the configuration.
In order simplify figures, throughout the paper the rank of quiver nodes will be 1 unless

"The winding numbers of the zig-zag paths correspond to the (p, q) charges of the corresponding legs in the
web. Other equivalent choices of the unit cell result in (p, ¢) charges that differ from the ones in figure 5 by an
SL(2,Z) transformation.

'8The brane tiling for the conifold is a square lattice [23]. In this case, we have used the fact that the brane
tilings for the orbifolds of any toric CY3 are obtained by appropriately combining copies of the brane tiling of
the original CY3 [23, 45] (see also [46—48] for additional explicit examples).

,10,



Figure 6. Brane tiling for the non-chiral Zy orbifold of the conifold under consideration for the case
N = 2. We show the zig-zag paths associated to the legs of the web in figure 5. Dashed red lines
indicate the boundary of the unit cell.

Figure 7. Bipartite graph on a sphere with 2V 4 2 punctures describing the twin quiver theory. The
polygon at the center is a 2N-gon. Here we show the case of N = 3.

explicitly indicated. The superpotential is quartic and can be easily read from figure 7. Below
we write it for some explicit examples.

4.1 Conifold/Z2

For concreteness, let us consider the case of N = 2. The twin quiver is shown in figure 9.
The superpotential for the twin quiver can be read from the untwisted dimer, analogous
to figure 7, and is

W = X1 1 X 14X40X01 + X30X02X0 1X_13 (4.1)
—Xo01 X1, 1X_13X30 — X_14X40X02X2 1.

From figure 9, it is clear that there are two qualitatively different possible mutations:
either mutating one of the —1, 0 nodes, or mutating one of the 1,...,4 nodes. Let us consider
each case in further detail.
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N+1 N+2 2N

Figure 8. Twin quiver for a non-chiral Zy orbifold of the conifold, which corresponds to N? free
hypermultiplets in 5d.

3 4

Figure 9. Twin quiver for a non-chiral Zs orbifold of the conifold, which corresponds to 4 free
hypermultiplets in 5d.

Mutating 1. As it is customary, let us denote the number of colors of the (unitary) gauge
groups by N, and the number of flavors (i.e. either the number of incoming or outgoing chiral
arrows at a given node) by Ny. Since node 1 has Ny = N, = 1, it disappears upon mutation.
As a consequence, there are no magnetic quarks. There is only one new field in the quiver,
the meson X _1, which, in terms of fields in the theory before the mutation, corresponds
to the composition X 1X1 1. The resulting quiver is shown on the left panel of figure 11.
It indeed corresponds to the brane web on the right of figure 11, which was obtained from
the one in figure 5 by the brane crossing shown in figure 10. We will perform similar brane
crossings in the other examples considered in this paper.
The superpotential follows from the mutation rules and is

W = Xo,1 X 14X40+ X30X02X21X_13 (4.2)
—Xo,1X_13X30 — X_14X40X02Xo 1.

It is interesting to perform one further mutation on node 3. Once again, Ny = N, = 1
for the mutated node, so it disappears upon mutation. The new meson is Y_; g = X_13X3.
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[0,-1] [0,-1] [0,-1] [0,-1]

Figure 10. Brane crossing connecting figure 5 to figure 11.

[0,1]

(1.1]

[0,-1] [0,-1]

Figure 11. Quiver and web after mutating node 1 in figure 9.

The superpotential is given by

W = Xo1X_14X40+ Xo2X2 1Y 10 (4.3)
—Xo,-1Y_ 10— X_14X40X02X2 1.

Integrating out the massive fields Xo 1 and Y_1 o, we obtain the quiver in figure 12 and the
superpotential vanishes.'® As expected, this twin quiver is the one associated to crossing
upwards one of the red 7-branes in the web on the left panel of figure 11. Finally, we can
directly obtain this twin quiver starting from the dimer in figure 7 for the NV =1 case.

Mutating —1. This node has Ny = 2N, = 2. As a result, the rank of node —1 is still 1
after the mutation. The twin quiver and web after the mutation are shown in figure 13 below.

¥More precisely, the untwisted dimer (as the original one) has two vertices of order 4. Those two vertices
would correspond to two quartic terms involving the same fields, but in different order. Since the twin quiver
under consideration is Abelian, the ordering does not matter and the two terms cancel each other. The
structure of the superpotential can also be determined using the construction in section 2.3.
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[0.-1]

Figure 12. Quiver and web after mutating nodes 1 and 3 in figure 9.

[_1!1] 2

[1.0]

[0,-1][0,-1]

Figure 13. Quiver and web after mutating node —1 in figure 9.

They correspond to the so-called 75 theory. The superpotential is

W = X14X40X0,1 + X30X0,2X23 — X0,1X1,3X30 — X4,0X0,2X04 (4.4)
FX 11 X13X3 1 — X 11 X4 Xy 1 — X 12X93X3 1+ X_12X04 Xy 1.

5 Multiple toric phases, a first encounter

The alert reader might notice that the starting point of our analysis in section 4 was rather
arbitrary. In particular, the Zy orbifold of the conifold has multiple toric phases for N > 1,
and the brane tiling in figure 6 is just one of them. The toric phase described by figure 6 is
“minimal”, in the sense of having the minimum number of chiral fields and being obtained by
combining copies of the conifold brane tiling. However, it is natural to ask how the results
of the previous section are affected by starting from a different phase.

For concreteness, let us continue with the case of N = 2. This geometry has only two
toric phases, up to relabeling of the nodes. One of them is the one we have previously
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Figure 14. Brane tiling for another toric phase of the non-chiral Z, orbifold of the conifold under
consideration. We show the zig-zag paths associated to the legs of the web in figure 5.

O O @) Cb

4 3 4

Figure 15. Original quivers for the two toric phases of the non-chiral Z, orbifold of the conifold
under consideration. They are connected by Seiberg duality on either node 2 or 4. Mutating node 1
or 3 of the first quiver leads to equivalent results.

considered, which is given by figure 6, while the new one is described by the brane tiling
in figure 14. Figure 15 shows the corresponding quiver.

Let us now repeat the analysis of section 4.1, but using the toric phase in figure 14 as
the starting point. Untwisting leads to the twin quiver defined by the bipartite graph in
figure 16. As expected, the graph lives on a sphere with 6 punctures. However, it differs
from the NV = 2 case of the graph shown in figure 7. On the right of the figure, we show
the corresponding quiver.

The difference between the twin quivers in figures 9 and 16 is the presence of bidirectional
arrows.?? This could have been in no other way, since the antisymmetric part of the adjacency
matrix can be determined from the web in figure 5 and must be the same. The superpotential

20The two theories, of course, also differ in the superpotentials. These can be read off the corresponding
bipartite graphs.

,15,



3 4

Figure 16. Untwisted dimer and corresponding twin quiver for the second phase of the non-chiral Z,
orbifold of the conifold associated to 4 free hypermultiples in 5d.

for the twin quiver is

W = X_10X01X1,-1+X_13X30X0,—1 +X_14X40X02X2 1 (5.1)
—X_13X3,0X0,1X1,-1 — X_10X02X2 1 — X_14X40X0,1.

Below, we study the mutations of the web. As before, we have two qualitatively different
possibilities.

Mutating 1. Let us mutate the twin quiver on any of the blue or red nodes in figure 16.
Without loss of generality, we can assume it is node 1. Since the extra bidirectional arrow is
not connected to node 1, the mutation is qualitatively similar to the previous case. Once
again, since Ny = N. = 1, node 1 disappears in the mutation. There is a new meson
Yo —1 = X0,1X1,—1 and the superpotential is given by

W =Yy 1X 10+ X 13X30X0,-1+ X 14X40X02X2 1 (5.2)
—X_13X30Y0,-1 — X_10X02X2, 1 — X _14X40X0,-1.

Figure 17 shows the mutated twin quiver.

From the superpotential (5.3), we see that the fields Yy _; and X_; ¢ in the bidirectional
arrow are massive. Integrating them out, we remove the bidirectional arrow from the quiver
and the superpotential becomes

W = X_13X30X0,-1+X_14X40X02X2 1 (5.3)
—X_13X30X02X2, 1 — X_14X40X0,-1.

This is precisely the theory in figure 11, upon the relabeling of nodes 3 « 4.

Mutating —1. Things become more interesting when we mutate node —1 (or equivalently
node 0), since the additional bidirectional arrow increases its number of flavors. Indeed, node
—1 has Ny = 3N, = 3 and it therefore becomes a U(2) gauge group after mutation. The
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Figure 17. Quiver after mutating node 1 in figure 16. A pair of arrows connecting nodes 0 and -1 in
opposite directions are massive and can be integrated out.

1 2
xc><—>oi)
-1 0
Tail
3 4

Figure 18. Quiver obtained by mutating figure 16 on node —1. This example contains a quiver tail.

incoming fields X4 1 (A = {0,1,2}) combine with the outgoing ones X_; , (a = {0,3,4})
to form mesons My, = X4 _1X_1,. Finally, we denote the magnetic quarks Y_; 4 and
Y,,—1. The resulting superpotential is

W = Xo1 Mo+ X30Mo3 + X4,0X02Mo4 (5.4)
—X30X01M13 — XooMog— XgoMosa+Y 1, 4AMpgaYa 1.

The fields X1, Xo2 ,X3,0 ; X4,0, M1,0, M2, Mp3 and My o are massive. Integrating them
out, we obtain the quiver in figure 18, whose superpotential is
W =Yy 1Y 10Moo— Y_1,0Y0,-1Y 11 M13Y3 1+ Y 10Y0 1Y 12M24Ys 1
+Mi3Y3 Y 11+ MasYs Y 10+ MiaYy Y 10+ MYy 1Y 12. (5.5)
The twin quiver in figure 18 exhibits an interesting structure, which we will denote

quiver tail. Node 0 contains an adjoint and is connected to node —1 by a bidirectional arrow.
Moreover, the ranks of the nodes decrease along the tail.
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[0,-1][0,-1]

Figure 19. Brane web associated to the twin quiver with a tail in figure 18.

What does the tail in the twin quiver represent for the corresponding brane web? We
claim that its natural interpretation is given by figure 19. This web is a particular mass
deformation of the one in figure 13, in which masses are tuned such that two 7-branes are
aligned so the corresponding 5-branes can split into segments while respecting the s-rule.
The existence of the quiver tail can be traced to the fact that we started from a different toric
phase for the underlying geometry. This suggests that different toric phases of the original
theory allow to capture the roots of the Higgs branch in the extended Coulomb branch of the
associated 5d theory. In what follows, we will investigate this proposal in further detail.

5.1 Extended Coulomb branch, toric phases and twin quivers

Given the toric diagram A of a toric CY3 fold M the mirror partner VW can be constructed
as follows [49]. We introduce the Newton polynomial

P(xv y) = Z C(m,n)mmyn ) (56)
(m,n)eANZ2

which contains a term for every point in A and where the ¢(,, ,) are complex coefficients. Three

of these coefficients can be set to 1 by rescaling x, 3, and an overall SL(2, Z) transformation.?!

The mirror geometry is a double fibration over a complex plane C parametrized by w as®?

W = - (5.7)

The 5d theory and its BPS quiver are encoded in the Riemann surface 3 corresponding
to the fiber at w = 0, namely defined by

P(z,y)=0. (5.8)

21Going from ordinary toric diagrams to GTPs with white dots, corresponds to freezing some of these
moduli by further constraining the coefficients in the Newton polynomial [50].
22G8¢trictly speaking, this construction is restricted to A’s with at least one internal point.

,18,



The coamoeba projection of ¥ corresponds to the following projection onto a 2-torus

(z,y) — (argz,argy), (5.9)

Mirror symmetry provides an algorithmic prescription for constructing the toric phase for
every point in the extended Coulomb branch, namely for every choice of coefficients in the
Newton polynomial. For every such point, the corresponding brane tiling is determined by
the coamoeba projection. These ideas were introduced in the seminal work [42], to which
we refer the reader for further details. Every toric phase can be generated in this way, with
different ones related by geometric transitions in the mirror [42, 51]. In turn, as previously
discussed, the corresponding twin quivers are obtained by untwisting.
In turn, the amoeba projection of ¥ onto R?, defined as

(z,y) — (log ||, log [y]), (5.10)

is a thickened version of the brane web. The different parameters of the web are controlled
by combinations of the coefficients in the Newton polynomial.

5.2 Tail decoupling, GTPs and node merging

Motivated by the previous results, let us investigate how twin quivers capture other transfor-
mations of the corresponding webs. Let us strip off the tail in figure 19. To do so, we turn on
a non-zero VEV for the adjoint in figure 18.23 This corresponds to entering the Higgs branch
by sliding out of the plane the segment between nodes -1 and 0 in figure 19. Plugging this
VEV into the superpotential (5.5) makes the pair of bifundamental fields extended between
nodes -1 and 0 massive, effectively decoupling node 0 from the rest of the quiver. This
operation corresponds to sliding the 5-brane segment that stretches between the 7-branes -1
and the 0 along them to infinity. The superpotential becomes

W =M3Ys 1Y 11+ Ma3sYs 1Y 124+ MiaYy 1Y 11+ MasYy 1Y 12. (5.11)

Figure 20 shows the web after decoupling the tail. It contains two 5-brane legs that
terminate on a single 7-brane, i.e. it corresponds to a GTP with a white dot, as shown in the
same figure. Then, it should be possible to alternatively construct the corresponding twin
quiver using the algorithm discussed section 2.3 including its third step, i.e. node merging.
It is straightforward to verify that merging nodes -1 and 0 of the quiver in figure 13 into a
single rank-2 node produces the desired quiver. Implementing the identification of nodes
in the superpotential results in

W= X14(Xs 1 X 11+ X 1X 11)+ Xo3Xs 1(X_12+ X3 _1X_12) (5.12)
+X13(X3 1 X 11+ X3 1 X 11) + Xoa(Xg 1 X 10+ X4 1X 19).
where we have assumed generic coefficients for each monomial and combined the bifundamen-

tals connected to the merged nodes into doublets. Upon obvious relabeling, both the quiver
and the superpotential (5.12) agree with the ones we previously derived by removing the tail.

ZMore precisely, this field is an “adjoint” of a U(1) node, i.e. it is actually a singlet.
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[0,-1][0,-1]

Figure 20. Brane web obtained from figure 19 by decoupling brane 0 and the corresponding GTP.

[0,-1][0,-1]

Figure 21. Brane web for “SU(1),”, i.e. a free hypermultiplet. It corresponds to C2?/Zy x C.

6 Additional examples

In section 5, we presented evidence that the different toric phases of the original theory
allow to explore different chambers of the extended Coulomb branch of the 5d theory. This
section contains additional examples that go beyond free theories, showing that this is a

general phenomenon.

6.1 Revisiting the free hypermultiplet: self-dual webs

When the class of webs in figure 5 is specialized for N = 1 as in figure 12, it engineers a single
free hypermultiplet in 5d. Formally, this theory can be regarded as “SU(1)y”. The web for
“SU(1)1”, shown in figure 21, provides an alternative realization of a free hypermultiplet.

This web is dual to the C2/Zs x C singularity. There is a single toric phase for D3-branes
probing this geometry, whose brane tiling is shown in figure 22.
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Figure 22. Brane tiling for C2/Zy x C. We show the zig-zag paths associated to the legs of the web
in figure 21.

0 ()< .-1

1 2

Figure 23. Twin quiver for figure 21.

Untwisting the brane tiling, we obtain the twin quiver shown in figure 23, whose su-
perpotential is

W =Xy 1Y 10X01+ X 10X02X2 1 — X01X1,1X 10— Y_10X02X2 1. (6.1)

Crossing brane —1 in figure 21 results in the web shown figure 24. Interestingly, the
initial and mutated webs are SL(2,Z) equivalent, therefore they describe the same 5d theory.

The observed self-duality is nicely captured by the twin quiver, which returns to itself
when mutated on node -1 (up to relabeling nodes).

Finally, we note that upon crossing any of the red branes in figure 21, it decouples from
the web. The same happens if one crosses any of the branes in figure 12. Both cases result
in the same web, the one for C3. It is a straightforward to verify that the corresponding
mutations of the twin quivers in figures 23 and 12 indeed result in the same quiver.

6.2 The rank 1 E; theory

Let us explore a full-fledged interacting 5d theory, the E; theory, whose web is shown in
figure 25.

The four legs of the web are equivalent. Without loss of generality, let us consider
crossing 7-brane 1 to the other side. Generically, we obtain the configuration on the left of
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[1,1]

Figure 24. Crossing the blue 7-brane in 21.

[1.1]

[-1,-1] [1,-1]

Figure 25. Brane web for the F; theory. The dual toric diagram corresponds to Fy.

figure 26. However, in view of our previous experience, we expect the existence of another
toric phase for the F; theory that results on a twin quiver associated to the root of the
Higgs branch, shown on the right figure 26.

As shown in figure 25 the web for F; is dual to the toric diagram for Fy. There are two
toric phases for D3-branes probing this geometry [23, 52-54]. We present the corresponding
brane tilings and quivers in figure 27.

Untwisting the brane tilings in figure 27, we obtain the twin quivers in figure 29 (see [42]
for further details).

As expected, the two twin quivers differ by the presence of bidirectional arrows. Their
superpotentials can be easily determined from the corresponding graphs. The extra arrows
turn otherwise toric nodes, i.e. nodes with Ny = 2N,, into non-toric ones. This agrees with
the expectation from figure 26. Indeed, while it is straightforward to check that mutating
any node — they are all equivalent — of phase 1 in figure 29 gives a quiver naturally
associated to the web on the left of figure 26, mutating any node of phase 2 in figure 29
gives figure 30. The triangular sub-quiver consisting of the yellow, red and light blue nodes
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Figure 27. Brane tilings for the two toric phases of Fy. We distinguish the zig-zags with the colors
of the corresponding 7-branes in figure 25.
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Figure 28. Original quivers for the two toric phases of Fy.
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Phase 1 Phase 2

Figure 29. Twin quivers obtained from the two toric phases of Fy.

4

Figure 30. Mutating the twin quiver for phase 2 in figure 29 gives rise to a quiver tail. Here we
show a mutation on node 1.

agrees with the corresponding sub-web on the right of figure 26. In addition, the tail of
the twin quiver agrees with the web.

Similarly to the example in section 5.2, one can check that node merging in the mutation
of phase 1 produces the same result as tail removal in the mutation of phase 2.

6.3 The E5 theory

Let us now turn our attention to the Fy theory, whose brane web is shown in figure 31.

Crossing the 7-brane 1 we obtain, generically, the web shown on the left of figure 32.
Once again, there is a root of the Higgs branch in the extended Coulomb branch, whose
web is shown on the right of figure 32.

As shown in figure 31, the E3 web corresponds to the toric diagram for dP». There
are two toric phases for D3-branes probing dP, [54]. As in previous examples, the webs
in figure 32 can be related to these different phases. The brane tilings for the two toric
phases of dP» and the BFTs obtained from them by untwisting were thoroughly discussed
in [35], to where we refer the interested reader for details. Here we just present the two
associated twin quivers, which are shown in figure 33. Once again, as anticipated, they only
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[-1,-1] [1,-1]

Figure 31. Brane web for the E5 theory. The dual toric diagram corresponds to dPs.

[-1.2]

[0.1]

[1,-1]

Figure 32. Brane webs obtained by crossing 7-brane 1 in the Fs theory.

differ by bidirectional arrows, in this case stretched between nodes 1 and 4. As usual, it is
straightforward to determine their superpotentials from the corresponding bipartite graphs.

We are interested in studying how the crossing of 7-brane 1 in figure 31 translates in
terms of twin quivers. Based on our previous experience, we expect that the web containing
a tail in figure 32 correspond to the dualization of the twin quiver for phase 2 in figure 33
on node 1. Performing the dualization, we obtain the quiver in figure 34, which nicely
shows the tail. Moreover, it is easy to verify that the rest of the quiver is consistent with
the right web in figure 32.

6.4 A larger example

In this section we present an additional example illustrating our ideas. Consider the web
and associated toric geometry shown in figure 35. This theory was thoroughly investigated
in [35], to where we refer the reader for further details.

Figure 36 shows two webs obtained by crossing 7-brane 6.
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Phase 1 Phase 2

Figure 33. The two twin quivers for the Fs theory, which come from the two toric phases of dP;.

Figure 34. Mutation of the twin quiver for phase 2 in figure 33 on node 1.

[-1,0] [1,0]

[-1.-1]

5 4

Figure 35. A brane web and its dual toric diagram.
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Figure 36. Brane webs obtained by crossing 7-brane 6 in figure 35.

6 3 6 3

Figure 37. Two twin quivers for the geometry in figure 35.

Two twin quivers for the geometry in figure 35 were presented in [35].24 We show them
in figure 37.%° They differ by the presence of bidirectional arrows between nodes 3 and 6,
which correspond to anti-parallel legs in figure 35.

To obtain the quiver describing the web with a tail on the right of figure 35, we consider
the mutation of the quiver on the right of figure 37 on node 6. The resulting quiver, shown
in figure 38 exhibits the expected tail.

7 Towards general tails

We have presented evidence that the twin quivers constructed from different Seiberg dual
phases of a given original theory capture different loci of the extended Coulomb branch of
the 5d theory. Indeed, upon mutation, the twins of the different Seiberg dual phases exhibit
tails which signal the root of a Higgs branch direction. Yet, the examples we have shown are
restricted to cases where the Higgs branch direction captured by the tail is 1-dimensional,
which follows from the fact that the twin quivers with a single bidirectional arrow before

24While we have not carried out an exhaustive classification of toric phases for this geometry, it is reasonable
to expect additional ones exist. We do not consider this question any further, since twin quivers associated to
other phases are not relevant for our discussion.

2The superpotential for both theories can be determined from the bipartite graphs presented in [35].
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Figure 38. Mutation of the twin quiver on the right of figure 37 on node 6.

N[—1,1]/ N

N—

N [0,1]

Figure 39. Web obtained by starting from figure 5 and moving brane —1 across the web.

the mutation that produces the quiver. It is natural to wonder whether this extends more
generically to higher-dimensional Higgs branches. Related to this question, we would like
to understand the general structure of tails arising from more than one bidirectional arrow
between a given pair of nodes.

Rather than carrying out a general analysis, we will consider the class of models corre-
sponding to the Zy non-chiral orbifold of the conifold, whose web and toric diagrams were
shown in figure 5. Moving brane —1 across the web, we obtain the configuration shown
in figure 39. This web is nicely captured by the twin quiver obtained by mutating the
one in figure 8 on node -1.

Generalizing the discussion for N = 2 in sections section 4 and section 5, the original
theory for conifold/Zy has various toric phases and that capture different loci in the extended
Coulomb branch. It is straightforward to classify the toric phases for this geometry using Type
ITA Hanany-Witten-type brane configurations, which are related to D3-branes probing the
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D4
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Figure 40. Type ITA configurations for conifold/Zy (shown for N = 4). We show the configurations
for two toric phases: one with 3 adjoints from parallel NS branes and 3 adjoints from parallel NS’
branes (left) and one without adjoints (right).

N+1 N+2 2N

Figure 41. Twin quiver for a non-chiral Zy orbifold of the conifold with p bidirectional arrows,
where 0 <p < N — 1.

conifold/Zy by T-duality [55]. The configurations consist of N NS5-branes in the (123456)
directions, N orthogonal NS5’-branes along (123478) and D4-branes spanning (12346), with
the 6 direction compactified on a circle. The different phases correspond to the possible
arrangements of the NS and NS’ branes on the circle with D4-branes, as shown in figure 40.
Consecutive parallel NS or NS’ branes correspond to nodes in the quiver with adjoints.
Consequently, the number of adjoints coming from parallel NS or NS’ branes ranges between
0 and N — 1.

As in the conifold /Zg example studied in section 5, pairs of adjoints turn into bidirectional
arrows in the corresponding twin quivers obtained by untwisting. The twin quivers coming
from different toric phases therefore have the general form shown in figure 41, which generalizes
figure 8 by the bidirectional arrows. Following the discussion of the Hanany-Witten setups
we conclude that there are N possible values for the number of bidirectional arrows p, given
by 0 <p < N — 1. It is important to note that for N > 2 multiple toric phases can give rise
to the same twin quiver, included the value of p, but that differ in the superpotential.

Following the discussion in previous sections, let us now considered a mutation on node
-1 of the twin quiver. We obtain the quiver shown in figure 42, which illustrates the features

of twin quivers with tails in more generic cases.
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N+1 N+2 2N

Figure 42. Twin quiver obtained by mutating node -1 in figure 41.

Let us discuss some of the main properties of this quiver. The ranks of all nodes are

equal to 1, with the exception of node -1, whose rank is N + p — 1. We have used different

colors to distinguish the matter fields:

Black arrows are obtained by flipping the ones that connected node -1 to the blue and
red ones.

Grey arrows connect every node in the top layer (blue) to every node in the bottom
layer (red). These fields are mesons (i.e. composite arrows) created by the mutation
and have cubic couplings to the appropriate black arrows.

There are still p bidirectional arrows, shown in red, connecting nodes -1 and 0.

Node 0 has p? adjoints, which are shown in green. By adjoints, we actually mean arrows
that start and end on the same node. Since node 0 is U(1), these fields are actually
gauge singlets. These fields are also mesons and have cubic couplings, generated by the
mutation, to the red fields.

The dotted arrows are additional mesons generated by the mutation on node -1. In the
case p > 1, for each red and blue node, one of these mesons pairs with the preexisting
arrow in the opposite direction and become massive, resulting in p — 1 massless fields.
The dotted arrows are not present for p = 1 and have the opposite orientation for p = 0.

We see that the familiar structure of the tail emerges in the generic case. Yet, depending

on p it shows distinctive features. For example, for p > 1 the rank of node -1 becomes larger

than IV and new dotted arrows arise. The latter fact is suggestive of a web interpretation where

extra 5-branes crossing the original web and attached to node -1 are superimposed. Since the

web

interpretation of these cases is less transparent, we will leave it as an open problem.

Thoughts on tail decoupling.

In section 5.2 we introduced a simple operation on the twin quiver that results in the decoupling

of the tail and leaves behind the quiver for a GTP for the case of p = 1. It is natural to ask
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Figure 43. Web for 1 free hyper and its Higgs branch.

whether a similar decoupling at the level of the quiver exists for general values of p. Currently,
we do not have an answer to this interesting question and we would like to emphasize that
such a process might not even exist. However, we would like to collect a few thoughts on how
we envision the quiver in figure 42 can potentially accommodate the decoupling;:

« Turning on generic VEVs for the p? adjoint fields would generate masses for all the red
fields. As a result, both the green and red arrows would disappear.

e As mentioned earlier, p can take values in the range 0 < p < N — 1, which agrees with
the possible numbers of white dots in the corresponding edge of the GTP. Moreover, as
mentioned earlier, there are various toric phases that lead to the twin quiver in figure 41
with the same value of p but different superpotential. It is tempting to speculate that,
upon decoupling, these multiple quivers correspond to the different ways of distributing
p white dots along a length N edge of the GTP.

e The process would need to be accompanied by a higgsing of node -1 that not only splits
it into different nodes but also reduces the total rank.

¢ Finally, to fully decoupled node 0, it would be also be necessary for the dotted arrows
to become massive. Optimistically, this could occur as a consequence of the higgsing in
the previous point.

8 Tails as building blocks

We now discuss a puzzle that arises in the quiver description of certain brane configurations
and propose a solution. The problem is rather generic but, for concreteness, we illustrate it
with an example. Consider the web for a free hypermultiplet shown in figure 43.25 Let us
now cross one of the 7-branes. Without loss of generality, we can assume it is brane 2. In
this process, brane 2 decouples from the rest of the web and can be moved away to infinity.
This process is nicely captured by the twin quiver in figure 13, from which the corresponding
node disappears after mutating it. However, as shown in figure 43, we can deal with brane 2
in a different way. Instead of sending it to infinity, we move it on top of the external leg that
terminates on brane 4, splitting it. We recognize the resulting configuration as a tail.

26This is the same web in figure 12. For simplicity, we have labeled the 7-branes differently.
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Figure 44. Left: the twin quiver associated to the connected component of the web at the center
of figure 43. Right: we propose the twin quiver for the web on the right pf figure 43 is obtained by
appending a tail.

The previous discussion raises a puzzle. The starting web in figure 43 corresponds to
the conifold, which has a single toric phase. This results in a unique twin quiver, the one
in figure 12. Contrary to previous examples, there is no extra toric phase from which we
could obtain an alternative twin quiver by untwisting that, in turn, would give rise to the
tail when the node associated to brane 2 is mutated. In short, there does not seem to be
a twin quiver capable of reproducing the last step in figure 43.

We propose to construct the corresponding twin quiver by appropriately appending a
tail, as shown in figure 44. In this case, in accordance with the web in figure 43, the rank
of node 2 at the “root” of the quiver tail is 1. This quiver is certainly consistent with the
basic properties of the web in figure 43, but what about the superpotential? Based on the
symmetries of the configuration, it is natural to conjecture that

W = X414 X42X04+ Xo3X31X12X04X42. (8.1)

We can test this proposal by mutating the quiver on node 2, which corresponds to
taking brane 2 back to its original position. The resulting quiver is given in figure 45 below,
and its superpotential is

W = X13X32X01 + X31X14X43+ X004 X43X30+ Xy0X01X14. (8.2)

This result supports our proposal, since we obtained a natural extension of figure 12 by
the addition of bidirectional arrows, with a superpotential that respects the symmetry of
the web on the left of figure 43.

9 Conclusions

Twin quivers were introduced in [35] as new tools for studying the general class of 5d SCFTs
encoded in webs of 5- and 7-branes or, equivalently, GTPs. In this paper we investigated the
non-uniqueness of twin quivers that follows from the multiplicity of toric phases for a given
toric Calabi-Yau 3-fold used in their construction. This phenomenon exists even for brane
webs associated to ordinary toric diagrams, i.e. it is independent from the presence of white
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Figure 45. Mutation of the quiver on the right of figure 44 on node 2.

dots in GTPs. As noted in [35], twin quivers originating from different toric phases differ by
bidirectional arrows. We found that such bidirectional arrows modify the mutation of twin
quivers, in particular giving rise to quiver tails. We observed that quiver tails can describe
certain sub-configurations of the brane webs obtained via Hanany-Witten transitions, which
arise at roots of the Higgs branch in the extended Coulomb branch of the 5d theories. We
offered evidence of the appearance of tails in various examples and explored the internal
consistency of the emerging picture. Below we discuss some directions for future research.
We have seen that, upon mutation, twin quivers with single bidirectional arrows between
pairs of nodes naturally give rise to the tail structure associated to the corresponding webs.
However, generically, there exist toric phases that result in twin quivers with more than one
bidirectional arrow connecting a given pair of nodes. It would be interesting to clarify the web
interpretation of the mutations of such quivers and whether they are in correspondence with all
the roots of the Higgs branch on the extended Coulomb branch. From this perspective, the tail
decoupling of section 5.2 would naturally correspond to entering a Higgs branch of the theory.
Note that predicting the number of toric phases for a given toric CY3 is an open question.
Our work suggests an interesting connection between this problem and the classification of
roots of the Higgs branch in the extended Coulomb branch of 5d theories or, equivalently,
of the corresponding brane webs. It would be interesting to explore this correspondence in
further detail and determine whether it sheds light on the enumeration of toric phases.
Another question worth investigating is the “surgery” of twin quivers, refining or extending
our gluing/removing procedure introduced in sections section 8 and section 5.2 as a method
for generating twin quivers for GTPs. Related to this, we have seen that tail decoupling
can be used to derive the twin quiver associated to a GTP with white dots. It is thus very
natural to ask whether there is an interpretation of this procedure at the level of the original
brane tiling. Likewise, one could start with a web with no white dot in the GTP and, upon
mutation, find a web described by a GTP with white dots?” which would naturally lead to
the same question. This could provide a hint towards the more ambitious goal of finding

2TTake for instance the +y,; theory of section 4: for N > 2, the analog of our —1 mutation would produce
a web encoded in a GTP with white dots.
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a generalization of brane tilings applicable to generic GTPs. It is expected that such a
generalization would encode the BPS quivers of the corresponding 5d theories.

Finally, it would be interesting to carry out a detailed study of the moduli spaces of
the twin theories and how they depend on the presence of bidirectional arrows, even in
the simple case of GTPs without white dots. It is tempting to speculate that bidirectional
arrows introduce extra branches in the moduli space of the twin theory related to the tails
that appears upon mutation. Moreover, their excision as in section 5.2, could be mapped
to entering a Higgs branch and give rise to the twin moduli space for GTPs with white
dots. In this respect, it would be very interesting to make contact with the description of
the geometries associated to GTPs with white dots presented in [34]. We plan to come
back to these issues in the future.

Finally, it would be very interesting to study in more generality to what extent the full
extended Coulomb branch is chartered (or, else, what characterizes the special loci which
the different phases capture). In section 7 we have concentrated on the family of geometries
conifold/Zy, finding hints of a surprising landscape as N increases. In retrospective, the
recent progress in [50] suggests that this precise family might actually be non-generic, as
they correspond to free hypermultiplets and consequently, the corresponding GTP’s do not
have internal points. More generically, it would be very interesting to understand in a
unified way the role of the twin quivers and the mutations as described in [50]. Studies
along these lines are currently ongoing.
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