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1 | INTRODUCTION

Abstract

Prescribed burning is an essential forest management tool that requires strategic
planning to effectively address its multidimensional impacts, particularly given the
influence of global climate change on fire behavior. Despite the inherent complexity
in planning prescribed burns, limited efforts have been made to comprehensively iden-
tify the critical elements necessary for formulating effective models. In this work, we
present a systematic review of the literature on optimization and decision models for
prescribed burning, analyzing 471 academic papers published in the last 25 years. Our
study identifies four main types of models: spatial-allocation, spatial-extent, temporal-
only, and spatial-temporal. We observe a growing number of studies on modeling
prescribed burning, primarily due to the expansion in spatial-allocation and spatial—
temporal models. There is also an increase in complexity as the models consider more
elements affecting prescribed burning effectiveness. We identify the essential compo-
nents for optimization models, including stakeholders, decision variables, objectives,
and influential factors, to enhance model practicality. The review also examines solu-
tion techniques, such as integer programming in spatial allocation. stochastic dynamic
programming in probabilistic models, and multiobjective programming in balancing
trade-offs. These techniques’ strengths and limitations are discussed to help researchers
adapt methods to specific challenges in prescribed burning optimization. In addition, we
investigate general assumptions in the models and challenges in relaxation to enhance
practicality. Lastly, we propose future research to develop more comprehensive models
incorporating dynamic fire behaviors, stakeholder preferences, and long-term impacts.
Enhancing these models’ accuracy and applicability will enable decision-makers to
better manage wildfire treatment outcomes.
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fire modeling, fire uncertainties, model complexity, prescribed burning practicality

ing on mitigating wildfire risk (Jose et al., 2023; Prichard &
Kennedy, 2014; Wu et al., 2023). In addition, it has the ben-

Global warming intensifies wildfires, resulting in approxi-
mately 400 million hectares burned globally each year (Nolan
et al., 2022). This escalating threat leads to billions of dollars
being spent annually on wildfire management. To mitigate
these risks, prescribed burning (Rx) has been an important
tool for reducing the severity of wildfires (Moritz et al.,
2014; Waters et al., 2023). It is widely recognized as one of
the most effective treatments for managing surface and lad-
der fuels (Casals et al., 2016; Prichard et al., 2021; Taylor
etal., 2013; Zema & Lucas-Borja, 2023). Numerous studies
have demonstrated the positive effects of prescribed burn-

efits of maintaining ecosystem balance (Clark et al., 2024;
Regmi et al., 2023), controlling pests and diseases (Kramer
et al., 2023; San Emeterio et al., 2016), and managing habi-
tats for humans and animals (Harper et al., 2018; Regmi
et al., 2024). However, this method is not without con-
troversy. Concemns about prescribed burning’s side effects,
including significant risks like escaping fires, which can
lead to severe consequences, as evidenced by the May 2022
fire in New Mexico (Gabbert, 2022), have stirred questions
among decision-makers. Prescribed burns may also inflict
ecological damage, such as destroying vulnerable plants or
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wildlife, particularly in the event of escaped fires (Hong et al.,
2023; Peris-Llopis et al., 2024). Other outcomes to consider
in applying the prescribed burning include smoke produc-
tion, changes in soil properties, effects on plant growth,
and impacts on native species (Armas-Herrera et al., 2016;
D’Evelyn et al., 2023; Valké et al., 2014; Valor et al.,
2015). Despite these considerations and the common trade-
offs among prescribed burning outcomes, decision-makers
face the challenging task of managing its use and striking
a balance among these outcomes to ensure its suitability for
their objectives (Bradford & D’Amato, 2012; Granath et al.,
2018; Schollaert et al., 2024).

Considering the various strengths, weaknesses, and chal-
lenges associated with prescribed burmning, the decision-
making process surrounding its use is inherently complex
and multifaceted (Finney, 2005; Scasta et al., 2023; Swain
et al., 2023). This process involves strategic, operational,
and tactical components (Howard et al., 2020; Martell,
2015). Strategic decisions focus on long-term resource needs,
including fire management personnel, equipment, burn size,
and costs (Behrendt et al., 2019a). Operational decisions are
guided by the anticipated effectiveness of prescribed burns
and predictions of fire loads. While the boundary between
strategic and operational decisions can sometimes blur, they
are typically distinguished by their respective time frames.
Tactical decisions, in contrast, involve the detailed planning
and execution of prescribed burns (Taylor et al., 2013). To
effectively manage the complexities involved in planning
prescribed burns, risk management has become a criti-
cal component of the decision-making process. Risk-based
decision-making quantifies the likelihood and consequences
of various risks, informs decision-making, aligns risks with
stakeholders’ needs, and assesses uncertainties (Morgan
et al., 2022). This approach facilitates the integration of
analyzed risks and uncertainties into optimization models,
enabling the identification of optimal or near-optimal deci-
sions that balance trade-offs among conflicting objectives
(Calkin et al., 2021; Wilson et al., 2011; Wibbenmeyer et al.,
2013). In addition, machine learning techniques have been
employed to estimate the impact of prescribed burning on
wildfire risk reduction, providing quantitative evaluations of
the risks and effectiveness of these treatments (Jain et al.,
2020; Penman et al., 2014; Pérez-Rodriguez et al., 2020;
Thapa et al., 2024; Zema et al., 2024).

Despite the complexity associated with prescribed burn-
ing, no existing study has comprehensively addressed all
the critical components necessary for developing effective
decision-making and optimization models. This study aims
to fill this research gap by thoroughly reviewing and sum-
marizing these critical components, focusing on stakeholders,
decision variables, objectives, and factors that influence over-
all practicality. Specifically, we aim to address the following
research questions: (i) what optimization and decision mod-
els have been proposed in the field of prescribed buming
management, and how applicable are they to wildfire man-
agement practices? (ii) what are the specific formulations
used in decision and optimization models within prescribed
burning management, encompassing stakeholder considera-

tions, objective functions, variables, and the factors taken
into account, as well as the solution techniques utilized?
(iii) what are the general assumptions made in the formu-
lation of prescribed burning management models, and what
are the implications and methodologies for relaxing these
assumptions to advance the models’ realism and practical
applicability?

The remainder of the paper is organized as follows: Sec-
tion 2 outlines the methodology employed in this study.
Section 3 presents our review and analysis of the col-
lected papers. Section 4 summarizes the findings from the
reviewed literature and concludes with insights gained from
this work. Finally, Section 5 discusses potential directions for
future research.

2 | REVIEW METHODOLOGY

To conduct this review, we adhered to the methodology
developed for conducting systematic literature reviews and
meta-analyses in environmental science research by Mengist
et al. (2020). Specifically, we used a modified PSALSAR
(problem formulation, search strategy, appraisal, synthesis,
analysis, and reporting) protocol tailored to forest fuel man-
agement systems. Our review encompasses six steps: (i)
formulate the problem into research questions; (ii) define
and search for studies: (iii) select studies; (iv) extract and
categorize decision and optimization models along with
their assumptions; (v) analyze models and assumptions, dis-
cuss results, and draw conclusions; and (vi) compose the
repott.

2.1 | Literature collection and filtering
The study aims to identify and analyze optimization and
decision models related to prescribed burning by conduct-
ing a literature review of three databases: Google Scholar,
USDA Treesearch, and Science Direct. The search focused on
newer articles to reflect the current state of prescribed burning
implementation and its evolving environments. We used mul-
tiple keywords in the search, such as “prescribed burning.”
“wildfire mitigation,” “optimization,” “decision.” “trade-
offs,” “stakeholders,” and “preference.” to refine the search
and identify articles that optimized treatment outcomes or
made decisions on trade-offs.

The preliminary search, after removing duplicates, yielded
a total of 471 papers within our study’s scope. We focused
on studies conducted from 2000 to 2023. We then conducted
a two-step filtering process on the collection. Figure 1 pro-
vides an overview of the collecting and filtering process for
the literature in our study. The purpose of the filtering pro-
cess was to identify papers that contributed to the strategic
or operational planning of prescribed burning in terms of
modeling, solution techniques, and assumptions. The selected
papers had to meet at least one of the three following cri-
teria: (a) contribute to wildfire mitigation, (b) model fire
behavior or influencing factors and their effects on fire behav-
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FIGURE 1 The process of collecting and
filtering literature.

Preliminary Searched = 471 papers

l

First Filtering (abstract, introduction, and conclusion) = 328 papers

l

Second Filtering (modeling, solution, and result) = 53 papers [+ Snowballing = 8 papers added

ior, and (c) focus on strategic or operational planning of
prescribed burning.

In the first filtering step, we manually screened the 471
collected papers to examine their relevance fo this study
by reviewing the abstract, introduction, and conclusion sec-
tions in detail. This filtering step led to excluding 143 papers
that did not properly fit our study, leaving 328 articles for
further analysis. In the second filtering step, we conducted
a more detailed review of the model formulation, solution,
and result sections for the remaining articles to determine
their suitability for inclusion in the final selection. Finally, we
selected 53 papers for this review based on their relevance,
contribution to the literature, and overall quality. Further-
more, upon reviewing the selected papers, we identified eight
additional relevant studies through a snowballing approach.
In total, 61 papers were included in this review, covering a
range of modeling approaches to prescribed burning, thereby
providing a comprehensive overview of the state-of-the-art in
this field.

2.2 | Overview and statistics

Our search and filtering resulted in a total of 61 papers
published between 2000 and 2023. We discovered that the
variables in the optimization models are multidimensional,
and many influencing factors add uncertainty to the modeling.
We categorized the models based on the category in preview
studies and their focused criteria before proceeding (Alcasena
etal., 2018; Elia et al., 2014; Holland et al., 2017; Mason &
Lashley, 2021; Minas & Hearne, 2016; Vega-Martinez et al.,
2023). Our review identified four main criteria in the opti-
mization models and one distinct category in the decision
models: (a) spatial-allocation models are designed to strate-
gically determine the most effective locations for prescribed
burns. They may consider factors such as areas with high
fuel accumulation, regions prone to wildfire risks, or zones
critical for ecological diversity and habitat conservation;
(b) spatial-extent models focus on optimizing the acreage
of prescribed burning utilized considering the constraints
of available resources and land management objectives; (c)
temporal-only models concentrate on optimizing the timing
and frequency of burns to attain desired outcomes, which

l

Total Analyzed papers = 61 papers

might involve scheduling bumns during favorable weather
conditions or limiting burns during sensitive periods for
wildlife; (d) spatial-temporal models integrate both spatial
and temporal variables to formulate a more comprehensive
prescribed burning strategy. They synchronize the where
and when of prescribed burning application to balance pre-
scribed burning impact, fire risk mitigation, and resource
management effectively.

Figure 2 visually represents the quantity of research papers
produced for each criterion related to optimization and
decision models for prescribed burning in the last 25 years.
Publications are experiencing a general upward trend. possi-
bly because to the rising risk of wildfires caused by climate
change (Ellis et al., 2022). The number of publications on
temporal and spatial allocation is steadily rising, reflecting
the impact of burn location and time as fundamental factors
in prescribed burning planning. There was an upward trend
in spatial-temporal studies after 2010, which suggests an
increase in the complexity of prescribed burning strategies.
The number of spatial-extent studies has remained stable
across all time intervals, likely due to the common under-
standing that the implementation of prescribed fire has not
yet reached its upper limits, and that more prescribed burns
are necessary.

3 | FORMAL REVIEW/ANALYSIS

The formulation of optimization models for prescribed burn-
ing management is inherently complex due to the significant
uncertainties involved in the impacts of prescribed burning.
The primary function of prescribed burning is to mitigate
the risk of wildfires, but achieving this objective depends on
a variety of factors. including climate conditions, fuel load,
terrain, vegetation, weather patterns, and the behavior and
stochastic nature of fires (Agee & Skinner, 2005; Clarke et al.,
2019: Prichard et al., 2010). These variables can significantly
affect the success of prescribed burning, making their care-
ful consideration and integration essential when planning and
executing burn operations.

In this section, we conduct a comprehensive review and
analysis of the optimization and decision models presented
in the selected papers. We evaluate the logic behind model
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formulations and the components involved. Specifically, we
extract models to identify their objective functions, decision
variables, considered impacts and perspectives, solution tech-
niques, and assumptions. In addition, we discuss potential
relaxations or challenges associated with these assumptions
to refine the models and better reflect real-world scenarios.
We also review case studies to assess the effectiveness of pre-
scribed fire and the performance of the models based on study
outcomes, along with insights drawn from the conclusions of
each reviewed study. Lastly, we present suggestions from the
reviewed studies on advancing the modeling and planning of
prescribed fire.

3.1 | Spatial-allocation models

Spatial-allocation models are an essential tool for understand-
ing and mitigating wildfire risks, particularly through the
strategic application of prescribed burning treatments. These
models integrate various factors, allowing researchers to opti-
mize Rx treatments amidst complex and dynamic landscapes.
By taking into account fire behavior, environmental condi-
tions, ecological impacts, and economic considerations, the
spatial optimization models discussed in this paper under-
score the importance of these elements in devising effective
and efficient wildfire risk management strategies. A summary
of the factors considered in the spatial-allocation models, as
reviewed in this paper. is provided in Table 1.

3.1.1 | Fuelload

In their research, Hof et al. (2000) developed a spatial opti-
mization model to maximize the delay of wildfire ignition
through the spatial application of treatments. They identi-
fied the treated cell using a discrete decision variable, with
available resources limiting the total number of treatment
cells. The authors assumed that the Rx effect extends across
the entire allocated cell. which might not be suitable for

FIGURE 2 Number of papers published from
2000 to 2024.

21

2017-2024

large cells. Furthermore, they assumed that there was no cell-
to-cell fire spread and that burn time depended solely on
the fuel level of the ignition cell. Their research explores
spatial optimization approaches to fire (and possibly fuel)
management problems with a timing-oriented model formu-
lation. By simulating fire behavior under different treatment
strategies, they demonstrated that the wildfire ignition time
was spatially sensitive to the prescribed fire treatment. Simi-
larly, Ager et al. (2013) proposed a model to prioritize forest
restoration for Rx by allocating Rx treatments to minimize
wildfire risk and maintain low hazard to old-growth pon-
derosa pine (PPOG). The objective is to maximize the number
of PPOG in the landscape, using a binary decision variable
to decide whether Rx treatments are applied to stands. The
model was able to identify the optimal result that balanced
the two objectives in the case study, resulting in a flame
length of 4 m, with the PPOG saved being greater than the
loss in the untreated area. The authors assumed that wild-
fires within a stand are independent of other adjacent stands
and that all stands have an equal probability of wildfire in
the case study., which may not fully aligned with practi-
cal fire behavior. One study has relaxed this limitations on
fire spreading in their framework, Elia et al. (2014) used
the spatial allocation index (SAI) to estimate fuel load and
human presence in wildland—urban interface (WUI) areas for
the spatial allocation of fuel treatment. The decision vari-
able is the SAT indicator, which determines the need for Rx
treatments with the objective of minimizing the SATI values
across all locations. The SAT accounts for the fuel load and
human presence in the area, including population density,
urban density, and road density. The SAI outcomes provide
a more targeted allocation of fuel intervention over a large
area and at a large scale using precise data from fuel sam-
pling and land cover maps. Through a case study in Taranto
province, the SAT analysis identified 44% of the WUI area
as optimal for treatment. This approach guides management
and decision-making in prioritizing efforts to prevent fire
spread in WUI areas, addressing some limitations identified
in earlier studies, and offering a comprehensive solution for
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A REVIEW FOR PRESCRIBED BURNING AND WILDFIRE MANAGEMENT 5
TABLE 1 Factors considered in spatial-allocation models.
Focus Factors/Attributes Reference
Fuel load Fire 1ignition, spreading, duration Hof et al. (2000)
PPOG, Flame length Ageretal (2013)
Population, Urban density Ela et al (2014)
Ignition probability, Value-at-risk Rytwinski and Crowe (2010)
Fire stochastic Climate condition Physical condition Wei et al_ (2008)
Value-at-nisk, landscape condition Belval et al. (2015)
Economic values Konoshima et al. (2008)
Fuel condition Konoshima et al. (2010)
Fuel regrowth Perello et al. (2024)
Vegetation Lagos et al. (2024)
Loss of fire Wei (2012)
Geographic condition Kim and Bettinger (2008), Yemshanov et al. (2021)
Stakeholders” preference Ecosystem health ‘WUIL, Pine straw production Costanza and Moody (2011)
Fire stochastic Sturtevant et al. (2009)
Site productivity Hiers et al. (2003)

Koala habitat, Estate, Species complex

Economic impact, Cultural heritage, Fauna species, Human life loss

Mollasalehi (2015)
Gazzard et al. (2019)

Fire resilience of ecosystems, Rx impact, Rural communities protection
Forest fairness, Area fairness, Curing fairness
Heat load index, LANDFIRE index, SBRE ecological zone

Alcasena et al. (2018)
Chen et al. (2022)
Phelps (2021)

Trade-offs Fire risk, Harvest volume

Rx cost Fire suppression cost

Loss of fire, House loss
Weighted MC
Loss of fire, Wildfire prevention education cost

Thompson et al. (2017)
Heines et al. (2018)
Florec et al. (2019)
Minas et al. (2015)
Butry et al. (2010)

Abbreviations: MC, management cells; PPOG, old-growth ponderosa pine; WUL wildland—urban mterface.

the spatial allocation of fuel treatments. In a similar vein,
Rytwinski and Crowe (2010) addressed the challenge of opti-
mally locating fuel breaks in forests to limit wildfire spread
and minimize damage. They developed a decision support
model using a simulation-optimization approach, accounting
for uncertainty in future fire ignition and spread. The model’s
objective is to minimize fire risk by adhering to a constraint
on the total area designated for fuel breaks. A stochastic
simulation model of fire spread illustrates the spatial relation-
ships between fuel breaks and their effectiveness in reducing
fire risk. Despite the computational burden of the model, the
authors emphasize the significance of spatial relationships
in fire-risk reduction and efficient decision-making regarding
fuel-break locations through its evaluation on a 220,000 ha
forest and comparison to a spatially blind greedy heuristic.

3.12 | Fire stochastic

Diverse uncertain factors, including topography, fuel avail-
ability, and meteorological conditions, all contribute to
the complexity of wildfires as natural phenomena. These

uncertainties complicate the planning of prescribed burns,
particularly when considering the probabilities of ignition,
growth, and spread. Despite the uncertainties in the Rx impact
in wildfire mitigation, it is acknowledged as an essential tool
for managing forest fuels (Reinhardt et al., 2008).

To confront the challenge of planning Rx in the face
of uncertainties stemming from weather conditions, sev-
eral studies have proposed diverse models and optimization
techniques. For instance, Wei et al. (2008) employed con-
ditional probability to minimize the total expected loss due
to wildfires, taking into account a limited budget constraint.
Their model incorporated the possibility of fire spreading
to adjacent cells, posited that high-intensity fires could be
downgraded to low-intensity fires, and considered the impact
of wind direction on fire spread. The test case validated
the mitigation effect of spatially allocated prescribed fires
on the expected wildfire loss, taking into account that fire
spread is primarily driven by wind direction. With a similar
focus on modeling the wildfire spreading, Belval et al. (2015)
introduced a mixed-integer program designed to explore
integrating spatial fire behavior and suppression placement
decisions into a mathematical programming framework. The
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model computes both fire arrival times and fire line intensi-
ties based on the direction that a fire spreads into a cell as
a response to spatially explicit suppression placement. The
model’s ability to determine efficient suppression placement
decisions is illustrated using test cases that examine trade-
offs between suppression cost and area burned. Integrating
fire suppression with prescribed fire optimization, Wei (2012)
investigated the impact of wildfire ignition probability distri-
bution on the optimal spatial layout for Rx fuel treatments.
They employed a mixed-integer programming (MIP) model
to maximize the total expected loss while adhering to a bud-
get constraint limiting the number of treatable cells with Rx.
The model used a binary variable to track the Rx decisions
in cells and two continuous parameters to estimate the prob-
ability and duration of wildfires. The authors assumed the
impact of Rx in mitigating wildfires and a uniform attribute
value for each cell. The study revealed that Rx effectiveness
on wildfire mitigation is more pronounced when allocated in
a contiguous area, adhering to regular, intuitive spatial pat-
terns. Another study validated that regular and clumped Rx
patterns are most effective in wildfire simulations (Kim &
Bettinger, 2008). Continuing the effort in modeling the fire
spreading among adjacent cells, Yemshanov et al. (2021) pro-
posed a network optimization model to determine the optimal
spatial location for Rx treatments in a grid arrangement. The
objective was to minimize the number of fire-spreading cells
while being constrained by the total treated area. They used
a simulation model to estimate the probability of ignition and
fire spreading among cells. A binary decision variable was
used to assess the potential for fire spreading between two
cells. However, this study did not consider the effectiveness
of Rx, presuming it eliminates wildfire risk from treated and
connected cells. Furthermore, the authors made a practical
assumption that the Rx budget constraint is proportional to
the treated area. as the size of an Rx is a primary factor in
estimating its costs (Stevens et al., 1997).

Two studies used stochastic dynamic programming to han-
dle the uncertainties in fire behavior in the spatial pattern
optimization model (Konoshima et al., 2008, 2010). The
initial study used the spatial fire behavior model with the
stochastic dynamic optimization model to identify the opti-
mal Rx spatial pattern that maximizes the anticipated net
value. This analysis considers factors such as fire danger,
wood harvest value, and Rx cost. Utilizing backward induc-
tion, the authors addressed the objective formulation, with a
risk-neutral land manager as the decision-maker to evaluate
the trade-offs between costs and gains. The decision vari-
able represents the action to be taken in the management
unit, selected from a combination of harvest and treatment
options. The authors initially assumed flat terrain conditions
in the first study but later relaxed this assumption in their
subsequent study to better model real-world conditions. The
study assumed a 10-year effectiveness for prescribed burn-
ing (Fiedler & Keegan, 2003; Loehle, 2004), which was
specific to the region studied. The longevity of Rx effects
varies across regions depending on influencing factors, typ-
ically ranging between 4 and 10 years posttreatment (Boer

et al., 2009; Kobziar et al., 2015; Reilly et al., 2016; Susaeta
& Carney, 2023). To enhance the applicability of Rx mod-
els, the longevity of Rx can be represented by a function
incorporating regional parameters such as vegetation type and
climate conditions (Cullen et al., 2024; Fonseca et al., 2022;
Hood et al., 2020). The second study integrated the physical
fire and dynamic spatial optimization models to analyze the
trade-offs between on-site value and wildfire risk mitigation.
The risk-neutral forest manager served as the decision-maker,
with the objective of maximizing the expected net value. Cli-
mate conditions and weather probability were incorporated
into the optimization function, influencing fire behavior and
interactions among harvest, fuel treatment, and climate con-
ditions. However, they made an assumption of cell-to-cell
fire spreading to allow for a more detailed examination of
the trade-offs. This assumption could be further relaxed by
incorporating the calibrated Rothermel model, which would
provide a more accurate representation of real fire dynamics
(Pereira et al., 2024). Both studies validate the effectiveness
of the proposed models through test studies, emphasizing that
the treatment outcome were significantly influenced by wind
and slope conditions. In a recent effort fo use fire simulation
for addressing uncertainties, Perello et al. (2024) introduced a
complex dual-objective model for prescribed fire allocation,
aiming to maximize wildfire mitigation and minimize con-
duction costs. Simulated via the PROPAGATOR framework,
the model integrates key factors such as fire ignition, weather
conditions, and fuel regrowth to better reflect real-world
dynamics. Wildfire risk is defined as the area of wildfires
occurring after prescribed burns, influenced by these factors
and the spatial allocation of treatments. Prescribed fire costs
are assumed constant and normalized within the objective
function, facilitating balanced decision-making. Case results
showed that optimized burn locations minimized these objec-
tive values, and expanding strategically burned areas reduced
the overall wildfire-affected regions. By using real data on
fire behavior, topography, and weather, the model provides a
practical approach for prescribed fire allocation in both emer-
gency and planning phases. In addition, the assumption of
deterministic fuel regrowth can be improved by incorporat-
ing a stochastic process with assigned regrowth probabilities,
further enhancing the model’s realism and applicability.
Taking a distinct approach, Lagos et al. (2024) proposed
a game-theoretical model for allocating prescribed fire. The
treatment planner acts as the defender, strategically using pre-
scribed burns to reduce the impact of wildfires, with nature
as the attacker causing fire ignitions. The objective is to
minimize the maximum total expected wildfire-burned area
through a bi-level integer programming model. This model
addresses two major uncertainties in fire dynamics: weather
conditions and wildfire ignition. Weather scenarios are incor-
porated info the objective function, along with the probability
of each scenario. Wildfire ignition is treated as a lower-level
decision, given that most wildfires are human-caused and dif-
ficult to predict. A case study compared the performance
of the proposed bi-level model with a single-level model,
showing that the bi-level model performed better in mitigat-
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ing expected fire loss and burned area under a constrained
treatment budget. This study presents a valuable approach
for modeling wildfire ignition without requiring probabilistic
information, which could be particularly useful for modeling
ignition in small regions targeted for prescribed fire.

3.1.3 | Stakeholders’ preference

Given that stakeholders have firsthand experience of the
consequences, their participation is essential for accurately
evaluating the effects of prescribed burning (Rx) and ensuring
successful management. Hence, if is crucial to comprehend
their varied interests and concerns. Within this particu-
lar framework, researchers have utilized several approaches
to investigate stakeholder preferences and limitations. The
choice of methodology mostly depends on the requirements
of the stakeholders engaged in fire management and the par-
ticular objectives and circumstances of the study (Velasquez
& Hester, 2013).

To identify the important factors for stakeholders, Costanza
and Moody (2011) did a descriptive study of the constraints
and priorities of stakeholders in planning and carrying out
prescribed burning. The study found significant differences in
priorities among stakeholders, particularly concerning none-
cological impacts. Sturtevant et al. (2009) used multivariate
variance analysis (MANOVA) to optimize fire and fuel mit-
igation strategies, including Rx, to balance wildfire risk
reduction and ecological goals in multiowner landscapes.
This provided insights on aligning diverse human values and
objectives during fire mitigation in landscapes with mixed
ownership (Keselman et al., 1998). Hiers et al. (2003) pro-
posed a multicriteria approach for prioritizing prescribed
burning on a broader scale, taking into account biologi-
cal impacts. This approach was developed by stakeholders,
including managers and biologists, with the goal of identify-
ing essential criteria and management objectives connected
to prescribed burning, which were then weighted and graded
based on their relation to Rx priority and necessity. The model
was based on two workshops for producing desired condi-
tions for all species and a consensus-based scoring approach,
which allowed participants to understand how it worked and
make any necessary changes.

In contrast to call-and-response engagement, Cullen et al.
(2023) proposed a framework based on the National Sci-
ence Foundation’s convergence research principles to actively
involve stakeholders in wildfire management decision-
making. This approach integrates expertise from multiple
disciplines and partners with stakeholders, including govern-
mental, tribal, and local decision-makers, to coproduce infor-
mation that directly informs decision-making. By holistically
addressing wildfire management, the framework ensures that
strategies are regionally tailored and directly applicable to
operational and policy decisions, enhancing their relevance
and overall effectiveness. Shared decision-making (SDM) is
another collaborative approach for organizing stakeholder
preferences in environmental management decisions (Bun-

nefeld et al., 2017; Failing et al., 2007; Garrard et al., 2017),
was effectively applied by Gazzard et al. (2019) in a multi-
objective optimization model for Rx. Their approach aimed
to optimize social, economic, and environmental outcomes,
encapsulating both monetary and nonmonetary objectives.
The study also examines the ethical challenge of placing a
monetary value on human life, a sensitive issue often avoided
due to its complexity (Chorus et al., 2018; Daw et al., 2015;
Fiske & Tetlock, 1997). It estimates the value of a human life
at AU$3.7 million using a sensitivity analysis based on stake-
holder scores, aligning with previous research suggesting
human life values range from $3 to $9 million (Kip Viscusi,
2000). The study approached the delicate issue by comparing
monetary loss ranges to loss of life ranges across different
scenarios, carefully weighing both life and monetary values.
Understanding the interactions among stakeholders’ needs
is another challenging task in planning fuel treatments, given
the conflicting and diverse priorities that must be balanced
across multiple perspectives. Alcasena et al. (2018) intro-
duced a mmltiobjective optimization approach to evaluate
trade-offs based on decision-makers’ priorities for Rx treat-
ment. This study utilized spatial optimization analysis and
the Landscape Treatment Designer to identify the optimal
Rx locations, aiming to align with decision-makers’ priorities
while also considering cost efficiency. The study factored in
multiple local managers as decision-makers, assigning objec-
tive weights to their treatment outcome priorities on a scale
from 0 to 5. The decision variable was binary, indicating the
choice to implement Rx in a treatment unit within the study
area, with the aggregate value representing the sum of deci-
sions across all units. While past research on Rx modeling
has typically employed one, two, or three-stage approaches,
Chen et al. (2022) introduced a more elaborate four-stage
spatial multiobjective model for Rx planning. This model
encompasses candidate selection, fire simulation, objective
function development, and optimization, leading to enhanced
results in minimizing wildfire risks across landscapes. By
integrating fire simulation and equity considerations, the
authors assessed the effectiveness of Rx plans, ensuring a fair
distribution of benefits and costs. This advanced approach
facilitates more precise, effective, and equitable Rx plan-
ning at the landscape level for wildfire risk mitigation. The
geographic information system (GIS) can enhance the can-
didate selection process by enabling users to superimpose
the weighted criteria onto geographic conditions. Mollasalehi
(2015) employed this methodology in a GIS-based multicri-
teria analysis to spatially optimize the placement of Rx. This
model incorporates diverse elements needed for prioritizing
Rx, such as weighted criteria derived from environmental
and fire risk variables, as well as vital planning information.
As a result, it offers a comprehensive framework for allocat-
ing Rx. In addition, Phelps (2021) introduced an ecological
decision tool designed to prioritize stands and burn units for
Rx based on the GIS criteria. This tool aims to assist in the
strategic planning of Rx by enabling the selection of areas
that align with ecological, safety, and management objectives.
The integration of these diverse criteria ensures that Rx plan-

0 PTE96ES |

sy wog pag

0 PUE SULD | 911 99§ *[TOT/T/S0] U0 Areiqi ] sutjug Ao(ia (Aung) ojeung 1y Ansisatupy A 0oL | Bsuy 111101/ 0py wod Lajim A

sdyy)

IO ] A

pun

BEUAO1T SUOWWO) sanyeary sjqe|dde sy Aq powasod are sa[2ue o) ‘98N JO S| Joj Areiqi- surug) £3[im



s |

QI AND ZHUANG

ning is both ecologically sound and effective in mitigating
wildfire risks.

3.14 | Trade-offs

Aligning Rx outcomes with stakeholder expectations
involves addressing trade-offs in prescribed burning plan-
ning, including the impacts of Rx and its integration with
other management methods like fire suppression. Researchers
utilize a variety of tools, such as visualization, multicrite-
ria modeling, and variance analysis, to explore these aspects,
aiming to find a balance between Rx benefits, its risks,
and how it fits with other fire management strategies. This
approach underscores the importance of considering a broad
spectrum of environmental, economic, social, and biological
factors in fire management planning.

In examining the trade-offs in the benefits and costs of
implementing Rx, Thompson et al. (2017) investigated the
cost-effectiveness of prescribed burning at multiple invest-
ment scales. They used integer programming models to
maximize fire risk reduction and volume harvested in two
objective functions, with a binary decision variable deter-
mining the Rx for the selected cell. The study simulated fire
behavior, spreading, and ignition using the Large Fire Simu-
lator (FSim, Finney et al., 2011), while wildfire suppression
costs were estimated using a regression model of suppression
cost developed by the Forest Service (Gebert et al., 2007).
The case study demonstrated that the optimization model
reduces both wildfire probability and flame length, further
indicating that burn probability can be reduced by 3% for
every $10 million investment based on the proposed strat-
egy. Skinner et al. (2024) found that there was more than
a 90% chance of reducing wildfire flame length when pre-
scribed fire is combined with mechanical thinning. Their
study proposed a decision analytic framework for forest fuel
treatments that balances conflicting objectives related to fire
behavior and other considerations. The decision tree method-
ology was employed to evaluate the probabilistic outcomes of
various treatment alternatives, including mechanical thinning
and prescribed fire. The study offered a practical approach to
addressing the trade-offs in forest management by engaging
with expert stakeholders, while also emphasizing the impor-
tance of addressing the challenges associated with assigning
numerical values to the objectives.

More studies are increasingly recognizing the complex
relationship between prescribed burning and wildfire sup-
pression, emphasizing their interconnected roles in wildfire
risk management. These interventions are closely interrelated
in terms of budget allocation as they are both funded from
the same source. An increase in funding for one typically
results in decreased funding for the other (Minas et al., 2015).
Besides, the performance of fire suppression resources, sim-
ilar to Rx. proved to have an efficiency curve in which the
net value is only maximized when the level of suppression
resources is optimized (Silva and Gonzalez-Caban, 2016).
Thus, it is necessary to balance different interventions in
order to achieve optimal outcomes. To fill this research gap,

Minas et al. (2015) used budget as a constraint in their
proposed integer programming model, which optimized the
allocation of resources for prescribed burning and suppres-
sion. They assumed that the suppression resource and Rx
conduction were available at all cells. Two objective func-
tions were formulated: the first aims to maximize the number
of high-risk cells covered by Rx conduction, and the second
seeks to minimize the resources needed to cover all high-risk
cells. The total budget constraint is applied to both objective
functions, with each cell weighted based on ignition probabil-
ity and values threatened. The test results showed that budget
flexibility improves the performance of fuel treatments, with
the pooled budget providing the most coverage across the
tested cells. With a similar research focus, Heines et al.
(2018) explored the trade-offs between Rx and fire suppres-
sion costs using Reed’s method in an optimal control model.
Moreover, Rx and fire suppression can work simultaneously
to mitigate wildfire risks. Rx can enhance the effectiveness
of wildfire suppression, and integrating Rx programs with
fire suppression efforts can provide better cost-effectiveness
ratios for mitigating wildfire risks (Schaaf et al., 2008). In
the case study of the Las Conchas Fire in New Mexico, the
model reduced fire suppression costs from $46.5 million to
$29 million by allocating $1.5 million to fire prevention. A
50-year fire simulation in the Santa Fe National Forest fur-
ther indicated that fire suppression costs could be reduced by
$194 million with an investment of $65 million in fire pre-
vention. The overall cost reduction was primarily driven by
the significant decrease in fire suppression expenses, which
resulted from a lower number of wildfires due to the increased
investment in fire prevention. Considering wildfire prevention
education (WPE) as another wildfire intervention to reduce
human-caused wildfire, Butry et al. (2010) proposed a long-
term model focusing on the balance between Rx and WPE to
minimize costs and societal losses. They found the Rx per-
formed better in the long term but was less flexible in the
short term on wildfire mitigation, while the WPE performed
conversely. Despite the differences, both interventions are
encouraged to increase their optimal solution.

To enhance the accuracy of net value assessments in fire
management, a comprehensive approach should include both
the direct costs associated with fire management and the
financial implications of wildfire-related losses. By integrat-
ing these diverse cost factors into the analysis, a more holistic
and effective financial evaluation of fire management strate-
gies can be achieved. Florec et al. (2019) employed three
models to explore the optimal spatial Rx location: minimum
cost plus net value change (C+NVC) model, equal asset value
and modified cost model, and minimum house loss model.
The objective of the minimum C+NVC model is to mini-
mize the sum of Rx cost, wildfire suppression cost, and loss.
The model uses continuous decision variables to determine
the extent of the Rx, its distance to the WUI region, and
its associated cost. The equal asset value and modified cost
model shares the same objective as the previous model but
varies in its approach to valuing assets. The cost of Rx is
calculated only based on the extent of conduction. The value-
at-risk is assumed to be uniformly distributed in the WUI
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TABLE 2 Factors considered in spatial-extent models.

Focus Factors/Attributes

References

Economic impacts Climate condition, Fire stochastic

Rx mmpact

Fire emissions

Mercer et al. (2008)
Prestemon et al. (2001)
Pais et al (2023)
Mercer et al. (2007)
Florec et al. (2013)
Jose et al. (2023)
Elder et al. (2022)

Vegetation
Regional factors

Fire intensity

MCDM MOP, GP, CP, MAUT, FMCP, etc. Diaz-Balteiro and Romero (2008)
Ecological mmpact ‘Wildfire hazard, Existing fuel treatments, WUI Addington et al. (2020)
Economic impact, Social impact MacGregor (2005)
Simulation-based Fire behavior, Carbon dynamics, Weather condition Dicus and Osborne (2015)

House protection, Water quality, Emissions, Species conservation

Ecological mmpact

Management effort

Driscoll et al. (2016)
Ohlson et al. (2006)
Hmielowski et al. (2016)

Timber, Property, Air quality

Abbreviations: CP, compromuise programming, FMCP, fuzzy multicriteria programming; GP. goal programming; MAUT, mmltiattribute utility theory; MOP, multiobjective

programming; WUL wildland-urban iterface.

region (Mercer et al.. 2007). The aim of the minimum house
loss model is to minimize the loss of houses due to wildfire.
This model accounts for the probability of wildfire reaching
houses without considering fire severity. A generalized linear
model is used to calculate the Rx conduction cost based on the
extent and location (Penman et al., 2014). All three optimiza-
tion models operate under the assumption that the desired
amount of Rx can be conducted within the estimated budget.
To reflect real-world problems, this assumption may need to
be relaxed with setting up a budge limit (Burrows & McCaw,
2013:; Radford et al., 2020). The case results indicated that
the optimal burning extent depends on the objectives consid-
ered in different models, and selecting the model based on the
region type can maximize treatment benefits.

3.2 | Spatial-extent models

Wildfire risk mitigation is significantly influenced by the pre-
scribed burning extent in the current and previous years,
as numerous studies have shown (Addington et al.. 2015;
Kolden, 2019; North et al., 2012; Vaillant & Reinhardt, 2017
Walker et al., 2018). Unfortunately, many of these studies
have found that the current level of Rx implementation is
insufficient to achieve desired outcomes, indicating a need to
increase the total acreage of Rx being used. As summarized in
Table 2, various factors have been considered in the spatial-
extent models for optimizing prescribed burning, including
fire behavior, environmental conditions, ecological aspects,
and economic considerations. By examining these factors
and enhancing the use of prescribed burning. researchers
can develop more effective and comprehensive strategies for
implementing prescribed burning to better manage wildfire
risk and mitigate its impact.

3.2.1 | Economic impact

The net values have been considered in several studies as
objective values in the spatial-extent optimization model of
Rx, which considers cost of implementation, fire suppression,
loss due to fire, and value-at-risk. Prestemon et al. (2001) and
Mercer et al. (2007) utilized the stochastic dynamic optimiza-
tion model of Rx to maximize the expected net present value
of welfare in Volusia, Florida. The former study identified the
optimal Rx percentage as 3% of the total forest area, while
the latter study found that burning 13% of forest lands was
most beneficial to net welfare. Prestemon et al. (2001) found
1% increment in prescribed fire area can reduce the wildfire
area by 0.07% and 1.4% when considering the lagged wild-
fire risk in 7 years. In contrast, Mercer et al. (2007) found
1% increment in prescribed fire area can reduce the wildfire
risk by 0.27% and 0.65% over 3 years and within 1 year.
The differences in the optimal results between two studies
were driven by considering both wildfire size and intensity in
the wildfire production function in the second study, which
was supported by their simulation result in the later study
(Mercer et al., 2008). They found that the elasticity of the
intensity-weighted area burned with respect to Rx was less
than that of the wildfire area, emphasizing the importance
of considering the wildfire intensity in assessing the fire risk
in the optimization modeling. By incorporating the intensity-
weighted risk measure into the model, the study conducted
Monte Carlo simulations to estimate the welfare changes
resulting from different prescribed burning policies. In order
to directly assess the impact of Rx on mitigating wildfires,
they employed an exponential function that is reliant on Rx
efforts to quantify the correlation between Rx efforts and
the cost of suppressing wildfires. This study considered a
C+NVC model optimization model applied in Western Aus-
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tralia. The results indicated that the optimal cost-effective Rx
strategy was about 5% of the landscape, and the patch size of
the Rx had no significant effect on the results. However, their
conclusion on the patch size may change if they consider the
risk of escaping fire, which was not specifically mentioned
in the study. This was further expanded in a later work by
Addington et al. (2020), which they found the most suitable
patches were in smaller sizes. This study integrates a compre-
hensive range of elements that influence the decision-making
process for Rx. These factors include wildfire threats, vegeta-
tion types, current fuel treatments, the WUI, and Rx behavior.
The objective is to determine an appropriate region for Rx
treatments using a multicriteria suitability analysis. The result
from their case study in the Southern Rocky Mountain area
indicates approximately 13.4% of the landscape is highly
suitable for Rx, and moderate-high and moderately suitable
areas are about the same percentage.

Besides the direct costs of fire treatments, several indirect
costs related to forest fires also significantly influence fire
management outcomes. The social cost of emissions is rec-
ognized as one primary indirect contributor to the economic
outcomes of fire management (Mills et al., 2015), encom-
passing health and climate-related consequences of emissions
(Zelasky & Buonocore, 2021). Both wildfires and prescribed
burns are major sources of particulate matter (PM) emissions
(Cascio, 2018), with PM, 5 from fire emissions accounting
for over 90% of the social (health) costs associated with mor-
tality and morbidity (Lueken et al., 2016). Considering both
prescribed burns and wildfires generate emissions with asso-
ciated social costs, understanding the differences is essential.
Kiely et al. (2024) found that prescribed bums can reduce
PM, 5 emissions by nearly 50% compared to wildfires in
California. A comparative analysis by the US Environmen-
tal Protection Agency (EPA) showed that prescribed burns
have significantly lower health and environmental impacts
than wildfires (EPA, 2021), and can substantially reduce the
overall health impacts and associated costs of fire emissions.
In a related study, Elder et al. (2022) explored the trade-offs
between prescribed burn implementation costs and the social
cost of carbon (SCC) in an optimization model aimed at min-
imizing total costs. Their findings revealed that total costs
are primarily driven by the SCC, which is far higher than
the costs of implementing prescribed burns. They also found
that prescribed burn costs would need to increase 510 times
to achieve the lowest total cost by reducing the SCC from
wildfires. Overall, the planning of prescribed fire needs to
calibrate the burning extent and frequency to ensure public
health while achieving forest management goals (Rosenberg
etal., 2024).

Considering the significant changes in global climate con-
ditions (Abbass et al., 2022), it is crucial to assess the
effectiveness of prescribed fire as its performance is highly
influenced by these shifts. To evaluate its role in wildfire
mitigation, Pais et al. (2023) conducted a simulation study
using the REMANS model, which dynamically integrates
wildfire and vegetation factors. The study assessed effective-
ness based on three treatment levels, allocation strategies, and

land-use scenarios. The case study focused on the 276.000-
ha Transboundary Biosphere Reserve, which features varied
topography and climate conditions. Results indicated that
prescribed fire could reduce potential wildfire area by 36% in
the best-case scenario, with a leverage ratio of 0.18. The study
also found that increasing the annual prescribed fire treatment
level led to better wildfire mitigation results, though the effec-
tiveness was influenced by location and the integration with
land-use scenarios. Extending the assessment to a broader
scale, Jose et al. (2023) proposed an economic optimiza-
tion model aimed at minimizing the total expected costs of
prescribed fire treatments, wildfire suppression, and associ-
ated losses. The model uses an exponential decay function to
quantify wildfire risk reduction as prescribed burning extents
increase (Behrendt et al., 2019a; Price, 2012). Case study val-
idation suggested that increasing prescribed fire extents by
143% in Oregon could reduce total expected costs by an aver-
age of 24% over the study period. The study emphasized that
the effectiveness of prescribed burns depends on the treat-
ment scale and the specific wildfire risks of the landscape
and treatment patterns. High-risk areas require more deliber-
ate planning to mitigate potential negative effects. While the
study provides valuable insights into balancing pre- and post-
wildfire efforts, incorporating more direct economic impacts
could enhance its practical application.

3.2.2 | Multicriteria decision-making (MCDM)
The variations in these optimal solutions point out the need
for tailored Rx strategies that consider specific regional con-
ditions, methodological approaches, and the unique objec-
tives of each study. This diversity in findings reinforces the
value of considering a broad spectrum of factors and uncer-
tainties in determining the most effective Rx strategies for
different regions and landscapes. The multicriteria analysis
used by Addington et al. (2020) within the MCDM frame-
work can address challenges outlined by the Federal Wildland
Fire Management Policy (Calkin et al., 2011), focusing on
the valuation of nonmarket assets and stakeholder cogni-
tive limitations (Altangerel & Kull, 2013; Halliday et al.,
2012; Venn & Calkin, 2011; Winter & Fried, 2000). Diaz-
Balteiro and Romero (2008) reviews MCDM methods such
as multiobjective programming (MOP), goal programming
(GP), compromise programming (CP), multiattribute utility
theory (MAUT), fuzzy multicriteria programming (FMCP),
and other discrete methods (ODM). These methods bal-
ance interests across social, economic, and environmental
aspects, enhancing wildfire management strategies to align
with societal preferences and addressing Rx implementa-
tion challenges (Cegan et al., 2017; Kiker et al., 2005;
Sadeghi Ravesh, 2020). By using the multiattribute-based
approach, MacGregor (2005) established a foundation for
examining the trade-offs across various aspects, includ-
ing ecological, economic, social, and Rx primary effects.
Their study facilitates comprehensive objective evaluation
in Rx decision-making using visual tools to illustrate
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and clarify the trade-offs between different management
objectives.

3.2.3 | Simulation-based model

Dicus and Osborne (2015) conducted a study to investi-
gate the effects of fuel treatment location and quantity on
fire behavior and carbon dynamics, using the Forest Vegeta-
tion Simulator (FVS) with Fire and Fuels Extension (FFE)
and FlamMap, alongside GIS technology. They analyzed
13 fuel treatment scenarios, finding that spatial allocation
and treatment quantity significantly influence fire behavior
and carbon emissions. The results indicated that the opti-
mal treatment intensity depends on the type of treatment and
the associated carbon loss in the short or long term. How-
ever, since prescribed fires produce 50% fewer emissions
than wildfires for the same burned area (Kiely et al., 2024),
strategically balancing the use of prescribed fires alongside
wildfire management can significantly reduce overall emis-
sions. The discrete decision variables for treatment intensities
(10%. 20%, and 30% of the landscape) may hinder the model
from identifying the global optimal (Klemmt et al., 2009).
This limitation is common when using simulation-based
optimization models to handle decision-making in uncertain
environments, such as wildfire management. For instance,
Ohlson et al. (2006) considered three treatment alternatives in
the multiattribute trade-off analysis (MATA) for fuel manage-
ment. They focused on identifying management objectives
like minimizing costs, maximizing timber resources, mini-
mizing property damage. and enhancing ecological values.
Similarly, Driscoll et al. (2016) considered five levels of burn-
ing among the 22 alternatives in their MCDM optimization
model. They considered objectives such as protecting houses
from wildfires, maintaining water quality, minimizing car-
bon emissions and health impacts, and conserving species.
Their model identified two optimal strategies, both achiev-
ing 60% total utility but differing in objectives, highlighting
the trade-offs between competing priorities. The limitation
of using discrete decision variable in simulation was relaxed
by Hmielowski et al. (2016) using an index termed manage-
ment effort, which was estimated by the number of treated
management units. The index is utilized in a cost-benefit
analysis model to prioritize the Rx area in Wisconsin, aim-
ing to maximize ecological benefits while reducing treatment
effort. The stakeholders were highly involved in the model-
ing process, such as estimation of the management effort and
valuation, to improve the quality and utility of this tool for
stakeholders.

3.3 | Temporal-only models

Planning the timing of prescribed burning adds complexity
to wildfire risk management, as it requires a balance between
allowing sufficient time for vegetation regrowth (White et al.,
1990) and not exceeding a specific time frame, given that

the effectiveness of Rx in mitigating wildfire risk dimin-
ishes over time (Ager et al., 2007). Numerous studies have
focused on scheduling forest fuel treatments to reduce wild-
fire risk. These temporal-only models incorporate a variety of
factors, enabling researchers to develop dynamic strategies
that account for the ever-changing nature of wildfire risk. By
considering fire behavior, environmental conditions, ecologi-
cal aspects, and economic impacts, the temporal optimization
models presented in Table 3 underscore the significance of
these factors in formulating adaptive and effective wildfire
risk management strategies.

The scheduling of prescribed burning treatments signif-
icantly influences their optimization and the mitigation of
wildfire risk. This fact is supported by multiple studies that
have included fuel accumulation as a critical factor in their
optimization models. Yoder (2004) used a dynamic economic
model to optimize the timing and precaution of Rx, aiming
to maximize net value by determining the optimal interval
between treatments and considering the precautionary efforts
in Rx conduction. This model accounted for fuel accumula-
tion over time and was the first to incorporate the probability
of escaped fire, using a function that considers the time
elapsed since the last Rx conduction and the level of pre-
cautionary effort to estimate this probability. The decision
variable in this model is continuous, representing the timing
of the Rx conduction. The expected damage of escaped pre-
scribed fire is considered in the objective function, which the
probability of escaping is a function of precautionary effort
for prescribed burning. The study found that the effective-
ness of prescribed fire depends on both wildfire risk and the
potential damage caused by prescribed burns. Higher wildfire
risks necessitate more frequent and precautionary prescribed
burns, while liability concerns related to prescribed fire dam-
age can discourage their use, despite their effectiveness in
reducing overall wildfire damage. With the same focus on
reducing fuel load, Minas et al. (2014) proposed a decision
model to identify the optimal time for fuel treatment, consid-
ering fuel age as a central element. They employed an MIP
model with binary decision variables to establish Rx conduc-
tion within a cell, dividing the study area into several cells.
The objective was to minimize wildfire risk concerning for-
est fuel age in the area while adhering to a major constraint on
the total treatment budget. This study offers a decision model
for optimizing the timing of Rx use, further highlighting the
importance of fuel management. Note that the researchers
assumed a constant suppressive effect of Rx on wildfire risks
within a cell for a set period. Although this assumption sim-
plifies the model. incorporating a decay function that reduces
the Rx effect over time could better reflect reality, acknowl-
edging that the potency of Rx treatments diminishes as time
progresses. This decay is not uniform and can be influenced
by various factors, such as fuel regrowth and changes in
environmental conditions (Valké & Dedk, 2021).

Factoring ecological consideration into planning, Ledn
et al. (2023) introduced a multiobjective stochastic program-
ming (MSP) model for scheduling Rx. MSP aims to balance
conflicting objectives in models where parameters within the
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TABLE 3 Factors considered in temporal-only models.
Focus Factors/Attributes References
Fuel reduction Production value, Escaped fire, Net value Yoder (2004)
Rx budget Amnimal habitat Leon et al. (2023)
Ecosystem health Minas et al. (2014)
Biological diversity, Environmental impacts Gharun et al. (2017)
Risk reduction Timber harvest, Timber price, Rx cost Susaeta and Camey (2023)

objectives or constraints are probabilistic (Abdelaziz, 2012).
Their model seeks to reduce high-fuel load connections and
total high-fuel load areas while enhancing habitat quality for
two species. It accounts for uncertainty and multiple crite-
ria, with binary decision variables dictating whether Rx is
conducted in a bum unit at a given time. Furthermore, the
model takes into consideration an age threshold for defining
a unit as high-fuel load, which varies based on vegetation
type. and incorporates the habitat needs of fauna, reflecting
both the age and type of vegetation present. The researchers
set limitations on the total Rx area and budget, modeling the
allowance of Rx in a burn unit as a discrete probability dis-
tribution. In addition, the model accommodates the necessity
for risk-averse strategies, recognizing the significant impli-
cations that the burning of vegetation has on human safety
and the environment. In sum, this MSP model offers a com-
prehensive method for addressing the challenges associated
with prescribed burns, integrating multiple objectives and the
inherent uncertainties of such interventions. To improve the
accuracy of mapping the fuel load for Rx treatment, Gharun
et al. (2017) suggested the use of remote sensing combined
with ground surveys. Their study developed a framework that
integrated ecological objectives into the traditional Rx tem-
poral optimization model, focusing on the examination of
major effects and their interactions leading to changes in sec-
ondary effects, such as water, carbon, ecosystem resilience,
and recovery. Further evaluating both primary and secondary
effects, Susaeta and Carney (2023) proposed a temporal opti-
mization model to determine the optimal burning frequency
that maximizes net value. Wildfire risk is estimated using
a Poisson model, where the probability of a wildfire occur-
ring is constant over time, and the likelihood of destruction
is calculated based on the stand’s age relative to the wildfire
rotation age. Case study results showed that the greatest bene-
fit from prescribed burns was in mitigating wildfire risk, with
only a minor improvement in harvest volume.

34 | Spatial-temporal models

Spatial-temporal optimization models improve the analysis
of prescribed burning management by incorporating both
spatial and temporal dimensions. This integrated approach
enables the development of precise and effective strategies,
accounting for the varied landscapes and changing patterns
of fuel accumulation. Table 4 provides a summary of the fac-

tors included in various spatial-temporal models examined in
this review.

3.4.1 | Surface fuel

Surface fuel significantly influences fire behavior. Effective
management of fuel continuity, type, and load is vital for
reducing wildfire risk and promoting healthy ecosystems.
Fuel continuity determines how a fire spreads through an
area, while fuel load affects the fire’s intensity and dura-
tion. High fuel loads can lead to more intense fires that burn
for extended periods, whereas low fuel loads may result in
less intense fires that extinguish more quickly (Sah et al.,
2006). By managing fuel continuity and load, managers can
effectively mitigate catastrophic wildfire risks and support the
development of diverse and resilient plant communities.

Loureiro et al. (2002) developed an optimization model
that integrated spatial and temporal objectives for managing
fuel continuity and load. The spatial objective aimed to mini-
mize fuel continuity, while the temporal objective established
thresholds related to the effectiveness of prescribed burning
in reducing fuel hazards. The model predicted fuel load accu-
mulation over 25 years using exponential and time-dependent
models. constrained by a plateau representing the “steady-
state” fuel load (Burgan, 1984). The authors also considered
the effect of climate conditions on prescribed burning, as
these conditions influence fuel dynamics and prescribed
burning effectiveness. To evaluate the impact of prescribed
burning on fuel continuity, they used FRAGSTATS, a soft-
ware tool that measures changes in landscape-level fuel patch
structure and continuity. The best scenario in their case study
suggested an optimal burning cycle of 5 years, with 45%
of the landscape treated using prescribed fire. The results
indicated that the Largest Patch Size of fuel was reduced
and maintained below 50%, while the Mean Patch Size was
slightly higher but remained under 70%. The fireline inten-
sity of wildfires was also mitigated to below 500 kW/m in
most years by the proposed strategy, compared to the general
fireline intensity, which typically ranges from 700 to 10,000
kW/m (Volkova et al., 2019).

Recognizing the importance of different fuel types in
optimizing prescribed burning strategies, Rachmawati et al.
(2015) proposed an MIP model to optimize Rx use by min-
imizing the weighted total fuel load while accounting for
multiple ages and vegetation types. The MIP model featured
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TABLE 4 Factors considered in spatial-temporal models.

Focus Factors/Attributes

References

Fuel reduction Fire spreading Climate condition
Ecosystem health

Loss of fire

Fire behavior Rx Cost

Harvest

Loss of fire
Surface fuel
Ecosystem health

Computational effort

Fire protection cost

Loureiro et al. (2002)
Rachmawati et al. (2015)
Rachmawati et al. (2016)
Williams et al. (2017)
Matsypura et al. (2018)
Arca et al. (2013, 2015)
Kim and Bettinger (2005)
Kim et al. (2009)
Nguyen and We1 (2022)
Alexandnidis et al. (2011)
Quartieri et al. (2010)
Payyappalli (2019)

Sun et al. (2012)

Chung et al. (2013)
Anstedt (2011)

Habitat, Vegetation, Rx cost

Climate condition

Value-at-risk

two binary decision variables to determine Rx conduction,
vegetation type, and age in the treated cell. However, the
study adopted two simplifying assumptions: all vegetation
within the same type in the treatment cell had the same
age. and each treatment cell had only one dominant vegeta-
tion type. Addressing these assumptions would substantially
increase the computational effort required for the model.
Considering a 6- or 10-year planning horizon in the case
study, the total fuel load can be reduced by 50% with the
optimal burning level. Expanding on the last work, Rach-
mawati et al. (2016) used an MIP model to optimize the
spatial and temporal location of prescribed burning treat-
ments for fuel hazard reduction. The objectives aimed to
minimize the spatial connectivity of fuel hazards and maxi-
mize the area treated by prescribed burning, complying with
fuel treatment requirements. The same region from previ-
ous work was used for the case study, where the two-phase
model identified 7% as the optimal burning level for achiev-
ing about 30% reduction in the integrated objective value.
The study assumed that all vegetation in a treatment unit
was of the same age and that the ecosystem was healthy if
prescribed burning occurred between the minimum and max-
imum fire events. Although no explicit decision-maker or
stakeholder was specified, the implied beneficiary was the
ecosystem, with the hypothetical decision-maker being the
authority planning the prescribed burning. The study stressed
the importance of balancing prescribed burning utilization
for asset protection with ecosystem health. However, the bal-
ance between objectives can lead to prioritization challenges.
Integrating a weight variable could improve the model by
allowing decision-makers to assign different priority levels
to the objectives.

Considering the importance of addressing both ecological
and economic factors in fuel management, Matsypura et al.
(2018) introduced a multiperiod optimization model for wild-

fire fuel management. The model aims to minimize surface
fuel load while considering species regeneration and survival
in the Rx treatment area. It utilizes a binary decision variable
to select whether Rx is conducted for each treatment cell,
and surface fuel accumulation over time is computed using
Olson’s equation, which employs a negative exponential
function (Watson, 2011). This research makes a significant
contribution to the field of wildfire fuel management by pre-
senting an effective approach that addresses both ecological
and economic factors. With a similar focus on balancing
ecological and economic impacts, Williams et al. (2017)
enhanced the approach in their Rx optimization model. The
study used integer linear programming to optimize Rx spa-
tially, with asset protection representing the economic impact
and several conservation objectives reflecting the ecologi-
cal impact. The optimization aimed to maximize the total
expected value while balancing asset protection and conser-
vation objectives. Rx conduction was strategically planned to
safeguard assets, and conservation values were determined by
attributing weight factors to each objective from the perspec-
tive of the ecosystem. A binary decision variable indicated
whether Rx was conducted in selected cells, while an annual
budget constraint restricted the number of Rx that could be
carried out. The protection benefit of Rx was calculated based
on population density and proximity to residential areas,
adopting methodologies from Gibbons et al. (2012) and Pen-
man et al. (2014). The proposed model achieved 6% asset
protection and 23% conservation benefits in the case study,
effectively balancing the conflicting objectives over a 10-year
period. Yet, the assumption in the study of a fixed budget and
universal Rx permission may not align with actual conditions,
where financial constraints are variable and Rx application is
often limited by regional regulations and accessibility chal-
lenges, emphasizing the necessity for models that account for
these real-world complexities.
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342 | Fire behavior

Incorporating fire behavior into prescribed burning optimiza-
tion models is necessary for understanding the complex
dynamics of wildfires and developing effective strategies to
reduce their potential impacts. By considering fire inten-
sity, spread, and other fire behavior parameters, these models
can provide more accurate and relevant information to sup-
port decision-making. To study the fire ignition and severity,
Payyappalli (2019) provides a machine learning model to pre-
dict the spatial-temporal fire risk based on the value-at-risk,
vulnerability, and suppression resources. The assessed fire
risk can be utilized in the optimization models, such as the
resource allocation model they proposed in the previous sec-
tion that minimizes the sum of wildfire loss and investment
in fire protection. The model considers various factors, such
as the probability of a wildfire occurring, the expected loss
due to a wildfire, and the cost of implementing fire protection
measures. The objective is to find an optimal allocation of
resources that minimizes the total expected loss while staying
within budget constraints.

Chung et al. (2013) investigated the optimization of pre-
scribed burning treatments by minimizing total expected
loss over time and space using a simulated annealing algo-
rithm. The prescribed burning effect was evaluated using
FlamMap-MTT (Minimum Travel Time) in terms of wild-
fire intensity and spreading. These two continuous variables
served as decision variables in the objective formula. The
study assumed constant fire conditions when estimating
spreading through MTT (Finney, 2002). The model was
later incorporated into a decision support tool for prescribed
burning planning (Anstedt, 2011), which integrated multiple
prescribed burning decision support systems, including land
management optimization functionality (MAGIS), vegetation
capabilities (FVSOFFE) (Reinhardt, 2003), and fire behav-
ior modeling functionality (FlamMap) (Finney, 2006). In the
studied region, the optimized solution with 60% treatment
intensity reduced the total expected loss by 76% compared
to the no-action scenario and by 41% compared to random
solutions. However, the large computational time required
to solve the optimal solution may limit the number of fire
scenarios considered in the simulation.

Given the importance of spatial patterns in fuel treat-
ment optimization and forest management, as highlighted in
previous studies, researchers have continued to explore inno-
vative approaches to address this aspect. Arca et al. (2013)
presented an approach for the automatic design of fuel treat-
ments to mitigate wildfire hazards, formulating the problem
as an optimization of a subset of treatment units taken from a
predefined spatial pattern. They proposed a GPU-accelerated
optimization model to maximize the treatment effect of Rx
within a limited budget, using a Tabu Search procedure cou-
pled with a wildfire simulator. Depending on the spatial
characteristics, the high-risk area can be reduced to less than
one-quarter of its initial value. The use of GPUs significantly
lowers computation time, averaging less than 20 min for the

optimal solution. In a follow-up study, Arca et al. (2015)
applied the GPGPU (General-Purpose Computing on Graph-
ics Processing Units) approach for biobjective optimization,
aiming to minimize both wildfire hazards and fuel treatment
costs. The experiment result showed that the reduction effect
on the high risk area was influenced by the Rx treated area,
the most efficient tested solution was treating 7.2 ha area
with 65% reduction. In a related effort, Kim and Bettinger
(2005) and Kim et al. (2009) developed new methods for
scheduling forest management activities in a spatial pattern,
with the earlier study focusing on a smaller area and the lat-
ter study expanding to a larger area. These studies examined
both operational and fuel reduction management prescrip-
tions, employing a heuristic to schedule the activities. In the
later study, the impact of Rx spatial patterns on simulated
wildfire behavior was also investigated. Four spatial patterns
were analyzed using a single heuristic modeling approach,
the Great Deluge Algorithm. The objective of the optimiza-
tion model was to minimize the difference between actual
harvest and target volumes while managing the total distance
among treatment units, all under a limited Rx conduction
budget. In the first study, which considered harvest volume
as an objective, the dispersed pattern scheduling model pro-
vided the highest harvest volume and the greatest number of
units scheduled for harvest. In the second study, the regular
treatment pattern demonstrated the highest effectiveness ratio
of 0.16 in the Oregon case study, based on the treated area,
adjacent area, and the number of treated cells.

A recent study by Nguyen and Wei (2022) presents a
comprehensive approach to fire management by integrating
fire behavior, fuel treatment. and fire suppression into a sin-
gle optimization model. This model aims to minimize the
total costs of prescribed burning, wildfire suppression, and
wildfire losses across raster cells. To optimize Rx decisions,
the study employed a multistage stochastic MIP using sam-
ple average approximation (SAA), a technique that handles
stochastic optimization while providing confidence intervals.
By approximating the expected values of uncertain variables,
the SAA method refines the objective function and enhances
the model’s capability to solve complex stochastic problems.
The model, validated in a synthesized test, demonstrated
that optimal first-period prescribed burning could reduce the
objective function by 23.8% in low-value forests and 48.4%
in high-value forests. To capture the complexity of fire behav-
ior, the study modeled wildfire ignition as a random event,
with fire spread influenced by varying wind directions and
speeds, simulated using cellular automata (CA) (Sullivan,
2009). CA updates the state of each grid cell based on time
and the states of neighboring cells (Zheng et al., 2011), a
method applied in various fire modeling studies (Alexandridis
etal., 2011; Rienow & Goetzke, 2015; Sun et al., 2012), some
of which incorporate fire ignition probability (Quartieri et al.,
2010). However, integrating multiple components into a sin-
gle optimization model increases its complexity, especially
when attempting to formulate a unified objective function
(Bettinger, 2010; Konoshima et al., 2008).
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FIGURE 3 Components in the prescribed
burning optinization.
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4 | CONCLUSIONS

This study provides a systematic review and analysis of
the prescribed burning optimization literature by exam-
ining 61 papers published over the past 25 years. We
identify four major focus areas and criteria in the opti-
mization models, including spatial-allocation, spatial-extent,
temporal-only, and spatial-temporal. We also summarize sev-
eral elements that significantly impact prescribed burning
optimization models. Our review presents the major consid-
erations and perspectives of the relevant aspects of prescribed
burning optimization. Our analysis revealed that incorporat-
ing a broader range of components into model formulation
can enhance its realism and applicability to real-world prob-
lems. The complexity of these components plays a crucial
role in determining a model’s realism. Models with fewer
components require less computational effort to produce
accurate results based on their formulation. but they may rep-
resent fewer real-world scenarios, potentially limiting their
practical application. In contrast, models that encompass a
diverse array of components are likely to provide a more
accurate representation of real-world scenarios, but with a
higher potential for uncertainty. Given the nature of fire
behavior and its impacts, fire models must be sufficiently
complex to accurately represent the fire behaviors (McKenzie
& Perera, 2015). Although there is no clear standard for com-
plexity (Hantson et al., 2016), it is still necessary to expand
the range of factors considered in current fire models (Miller
& Aplet, 2016).

We performed a comprehensive assessment and modified
the components chart proposed by Chung (2015), tailoring it
to meet the unique requirements of prescribed burning plan-
ning. Our revised chart, illustrated in Figure 3, replaces the
“treatment effect” component with “factors.” This change
better captures the multifaceted interactions between sub-
components and prescribed burning. It acknowledges that
aspects like fire behavior are crucial not only preconduc-
tion but also influence outcomes postconduction (Wei et al.,
2008).

Objective
* Single
Multiple

Recognizing the significant interplay between biology and
fire, we incorporated biology as an additional factor. The
influence of fire on biological aspects and its consequential
secondary effects are critical considerations in Rx planning
(Hiers et al., 2003). We also acknowledged the influential
role of stakeholders, adding them as a major component to
reflect their impact on model variance. Given the varying
expectations of different stakeholders for prescribed burning,
it is imperative to understand that private parties’ priorities
can diverge markedly from public organizations’ objectives
(Costanza & Moody, 2011). Stakeholder preferences not
only influence but are crucial in determining the suitabil-
ity of prescribed burning, underscoring their importance in
decision-making (Addington et al., 2020). In our revised
chart, we have included the extent of prescribed burning as a
decision variable, recognizing its significant impact on wild-
fire management (Addington et al., 2015). Furthermore, we
introduced “acceptability” as a subcomponent under prac-
ticality (Ryan et al., 2013). Ensuring that the objectives,
effects, and outcomes of prescribed burning are acceptable
to both the decision-maker and society is vital for success-
ful implementation (Calkin et al., 2011; Miller et al., 2020;
Shindler, 2007). Lastly. while the goal of modeling prescribed
burning is to aid decision-makers in strategic decisions based
on utility maximization (Herrnstein et al., 1993), this pro-
cess requires complete information (Aleskerov et al., 2007).
Yet, our review found that none of the studies compre-
hensively considers all the components related to modeling
prescribed burning optimization and decision-making, often
relying on incomplete information (Yang et al., 2015). There-
fore, although existing models have contributed significantly
to the field. there is a clear need for more comprehensive
approaches. Incorporating diverse stakeholder perspectives
and providing a more realistic estimation of costs and risks
are essential to enhance the accuracy and applicability of
decision-making models in prescribed burning management.

Building on the previous discussion, delving deeper into
the specifics of prescribed burning optimization reveals note-
worthy trends and gaps. Many studies in this area assume a
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model formulated and strategic planning executed by a sin-
gle decision-maker. However, this approach often fails to
accommodate the diverse priorities and preferences of var-
ious stakeholders, potentially leading to disagreements and
complicating the decision-making process. Incorporating the
perspectives of stakeholders can significantly enhance the
accuracy and comprehensiveness of the decision-making pro-
cess (Costanza & Moody, 2011). Regarding objective values,
the earlier studies focus primarily on a single objective,
often optimizing for monetary value. Recent research, how-
ever, tends to favor models that maximize the benefits of
prescribed burning. Some models diverge from this trend,
focusing instead on factors like fuel load within a region or
delaying the time of wildfire ignition. MCDM has emerged
as a potent tool that amalgamates various objectives into one
function, adding complexity to problem formulation but prov-
ing beneficial for strategic modeling of prescribed burning
(Mardani et al., 2015; Perera et al.. 2013; Perez-Gallardo
et al., 2018; Yu, 2013). In terms of modeling techniques,
studies employing the management cells (MC) method gen-
erally aim to identify the ideal allocation and timing for
prescribed burning using integer or MIP models. Others use
continuous decision variables to optimize the extent of pre-
scribed burning or stakeholder priorities. Popular solution
techniques include linear programming and MIP. Stochastic
dynamic programming models are utilized when fire ran-
domness is considered, and techniques like MOP and FMCP
are applied for multiple objectives or objective functions. As
these objectives often conflict, the goal shifts to finding a bal-
ance instead of optimizing all objectives. Most decision and
optimization models for prescribed burning rarely consider
the risk of fire escaping and usually assume a steady unit
cost of prescribed burning. They also presuppose a defini-
tive effect of prescribed burning on wildfire mitigation within
a certain period, which may not always hold true. Prioritiz-
ing prescribed burning under constraints is more effectively
guided by identifying the value-at-risk for each cell (Hunter
& Robles, 2020; Stevens et al., 1997; Yoder, 2004).

The effectiveness of prescribed fire models was demon-
strated through case studies in most of the reviewed works,
though some studies placed a strong emphasis on the trade-
offs between costs and benefits. We observed no significant
differences in model performance across the four identified
modeling types, each of which focuses on strategic plan-
ning for prescribed burning by addressing decision-making
in three dimensions: location, timing, and the amount of
burning. The treatment benefits associated with prescribed
fire impacts indicate substantial improvements across vari-
ous objectives. Strategically implemented prescribed burns
have been shown to reduce fuel loads within treated areas
by 30-50% (Elia et al., 2014; Rachmawati et al., 2015,
2016; Rytwinski & Crowe, 2010) and to decrease wildfire-
affected areas by 36—50%. Depending on the cost parameters
included, the optimized burning strategy achieved a reduc-
tion in fotal expected costs ranging from 24% to 76% (Arca
et al., 2015; Chung et al., 2013; Jose et al., 2023; Nguyen
& Wei, 2022). When multiple objectives were integrated,

prescribed fire exhibited differential impacts on treatment
outcomes, particularly when more qualitative impacts were
considered (Addington et al.. 2020; Gharun et al., 2017; Leon
et al., 2023; Ohlson et al., 2006). Notably, while prescribed
fire remains effective, its relative impact on improving tar-
get outcomes becomes less pronounced as additional aspects
are incorporated into the objectives. While no existing stud-
ies have developed a fully three-dimensional model for
prescribed fire, significant progress has been made in two-
dimensional modeling. spatial-temporal models typically
consider either the location or the amount of prescribed fire,
along with the timing of the burn, using integrated decision
variables. In addition, some spatial models have attempted to
determine both the location and the amount of prescribed fire
using the MC method. where decisions are made based on
the sum of treated cells (Matsypura et al., 2018; Nguyen &
Wei, 2022; Rachmawati et al., 2015; Williams et al., 2017).
Most spatial-allocation and spatial-extent studies suggest that
actual burning levels need to be increased to reach opti-
mal levels for the best treatment outcomes. However, models
that incorporate more factors and interactions—particularly
the potential hazards of prescribed fire—tend to recom-
mend lower optimal burning extents. Deak et al. (2024)
assessed the impact of prescribed fire on reducing forest
carbon storage and wildfire severity under changing climate
conditions. Through simulations in northwest California and
southwest Oregon, they confirmed the local effectiveness
of prescribed burning but not at the landscape scale. The
findings indicate that prescribed burns are only beneficial
when strategically allocated to regions with specific climate
and geographic conditions, emphasizing the need for three-
dimensional models that consider the location, timing, and
extent of prescribed fire.

Through an extensive review of the literature on prescribed
burning management, we can address our research ques-
tions as follows: (i) Optimization and decision models in the
field of prescribed burning management encompass a wide
range, from qualitative and quantitative optimization meth-
ods to multicriteria suitability analyses, GIS-based decision
models. and stakeholder preference models. These models
are notably applicable to wildfire management, addressing
critical factors such as fire behavior, environmental condi-
tions, and ecological and economic considerations. Their
broad scope enables a comprehensive approach to wildfire
management, considering various aspects of fire control and
mitigation strategies. (ii) Models in this area utilize diverse
formulation and solution techniques, including multicrite-
ria decision analysis (MCDA), economic optimization, and
GIS-based decision models. Objective functions within these
models often aim to maximize or minimize the economic,
environmental, and societal impacts of prescribed burning.
Solution techniques span from mathematical optimization,
like integer programming, to simulations and advanced
machine learning algorithms, offering robust tools for ana-
lyzing and predicting fire management outcomes. (iii) The
assumptions inherent in these models, such as uniform fire
behavior or consistent weather conditions, present challenges

0 PTE96ES |

sy wog pag

0 PUE SULD | 911 99§ *[TOT/T/S0] U0 Areiqi ] sutjug Ao(ia (Aung) ojeung 1y Ansisatupy A 0oL | Bsuy 111101/ 0py wod Lajim A

sdyy)

IO ] A

pun

BEUAO1T SUOWWO) sanyeary sjqe|dde sy Aq powasod are sa[2ue o) ‘98N JO S| Joj Areiqi- surug) £3[im



A REVIEW FOR. PRESCRIBED BURNING AND WILDFIRE MANAGEMENT

|nr

in terms of realism and practical application. Relaxing these
assumptions requires incorporating more complex interac-
tions, uncertainties, and dynamic aspects of wildfire behavior.
This can be effectively addressed through advanced sim-
ulation models, machine learning algorithms, and iterative
stakeholder engagement processes, which add depth and
adaptability to the models, making them more reflective of
real-world conditions.

In conclusion, the primary objective of modeling pre-
scribed burning is to facilitate rational strategic decision-
making by decision-makers, based on the principle of utility
maximization (Hermstein et al., 1993). This process necessi-
tates complete information in model formulation (Aleskerov
et al., 2007). However, our review reveals that none of the
studies comprehensively consider all components crucial for
accurately modeling the optimization and decision-making
aspects of prescribed burning. Most models are formulated
based on incomplete information (Yang et al., 2015), which
can lead to gaps in decision-making accuracy and efficacy.
Despite their contributions, existing models in the field of pre-
scribed burning optimization require a more comprehensive
approach. It is essential to account for the varied perspectives
of stakeholders and incorporate more realistic estimations of
costs and risks. Such enhancements are necessary to improve
the accuracy and practicality of decision-making models in
prescribed burning management. Future research should thus
focus on developing models that integrate a wider array of
data and stakeholder inputs, ensuring that all relevant fac-
tors are considered for more informed and effective wildfire
management strategies.

5 | FUTURE RESEARCH DIRECTION

Future work on prescribed burning planning should expand
the scope of model components and stakeholder viewpoints,
integrate risk assessment, investigate long-term impacts,
and emphasize collaborative decision-making and shared
learning. Expanding the scope of models, as suggested by
Costanza & Moody (2011) and Driscoll et al. (2016), could
address diverse influencing factors and reconcile trade-offs
between conflicting objectives. Respecting the interests and
priorities of various stakeholders, from land managers to
the general public, is crucial. Similarly, incorporating risk
assessment and management into optimization models can
help mitigate adverse impacts. Studies such as those by
Yoder (2004), Stevens et al. (1997), and Hunter and Robles
(2020) highlight the importance of quantifying and managing
risks associated with prescribed burning. In addition, under-
standing long-term impacts on ecosystems, communities, and
wildfire risks, as discussed by Alcasena et al. (2018), provides
critical insights for future management. Integrating adap-
tive management approaches can enable decision-makers to
adjust strategies in response to changing conditions. Finally,
fostering collaboration, communication, and learning among
stakeholders, as shown by Failing et al. (2007), Garrard et al.
(2017), and Bunnefeld et al. (2017), is essential. Addressing

the proposed research directions will lead to more com-
prehensive and accurate prescribed burning models. These
improvements will help decision-makers manage wildfire
risks, along with other treatment goals, while considering
stakeholders’ preferences.
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