Multi-Agent Deep Reinforcement Learning For
Persistent Monitoring With Sensing,
Communication, and Localization Constraints

Manav Mishra, Prithvi Poddar, Rajat Agrawal, Jingxi Chen, Pratap Tokekar, and P.B. Sujit

Abstract—Determining multi-robot motion policies for persis-
tently monitoring a region with limited sensing, communica-
tion, and localization constraints in non-GPS environments is
a challenging problem. To take the localization constraints into
account, in this paper, we consider a heterogeneous robotic system
consisting of two types of agents: anchor agents with accurate
localization capability and auxiliary agents with low localization
accuracy. To localize itself, the auxiliary agents must be within
the communication range of an anchor, directly or indirectly.
The robotic team’s objective is to minimize environmental un-
certainty through persistent monitoring. We propose a multi-
agent deep reinforcement learning (MARL) based architecture
with graph convolution called Graph Localized Proximal Policy
Optimization (GALOPP), which incorporates the limited sensor
field-of-view, communication, and localization constraints of the
agents along with persistent monitoring objectives to determine
motion policies for each agent. We evaluate the performance
of GALOPP on open maps with obstacles having a different
number of anchor and auxiliary agents. We further study (i)
the effect of communication range, obstacle density, and sensing
range on the performance and (ii) compare the performance of
GALOPP with area partition, greedy search, random search,
and random search with communication constraint strategies.
For its generalization capability, we also evaluated GALOPP in
two different environments — 2-room and 4-room. The results
show that GALOPP learns the policies and monitors the area
well. As a proof-of-concept, we perform hardware experiments
to demonstrate the performance of GALOPP.

Note to Practitioner—Persistent monitoring is performed in
various applications like search and rescue, border patrol, wildlife
monitoring, etc. Typically, these applications are large-scale, and
hence using a multi-robot system helps achieve the mission
objectives effectively. Often, the robots are subject to limited
sensing range and communication range, and they may need
to operate in GPS-denied areas. In such scenarios, developing
motion planning policies for the robots is difficult. Due to the lack
of GPS, alternative localization mechanisms, like SLAM, high-
accurate INS, UWB radio, etc. are essential. Having SLAM or a
highly accurate INS system is expensive, and hence we use agents
having a combination of expensive, accurate localization systems
(anchor agents) and low-cost INS systems (auxiliary agents)
whose localization can be made accurate using cooperative
localization techniques. To determine efficient motion policies,
we use a multi-agent deep reinforcement learning technique
(GALOPP) that takes the heterogeneity in the vehicle localization
capability, limited sensing, and communication constraints into
account. GALOPP is evaluated using simulations and compared

Manav Mishra, Prithvi Poddar, Rajat Agrawal, and P.B. Sujit are with the
Department of Electrical Engineering and Computer Science, IISER Bhopal,
Bhopal, India — 462038.

Jingxi Chen and Pratap Tokekar are with the Department of Computer
Science, University of Maryland, College Park, United States — MD 20742.
Their work was supported by NSF under grant No. 1943368, ONR under
grant number N0O0014-18-1-2829, and an Amazon Research Award.

with baselines like random search, random search with ensured
communication, greedy search, and area partitioning. The results
show that GALOPP outperforms the baselines. The GALOPP
approach offers a generic solution that be adopted with various
other applications.

I. INTRODUCTION

Visibility-aware persistent monitoring (PM) problem in-
volves continuous surveillance of a bounded environment by
a single agent or a multi-agent system considering limited
field-of-view (FOV) constraints into account [1]-[9]. Various
applications, like search and rescue, border patrol, critical
infrastructure, etc., require persistent monitoring for timely
information. Ideally, persistent monitoring requires spatial and
temporal separation of a team of robots in a larger environment
to cooperatively carry out effective surveillance. The problem
becomes complex as the multi-robot systems are subjected to
limited sensing range, communication range, and localization
constraints due to non-GPS environments. In this paper, we
study the problem of determining motion planning policies for
each agent in a multi-agent system for persistently monitoring
a given environment, considering all the constraints using a
graph communication-based multi-agent deep reinforcement
learning (MARL) framework.

Generating motion policies for each agent using determinis-
tic strategies becomes challenging due to the above constraints,
as the agents require complete information about all possi-
ble interactions with information sharing among the agents.
Hence, developing alternate strategies for multi-agent systems
to learn to monitor complex environments is imperative.

We consider a scenario where a team of robots equipped
with a limited field-of-view (FOV) sensor and limited com-
munication range is deployed to persistently monitor a GPS-
denied environment, as shown in Figure 1. As the environment
does not support GPS, one can deploy agents that have expen-
sive sensors such as tactical grade IMUs or cameras/LIDARs
in conjunction with high computational power to carry out on-
board SLAM for accurate localization with very low position
uncertainty; these agents are called anchor agents. However,
such a system becomes highly expensive for deployments.
On the other hand, we can deploy agents with low-grade
IMUs that are cheaper but exhibit high drift resulting in poor
localization accuracy; these agents are called auxiliary agents.
Auxiliary agents can be used in conjunction with external
supporting localization units (like UWB ranging or cooperative

Q
¢ Anchor agent

o5 Auxiliary agent

Field of View - Communication range

Fig. 1: Persistent monitoring in a 2-D environment using a
team of anchor and auxiliary agents with FOV, localization,
and communication range constraint.

localization [10]-[12]) to reduce localization uncertainty so
that they are helpful in performing the coverage. Hence, as a
trade-off, in this paper, we consider a robotic team consisting
of anchor and auxiliary agents to monitor a region persistently.

The auxiliary agents can localize using the notion of coop-
erative localization by communicating with the anchor agents
directly or indirectly through other auxiliary agents and hence
have reduced uncertainty in their positional beliefs. As the
auxiliary agents need to be in communication with anchor
agents, their motion is restricted, which can result in lower
monitoring performance as some areas may not be covered.

However, intermittent connection with the anchor agents
will enable auxiliary agents to recover from the localization
uncertainty while maintaining coverage across all regions [13].
This conflicting objective of monitoring the complete area
while periodically maintaining connectivity from the anchor
agents makes the problem of determining persistent monitor-
ing strategies for the agents challenging.

Simultaneously addressing numerous constraints is pivotal
in this context due to the intricacies involved in persistent
monitoring. In GPS-denied scenarios, conventional methods
relying on GPS or beacons fall short. Moreover, assuming
complete communication between agents is often unrealistic,
making it imperative to develop strategies that operate under
partial or intermittent connectivity.

Consider applications such as search and rescue in ur-
ban/remote regions affected by flooding. In these scenarios,
UAVs can be used to monitor and enhance situational aware-
ness. However, the cameras have a finite field-of-view, and
the communication range with the base station is also limited.
In addition to these two constraints, acquiring GPS becomes
challenging in cloudy weather conditions. Therefore, it is
necessary to determine motion policies for the agents while
considering all these constraints.

In this paper, we propose Graph Localized Proximal Policy

Optimization (GALOPP), a multi-agent proximal policy opti-
mization [14] algorithm coupled with a graph convolutional
neural network [15] to perform persistent monitoring with
such heterogeneous agents subject to sensing, communication,
and localization constraints. The persistent monitoring envi-
ronment is modeled as a two-dimensional discrete grid, and
each cell in the grid is allocated a negative reward. When a cell
is within the sensing range of any agent, then the reward value
reduces to zero. Otherwise, the negative reward accumulates
over time. Thus, the agents must learn their motion strategy
to minimize the net reward accumulated over time, showing
efficient persistent monitoring. We consider PPO in GALOPP
because it is known for its stability, high sample efficiency, and
resistance to hyperparameter tuning [14].

The approach presented in this paper addresses the chal-
lenge of balancing exploration for monitoring while adhering
to localization constraints. Its novelty lies in the development
of a model for guiding multiple decentralized agents in con-
ducting monitoring in an uncertain environment. The primary
contribution involves designing a decision-making strategy
based on Multi-Agent Reinforcement Learning for effective
area surveillance while considering sensing, communication,
and localization constraints.

The main contributions of this paper are:

o Development of a multi-agent deep reinforcement learn-
ing algorithm (GALOPP) for persistently monitoring a
region considering the limited sensing range, communi-
cation, and localization constraints into account.

o Evaluating the performance of GALOPP for varying
parameters — sensing area, communication ranges, the
ratio of anchor to auxiliary agents, obstacle density, and
centralized vs decentralized map sharing.

o Comparing the performance of GALOPP to baseline
approaches, namely, random search, random search with
ensured communication, greedy search, and area parti-
tioning with lawn-mower sweeping strategy.

The rest of the paper is structured as follows. In Section II,
we provide a review of the existing literature on this problem.
In Section III, we define the persistent monitoring problem
with multiple agents. In Section IV, we describe the GALOPP
architecture and we evaluate the performance of GALOPP in
Section V. In Section VI, the proof-of-concept of GALOPP
performance using a team of nanocopters is described and we
conclude in Section VII.

II. RELATED WORK

The persistent monitoring problem can be considered as a
persistent area coverage or as a persistent routing problem
visiting a set of targets periodically. Under persistent area
coverage problem, one can consider the mobile variant of
the Art Gallery Problem (AGP) [16] where the objective is
to find the minimum number of guards to cover the area.
There are several variants on AGP for moving agents under
visibility constraints [17]. An alternative way for coverage is
to use cellular decomposition methods, where the area can
be decomposed into cells, and the agents can be assigned to
these cells for coverage [18], [19]. In AGP and its variants,

the visibility range is infinite but restricted by environmental
constraints such as obstacles or boundaries.

In addressing the persistent routing problem, one can ap-
proach it using different variants of multiple Watchman Route
Problem (n-WRP) [20]. In these approaches, the goal is to
find a route for each agent for monitoring while minimizing
the latency in visit time. Yu et al. [1] propose a method
for monitoring events with stochastic arrivals at multiple
stations by combining stochastic modeling and control theory
to optimize real-time monitoring and resource utilization.
Tokekar et al. [17] propose a novel method for persistent
monitoring using robot teams that employs a coverage path
planning algorithm accounting for visibility constraints to
optimize coverage and path length trade-off. Wang et al. [8]
propose a method for cooperative persistent surveillance on
a road network using multiple Unmanned Ground Vehicles
(UGVs) with detection capabilities. Lin et al. [4] apply a
decentralized control algorithm to consider agents’ dynamics
and monitoring constraints in real-time, enabling the solution
of the problem by finding the optimal trajectory for each
agent. Washington et al. [21] propose an RSVI algorithm for
real-time drone surveillance policy optimization considering
battery life and charging constraints, balancing the trade-off
between surveillance coverage and energy consumption. Maini
et al. [22] propose a coverage algorithm that considers the
visibility constraints of robots to monitor linear features such
as roads, pipelines, and power lines on terrains with obstacles.
Mersheeva et al. [7] develop a framework for multi-UAV
monitoring with priorities that address the efficient allocation
of UAVs while considering resource limitations.

The above-cited approaches assume agents with either un-
restricted sensing and/or communication and have full local-
ization. In contrast, our context involves agents with limited
access to information in these aspects. Devising a control
policy that allows for persistent area coverage while respecting
localization constraints is challenging. In the absence of GPS,
the agent is unaware of its true position, and the estimated
position covariance steadily increases over time. Therefore, the
above approaches cannot be applied directly, and modifying
them to accommodate localization constraints is difficult.
The interconnection of exploration and localization objectives
increases the problem’s complexity.

Another approach is to learn from the environment to
determine agent paths while considering the sensing, commu-
nication, and localization constraints. Reinforcement learning
can be one such learning-based approach that can learn to
determine paths for multiple agents while considering all the
constraints. Multi-agent reinforcement learning (MARL) based
path planning literature focuses on developing efficient and
effective algorithms for multi-agent systems on cooperative
multi-agent tasks covering a broad spectrum of applications
[23]-[28]. Blumenkamp et al. [29] study inter-agent commu-
nication for self-interested agents in cooperative path planning
but do not account for localization constraints and assume
complete connectivity throughout. Omidshafiei et al. [23]
formalize the concept of MARL under partial observability,
which applies to scenarios with limited sensing range. Chen
et al. [30] developed a method to find trajectories for agents

to cover an area continuously but with the assumption that all
agents have full access to the environment due to unrestricted
communication access among agents. In the above articles, the
problem of determining motion policies for the agents con-
sidering the localization, sensing, and communication range
constraints jointly has not been adequately addressed. In this
work, through GALOPP, we address the problem of persistent
monitoring considering all three constraints using a deep
reinforcement learning framework.

III. PROBLEM STATEMENT
A. Persistent monitoring problem

We consider the persistent monitoring problem in a 2D grid
world environment G C R? of size A x B. Each grid cell Gogps
I<a<Aand 1< <B,has areward Rop (t) associated with
it at time 7. When the cell G4 is within the sensing range of an
agent, then Ryp(f) — 0, otherwise, the reward decays linearly
with a decay rate Ayg > 0. We consider negative reward as
it refers to a penalty on the cell for not monitoring. At time
t =0, Ryp(t) =0, V(a,) and

max{RaB (l‘) — Aaﬁv _Rmax}
if Gop is not monitored at time ¢
0 if Ggp is monitored at time 7,

Raﬁ(l+l) =

(D
where Rpax refers to the maximum penalty a grid cell can
accumulate so that the negative reward Rgp is bounded.

The objective of the persistent monitoring problem is to find
a policy for the agents to minimize the neglected time, which
in turn, maximizes the total accumulated reward by G over a
finite time 7'. The optimal policy is given as

T A B
T :argmaxz l Z Z RZﬁ(t)
T =0

=0 [oa=18=1

; 2

where 7* is an optimal global joint-policy that dictates the
actions of the agent in a multi-agent system, and RZB is the
reward obtained by following a policy 7.

Problem: Given a 2D grid world environment G, determine
a joint-optimal policy ©* for N agents to minimize the neglect
time at each cell in G taking sensing range, communication
range and localization constraints into account.

B. Localization for Persistent Monitoring

The grid G consists of N-agents to perform the monitoring
task. The agents have a communication range p. At every
time step, a connectivity graph & = (¥ &) is generated
between the agents. An edge connection e;; is formed be-
tween agents i and j, if dist(i, j) < p, where dist(i, j) is the
Euclidean distance between agents i and j. The connectivity
of any agent with an anchor agent is checked by using the
Depth-First Search (DFS) algorithm. Each agent estimates
its position using Kalman Filer (KF). The anchor agents
have high-end localization capabilities; hence, the position
uncertainty is negligible. However, the auxiliary agents can
localize accurately if they are connected to an anchor agent,
either directly or indirectly (multi-hop connection). As we do
not consider any loss of information or cost associated with

®
=1 =2

(a) (b) (c)

Fig. 2: Sensing range of the agent (a) agent position (b) When
sensing range ¢ = 1, the cells that the vehicle can sense g =
3 x 3. (c) When ¢ =2, the sensing grid becomes g =5 x 5

communication to an anchor agent, an auxiliary agent achieves
localization upon observing an anchor agent. Consequently,
a multi-hop communication to an anchor agent can localize
another auxiliary agent not in direct communication contact
with an anchor agent [12].

An agent located at position (¢,) has a field of view that
covers a square region with dimensions g x g, where g =2(+
1, and the agent can sense ¢ cells in all cardinal directions.

As the anchor agents are accurately localized, they can
update the rewards Rqp(f) in the grid world G, that is, set
Rop(t) = 0. The auxiliary agents connected to the anchor
agents either directly or via multi-hop connections can also up-
date the rewards Rgg(t) = 0. However, those auxiliary agents
that are disconnected from the anchor agents can observe
the world but cannot update the rewards due to localization
uncertainty associated with an increase in the covariance of the
vehicle. When the vehicle reconnects with the anchor vehicle
network, its uncertainty is reduced, and it can update the
rewards. The world that the auxiliary agent observes during
disconnection is not considered for simplicity.

An interesting aspect of solving Equation (2) to determine
policies for the agents is that it does not explicitly assume
that the graph network is always connected. Although a strict
connectivity constraint increases the global positional belief of
the entire team, it reduces the ability of the team to monitor
any arbitrary region persistently due to the communication-
constrained motion of the agent. Intermittent connectivity of
agents leads to a better exploration of the area allowing more
flexibility [31], [32]. The auxiliary agents, once disconnected,
do not contribute to the net rewards obtained by the team.
Since the objective is to find a policy that maximizes the
rewards, the problem statement enables the agents to learn
that connectivity increases the rewards, so they should be
connected. The connectivity constraints are indirectly implied
through rewards and not hard-coded into the agent decision-
making policy. We abstract the localization constraints through
the connectivity graph G during decision-making, which is
detailed in section IV.

C. Using Kalman Filter for state estimation

In a cooperative localization (CL) setting, one way an
auxiliary agent can localize is by observing an anchor agent.
We assume that all the agents know their starting position
accurately.

To handle the position uncertainties, we apply a Kalman
Filter (KF) [33] to update its state mean and covariance. The
KF propagates the uncertainty in the position of the auxiliary

agent as long as it is unlocalized, and upon localization, the
agent is made aware of its true location. The motion model of
the auxiliary agent is,

W1 = Akl + By + &, 3

where 1, and 1| are the positions of the agents at time ¢
and 7+ 1 respectively, & is a random variable representing
the error in the prediction, drawn from a normal distribution
with zero mean and covariance R;, A; = B; = Ly, and u; is
the control input at time ¢. Upon observing another agent, the
observation model can be formulated as,

% =Gy + 6, (4)
a
0
a=|%" |)
=

Here z; = is the relative position of the observed agent in

a
b
the context of the KF observation model, where a = x; —x and
b=y, —y, Here, (xg,y,) is the global position of the observed
agent and (x,y) is the current position of the observing agent.
& is the error in the observation that is drawn from a normal
distribution with 0 mean and covariance Q;. Given the motion
and observation models, we can write the KF algorithm as
mentioned in Algorithm 1.

Algorithm 1: KF (y;_1,%;_1,u;,z,gotObservation)

Hr = A1 + Bruy

Y, =A%, AT + 0,

if gotObservation — True then
K, =%CI(CECT +0,)!
W = i + K (% - Ciit)
Y, =(I-KGC)%,
return (.Y,

end

else

| return [, ¥,

end

Based on the environment model, vehicle motion, and lo-
calization model, we introduce our proposed GALOPP multi-
agent reinforcement learning architecture in the next section.

IV. GRAPH LOCALIZED PPO - GALOPP

The multi-agent persistent monitoring task requires every
individual agent to compute its policies using its own and
the neighboring agents’ observations. This makes computing
policy for an agent a non-stationary problem that can be
tackled using either a centralized or a decentralized algorithm.
A centralized approach will comprise a single actor-critic
network to determine the agents’ policy. Such an algorithm
is faster to train and execute but is not scalable to many
agents. The decentralized approach overcomes these short-
comings by assigning individual actor networks to each agent.
However, training multiple networks can be computationally
expensive. In this paper, we utilize the Centralized Training
and Decentralized Execution (CTDE) [34] strategy. This helps

in retaining the computational efficiency of centralized actor-
critic and the robustness of decentralized actors.

A. Architectural overview

The complete GALOPP pipeline with environmental inter-
action is shown in Figure 3, while the GALOPP architecture
details are shown in Figure 4a. The GALOPP architecture
consists of a multi-agent actor-critic model that implements
Proximal Policy Optimization (PPO) [14] to determine indi-
vidual agent policies. Multi-agent PPO is preferred over other
policy gradient methods to avoid having large policy updates
and achieve better learning stability in monitoring tasks. It also
has better stability, high sample efficiency, and resistance to
hyperparameter tuning [35].

The observation of agent i is denoted as o;, comprising a 2-
channel image: the first channel, termed local map, represents
the locally observed visibility map, while the second channel
consists of an independently maintained global map version,
compressed to match the dimensions of the local map (as
depicted in Fig. 4b) and referred to as mini-map. The local map
values depict a binary map indicating obstacle presence within
the agent’s geometric visibility constraint. The global map
values represent the reward value heatmap of each cell in the
grid, which is subsequently compressed to form a mini-map.
This image is passed through a Convolutional Neural Network
(ConvNet) [36] to generate individual embeddings A; for each
agent, which is then augmented with agent i’s positional mean
U; and covariance XY;, as shown in Figure 4a. This is the
complete information §; of the agent’s current state. This
information vector §; forms the node embedding of the graph
G. It is then processed by a Graph Convolutional Network
(GraphNet) [15] that enforces the relay of messages in the
generated connectivity graph ¢ to ensure inter-agent commu-
nication. The decentralized actors then use the embeddings
generated by GraphNet to learn the policy, while a centralized
critic updates the overall value function of the environment.
The model is trained end-to-end for the persistent monitoring
problem. The local computation involves - updating the local
map, the mean and covariance of the position, and updating
each agent’s maintained global map. The central computation
is the computation of the joint policy for the multi-agent RL
problem. The components of the GALOPP architecture are
described in the below subsections.

B. Embedding extraction and message passing

The GALOPP model inputs the shared global reward values
in the 2D grid. The observation of an agent i at time ¢ is the set
of cells that are within the sensing range (termed as the local
map) and also a compressed image of the current grid (termed
as mini-map) with the pixel values equal to the penalties
accumulated by the grid cells [37]. Each agent has a separate
copy of the mini-map. Each agent updates the copy of their
mini-map, and the monitoring awareness is updated through
inter-agent connectivity. Figure 6 illustrates a representation
of how the decentralized map is updated. The connected agents
compare and aggregate the global map at each time step for a
network graph by taking the element-wise maximum for each

grid cell Gyp in the environment. The element-wise maximum
value of each grid cell is shared among the connected agents.
The mini-map is resized to the shape of the local map of the
agent and then concatenated to form a 2-channel image (shown
in figure 4b). This forms the sensing observation input o; for
the model at time 7. The ConvNet converts the observation o;
into a low-dimensional feature vector /; termed the embedding
vector. The positional mean f; and covariance matrix X; of
agent 7 is then flattened, and their elements are concatenated
with &; to generate a new information vector §; (as shown in
figure 4a).

The agents are heterogeneous agents (anchor and auxiliary)
where the localization information is a parameter aggregated
in the graph network component of GALOPP. An agent’s
aggregated information vector depends on the current position
in the environment, the generated message embedding, and the
localization status of each neighboring agent.

GraphNet transfers the information vector {; to all agents
within the communication graph. The agents take in the
weighted average of the embeddings of the neighborhood
agents. The basic building block of a GraphNet is a graph
convolutional layer, which is defined as [15]:

HD = o(AHOWW), (©6)

where H®) is the feature matrix of the k-th layer, with
each row representing a node in the graph and each column
representing a feature of that node. Ay is the graph’s adjacency
matrix, which encodes the connectivity between nodes. w k)
is the weight matrix of the k-th layer, which is used to learn a
linear transformation of the node features and o is a non-linear
activation function, such as ReLU or sigmoid.

After the message passing, the aggregated information vec-
tor §/ for each agent i, for a GraphNet having k hidden layers,
is given as,

¢ =HW = g(A,H W k=), 7)

The aggregated information vector §’ is now passed on to the
actor-critic network MLP. The actor-network makes decisions
for the agent, and a separate critic network evaluates the actor’s
actions to provide feedback, allowing the actor to improve its
decision-making over time.

C. Multi-agent actor-critic method using PPO

The decentralized actors in the multi-agent PPO take in
the aggregated information vector §/ and generate the cor-
responding action probability distribution 7. The action space
consists of five discrete options: {up, down, left, right, stay},
representing decisions to move in one of the four cardinal
directions or to remain in the current location.

The centralized critic estimates the environment’s value
function to influence the individual actor’s policy (Figure 3).
The shared reward for all agents is defined in Equation (2).

For a defined episode length 7', the agent interacts with the
environment to generate and collect the trajectory values in
the form of states, actions, and rewards {s;,a;,r;}. The stored
values are then sampled iteratively to update the action proba-
bilities and to fit the value function through back-propagation.

Aggregated
nformation vector

" Agent j Information vector
Local Map
= ‘ ‘
=

Positional info 4 X—®

Information
vector

Agenty, (k #Tj)D

[CICIGICIC)

Actor MLP a; =UP

Environment

(s)

9

8
=
NS

@
@
@!

Critic MLP ®

(@

Action Distribution

Fig. 3: Complete pipeline consisting of GALOPP model with environmental interaction. The observations from each agent
are processed by the ConvNet, and the generated embeddings are passed to the GraphNet following the communication graph
formed among the agents. The GraphNet processes the input embeddings and generates aggregated information vectors that
are passed through the actor network. The actor network generates a probability distribution over the possible actions for each
agent, and the agents execute the actions having the highest probability. The critic provides feedback to the actor about the
actions’ expected value with respect to achieving the RL objective.

GALOPP Architecture

P s R o . O, .
R B L R S "

l’ {CnnvNet I 'l' l [ConvNetl l’ l lCnnvNet l

,U. by K] —— by B = E 4> - Anchor agent A - Auxiliary agent

’G N
e CJ I € :— ¢
Actar MLPHCnt:c MLP) [Actar MLP «—(Critic MLP] [Actor MLP]<—[Crmc MLP) | ..
| i i s Mini Map Local Ma

aj V; P 5 ak Vk: p p

Agentj(j 75 ?.) Agent,, 77777777777 Agen,tk(k 75 ?,) -400 -350 -300 -250 -200 -150 -100 -50 O
(@ (b)

Fig. 4: (a) Schematic representation of GALOPP architecture. Each agent block of the architecture represents an actor-critic
model. (b) The mini-map is the image of the environment G, resized to g x g. The local map is a g x g slice of the environment
G centered around the agent. The mini-map and local map are concatenated together to form the input o; for agent i.

Let 0; be the actor trainable parameter and 8, be the critic
trainable parameter. Discounted return measures the long-term
value of a sequence of actions. The discounted return is given
as G(t;01) = X1 ¥r(t +k+1;6)), where y € [0,1) is the
discount factor and T is the episode time horizon. The Value
function V/(si;0,) represents the expected long-term reward
that an agent i can expect to receive if it starts in that state s at
time ¢. It is updated as the agent interacts with the environment
and learns from its experiences. The value function estimate,
which is defined as V(si;6,) = E[G(t)|s!], is provided by
the critic network. The advantage estimate function A; is a
measure of how much better a particular action is compared

to the average action taken by the current policy. It is defined
as the difference between the discounted return and the state
value estimate given by

A1(61,62) = G(1;61) =V (s}; 62). 8)

PPO uses the advantage function to adjust the probability
of selecting an action to make the policy more likely to
take actions with a higher advantage. This helps ensure that
the policy makes the most efficient use of its resources and
maximizes the expected reward over time [14]. The modified
multi-agent PPO objective function to be minimized in the

30 pixels

30 pixels

e T e e
5 I O o

()

-400 -350 -300 -250 -200 -150 -100 -50 [+]

©

Fig. 5: (a) Outline of the open map. (b) The agents cannot move into black pixels, while the non-black regions need to be
persistently monitored. As the anchor agents (red stars) and auxiliary agents (dark blue triangles) monitor, their trajectory is
shown as the fading white trails for the last 30 steps. The communication range between the agents is shown in red lines. (c)
The trajectories of the anchor and auxiliary agents while monitoring are shown by the red and blue lines, respectively.

m
Aggregated mini-map

- RER -]
(a) (b)

Fig. 6: (a) Ilustration of decentralized map-sharing among
agents in persistent monitoring. (b) Overview of how agents
within communicable range of one another update their global
maps in a decentralized setting. The resultant global map is
generated by taking the element-wise maximum value from
the individual global maps of the agents.

GALOPP network is given as,

L(6y,6,) = %Z (fv ﬁ (LEHP(61,6,))) ©)

m i=1

where N is the total number of agents and m is the mini-batch
size, and LELP (0, 6,) refers to the clipped surrogate objective
function [14] defined as

LEHP(0,,6,) = I, [min(r,(6,)A! (61, 62),

. ni (10)
clip(r:(61),1—¢&,1+€)A;(61,6,))],

where r,(01) = 7o,/ ng}d is the current policy’s (7g,) action

probability ratio to the previous policy distribution 77:3}‘1. The
clip function clips the probability ratio r,(6;) to the trust-
region interval [1 —¢,1+¢€].

GALOPP is trained end to end by minimizing the modified
PPO objective function using the trajectory values collected
from the interactions with the environment. GALOPP min-
imizes the multi-agent PPO objective function to train the

network. The algorithm updates the action probabilities and fits
the value function through back-propagation. This allows the
model to learn from experience and improve its performance
over time.

V. EXPERIMENTS AND ANALYSIS

We evaluate the performance of GALOPP on an open map
environment as shown in Figure 5. The open map has an
area of 30 x 30 sq. units, where 5 obstacles having random
geometry are placed. The agents have a sensing range of
¢ =17 in the 2D environment. We use the accumulated reward
metric to evaluate the performance. The total reward at time
t is defined as Z(t) = Lo g Rap(t). The grid cells’ penalties
are updated with a decay rate of Agg =1, V(). A cell’s
maximum negative reward is R, = 400. The simulation
parameters used in the experiments are detailed in Table 1.

A. Model

GALOPP was trained and tested using Python 3.6 on a
workstation with Ubuntu 20.04 L.T.S operating system, with
an Intel(R) Core(TM) i9 CPU and an NVIDIA GeForce RTX
3090 GPU (running on CUDA 11.1 drivers). The neural
networks were written and trained using PyTorch 1.8 and
dgl-culll (deep graph library). We now provide details of
the various parameters used in the model. The GALOPP
architecture consists of 4 deep neural networks: ConvNet,
GraphNet, Actor MLP, and Critic MLP, as shown in Figure 3.
The details of this architecture are given in Table II.

1) Embedding generator (ConvNet): This convolutional
neural network takes a 2-channeled 15 x 15 image (local map
and mini-map) as the input and generates a 32-dimensional
feature vector. We then append a 6-dimensional state vector
to this feature vector (positional mean and covariance) to form
a 38-dimensional feature vector that acts as the embedding for
the graph convolution network. The state vector is derived by
flattening the agent’s covariance matrix X; and appending it to
the position vector L.

Parameter Value
Decay Rate (Aqp) 1
Maximum negative reward (Ryqx) 400
Length of episode (T) 1000
Agent visibility range (¢) 7

Local map and Mini map size (g x g) 15x 15
O; (covariance matrix for error in IMU suite) {0(')5 005}
. . . . le—4 0
O, (covariance matrix for uncertainty in sensors) 0 le—4

TABLE I: Simulation Parameters for GALOPP

ConvNet
ConvLayer! (in-channels=2, out-channels=16,
kernel-size=8, stride=4, padding=(1, 1)), ReLU activation
ConvLayer2 (in-channels=16, out-channels=32,
kernel-size=4, stride=2, padding=(1, 1)), ReLU activation
ConvLayer3 (in-channels=32, out-channels=32,
kernel-size=3, stride=1, padding=(1, 1)), ReLU activation, Flatten
GraphNet
GCNLayer(in-features=38, out-features=38)
Actor MLP
LinearLayer] (in-features=38, out-features=500), ReLU activation
LinearLayer2 (in-features=500, out-features=256), ReLU activation
LinearLayer3 (in-features=256, out-features=5), SoftMax
Critic MLP
LinearLayer] (in-features=38, out-features=500), ReLU activation
LinearLayer2 (in-features=500, out-features=256), ReLU activation
LinearLayer3 (in-features=256, out-features=1)

TABLE II: Parameters for the neural networks

2) Graph convolution network (GraphNet): The embed-
dings generated by the embedding generator are passed
through a single-layered feed-forward graph convolution net-
work to generate the embeddings for the actor networks of the
individual agents.

3) Actor MLP: The actor takes the embeddings generated
by the ConvNet and the aggregated information vector from
the GraphNet network as the input and generates the proba-
bility distribution for the available actions.

4) Critic MLP: The critic network takes the embeddings
generated by the ConvNet for each agent and returns the state-
value estimate for the current state.

5) Training: The training is carried out for 30000 episodes
where each episode is of length 7" = 1000 time steps. The
agents are initialized randomly in the environment for every
training episode but are localized during initialization.

The GALOPP architecture input at time ¢ is the image
representing the state of the grid G, which is resized to an im-
age of the dimension 15 x 15 using OpenCV’s INTER_AREA
interpolation method and concatenated with the local visibility
map of the agent forming a 2-channeled image of dimension
15 x 15. The action space has five actions: up, down, left, right,
and stay. Each action enables the agent to move by one pixel,
respectively.

6) Evaluation: For testing the learned policies, we evaluate
it for 100 episodes, each episode for 7= 1000 time steps, in
their respective environments. The reward for test episode 7 is
denoted by %;, = Y7, %(t) and the final reward %, after
n = 100 episodes are calculated as %, = %22:1 %’Zp. The
Ravg is used to evaluate the model’s performance. Next, we

le7

. -

Average rewards

10 15 . 20 . 25 30
Communication Range
Fig. 7: Comparison of the average reward on increasing the
communication range of the agents in the open-map environ-
ment.

will evaluate the performance of the GALOPP under different
parameters.

B. Effect of increase in communication range

With an increase in communication, the agents will be
able to communicate as well as localize better while reaching
various locations in the environment. A lower communication
range can make agents close to each other, and hence, the
agents are unable to explore and cover different regions,
making an ineffective strategy. We consider a system com-
prising 2 anchor agents and 2 auxiliary agents, and vary the
communication range from p = 10 units to p = 30 units,
with an increment of 5 units. We evaluate the performance
of GALOPP under different communication ranges as shown
in Fig. 7.

From the figure, we can see that with a reduced com-
munication range of 10 and 15, the agents are unable to
monitor the region properly, hence resulting in higher negative
rewards. As we increase the communication range to 20,
the performance improves as the agents can communicate
better while maintaining localization accuracy. However, by
increasing the communication range higher than 20, there is
a marginal improvement in the performance at the cost of
a higher communication range. These results are intuitive.
However, they provide insight into the selection of the com-
munication range for the rest of the simulations. Based on
these results, we consider p = 20 for the rest of the analysis.

C. Effect of varying sensing range

The size of the local map is dependent on the sensing range
¢, which we measure in terms of the number of cells that can
be observed. As the sensing range { increases, the number of
observed cells g x g also increases, where g = 2(+ 1, resulting
in a decrease in penalties. Intuitively, with an increase in
sensing range, the reward improves, which can be seen in
Figure 8. The difference in performance between ¢ =5 and
£ = 6 is significant; however, the performance improvement is
lower when we further increase the sensing range to ¢ = 7.
Based on these trends, if we further increase the sensing
range, the improvement will be marginal. Hence, we consider

|
I
|
1

|
N

|
w

|
o

|
o

Average rewards
4 &

|
o

|
©

15x15

11x11
Sensing range in terms of number of cells

13x13
Fig. 8: Comparison of the average reward of the model on

decreasing the local sensing map range. The local map is the
agents’ visibility range in the environment.

.H.{.%-'H'{-%%

|
Iy
=}

{.{-{'

HH

|
g
<)

1 anchor
2 anchors
3 anchors
4 anchors
5 anchors

Average rewards
|
e

1
w
o

3 agents 4 agents

Total Agents

2 agents 5 agents

Fig. 9: Effect of increasing the total number of agents in
the environment. For a given number of agents, we effect of
increasing the number of anchor agents k < N for N agents in
the environment.

a sensing range of £ =7 for the rest of the simulation. Note
that during this evaluation, we use a communication range of
p =20, as fixed from the previous analysis.

D. Effect of an increasing number of agents and varying
anchor-auxiliary ratio

The ability to monitor adequately in the environment de-
pends on the number of agents present in the environment and
also the ratio of the anchor to auxiliary agents. To understand
this effect, we carry out simulations, varying the number of
agents from 2 to 5. For a given agent, we vary the number
of anchors to understand the performance to cost benefits
associated with a higher number of anchors. Figure 9 shows
the model performance for a varying number of agents in the
environment. First, let’s consider the effect of an increase in
the number of agents with a single anchor. From the figure,
we can see that with an increase in the number of agents,
the coverage is higher and hence improvement in the average
rewards. However, as we increase the number from 4 to 5, the
improvement is marginal because four agents are sufficient to
cover the region, and hence, increasing more agents does not
increase the rewards significantly.

For a given number of agents, let us now analyze the effect
of a number of anchor agents. For 2 agents, with both being

,_.
o
@

|
<
)

|
<
IS

|
<
o

Average rewards
eoe o
N o ©

I
=
i

5% 10% 15% 20% 25% 30%

Percentage Occlusion
Fig. 10: Comparison of the average reward on increasing the
percentage obstruction in the environment by increasing the
number of obstacle blocks.

anchors enables the agents to cover better, and since these two
agents have high accuracy, they can work independently, thus
improving the performance of one anchor. When we increase
the number of anchors for 3, 4, and 5 agent cases, we can see
that increasing the number of anchors shows only a marginal
improvement. Hence, we can obtain good coverage accuracy
with a lower number of anchor agents while ensuring there are
2 or more auxiliary agents. With a lower number of anchors,
the deployment cost can be reduced significantly.

E. Effect of increasing obstruction in the environment

The model should have the robustness to be able to perform
well under different percentage obstructions in the environ-
ment. However, as the percentage of obstructions increases,
the difficulty in monitoring also increases. In order to validate
this hypothesis, we perform simulations on varying obstacle
percentages in the environment. For each episode, the obsta-
cles for a given percentage are randomly generated and placed.

Figure 10 shows the performance of GALOPP for varying
percentage obstruction. From the figure, we can see that when
the obstruction is less (5-15%), the GALOPP model is able to
learn to change the paths so that the rewards are maximized.
However, with further increases in obstacle density (20-30%),
learning becomes difficult due to environmental constraints
and, hence reduction in performance. When we look at the
percentage of disconnections that happen due to environmental
changes, for 5-15% obstacle density, the disconnections are
less than 10%. However, with an increase in the obstacle
density, the motion constraints for the agents also increase.
Due to this, the agents are unable to explore remote regions,
resulting in reduced performance as shown in Figure 10.
Because the agents are unable to disconnect and explore,
they remain connected, resulting in a lower percentage of
disconnection time.

FE. Comparison between centralized maps vs. decentralized
maps

In GALOPP, agents are trained using a decentralized mini-
map, where each agent maintains a separate copy of the

= =
© [S) N

Percent time

N

0

5% 10% 15% 20% .
Percentage obstruction

25% 30%
Fig. 11: Comparison of the percent time of disconnection for
auxiliary agents on increasing the percentage occlusion in the
environment.

Average rewards
|
5

Decentralised
Maps

Centralised
Maps

Map types
Fig. 12: Comparison between centralized and decentralized
execution

global map that was updated when agents were within a
communicable range. We compare the performance of the
decentralized global map approach to a centralized approach,
where a shared global map is maintained among all agents. To
accomplish this comparison, agents within the communication
range of each other compared and aggregated the global map at
each time step by taking the element-wise maximum for each
grid cell in the environment, as shown in Figure 6. In order
to know the difference in performance between centralized
map sharing and decentralized map sharing, simulations were
carried out, and Figure 12 shows the performance difference.
The simulations setting for the comparison are two anchor
agents and two auxiliary agents with a sensing range of 7
cells and a communication range of 20.

From the figure, we can see that the centralized map
model is performing marginally better than the decentralized
map model, but statistically, both strategies are performing
similarly. The result shows that using decentralized maps is
a good alternative to centralized maps. This suggests that
the decentralized approach in GALOPP can achieve similar
performance to a centralized approach while still providing
the benefits of decentralization in maintaining its local obser-
vation.

G. Comparison between GALOPP and non-RL baselines

Due to the localization constraints in the persistent monitor-
ing problem, the motion of both anchor and auxiliary agents
becomes coupled. This complexity makes it highly challenging
to devise deterministic motion strategies for these heteroge-
neous agents. Given the unique coupled objective of coverage
and localization in our approach, existing literature has lim-
itations in simultaneously addressing both aspects, which in
turn complicates the identification of suitable baselines. Since
there is limited prior research on persistent monitoring with
constraints on communication, localization, and sensing range,
we compare our approach with heuristic-based algorithms
custom-designed for persistent monitoring.

As a result, we assess the performance of our model against
four custom-designed non-reinforcement learning baselines:
random search (RS), random search with ensured communica-
tion (RSEC), greedy search (GS), and lawn-mower area sweep
(LMAS).

1) Random Search (RS): In the RS method, agents make
decisions independently at each time step by randomly select-
ing an action (stay, up, down, right, left). This approach does
not require any prior knowledge of the problem domain or any
model of the system dynamics. Because of random decisions,
communication may break, resulting in lower performance.

2) Random Search with Ensured Communication (RSEC):
RSEC is an extension of the RS method, in which each agent
randomly selects an action while ensuring that no auxiliary
agent becomes unlocalized. In other words, the RSEC ap-
proach guarantees that all agents remain localized at all times.
If an action is selected that would cause an agent or another
auxiliary agent to become unlocalized, the agent randomly
selects another action from the remaining action space until a
suitable action is found.

3) Greedy Search (GS): In GS, agents act independently
and greedily. Assume that agent i is in cell (o,f), and we
define .4/ as the set of neighboring cells that agent i can reach
in one-time step (that is, all the cells when ¢ = 1). The agent
i selects a cell that has maximum negative reward, without
considering localization constraints. If all the grid cells in .4}
have the same reward, then agent i chooses a random action.

4) Area partition with Lawn Mower Sweep (LMAS): The
LMAS strategy [18], [38] begins with partitioning the area into
cells (or sections) equal to the number of agents deployed and
placing each agent in a chosen starting position within one
of these sections. The agent is then programmed to follow
a specific lawn-mower movement pattern within each section,
typically involving a back-and-forth motion. The agent repeats
this pattern within each section until it has covered the entire
area, ensuring complete coverage. Each agent makes use of its
onboard local map to avoid obstacles by changing its trajectory
in the presence of obstacles.

We carried out 100 simulations for each non-RL baseline
strategy and Figure 13 shows the performance comparison
between the baseline strategies and GALOPP. From the figure,
we can see that the GALOPP consistently outperforms the
above-defined baseline strategies. This is attributed to GA-
LOPP’s ability to explicitly account for localization and con-
nectivity constraints in its decision-making process. Among

~1.2 le8

RS
RSEC
GDCS
LMAS
GALOPP

Average rewards

S & o &

B o e-] o
il

|
<
)

0.0

Model

Fig. 13: Performance Comparison of GALOPP with Heuristic
Baselines: Random Search (RS), Random Search with Ensured
Communication (RSEC), Greedy Search (GS), and Lawn
Mower Area Sweep (LMAS)

the baselines, Random Search (RS) exhibits the poorest per-
formance, as it relies on random actions without considering
any context. Random Search with Ensured Communication
(RSEC) improves upon RS by enforcing communication
and localization, resulting in enhanced performance. Greedy
Search (GS) leads to sub-optimal policies as each agent
acts greedily at each timestep independently. Lawn Mower
Area Sweep (LMAS) performs better compared to GS, but
it does not explicitly incorporate localization considerations
and is influenced by the specific geometry of the environment
being monitored. GALOPP consistently outperforms all the
mentioned baselines.

H. Evaluation in other environments

In order to test the ability of GALOPP to perform in other
types of complex environments, we evaluate its performance
in two-room and four-room environments, as shown in Figure
14a and l4c, respectively.

For the two-room map, the agents learn to maintain contact
with each other by spreading across two rooms and the
corridor. In the 2-room map, we notice that our algorithm ends
up with the agents in a formation where two of them position
themselves in the two rooms while one monitors the corridor.
This can be seen in Figure 14a, where the faded cells show
the trajectory followed by the agents for the last 30 steps.
Figure 14b shows the areas where each agent was present.
From this, we can see that the anchor was in the middle region
while the two auxiliary agents monitored the two rooms. The
anchor agent moves around to maximize rewards, while the
auxiliary agents move in the two rooms. In fact, this is the
best combination for the agents, and they learn quickly.

In the four-room map, GALOPP learns a policy in which
each of the four agents is responsible for monitoring separate
rooms while intermittently monitoring the central corridor
region, as shown in Figures 14c and 14d. The anchor agents
are positioned to monitor two cells and the central area, while
the auxiliary agents are responsible for monitoring the two
rooms.

Our results show that GALOPP is capable of adapting
to complex environments and learning effective policies for

multi-agent coordination. The ability of the agents to maintain
contact with each other and cover all areas of the environment
is crucial for the successful completion of tasks, and GALOPP
demonstrates its ability to achieve this.

VI. HARDWARE IMPLEMENTATION

We implement GALOPP on a real-time hardware setup for
proof-of-concept purposes. We use multiple BitCraze Crazyflie
2.1 [39] nanocopters as agents. The experimental setup con-
sists of four SteamVR Base stations [40] and Lighthouse
Positioning System [41] to track the location of the vehicles
within a 3.5m X 3.0m x 2.0m arena. The agents communicate
with a companion computer (running on Ubuntu 20.04 with
an AMD Ryzen 9 5950x with a base clock speed of 3.4
GHz) via a Crazyradio telemetry module, where the trained
GALOPP model was executed. In the experiment, we consider
the environment as shown in Fig. 15a with 2 auxiliary agents
and 1 anchor agent. The companion computer receives the
position of each CrazyFlie as input via the corresponding
rostopics from the Crazyswarm ROS package [42] [43]. The
respective agents then execute the actions computed by the ac-
tor networks. To avoid inaccuracies in tracking the CrazyFlies
caused by physical obstacles obstructing the infrared laser
beams from the Base stations, we opt to simulate the obstacle
boundaries. The model policy implemented in the simulation
ensures that the agents never collide with any obstacle.

The video of the hardware implementation can be seen in
[44]. Figure 15(a) shows the snapshot of the simulated envi-
ronment along with the agent positions (anchor and auxiliary),
current coverage, and the position of the obstacle. We then
implement the same scenario with virtual obstacles through
the hardware, where the model sends the control signals to
the vehicles, as shown in Figure 15(b). In Figure 15(c), we
can see that the agent trajectories are covering all the regions
and hence achieving persistent monitoring.

VII. CONCLUSION AND FUTURE WORK

This work developed a MARL algorithm with a graph-based
connectivity approach — GALOPP for persistently monitoring
a bounded region, taking the communication, sensing, and
localization constraints into account via graph connectivity.
The experiments show that the agents using GALOPP can
outperform four custom baseline strategies for persistent area
coverage while accounting for the connectivity bounds. We
also establish the robustness of our approach by varying the
sensing map, the effect of obstacle occlusion by increasing
the percent amount of obstacle, and by scaling the number
of anchor agents in the system. It was seen that increasing
the number of anchor agents improves the performance, but
beyond a certain value, there are diminishing returns on the
rewards obtained. Based on power and resource constraints,
one can select a subset of anchor agents to achieve persistent
surveillance effectively.

Although our experiments demonstrate that GALOPP sur-
passes the baseline strategies, future work could investigate
the algorithm’s scalability as the number of agents signifi-
cantly increases. Exploring optimal values for the decay rate

12 pixels 18 pixels 12 pixels

20 pixels

-400 -350 -300 -250 -200 -150 -100 -50 O

(a) (b)

10 pixels 20 pixels 10 pixels

10 pixels

10 pixels
Pl bl

-400 -350 -300 -250 -200 -150 -100 -

(©] (d)

Fig. 14: Visualization of maps: (a) Illustrates a 2-room map, and (c) Illustrates a 4-room map. The agents cannot move into
black pixels, while the non-black regions need to be persistently monitored. As the anchor agents (red stars) and auxiliary
agents (dark blue triangles) monitor, their trajectory is shown as the fading white trails for the last 30 steps. The communication
range between the agents is shown in red lines. Fig (b) and Fig (d) display the trajectories of the anchor and auxiliary agents
while monitoring for the 2-room and 4-room maps, respectively.

Simulation of Persistent Hardware Implementation using Tra{ec_tory Trails of the

Monitoring in open map setup Bitcraze Crazyflie 2.1 system agents in open map setup
5 1 D 5 o s W 5 B B .73

& g ———

x ol el
. S SN

| ! Foda F

| ! o e T

= I Fr++--—- terd b

! e U=

! B Hliing 1
‘ T —
8 & Stlrat S b ta |
s Ustslind leeantal Snmetytet 00 |

R | l Frdrid -+

1 P+ = +4+

S b e I o o e i e

i | e

=% - Lommee + !

2 % S i s e e (D Ptk

Cf bt o

s bl ot el

| j
(a) (b) (c)

Fig. 15: Snapshot of the video for the hardware implementation of vehicles using one anchor and two auxiliary agents. (a) A
rendered simulation snapshot of the monitoring task. (b) Real-time decision-making being performed by the trained GALOPP
network model. (c) The trajectory trails of the previous timesteps that the agent took in the monitoring task.

and maximum negative reward, with a focus on increasing
monitoring efficiency, presents a promising area for further
research. Additionally, the algorithm’s suitability for diverse
sensor types, such as cameras or LIDAR sensors, could be
explored to improve agents’ situational awareness. Further re-
search on the impact of different types of obstacles, including
moving obstacles, on the algorithm’s performance would also
be insightful. While the proposed algorithm targets hetero-
geneous agents in the persistent monitoring problem, future
research can investigate its generalizability to other monitoring
problems, such as target tracking or environmental monitoring.
This work provides a foundation for future investigations
of GALOPP’s performance and its potential applications in
various monitoring scenarios.

REFERENCES

[1] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with
stochastic arrivals at multiple stations,” IEEE Transactions on Robotics,
vol. 31, no. 3, pp. 521-535, 2015.

[2] S. L. Smith, M. Schwager, and D. Rus, “Persistent monitoring of
changing environments using a robot with limited range sensing,” in

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

IEEE International Conference on Robotics and Automation, 2011, pp.

5448-5455.

S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam,
and D. Casbeer, “The generalized persistent monitoring problem,” in
American Control Conference, 2019, pp. 2783-2788.

X. Lin and C. G. Cassandras, “An optimal control approach to the multi-
agent persistent monitoring problem in two-dimensional spaces,” IEEE
Transactions on Automatic Control, vol. 60, no. 6, pp. 1659-1664, 2014.

S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam,
and D. Casbeer, “Optimal uav route planning for persistent monitoring
missions,” IEEE Transactions on Robotics, vol. 37, no. 2, 2021.

T. Wang, P. Huang, and G. Dong, “Cooperative persistent surveillance on
a road network by multi-ugvs with detection ability,” IEEE Transactions
on Industrial Electronics, vol. 69, no. 11, pp. 11468-11478, 2021.

V. Mersheeva and G. Friedrich, “Multi-uav monitoring with priorities
and limited energy resources,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 25, 2015, pp.
347-355.

Y.-W. Wang, Y.-W. Wei, X.-K. Liu, N. Zhou, and C. G. Cassandras,
“Optimal persistent monitoring using second-order agents with physical
constraints,” IEEE Transactions on Automatic Control, vol. 64, no. 8,
pp. 3239-3252, 2018.

E. Arribas, V. Cholvi, and V. Mancuso, “Optimizing uav resupply
scheduling for heterogeneous and persistent aerial service,” IEEE
Transactions on Robotics, 2023.

J. Zhu and S. S. Kia, “Cooperative localization under limited connec-
tivity,” IEEE Transactions on Robotics, vol. 35, no. 6, pp. 1523-1530,

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

2019.

J. Liu, J. Pu, L. Sun, and Y. Zhang, “Multi-robot cooperative local-
ization with range-only measurement by uwb,” in Chinese Automation
Congress. IEEE, 2018, pp. 2809-2813.

R. Sharma, R. W. Beard, C. N. Taylor, and S. Quebe, “Graph-based
observability analysis of bearing-only cooperative localization,” IEEE
Transactions on Robotics, vol. 28, no. 2, pp. 522-529, 2011.

F. Klaesson, P. Nilsson, T. S. Vaquero, S. Tepsuporn, A. D. Ames, and
R. M. Murray, “Planning and optimization for multi-robot planetary
cave exploration under intermittent connectivity constraints,” in ICAPS
Workshop on Planning and Robotics, 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in International Conference on Learning
Representations, 2017.

J. O’rourke et al., Art gallery theorems and algorithms.
University Press Oxford, 1987, vol. 57.

P. Tokekar and V. Kumar, “Visibility-based persistent monitoring with
robot teams,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2015, pp. 3387-3394.

H. Choset, “Coverage for robotics—a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, pp. 113-126, 2001.
E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258-
1276, 2013.

X. Tan, “Fast computation of shortest watchman routes in simple
polygons,” Information Processing Letters, vol. 77, no. 1, pp. 27-33,
2001.

P. H. Washington and M. Schwager, “Reduced state value iteration for
multi-drone persistent surveillance with charging constraints,” in 2021
IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2021, pp. 6390-6397.

P. Maini, P. Tokekar, and P. B. Sujit, “Visibility-based persistent mon-
itoring of piecewise linear features on a terrain using multiple aerial
and ground robots,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 4, pp. 1692-1704, 2021.

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep
decentralized multi-task multi-agent reinforcement learning under par-
tial observability,” in International Conference on Machine Learning,
Sydney, Australia, 2017, pp. 2681-2690.

D. Maravall, J. de Lope, and R. Dominguez, “Coordination of com-
munication in robot teams by reinforcement learning,” Robotics and
Autonomous Systems, vol. 61, no. 7, pp. 661-666, 2013.

Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” IEEE International Conference
on Intelligent Robots and Systems, 2019.

R. Shah, Y. Jiang, J. Hart, and P. Stone, “Deep r-learning for continual
area sweeping,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, 2020, pp. 5542-5547.

Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-aware graph attention
networks for large-scale multi-robot path planning,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5533-5540, 2021.

B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path planning in
dynamic environments through globally guided reinforcement learning,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6932-6939,
2020.

J. Blumenkamp and A. Prorok, “The emergence of adversarial commu-
nication in multi-agent reinforcement learning,” Conference on Robot
Learning, Cambridge, MA, USA, 2020.

J. Chen, A. Baskaran, Z. Zhang, and P. Tokekar, “Multi-agent rein-
forcement learning for visibility-based persistent monitoring,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 2563-2570.

F. Klaesson, P. Nilsson, A. D. Ames, and R. M. Murray, “Intermittent
connectivity for exploration in communication-constrained multi-agent
systems,” in ACM/IEEE International Conference on Cyber-Physical
Systems, 2020, pp. 196-205.

R. Khodayi-mehr, Y. Kantaros, and M. M. Zavlanos, “Distributed
state estimation using intermittently connected robot networks,” IEEE
Transactions on Robotics, vol. 35, no. 3, pp. 709-724, 2019.

S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45,
no. 3, pp. 52-57, 2002.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and 1. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in

Oxford

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

Proceedings of the 31st International Conference on Neural Information
Processing Systems, Long Beach, California, USA, 2017, p. 6382-6393.
C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu,
“The surprising effectiveness of ppo in cooperative multi-agent games,”
Advances in Neural Information Processing Systems, vol. 35, pp.
24611-24 624, 2022.

Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks, vol.
3361, no. 10, p. 1995, 1995.

J. Chen, A. Baskaran, Z. Zhang, and P. Tokekar, “Multi-agent
reinforcement learning for persistent monitoring,” arXiv preprint
arXiv:2011.01129, 2020.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations.
MIT press, 2005.

A. BITCRAZE, “Crazyflie 2.1.” [Online]. Available: https://www.
bitcraze.io/products/crazyflie-2-1/

H. VIVE, “Basestation.” [Online]. Available: https://www.vive.com/sea/
accessory/base-station2/

A. BITCRAZE, “Lighthouse positioning system.” [On-
line]. Available: https://www.bitcraze.io/documentation/tutorials/
getting-started- with-lighthouse/

J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 3299-3304.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

“Proof-of-concept hardware experiment,” https://moonlab.iiserb.ac.in/
research_page/galopp.html.

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.vive.com/sea/accessory/base-station2/
https://www.vive.com/sea/accessory/base-station2/
https://www.bitcraze.io/documentation/tutorials/getting-started-with-lighthouse/
https://www.bitcraze.io/documentation/tutorials/getting-started-with-lighthouse/
https://moonlab.iiserb.ac.in/research_page/galopp.html
https://moonlab.iiserb.ac.in/research_page/galopp.html

	Introduction
	Related Work
	Problem Statement
	Persistent monitoring problem
	 Localization for Persistent Monitoring
	Using Kalman Filter for state estimation

	Graph Localized PPO - GALOPP
	Architectural overview
	Embedding extraction and message passing
	Multi-agent actor-critic method using PPO

	Experiments and analysis
	Model
	Embedding generator (ConvNet)
	Graph convolution network (GraphNet)
	Actor MLP
	Critic MLP
	Training
	Evaluation

	Effect of increase in communication range
	Effect of varying sensing range
	Effect of an increasing number of agents and varying anchor-auxiliary ratio
	Effect of increasing obstruction in the environment
	Comparison between centralized maps vs. decentralized maps
	Comparison between GALOPP and non-RL baselines
	Random Search (RS)
	Random Search with Ensured Communication (RSEC)
	Greedy Search (GS)
	Area partition with Lawn Mower Sweep (LMAS)

	Evaluation in other environments

	Hardware Implementation
	Conclusion and future work
	References

