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We discuss the realization of 2d (0,2) gauge theories in terms of branes focusing on
Brane Brick Models, which are T-dual to D1-branes probing toric Calabi-Yau 4-folds.
These brane setups fully encode the infinite class of 2d (0,2) quiver gauge theories on
the worldvolume of the D1-branes and substantially streamline their connection to the
probed geometries. We review various methods for efficiently generating Brane Brick
Models. These algorithms are then used to construct 2d (0,2) gauge theories for the
cones over all the smooth Fano 3-folds and two infinite families of Sasaki-Einstein 7-
manifolds with known metrics. This note is based on the author’s talk at the Gauged
Linear Sigma Models @ 30 conference at the Simons Center for Geometry and Physics.
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1. Introduction

Engineering quantum field theories in terms of String or M-Theory branes is a pow-
erful approach for studying their dynamics, often providing alternative perspectives.
D-branes probing singularities provide a platform for constructing interesting field
theories in different dimensions. 4d A" = 1 gauge theories on D3-branes probing sin-
gular toric Calabi-Yau (CY) 3-folds are the most thoroughly studied setups within
this class. In this case, brane tilings significantly streamline the connection between
the 4d gauge theories on the D3-branes and the probed geometry/Z2

In recent years, the study of 2d (0,2) gauge theories on D1-branes probing toric
CY 4-folds culminated with the introduction of brane brick models” which result
in powerful simplifications in the map between geometry and 2d theories analogous
to the ones previously brought by brane tilings.

In this note, we present a brief review of recent works in which brane brick
models have been exploited for determining and studying the gauge theories for
large classes of interesting CY 4-folds. These geometries include the complex cones
over all smooth Fano 3-folds® and infinite families of cones over the Y?*(CP* x CP')



2 Sebastidn Franco

and Y?*(CP?) Sasaki-Einstein 7-manifolds/

2. Brane Brick Models

Brane brick models are obtained from D1-branes at CY, singularities by T-duality.
We refer the reader t0>6 8 for detailed discussions. A brane brick model is a Type
ITA brane configuration consisting of D4-branes wrapping a 3-torus T® and sus-
pended from an NS5-brane that wraps a holomorphic surface ¥ intersecting with
T3. The holomorphic surface ¥ is the zero locus of the Newton polynomial defined
by the toric diagram of the CY4. The basic ingredients of the brane setup are sum-
marized in Table [1} The (246) directions are compactified on a T?. The 2d gauge
theory lives on the two directions (01) common to all the branes.

Table 1. Brane brick model configuration.
l]o 1 2 3 4 5 6 7 8 9
X X X - X - X .
X X b

D4
NS5

Brane brick models, or equivalently their dual periodic quivers, fully encode the
2d (0,2) quiver gauge theories on the worldvolume of D1-branes probing toric CY
4-folds. Namely, they summarize not only the quivers but also the J- and E-terms.
The dictionary between brane brick models and gauge theories is summarized in
Table 21

Table 2. Dictionary between brane brick models and 2d (0,2) gauge theories.

[ Brane Brick Model [ Gauge Theory [ Periodic Quiver ]
Brick Gauge group Node
Oriented face Bifundamental chiral field | Oriented (black) arrow
between bricks ¢ and j from node ¢ to node j from node i to node j
Unoriented square face | Bifundamental Fermi field | Unoriented (red) line
between bricks i and j between nodes ¢ and j between nodes 7 and j
Edge J- or E-term Plaquette encoding
a J- or an E-term

For additional results regarding brane brick models, we refer the interested

reader to2HL

3. From CY,’s to Brane Brick Models

Several methods for constructing brane brick models associated to a given toric
CY,4 have been developed. Some of them considerably simplify this task. Figure [I]
summarizes a few of these procedures.

Partial resolution consists of embedding the toric diagram of interest within a
larger toric diagram, for which the 2d gauge theory is known. A standard choice
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for such initial geometry is an abelian orbifold of C*. The deletion of points that
connects the two toric diagrams translates into higgsing in the field theory® The
determination of the chiral fields that acquire a non-zero VEV to achieve a desired
toric diagram is simplified by considering the map between fields in the quiver and
brick matchings, certain combinatorial objects in the associated brane brick model
that are analogous to perfect matchings of brane tilings'®

Orbifold reduction generates the 2d (0, 2) gauge theories associated to D1-branes
probing a toric CY, starting from 4d N' = 1 gauge theories on D3-branes probing
toric CY3’s or, equivalently, the corresponding brane tilings. Given two integers
ky,k_ > 0 and a perfect matching pg of a brane tilings for a CY3, orbifold reduction
generates a gauge theory that corresponds to a CY, whose toric diagram is obtained
by expanding the point associated to pg into a line of length ki + k_, with k
points above the original 2d toric diagram and k_points below it. The algorithm
for producing the 2d gauge theory has an elegant implementation in terms of the
periodic quiver ™ This procedure generalizes dimensional reduction and orbifolding.
With orbifold reduction, the gauge theories for rather complicated CY,’s can be
found with little effort.

3d printing is similar to orbifold reduction in that it provides a combinatorial
prescription for constructing the 2d (0,2) gauge theory for a CY, starting from the
brane tiling for a CY3.23 In 3d printing, multiple points in the toric diagram of the
CY3 can be lifted to produce the toric diagram of the CYy, as illustrated in Figure
m

Mirror symmetry provides an alternative way for deriving the 2d (0,2) gauge
theory. The mirror configuration consists of D5-branes wrapping 4-spheres and the
gauge theory is determined by how they intersect ®14 Figure [I| shows various pro-
jections that contribute to the visualization of the configuration of branes in the
mirror. Interestingly, changing the complex structure and passing through vanishing
cycles results in inequivalent geometries. However, the mirror geometry unifies the
inequivalent geometries of the CY into a single CY manifold. In this way we can
understand field theory dualities from the uniqueness of the CY mirror.

4. Fano 3-Folds

Brane brick models are particularly useful for finding the 2d (0,2) gauge theories
for large families of toric CY 4-folds. An interesting family of geometries is given
by the complex cones over Gorenstein Fano varieties that are constructed from a
special set of lattice polytopes known as reflexive polytopes. Table [3] summarizes
the numbers of inequivalent reflexive polytopes up to dimension 4, following the
seminal classification of Kreuzer and Skarke 1217

These polytopes should be regarded as the toric diagrams of toric CY’s con-
structed as the complex cones over the corresponding Fanos. We are interested in
CY 4-folds, i.e. dimension 3, where there are 4,319 polytopes. Moreover, let us focus
on those reflexive polytopes that are also regular, which implies that their associ-
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Fig. 1. Some methods for generating brane brick models for toric CY 4-folds.

Table 3. The number of inequivalent reflexive polytopes and
regular reflexive polytopes in dimension d < 419H17

[ d [ Number of Polytopes [ Number of Regular Polytopes

1 1 1
2 16 5
3 4,319 18
4 473,800,776 124

ated Gorenstein Fano varieties are smooth. According to Table[2] this leaves us with
a manageable subset of 18 polytopes, shown in Figure

The CY3 analogues of these geometries are the complex cones over Fy and del
Pezzo surfaces, which have played a prominent role in elucidating the correspon-
dence between CY 3-folds and the 4d N' = 1 gauge theories on D3-branes probing
them (see e.gt82l),

In,¥ a brane brick model, i.e. a 2d (0,2) gauge theory, was constructed for each
of the 18 regular reflexive polytopes in 3 dimensions. For every one of these models,
the moduli space was thoroughly studied, calculating the generating function of
mesonic gauge invariant operators, the Hilbert series, using the Molien integral
formula. For each of these models, the generators of the mesonic moduli space were
expressed both in terms of chiral fields of the 2d gauge theory as well as brick
matchings. Finally, for all these models, it was verified that the generator lattice

of the corresponding mesonic moduli space is the polar reflexive dual of the toric
diagram.
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Fig. 2. The 18 regular reflexive polytopes in dimension 3 corresponding to toric non-compact CY
4-folds and corresponding smooth Fano 3-folds.

4.1. An Example: Model 11

To illustrate the results in# let us focus on Model 11. Figure [3| shows how the
toric diagram for this model can be connected to two different CY3 toric diagrams.
Therefore, it is possible to derive the corresponding 2d (0,2) gauge theory using
some of the approaches reviewed in Section [3] Starting from dPj, the toric diagram
for Model 11 is obtained by lifting the central point in two opposite directions. The
associated gauge theory can be therefore constructed from the one for dP; using
orbifold reduction. Alternatively, the toric diagram for Model 11 follows from lifting
two points in the toric diagram of Fj. Consequently, the gauge theory for Model 11
can also be constructed by 3d printing starting from the gauge theory for Fp. It is
interesting to reflect on how the SU(2) x SU(2) global symmetry of the final gauge
theory arises from these two alternative constructions. In the first one, only one
of the SU(2) factors is present in dP;, while the second one emerges from orbifold
reduction. In contrast, the full SU(2) x SU(2) symmetry is already present in Fp.

The corresponding brane brick model has the quiver in Figure 4] and the J- and
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From dP,

Fig. 3. Two alternative ways of obtaining the toric diagram for Model 11 from CY 3 toric diagrams.

Fig. 4. Quiver for Model 11.

FE-terms are

J E
Alg Yo Xg1 — Xe7X71 P15 X56 — X12Ps6
A3g XerYr1 — Xe6sXs1 P15Y56 — Yi2Pos
Adg + XesXs7X71 — YesXsrYr1 PisZse — Z12P26
Adg Ye8581 — Xe7.571 X12Q26 — Q15X56
A3g Xe67T71 — Xe8Ss1 Y12Q26 — Q15Y56
NS¢+ XesXgrSr1 — YesXerTr1 Z12Q26 — Q15256
AL Y71Yi2 — X711 X2 Py X7 — Xa3Ps7
A3, Tr1Yiz — St1Xa2 X23Q37 — Q26X67
A XerX71Z12 — Xs1Y12 Py Xos — XoaPys
A3 : Xg1X12 — Xs7Y71Z12 PacYes — Y2aPus (1)
A3g: Xs7S71Z12 — Ss1Y12 X24Qa8 — Q26 X6s
Adg Sg1X12 — XsrTr1Z12 Y24Quas — Q26Yes
AL Z190X04Xy3 — X12X03 P37 X71 — Q37571
A3 Y12Xo3 — Z12Y24X43 P37Yr1 — Q37Tn
A4y : X12Y24 — Y12X04 Pyg Xg1 — Qa8Ss1

ALs o X71Z19X0a — Yr1Z12Y2s PigXs7 — Xa3Psr
A2, S71Z12X24 — Tr1Z12Y2s X43Qs7 — QusXsr
ALs: ZseXesXsr — X56Xer S711Q15 — X711 P15
AZ; Y56 Xe67 — Zs6Yes Xs7 T71Q15 — Y71 P15
Ags : Xs56Yes — Ys56X6s S81Q15 — Xg1 P15

Table 4| presents the generators of the mesonic moduli space of Model 11 in
terms of brick matchings with the corresponding flavor charges. Figure [5| shows the
corresponding generator lattice, which is a reflexive polytope that is the dual of the
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toric diagram of Model 11 shown in Figure 2] as expected.

Table 4. The generators of the mesonic mod-
uli space of Model 11 in terms of brick
matchings with the corresponding flavor charges.

Generator SU(2)z | SU(2)3 | U();

p%pgpg SO 1 0 -1
P1P2p3p} s0 0 0 -1
p%pgpg s0 -1 0 -1
p%p4p% s0 1 -1 -1
P1p2papg so 0 -1 -1
p%p4p§ so -1 -1 -1
p2p3pspe S0° 1 0
P1P2p3psps SO° 0 1 0
P3p3pspe s0? -1 1 0
pip3papsps sO° 1 0 0
P1P2P3P4P5P6 SO° 0 0
pip3papsps so° -1 0 0
p2pipspe so? 1 -1 0
P1P2p3psPs SO° 0 -1 0
P3pipspe s0? -1 -1 0
p%pgpg s0° 1 2 1
p1p2pip? sod 2 1
p%p%pg s0° -1 2 1
Pip3papt so? 1 1
P1p2p3papi s0° 0 1 1
p%p%pﬂ;g s0° -1 1 1
p%p;gp?lpg so03 1 0 1
Pp1p2p3pip3 so? 0 1
p%p;gpipg so03 -1 0 1
Pipip3 so® 1 -1 1
p1p2pips so? 0 -1 1
p%pipg s03 -1 -1 1

%% “e "

>

Fig. 5. Generator lattice for Model 11.

In all generators were also expressed in terms of chiral fields in the quiver. As
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an example, Table [5| provides these expressions for the first two generators in Table
[ Every generator can be represented in multiple ways in terms of the fields in the
gauge theory.

Table 5. First two generators in Table@expressed in terms of chiral fields in the quiver.

Generator SU(2)z | SU(2)3 | UQ);
P15 756 X67S571 = P15Z56Y68581 = Z12 P26 X67S71 = 1 0 -1
= Z12P>6Y68581 = Z12X23P37S71 = Z12Y24P48S581
P15756 X67X71 = P15Z56Y68 X831 = Z12P26 X67X71 = 0 0 -1
= Z12P26Y68 X81 = Z12X23 P37 X71 = Z12Y24P1s X1

5. Sasaki-Einstein 7-Manifolds

Every 2n-dimensional Kahler-Einstein manifold Bs, there is an infinite family of
compact Sasaki-Einstein (SE) manifolds Y, 13 of dimension 2n + 32223 For n = 2,
the 4-dimensional Kihler-Einstein bases By are either CP' x CP' or CP?, giving rise
to two infinite families of SE 7-manifolds denoted Y?*(CP* x CP') and Y?*(CP?),
respectively. The two families stand out because their SE metrics are known explic-
itly 2323

The general toric diagrams for the corresponding CY 4-folds are show in Figure
where the ranges for the parameters p and k are

YPF(CP' xCP') : 0<k<p,
YPRCP?) : 0<k<3p. (2)

(0.0,p)
(=1,-1,k)
0.0.0) \‘> (0,1,0)
(1,0,0)
YPK(CP* x CP') YPK(CP?)

Fig. 6. General toric diagrams for the Y?*(CP?) and YP*(CP! x CP!) families of toric CY 4-
folds.

aFor brevity, we use the name of the SE base to also identify the corresponding CY4.
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The isometry of the SE 7-manifolds takes the general form H x U(1)?, with H
the isometry of the base By. For Y?¥(CP! x CP') and Y% (CP?), the isometries are
SU(2) x SU(2) x U(1)? and SU(3) x U(1)?, respectively. These isometries translate
into the global symmetries of the corresponding 2d (0,2) gauge theories.

The 2d (0,2) gauge theories for both infinite families of CY 4-folds were con-
structed in® guided by the techniques presented in Section |3} For example, the
cones over YP*(CP?) with p = 2k =2m and m € Z" are equivalent to abelian orb-
ifolds of the form M?®?2/Z,,. The corresponding 2d (0,2) theories can be obtained
via orbifold reduction of the 4d N' = 1 theory corresponding to dPy. This is made
clear by Figure [7] where the highlighted plane indicates the toric diagram for dFP;.
While not all the Y?**(CP?) theories can be constructed in this way, the models we
obtain contain sufficient information to propose a closed form for the entire family,
a proposal that can then be checked to be correct. The gauge theories for the full
Yp”“((CIP>1 X CPI) family can be determined using the same approach.

YZ.S(C]PQ) Y4.6((C]P2) Yb.Q(C]PZ)
~ M2 ~ M*2/7, ~ M2 /74

Fig. 7. Various Y?#(CP?) geometries that can be obtained via orbifold reduction from dPp.

As an example, the quiver for the 2d (0,2) theory corresponding to Y3!(CP?)
is shown in Figure |8} The corresponding J- and E-terms take the following form

J E

Aot X X5 PisXieQez — Qur X
A3 e X3 X7s X43Q30 — Q23X
A e X X3 X5 Q17 — Q30 X§;
IV GiijgGX(ISCAL XisQss — Qus Xk Pis (3)
AZS : ey X3 Pis X5 X§4Qu3 — Qo2 X33

Te 6iij§9X§7 X75Q2 — QraXis
A e X3u Xy Xi9Qos — QssXis

2% . vi vk i B i
A3y e Xig X5 X§7Q74 — Qos Xy
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where i, j,k = 1,2,3 are SU(3) global symmetry indices.

Fig. 8. Quiver for Y31 (CP?).

Computing the moduli space of this theory, one obtains the toric diagram in
Figure @ which is indeed the one for Y3 (CP?).

Pa

Ps \ 2

Ps P1

Fig. 9. Toric diagram of Y'31(CP?).
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