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Where to Drop Sensors from Aerial Robots
to Monitor a Surface-Level Phenomenon?

Chak Lam Shek*, Guangyao Shi*, Ahmad Bilal Asghar, and Pratap Tokekar

Abstract— We consider the problem of routing a team of
energy-constrained Unmanned Aerial Vehicles (UAVs) to drop
unmovable sensors for monitoring a task area in the presence
of stochastic wind disturbances. In prior work on mobile
sensor routing problems, sensors and their carrier are one
integrated platform, and sensors are assumed to be able to
take measurements at exactly desired locations. By contrast,
airdropping the sensors onto the ground can introduce stochas-
ticity in the landing locations of the sensors. We focus on
addressing this stochasticity in sensor locations from the path
planning perspective. Specifically, we formulate the problem
(Multi-UAV Sensor Drop) as a variant of the Submodular Team
Orienteering Problem with one additional constraint on the
number of sensors on each UAV. The objective is to maximize
the Mutual Information between the phenomenon at Points of
Interest (Pols) and the measurements that sensors will take
at stochastic locations. We show that such an objective is
computationally expensive to evaluate. To tackle this challenge,
we propose a surrogate objective with a closed-form expression
based on the expected mean and expected covariance of the
Gaussian Process. We propose a heuristic algorithm to solve
the optimization problem with the surrogate objective. The
formulation and the algorithms are validated through extensive
simulations.

I. INTRODUCTION

Multi-robot systems have been widely used in scientific
information gathering including exploring the ocean [1],
[2], tracking algal blooms [3], and monitoring soil [4]. The
planning problem on this topic is usually named Informative
Path Planning (IPP), in which the research focus is on how
to design planning algorithms to coordinate multiple robots
to collect as much useful information as possible given
the limited onboard resources (e.g., sensing and battery).
In some cases, the robotic platform and the sensors for
scientific monitoring are integrated systems and are treated as
mobile sensors as a whole [5]—[7]. In other cases, the robotic
platforms are treated as carriers of sensors [4], [8]-[12], and
they are separable. The research efforts for such cases are
mainly devoted to finding collaborative route strategies for
these mobile platforms to serve the sensors to finish the
sampling tasks. Our research is also along this line and we
are interested in how to airdrop sensors to an area of interest
with a team of Unmanned Aerial Vehicles (UAVs).

Specifically, we consider the problem of airdropping mul-
tiple sensors to the ground with a team of budget-constrained
UAVs to reduce the uncertainty of Points of Interest (Pols)
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Fig. 1. An illustrative example of airdropping sensors.

as shown in Fig. 1. If the UAVs can precisely drop the
sensors to the desired locations, such a problem is closely
related to the classic Team Orienteering Problem (TOP) [13].
However, due to wind disturbances, when we release one
sensor from the UAV, its landing location, i.e., the sampling
location, is stochastic. This is the main difference from the
existing research on mobile robotic sensors, in which authors
usually assume that robots can take samples at precisely the
desired location. Such a difference requires to rethink of the
underlying optimization for planning.

To this end, we propose a new variant of the TOP for
airdropping sensors with UAVs, in which the stochasticity
of the sensor landing position is explicitly considered. How-
ever, the resulting optimization objective is computationally
expensive to evaluate. To address this challenge, we resort
to a Gaussian approximation approach [14] to obtain one
surrogate objective with one closed-form expression. With
this surrogate objective, we show that the problem can be
solved in polynomial time and near optimally.

In summary, the main contribution of this paper is:

o We propose a variant of the Submodular Team Orien-
teering Problem to model the sensor dropping problem
with aerial robots.

« We propose one computationally efficient surrogate
objective function for the proposed problem and propose
a heuristic algorithm to solve it.

« We demonstrate the effectiveness of our formulation and
algorithm through simulations.

The rest of the paper is organized as follows. We first give
a brief overview of the related work in Section II. Then, we
explain the problem setup and formulation in Section III. We
introduce the technical approach in Section IV and validate
the formulation and the proposed framework in Section V.



II. RELATED WORK

In this section, we present the work most closely related
to ours. We first discuss the related work on airdropping
sensors, followed by stationary sensor placement and mobile
sensor planning, and finally on estimating stationary fields
with Gaussian Processes.

A. Airdroping sensors

Dropping resources from an aerial vehicle has long been
of interest, particularly for military and search-and-rescue
operations. For example, in military resupply missions, air-
crafts are required to accurately deliver supplies to the target
areas, taking into account geological factors and weather
conditions. Extensive research has been conducted on low-
level optimization of the release trajectory to achieve high
precision in airdrop operations [15]-[19]. In this work, we
focus on the complementary high-level planning of where
to drop the sensors from multiple UAVs to monitor a
surface-level phenomenon. We abstract the low-level trajec-
tory control by assuming that for any given airdrop trajectory
planner, the associated uncertainty of the landing position of
the sensor is known. Specifically, we focus on route-level
planning for multiple UAVs to deploy multiple sensors to the
area of interest for environmental monitoring applications.

Our work is closely related to that of Gerlach et al. [16].
They formulate the problem of dropping multiple payloads to
multiple targets as a Traveling Salesperson Problem (TSP).
However, there are two key differences between their work
and ours. First, our objective is to reduce the uncertainty
at Points of Interest (Pols) by dropping sensors and we use
an information-theoretic metric. In contrast, the objective in
[16] is to minimize the risk encountered by the soldiers.
Second, our problem involves multiple energy-constrained
UAVs, which cannot be modeled as TSP or its variants.

B. Sensor Placement and Mobile Sensor Planning

The sensor placement problem aims to maximize the
information gain or sensing quality by strategically selecting
sensor deployment locations. The typical approach is to
model the phenomenon as a Gaussian Process [20] and
use information theoretic measures for placing the sensors.
The foundational work was done by Krause el al. [21]
who showed that the partial monotonicity and submodularity
allows a greedy placement to achieve a constant-factor
approximation algorithm. This work was later extended to
mobile sensor planning (also termed as informative path
planning). Binney et al. [22] introduced the additional con-
straint of identifying a feasible path that connects these
selected sensing locations. One approach to finding such
paths is to convert the problem into an orienteering instance
with submodular rewards. In [23] this problem is solved
by constructing an additive approximation for the coverage
objective to find a UAV path for image acquisition. A
recursive greedy algorithm [24] is used in [25], [26] to
solve the submodular orienteering problem for informative
path planning. This approach provides guarantees for the

submodular objective but runs in quasi-polynomial time,
limiting its use for large problem instances.

In the context of a multi-robot setting, the orienteering
problem can be solved iteratively, where the single robot
performance guarantee can be extended to the multi-robot
scenario [26]. Our work closely aligns with this body of work
on informative path planning with a key difference. Because
we are airdropping sensors, the exact sensing location de-
pends on the wind field and is not known, unlike existing
work. We show how to deal with this additional source of
uncertainty.

C. GP with Uncertain Inputs

We use Gaussian Processes [20] to model the spatial
function that is to be estimated by the sensors. Since we do
not know the exact locations the sensors will fall at before
planning UAV paths, the input to GP regression is uncertain.
It is shown that the predictive distribution for Gaussian pro-
cesses with uncertain inputs may not be Gaussian in general
in [27]. Various approaches have been used to deal with input
uncertainty in GPs. In the Bayesian approach, the distribution
with uncertain input locations can be obtained by integrating
over the uncertainty of the locations [28]. However, these
integrals are analytically intractable in general. Taylor expan-
sion about the uncertain locations is used in [29] to present an
approximate method that requires the derivative of the mean
of f. The Gaussian Approximation method [14], [27], [28]
assumes that the posterior distribution is Gaussian and finds
its expected mean and expected covariance by integrating
over the uncertainty of the locations. For certain kernel
functions, these co-variances can be computed analytically.
We employ the Gaussian approximation method in this paper
to handle the random sensor locations.

III. PROBLEM STATEMENT

Consider a weighted graph G = (V, E), where the vertex
set V represents locations that can be visited by a team
of m UAVs. The weight w(u,v) of an edge (u,v) € E
represents the time taken or energy spent by the UAVs to
travel from vertex u to vertex v. Let (z, Yy, 2,) represent
the coordinates of vertex v. Each vertex corresponds to a
location where one of the UAVs can drop a sensor onto
the ground below to observe the spatial field. The sensor’s
landing position on the surface, denoted by q,, can vary
depending on the wind conditions at the drop location v and
the height of the drop location z,. We assume that q,, follows
a normal distribution, specifically q, ~ N(q,, %), and that
S, and X, are known for each v € V. Each UAV ¢ € [m)]
has a given number of sensors k; and limited amount of time
(or energy) T; to visit some locations in V' and to drop the
sensors from those locations. The path of UAV ¢ must start
and end at its designated depot location r; € V.

The purpose of dropping sensors is to observe the value
of a spatial function f at specific points of interest (POI) U
on the ground. Each sensor obtains a measurement of the
underlying field with additive Gaussian noise. Since we may
have fewer sensors than POI, and due to the stochastic nature



of sensor drop, we will need to estimate the value of f at POI.
Consequently, there will be inherent uncertainty associated
with these estimates. Gaussian Processes associate a random
variable with each POI in U and the joint distribution over
U can be used to quantify the information gained by the
sensors dropped by the UAVs.

Given paths P = {Py, ..., P,,,} for the UAVs, let S(P) =
{S1,..., Sy} represent the corresponding sensor drop loca-
tions, and let Q(P) be the random variable representing the
sensor locations, i.e., for every drop location v € S, the
sensor location q, € (. Also, let the length of the path
¢(P;) denote the total time taken by the UAV i to visit all
the locations in P;. Let n be the time required to drop a
sensor. Therefore, the total time of a path P; is given as
C(P;) = U(P;) +|S(Pi)n.

Let Fi; represent the random variable associated with POI
U and let Fg represent the random variable associated with
sensor readings at locations in (. Then Pr(]-'U\]-'Q( p) =
fo) is the prediction at U given sensor readings at locations
in Q(P). To simplify notation, we will use S and @ going
forward, without explicitly indicating their dependence on
UAV paths P. We focus on the offfine planning problem [30]
where the plan must be decided before dropping any sensor.

The mutual information — as a function of the UAVs’ paths
— between the random variables Fy and Fg is defined as,

MI(P) = H(Fu) — H(Fu|Fq),

where H(X') represents the entropy of random variable X.
We now formally define the multi-UAV sensor drop problem.

Problem 1 (Multi UAV Sensor Drop). Given the points
of interest U, sensor drop locations in G = (V, E) along
with the mean q, and covariance ¥, of sensor’s location
associated with each v € V, k; sensors and budget T; for
each UAV i € [m), find path P; rooted at the depot r; along
with drop locations S; for each UAV i € [m] to maximize
the mutual information, i.e.,

max MI(P) = H(Fo) — H(Fo\F) ()
st C(P) <T, Vi€ [m)] 2

Note that given drop locations SS, the sensor locations in
() are random. If the locations in () are deterministic, i.e.,
the sensors fall at the exact locations desired, and if points
of interest U are the same as the vertices in V, we get the
traditional informative path planning problem [22], [26].

Since the locations in () are themselves random variables,
evaluating the probability distribution Pr(Fy|Fg) and its
entropy is challenging. In the next section, we discuss how
we address this challenge and present the planning algorithm.

IV. TECHNICAL APPROACH

In this section, we discuss how to evaluate the objective
function given in Problem 1. We then propose the planning
algorithm to solve the problem.

A. Gaussian Process with Stochastic Drop Locations

In order to evaluate the objective function (1), we need
to calculate the entropy of the random variable (Fy|Fg).
If the sensor locations in ) were deterministic, this ran-
dom variable would be a multivariate Gaussian, and its
covariance matrix could be used to determine the entropy.
However our data is of the form {q,, f(q;) + Ei}iZ:jllSjl
and q; ~ N((q,,X;)). Then, since the locations of sensors
are independent of each other, the probability distribution
Pr(FylFgq) is given by integrating the distribution given
fixed locations over random sensor locations, i.e.,

Pr(FulFe) =

/--~/Pr(fv\fcw{ql,u-,qa})H(Pr(qi))dqin-dqa-
i=1

This distribution is not Gaussian and there is generally no
closed form expression for this integral [27], [28]. Existing
literature on Gaussian Processes with input uncertainty [27]—
[29] resorts to approximations in order to solve this integral.
A Monte Carlo approach by drawing samples of q from
uncertain location distributions is considered in [28]. Taylor
expansion about q is used in [29] to present an approximate
method that requires the derivative of the mean of f. The
Gaussian approximation method [14], [27], [28] assumes
that the posterior distribution is Gaussian and finds its ex-
pected mean and expected covariance by integrating over the
uncertainty of the locations q. For the squared exponential
covariance, the expected covariance for normally distributed
sensor locations can be analytically computed exactly using
the following expression [14], [27].

Lol j) =
otexp( — (@, —q,) (W +3i+ )@ -q) @
[T+ WS+ 35) (1 = 63)|'/?2

Here q; and 3J; are the mean and covariance of the normally
distributed sensor location q; in (), and W is a diagonal
matrix where each diagonal element corresponds to a char-
acteristic length scale for the respective input variable.

We use the Gaussian approximation method in this paper
because it does not require sampling and is computation-
ally tractable with a simple analytical expression for the
covariance matrix. Moreover, since we are planning paths
for UAVs offline, before getting any sensor readings, we can
use this method to find the mutual information by just using
the expected covariance as discussed below.

Since the Gaussian approximation method assumes that
the distribution of }"U\}"Q is a Gaussian distribution, and
because Fy and Fg are jointly Gaussian, the mutual infor-
mation is given by

MI = H(Fy) — H(Fu|Fq)
(Fu) + H(Fq) — H(Fu, Fq)
1 <det(EUU) det(ZQQ))

&)

= 510g

det(X)



where
s _ Yvu X
You 2]
We can use the expression (4) to evaluate Xyg(i,j) by
replacing x; with the known location of i*" point of interest
in U and %; by the null matrix.

Observation 1. The Objective function (1) and the surro-
gate objective defined in Equation (5) are submodular and
monotonically non-decreasing set functions in S.

Algorithm 1: Sequential Greedy Assignment

1 Function SGA (G, T, v, f,m,C,K):

Input :
o A graph G representing the environment
e Time budget 7 = {71, ..., T} for each robot
« Starting positions vs; and objective oracle g
o # of robots m and cost function C
« # of the sensor for each robot K = {kq, ...

Output: a collection of paths {P;}71;

2 G + metric matrix completion of G

3 A«0

4 for j < 1 to m do

5 Pj(*GOB(A,Tj,GC,g,C,’Usj,kj);

) :

7

8

9

skm}

A+ AU Pj
end
return {P;}"

end

B. Planner

The submodularity and monotonicity of the surrogate
objective function allow us to formulate Problem 1 as a
submodular TOP. However, there is one additional constraint
in Problem 1 that is not present in standard submodular
TOP, that of the number of sensors k; that each robot is
able to deploy. We address this problem using the following
observation.

Lemma 1. In a complete graph with N > k; vertices for
all i, there always exists an optimal solution where the robot
i’s path consists of no more than k; vertices, excluding the
starting vertex.

Proof. The proof follows by contradiction. Suppose there is
an instance where no optimal solution has at most k; vertices
along robot 7’s path. The robot is allowed to deploy at most
k; sensors. Therefore, there must be one or more vertices
along the robot path that no sensor is dropped. Since the
graph is a complete metric graph, we can “shortcut” such
vertices without increasing the cost of the path. Therefore,
we can recover a solution that consists of exactly k; vertices.
This is a contradiction proving the original claim. |

With this insight, we present our algorithm (Algorithm 1)
to solve the Problem 1.We first take the metric completion of
the input graph. Recall that for a weighted graph G(V, E),

each edge (u,v) € E is associated with a cost w(u,v). In
the preprocessing step, we generate a complete graph G’ =
(V, E’) using G, where the edge cost w’(u,v) is defined as
the length of the shortest path between u and v in G. Then,
we sequentially call a subroutine, Generalized Cost-Benefit
(GCB), to compute a path for each robot. Compared to the
original GCB algorithm [31], in Algorithm 2, we add one
extra control condition in the while loop to account for the
constraint, Eq. (3), on the number of available sensors using
Lemma 1.

Remark 1. The constraints imposed on the paths of UAVs,
which limit them to at most k; vertices and a maximum
length of T; for UAV 4, can be regarded as a partition
matroid constraint. It has been shown in [32] that an a-
approximate greedy step for submodular maximization over
a matroid yields an approximation ratio of %ﬂ Hence,
given an a-approximation algorithm to solve the submodular
orienteering problem for a single UAV, Algorithm 1 results
in a %—&-1 approximation ratio for maximizing Objective (5)
for multiple UAVs. When the paths of all the UAVs are
constrained to be of at most 7" length and k vertices, we
get a uniform matroid resulting in 1 — e% approximation

ratio.

Remark 2. A quasi-polynomial time recursive greedy al-
gorithm to solve the single vehicle orienteering problem
with submodular rewards is given in [24], resulting in o =
Olog(oPT). In this paper we use Generalized Cost Benefit
(GCB) algorithm to solve the single UAV problem as it has
better runtime than the recursive greedy algorithm [31].

Algorithm 2: General Cost-Benefit (GCB)
1 Function GCB (A, T,G, f,C,vs, k) :
Input :
« Set for selected vertices A
o Budget T, a complete graph G
« Objective oracle g and starting node vy
o Cost function C
o # of sensor k
Output: A set of selected vertices S C V
S {vs}, V'« V\{AUuv}
while V' # () and k > 0 do
for v € V' do
Af +—g(AUSUY) - f(AUS)
AV + C(SUwv)—C(9)

N R W

end

v* = argmax{i—z |veV'}
if C(SUv*) < T then
k+—Fk—-1

S+ Su{v*}

=)

10
11
12 end

13 V' V' \v*
14 end

15 return TSP(S)
16 end




V. EVALUATION

In this section, we evaluate the performance of our al-
gorithm through a series of numerical experiments. We
first explain the setup for the simulation. Then, we will
show one qualitative example to illustrate the difference
between the proposed approach and the baseline. Next, we
will quantitatively evaluate the performance of the proposed
approaches w.r.t. the uncertainty reduction of Pols. Moreover,
we will show the running time of the proposed algorithm
w.r.t. the number of robots.

A. Experimental Setup

The flying object model used in this study is based on
the work described in [33]. This model captures the motion
of the sensors, considering the gravity, the sensors’ surface
area, and the speed of the wind. The sensor mass is set to
10kg. The surface coefficient is 1 and the vertical height is
500m.

We begin by defining the map, ground truth, and wind
field, as shown in Fig. 2. The map provides labels for all
the potential dropping points and Pols. The ground truth is
generated by combining multiple Gaussian functions. Data
points sampled from the ground truth are used to learn the
kernel function, where we employ the RBF function. The
wind field indicates the speed at specific locations on the
map. By combining the sensor motion model with the wind
field, we can estimate the landing position of the sensors.

Using a given kernel, the Algorithm 1 is applied to search
for a set of sensor dropping locations which is an approxi-
mate solution to the main problem. The final sensor locations
are determined by sampling from the flying object model
with uncertainty. Once the sensor locations are obtained,
we can measure the environmental values and compute the
posterior of Pols based on these measurements.
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Fig. 2. Simulation setup. (a) The map of drop location and Pols. The
drop locations are red crosses, which are the target points from where the
UAVs can drop sensors. The Pols are denoted by black diamonds. These
Pols represent specific locations where we are interested in measuring the
sensing value. (b) Wind field
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B. An qualitative example

In the following, we present a comparison between a
baseline approach and our proposed method using the defined
settings. The experiment focuses on a scenario with two
UAVs, where each UAV is equipped with four sensors. The
UAVs are allocated a distance budget of 870 units to drop
all the sensors along their respective paths.

1) Baseline: In the baseline case (Fig 4), the UAVs
tend to drop a higher number of sensors in areas with a
higher concentration of Pols. The objective is to ensure
that each sensor can cover one or more Pols. However,
due to the uncertainty introduced by the wind, the sensors
tend to cluster in smaller regions. As a result, the four
sensors located around coordinates (0,100) are only capable
of accurately estimating two Pols’ value, while the remaining
Pols are not sufficiently covered. This can be observed in
Fig 4, where the two Pols in the lower right corner exhibit
a significantly higher error of estimation.

2) Our Approach: Our approach, on the other hand,
considers the impact of wind uncertainty and prefers to drop
sensors in a wider area. As shown in Fig. 3, the wind blows
the sensors to a broader coverage area, allowing them to
reach and cover more Pols. This broader coverage results in a
significant reduction in the error of Pol estimation compared
to the baseline case. Additionally, it is worth noting that
the areas where the sensors are dropped but do not have
high concentration of Pols exhibit high error rates. This
demonstrates the effectiveness of our approach in adapting
to the wind uncertainty and achieving better coverage of the
target area.

C. Comparisons with Baselines

In this section, we compare the MSE of three different
approaches across three different scenarios. The MSE is
computed as the sum of the square of the difference between
the posterior of the Pols and the ground truth values of the
Pols. In the first two scenarios, we assume that the wind
speed is uniform and the variance of landing location is
the same for all dropping nodes. In the first scenario, the
final location of a sensor follows a Gaussian distribution
with a variance of 900. Two UAVs are deployed, with
each carrying 4 sensors. In the second scenario, the final
location of a sensor follows a Gaussian distribution with
a variance of 820. Two UAVs are deployed, with each
carrying 3 sensors. In both of these scenarios, our approach
demonstrates approximately a 10% improvement in MSE
compared to the baseline approach. The random selection
approach, on the other hand, results in an MSE of 1.

The third scenario introduces non-uniform uncertainty
w.r.t. the drop point location, where the variance is a function
of the non-uniform wind speed. Once again, our approach
consistently outperforms the baseline approach, achieving
a 12% improvement in MSE. These results highlight the
effectiveness of our approach in mitigating the impact of un-
certainty in different scenarios and achieving more accurate
sensor placements.

D. Running Time

Lastly, we demonstrate the scalability of our approach. In
comparison to the baseline approach, our approach may have
a slightly longer running time in each scenario. However,
both approaches grow polynomially in run time with the
number of sensors per UAV.
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To further evaluate the computational performance, we
also simulated a brute-force approach. The brute-force ap-
proach generates all possible combinations of sensor drop-
ping points within the budget constraint and selects the set
with the highest objective value. The runtime of the brute-
force approach grew exponentially, taking hours to days to
complete due to the factorial computation of all possible
combinations. This stark contrast highlights the effectiveness
and efficiency of our approach in finding nearly optimal
solutions for sensor placement in a timely manner.
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Fig. 6. The running time with different numbers of sensors per agent in
the scenarios of 2 UVAs.

VI. CONCLUSION

This paper studies the problem of routing a team of
UAVs to drop sensors to reduce the uncertainty of Pols.
The problem is formulated as a variant of TOP. To reduce
the computational cost in the evaluation of the objective, we
propose one surrogate objective with closed-form expression
based on Gaussian approximation. A heuristic algorithm
(SGA) is proposed to solve the relaxed problem with the
surrogate objective. The formulation and the algorithm are
validated in numerical simulation.
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