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ABSTRACT

We introduce a data-driven framework to automatically identify interpretable and physically meaningful
hyperelastic constitutive models from sparse data. Leveraging symbolic regression, our approach gener-
ates elegant hyperelastic models that achieve accurate data fitting with parsimonious mathematic for-
mulas, while strictly adhering to hyperelasticity constraints such as polyconvexity/ellipticity. Our inves-
tigation spans three distinct hyperelastic models—invariant-based, principal stretch-based, and normal
strain-based—and highlights the versatility of symbolic regression. We validate our new approach using
synthetic data from five classic hyperelastic models and experimental data from the human brain cortex
to demonstrate algorithmic efficacy. Our results suggest that our symbolic regression algorithms robustly
discover accurate models with succinct mathematic expressions in invariant-based, stretch-based, and
strain-based scenarios. Strikingly, the strain-based model exhibits superior accuracy, while both stretch-
based and strain-based models effectively capture the nonlinearity and tension-compression asymmetry
inherent to the human brain tissue. Polyconvexity/ellipticity assessment affirm the rigorous adherence to
convexity requirements both within and beyond the training regime. However, the stretch-based mod-
els raise concerns regarding potential convexity loss under large deformations. The evaluation of predic-
tive capabilities demonstrates remarkable interpolation capabilities for all three models and acceptable
extrapolation performance for stretch-based and strain-based models. Finally, robustness tests on noise-
embedded data underscore the reliability of our symbolic regression algorithms. Our study confirms the
applicability and accuracy of symbolic regression in the automated discovery of isotropic hyperelastic
models for the human brain and gives rise to a wide variety of applications in other soft matter systems.

Statement of significance

Our research introduces a pioneering data-driven framework that revolutionizes the automated identifi-
cation of hyperelastic constitutive models, particularly in the context of soft matter systems such as the
human brain. By harnessing the power of symbolic regression, we have unlocked the ability to distill in-
tricate physical phenomena into elegant and interpretable mathematical expressions. Our approach not
only ensures accurate fitting to sparse data but also upholds crucial hyperelasticity constraints, including

polyconvexity, essential for maintaining physical relevance.
© 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text
and data mining, Al training, and similar technologies.

1. Introduction

context, we formulate constitutive relationships deploying vari-
ous formats to capture material responses, including elasticity,

Constitutive relationship, articulating mechanical behaviors hyperelasticity, viscoelasticity, or plasticity. A more concise ap-
within specific configurations, plays indispensable roles in engi- proach involves employing Onsager’s thermodynamic framework
neering analyses and in silico simulations [1-5]. In the general [6,7], where a scalar thermodynamic potential proves sufficient for
fully characterizing the mechanical behaviors of diverse materials.
Specifically, this individual potential comprises two independent
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the irreversible dissipation potential [8]. In cases with no dissipa-
tive effects like plasticity or viscosity, the Helmholtz free energy
alone is capable of characterizing the mechanical response, as in
our current study.

Constitutive relations are commonly characterized through ex-
periments that typically record data in the form of displacement-
force pairs or strain-stress pairs as their derivatives. The conven-
tional strategy involves directly calibrating this data using regres-
sion algorithms, such as the least square method. However, in
these methods, a pre-established material model must be defined
prior to calibration. Therefore, the efficacy of calibration is heav-
ily reliant on the initial model selection, which is significantly in-
fluenced and biased by individual experiences. Typically, massive
efforts are invested in iteratively seeking an appropriate mate-
rial model, resulting in a tedious and laborious calibration proce-
dure [8]. More promising and automated approaches are the data-
driven techniques, especially neural networks, which are primarily
built on machine learning backbones and have emerged as versa-
tile tools for facilitating the discovery of constitutive models. Clas-
sic neural networks, such as Feed-Forward Neural Network (FFNN),
adopt fully connected structures and are commonly trained with
strain input and stress output. While these networks can accurately
interpolate experimental data, they may struggle with overfitting
and fail to extrapolate well outside the training regime [9,10].
To address these limitations, Physics Informed Neural Networks
(PINN) are introduced, with particular considerations of physical
laws [11]. This approach mainly operates in two ways: i) customiz-
ing loss functions by introducing additional terms to penalize the
violation of physical laws [12-14]; and ii) crafting network architec-
tures in accordance with the physical validity constraints [15,16].
Representative examples are the Constitutive Artificial Neural Net-
work (CANN) [17], Input Convex Neural Network (ICNN) [18], and
the Neural Ordinary Differential Equations (NODE) [19]. Compre-
hensive explanations and benchmark tests of the CANN, ICNN, and
NODE models are available in a recent review [20]. Additional ef-
forts include the Gaussian process [21], spline approximation [22],
and probability inference [23]. Moreover, unsupervised investiga-
tions into constitutive models, such as the Efficient Unsupervised
Constitutive Law Identification and Discovery (EUCLID) model, have
also been explored [8].

Data-driven methods based on machine learning, though
promising in automated discovery of constitutive models, usu-
ally share the following two weaknesses: i) Black Box Nature: The
model discovery process often acts as a “black box”, making it im-
possible to express predictions in explicit mathematic formulas.
This lack of transparency largely restricts the interpretability and
portability of the predicted model. ii) Limited Functional Space: The
available functional space for model selection is often constrained.
For instance, the CANN are confined to a functional set comprising
only 12 exquisitely designed terms [24], while In EUCLID, the iden-
tification of the material type and calibration of model parameters
are simultaneously achieved by determining finite material param-
eters within a generalized material library [8]. This limitation could
potentially lead to challenges in navigating multiple local optima,
thereby missing the global optimal constitutive model.

Symbolic regression, an alternative data-driven approach widely
used in scientific research [25-29], differs from the machine
learning-based methods by employing genetic programming (GP)
algorithms. This approach can automatedly decipher mathematic
information from pure data without specific need of a priori
knowledge about the investigated systems, thereby significantly
enhancing interpretability [30]. Operating on tree structures, sym-
bolic regression iteratively searches for candidate algebraic models
that gradually match the provided data in an evolutional manner.
Theoretically, the functional space in symbolic regression can be
considered infinite.
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The utilization of symbolic regression in constitutive modeling
has gained popularity in recent years. For example, sparse sym-
bolic regression has been used to identify algebraic stress mod-
els from high-fidelity simulation data, with the predicted models
exhibiting significant superiority over traditional turbulent mod-
els [31]. Additionally, symbolic regression has also been applied in
model characterization and parameter calibration in the plasticity
regime [32]. A recent study integrated PINNs with symbolic regres-
sion and successfully discovered several novel reaction-diffusion
models, capable of describing the spatio-temporal diffusion pat-
terns of misfolded tau proteins in Alzheimer’s disease [13]. How-
ever, few endeavors have been explored in the realm of hypere-
lasticity. Limited studies involve the first attempt in characteriz-
ing the multi-axial loading behaviors of vulcanized rubber [33,34]
and a recent work in identifying hyperelastic models for particle-
reinforced composites through the cooperation of symbolic regres-
sion and FFNN models [35]. In the latter work, the neural net-
work was employed to facilitate the differentiation operation and
enforce physical admissibility laws, while the symbolic regression
served as a mathematical toolbox to generate algebraic formu-
las. Though achieving satisfactory accuracy, massive concurrent in-
teractions between symbolic regression and neural networks in-
evitably increase the computational cost, especially when the an-
ticipated model incorporates a complicated format. Therefore, it re-
mains an open question whether it is possible to discover hypere-
lastic models solely within the framework of symbolic regression,
while rigorously adhering to physical constraints.

In this study, we aim to explore the capabilities of symbolic re-
gression in automatedly discovering hyperelastic models that rigor-
ously comply with physical requirements. To achieve this objective,
we investigated three distinct hyperelastic scenarios, invariant-
based, principal stretch-based, and normal strain-based hyperelas-
tic models. These investigations are based on multi-mode experi-
mental data from the human brain cortex [1]. In accordance with
physical constraints, we meticulously design the modeling struc-
tures, especially focusing on the objective functions. The structure
of this paper is organized as follows: First, we introduce the the-
ory of constitutive modeling, with particular emphasis on physi-
cal constraints, and the symbolic regression algorithms, along with
implementation details in Section 2. Following validation against
multiple synthetic datasets, the approaches are implemented on
experimental data to discover hyperelastic models for the human
brain cortex, with results and discussion presented in Section 3. Fi-
nally, we conclude our findings and outline potential directions for
future explorations in Section 4.

2. Theoretical method and symbolic regression algorithm

In this section, we revisit the fundamental theorem of con-
tinuum mechanics and delineate crucial constraints essential for
ensuring the physical admissibility of strain energy function de-
rived through symbolic regression. First, we briefly review the de-
scriptions pertaining to the kinematic equations and constitutive
equations within the framework of continuum mechanics. Then,
we delve into the critical conditions necessary to acknowledge the
physical constraints of strain energy function, especially the re-
quirement of convexity. Once these foundational aspects are estab-
lished, we proceed to predict the general form of the strain energy
function for human brain tissue based on experimental data using
symbolic regression, the algorithm and implementation details of
which will be introduced subsequently.

2.1. Constitutive modeling

In the context of continuum mechanics, the kinematics of a
continuum body can be described by a one-to-one mapping de-
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noted as x = @(X), where a material particle initially positioned
at X in the reference configuration By is carried to its new posi-
tion x in the current configuration B;. Quantitatively, we employ
the deformation gradient F = Vx¢ to quantify the mapping of the
line element from reference to current configuration, and the Ja-
cobian J = detF to describe the associated volume alternation. Left
multiplying F by its transpose FT yields the right Cauchy-Green
deformation tensor C = FTF, which possesses three complete and
irreducible principal scalar invariants,

Li=trC =22+ A2 + A2,

I =tr(cofC) = 3 (2 — tr(C?)) = A2A3 + A323 + A3A3,
Iy = detC = A2)2A2.

where cofC = det(C)C~! denotes the cofactor of C; tr(-) and det(-)
are trace and determinant operators, respectively. The deformation

(1)

gradient tensor F can be expressed as F = Vx¢ = ik,- n;®N;,
i=1

where A;, known as the principal stretches, are the square roots
of the eigenvalues of the right Cauchy-Green deformation tensor
C. The vectors n; and N; represent the corresponding principal di-
rections in the current and reference configurations, respectively.
In the undeformed state, both the deformation gradient and the
Cauchy-Green deformation tensor are identical to the unit tensor:
F =1, C =1, and the Jacobian equals one, | = 1.

Furthermore, we introduce two types of stresses: the symmet-
ric Cauchy stress o, denoting the force per deformed area along
the outward normal direction ng, and the asymmetric first Piola-
Kirchhoff stress P, defined as the force per undeformed area along
the outward normal direction Ns. The transpose of the latter is
also known as nominal stress, which is commonly employed as
the stress measure in experiments. The relation between these two
stresses is characterized by Piola transformation:

P=]JoF " or o =] 'PF". (2)

In general, the second-order stress tensor P is not symmetric and
has nine independent components.

The constitutive relationship establishes the connection be-
tween strain and stress in a material, reflecting the material re-
sponse under external stimuli like applied forces or temperature
variation. This relationship is a fundamental aspect of the material
behavior and is commonly expressed in mathematical or tenso-
rial form, as exemplified by the first Piola-Kirchhoff stress and the
deformation gradient, P = P(F). For hyperelastic materials, consti-
tutive relations can be reformulated by positing the existence of
the strain energy function (W), i.e., the Helmholtz free energy. The
strain energy function, under isothermal conditions, provides an
implicit mathematical combination of the strain and stress tensors,
P =0W(F)/0F. An elegant hyperelastic model should not only ex-
hibit prominent accuracy in characterizing material behaviors but
also preserve precision in dealing with perturbations or noise from
experimental measurements [36,37]. To uphold these qualities, hy-
perelastic models must rigorously adhere to physical laws such
as thermodynamic consistency and possess well-posed mathemat-
ical representations [38]. Furthermore, these models should be
exquisitely crafted to meet the criteria of objectivity, stability, and,
if desired, material symmetry and incompressibility [18,39]. For a
comprehensive explanation of these criteria, please refer to the
supplementary material.

Material stability is crucial to ensure the existence and unique-
ness of solutions for boundary-value problems [40,41]. Its mathe-
matical representation equates to the convexity, which plays a piv-
otal role as it implies ellipticity, thereby assuring material stability
in a constitutive model by prescribing convex shapes [9]. Moreover,
convexity ensures that the energy function exclusively attains its
global minimum at thermodynamic equilibrium within the refer-
ence configuration. However, general convexity is often considered
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too restrictive from physical perspectives and proves challenging to
impose in practical mathematical applications [42]. Instead, a less
restrictive requirement is the polyconvexity of the strain energy
function [19,43]. Polyconvexity of W (F) demands sufficient convex-
ity concerning the extended domain formed by deformation gradi-
ent F, its cofactor cofF, and determinant detF [44]. Therefore, there
exists a representative strain energy function ¥ (F) such that:

W(F) = U(F. cofF, detF). (3)

Constructing a general function that precisely fulfills this re-

quirement can be challenging, and a more flexible and pragmatic
approach is to find subsets through the additive decomposition
[45],
W(F, cofF.detF) = Wp(F) + Wo(COfF) + Weee (detF), (4)
where W, W, and Wy, are convex function with respect to F,
cofF, and detF, respectively. Above considerations of polyconvexity
all pertain to the deformation gradient F, however, the convexity
with respect to F encounters incompatible with the principle of
objectivity and is not suitable for finite elasticity. To address this
limitation, we reformulate the polyconvexity condition by involv-
ing the invariants of the right Cauchy Green deformation tensor C.
Moreover, it is noteworthy that non-decreasing substitutions of in-
variants, I; = trC, I, = tr(cofC), I3 = detC, preserve convexity [35].
Therefore, the strain energy function can be further simplified as
the summation of invariant-based functions,

g (F) + Weor(cofF) + Wye(detF) = Uy, () + Wy, () + U, (1),
(5)

where Iy , Iy, Uy, are convex functions with respect to the three
invariants. Accounting for incompressibility, the contribution of I
can be neglected due to its constant value. Consequently, polycon-
vAexity enfgrces the forms of the strain energy function as W (F) =
Wy, (1) + Y, ().

An alternative and less restrictive convexity condition is rank-
one convexity, commonly referred to as the strong ellipticity
condition. The strain energy function remains elliptic when the
Legendre-Hadamard condition is satisfied [42]:

02w
F2 (6)

where M and m denote arbitrary vectors in the reference or mate-
rial and current or spatial configurations. The ellipticity condition
implies positive-semi-definiteness of the tangent tensor 32W/0F2,
which is critical for maintaining material stability [38,46]. When
the vectors are coaxial with the principal direction of the right
stretch tensor U = /C, i.e., N and n, the tangent tensor reduces to
the following Hessian matrix,

M@m): :(Me@m)=>0

92w 2w 02w
92 0MOA, OOk
RN RN 92w
H=laon a3 o | ’
AR 92w 92w
9330k 0h3dh; 02

here, A1, Ay, A3 are the three eigenvalues of U, corresponding to
the principal stretches along three principal directions. If all three
eigenvalues are positive and the determinant of the Hessian matrix
H is positive, we can confirm the positive definiteness of H. How-
ever, it is important to note that satisfying Eq. (7) only ensures
ellipticity along the principal directions. To verify the ellipticity of
strain energy function W (F) across the entire space, we further ex-
amined the contours of the strain energy function in the principal
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stretch space [47]. Analogously, the additive decomposition can be
applied to refine the available function subsets:

W (A1, Az, A3) = Wi(A1) + Wa(ha) + W3(Rs3). (8)

This decomposition ensures that all off-diagonal components
of the Hessian matrix are zero, and its three eigenvalues directly
correspond to the diagonal components: 92W/9A2, 32W /912,
82W/9A3. Notably, the polyconvexity condition is slightly more
restrictive than the rank-one convexity condition. However, both
conditions are sufficient conditions for the existence of minimiz-
ers, indicating the potential existence of multiple local minimiz-
ers under each condition. To address this issue, a coercivity con-
dition can be introduced. The coercivity condition, also known as
the growth condition, demands that the stresses should grow un-
boundedly with infinite strains [35,48]. For simplicity, the strain
energy WV is considered infinite for infinite compression, J — 0, and
infinite expansion, | — oo.

In the current study, the polyconvexity condition, along with
the coercivity condition, is employed to determine the eXistence
and uniqueness of the invariant-based strain energy function
W (I, 1), while the rank-one convexity condition, along with the
coercivity condition, is utilized to verify the existence of global
minimizers for the principal stretch-based or strain-based strain
energy function W(A1, Ay, A3).

(a)

Tree Depth

(b)

4 % x + sin(x)
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2.2. Symbolic regression

Symbolic regression stands out as a distinctive form of regres-
sion, wherein a mathematic expression is autonomously identi-
fied to best fit the provided dataset. Unlike conventional regression
or data-driven methods that require predefined model structures,
symbolic regression is capable of generating analytical expressions
purely from data without the specific need of prior knowledge,
thereby significantly enhancing the interpretability, generalizabil-
ity, and flexibility of the model discovery process [30].

The algorithm for symbolic regression unfolds in an evolutional
manner, known as genetic programming, which draws inspirations
from the Darwinian principles of natural selection. Within GP,
functional expressions are efficiently represented using a binary-
tree structure, comprising nodes and branches, as illustrated in
Fig. 1a. A complete tree structure involves variables, mathematic
operators (either unary or binary), and constants. In the initial
stages, the algorithm randomly generates a population of symbolic
tree expressions based on user-defined variables and operators,
serving as candidate functionals. For each candidate expression,
the fitness is evaluated through the calculation of the mean square
error (MSE) between predicted outputs and target values. Expres-
sions with higher fitness values are more likely to be selected as
baselines for subsequent optimization, where the expression trees

(0.5 — x) = exp(x) + log(x)
O --» Constant
O --+ Variable

O -—>
Q-

Una ry opcra tor

Binary operator

0.5 * x + exp(x)

cos(x) + exp(x)

Fig. 1. Structure and operations of expression tree. (a). Representation of expression tree for an algebraic expression ((0.5 —x) x exp(x) + log(x)); (b). An example of the

mutation operation; (c). An example of the crossover operation.
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are modified primarily through two genetic operations: mutation
and crossover. The mutation operation entails randomly altering
some nodes in an expression tree, introducing genetic diversity
in the population. An example is shown in Fig. 1b, where a new
offspring is generated by replacing the unary operator “log” with
“sin”. On the other hand, the crossover operation permits the
algorlthms to create new offspring by combining building blocks
from different parent individuals, as demonstrated in Fig. 1c. These
newly generated expressions become candidates for the next
iteration. The iterative process of evaluation, selection, mutation,
and crossover constitutes one evolution of the regression analysis.
This cycle is repeated until the optimal expression is obtained or
the maximum number of generations is reached [49,50].

To enhance interpretability and mitigate potential overfitting,
achieving a balance between model accuracy and complexity is
crucial. However, there is still a lack of consensus on the precise
definition of these two terms. Herein, we adopt a proposed mea-
sure [51] that defines complexity as the number of nodes in an ex-
pression tree. The loss of expression £(Expr) is then evaluated as a
combination of the predictive loss £p,.q(Expr) and the complexity
measure C(Expr),

L(EXPT) = L prea (EXPT) - €Xp (frec[C(Expr)]), 9)

where frec[C(Expr)] defines a combined measure of the frequency
and recency of expressions occurring at the current complexity in
the population [51]. The optimal expression is determined based
on a score metric, as the negated derivative of the log-loss with
respect to the complexity, —d[log(MAE)]/dC, here MAE denotes
the mean absolute error between the prediction and the data. Fig-
ure S1 presents an example illustrating the evolutionary process in
searching for the target strain energy function.

In this manuscript, we employ the symbolic regression algo-
rithms introduced above to predict the optimal strain energy func-
tion for human brain tissue. To explore the capabilities of sym-
bolic regression, we incorporate three distinct sets of variables as
model inputs: the invariants (I;, ), principal stretches (A1, A3, A3),
and principal strains (€7, €;,€3). The corresponding strain en-
ergy functions we seek to discover are W(I;, I,), W (A1, Ay, A3),
W (€eq, €,€3), respectively. For clarity, we term the related algo-
rithms as “Invariant-based Symbolic Regression”, “Stretch-based Sym-
bolic Regression”, and “Strain-based Symbolic Regression”. In each
algorithm, we meticulously craft the model structure and objec-
tive functions to ensure the physical admissibility of the strain en-
ergy functions by adhering to the physical constraints outlined in
Section 2.1.

2.2.1. Invariant-based symbolic regression

Invariant-based Symbolic Regression takes the invariants
(I, L, I3) of the right Cauchy-Green tensor C as input and
the strain energy function W as output. The data used to train
these symbolic regression models include the deformation gradi-
ent F and the first Piola-Kirchhoff stresses P. Below, we briefly
introduce the mathematical representations of these quantities
based on the experimental measures for each loading mode. For
a detailed derivation process, please refer to the Supplementary
Material.

In the case of unconfined uniaxial tension and compression
tests, the specimen undergoes uniform deformation along the
stretching direction, denoting as A. Under the assumptions of ma-
terial isotropy and perfect incompressibility, the uniaxial stress can

be calculated as:
A 1
(i)

kLY
During the simple shear test, assuming a specified amount of shear
(y) is applied in the x-y plane of an isotropic and perfectly in-

10w

) Py =P33=0.
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compressible specimen, the shear stress has the following explicit

form:
ner(i )

In this manuscript, we employ the normalized mean square er-
ror to evaluate the loss between the predicted stress P* and the
experimental stresses P,

v
oh

8‘~I’

3L (11)

SS i~
PmﬂX

(12)

Here, each loss term is normalized by the maximum experimental
stress (P1%, PR™, Pi®) to mitigate the impact introduced by the
choice of stress measure [52,53]. P;s = Py; for tension (A > 1), Pyc =
Py; for tension (A < 1), and P = Py, for simple shear (y > 0).

The data fed into Invariant-based Symbolic Regression involve the
invariants (I;, L) and stresses (Py, Py, Ps). Performing symbolic
regression on these data directly yields a relation between stresses
and invariants, such as Py (l;, I,). However, thermodynamic con-
sistency dictates an indirect relation, P = 0 W /dF, implying that the
target output of symbolic regression should be the strain energy
W (I, L). To address this, we customize the objective function to
enable auto-differentiation inside the loss function, as shown in
Algorithm 1. At each step, the derivatives of W with respect to [
and I, are calculated and stored as dW/dl; and 0W/dl,. These two
derivatives are essential for determining the first Piola-Kirchhoff
stresses, as indicated in Egs. (10) and (11). Furthermore, to ensure a
stress-free reference configuration, both invariants are shifted by 3
at the initial stage. Regarding the polyconvexity condition, we en-
force non-negativities for all constants by imposing an extremely
large values into the loss function whenever any node constant be-
comes negative, ensuring that the base models used to construct
the hyperelastic model remain convex and non-decreasing (Sup-
plementary Section 3) [17,35].

In symbolic regression, the expression tree theoretically can
take an arbitrary functional shape. However, in consideration of
the computational costs, we constrain the evolving expressions to
be within the domain constructed by polynomial, exponential, and
logarithmic functions. These forms are commonly utilized in the
classical hyperelastic models, such as Mooney Rivlin model [54],
Gent model [55], and Holzapfel model [56]. The detailed model se-
tups are summarized in Table S1. Note that, the complexities and
constraints can be flexibly tuned for specific problems. For exam-

uc1 2 1

N

ut i~
PmﬂX

UC i~
PmﬂX

utl SSI

Nss
21

=1

Lpred N Z” Z ”

Algorithm 1
Framework of the Customized Loss Function for the Invariant-based Symbolic Re-
gression.

Input: First and second invariants calculated from experimental stretches of
uniaxial tension, uniaxial compression, and simple shear, I, ; First
Piola-Kirchhoff stress from tension P, compression P, and shear Pi;
Output: Normalized mean square error, Lyeq;

1: Shift ;and I, with 3 to ensure stress-free state at initial configuration;

2: Concatenate the inputs of three loading modes data along the raw
direction;

3: Constrain all the constants to be non-negative;

4: Calculate the derivatives of strain energy density w.r.t invariants,
oW .

v
I

al,
5: Cazlculate the stretches or shear for each loading mode, Ay, Ayc, Ass;
6: Determine the predlcted first Piola-Kirchhoff stress

P =2(hue — /z G+ 2 5. Pie = 20w — ) (B + 25 50),
Ps= 205 an t 312 =) Vs
7: Evaluate the loss:
uzr”uu Puci—Fici ”m*”m .
Lpred N1 Z ” ”2 + Nm Z ” T ”2 + N Z ” ”

8: return L.




J. Hou, X. Chen, T. Wu et al.

ple, we can adjust the complexity of the multiplication operator
(“*”) to a much larger value than that of addition operator (“+”) if
we need to restrict the use of “*” during functional evolution.

2.2.2. Stretch-based symbolic regression

Stretch-based Symbolic Regression takes the principal stretches
(A1, Ao, A3) of the right stretch tensor U as input and the strain
energy function W(Aq, Ay, A3) as output. For this particular re-
gression, we confined the functional format to rigorously follow
the generalized Ogden model due to its demonstrated efficiency
and suitability in describing the nonlinear and asymmetric me-
chanical behaviors of isotropic soft tissue, such as the human brain
[57],

W (R, da. As)

-3

k=1

%[W + A%+ 2% —3], (13)
where p, represents the shear stiffness, o, the nonlinearity pa-
rameter. Prior to application, the first step is to convert the exper-
imental measure of the right stretch tensor into its spectral repre-
sentation, [U] = diag(Aq, A, A3). For the case of unconfined uni-
axial tension and compression, the nominal uniaxial stress can be
calculated as:

w1 e
oA A /Ma)\z'

In the simple shear test prescribed in the x-y plane, the shear
stress takes the following succinct expression:
A2 0w A2 v
)\.%-ﬁ—la)\,l )L§+18)»2

Py = (14)

Pp = (15)
For a detailed mathematic derivation of Eq. (15), please refer to the
Appendix B in our recently published paper [53].

Analogously, for Stretch-based Symbolic Regression, we employ
the normalized mean square error to evaluate the loss between the
predicted stress P* and experimental stresses P, with the expres-
sion identical to Eq. (12). Again, we customize the objective func-
tion to ensure the thermodynamic consistency, with its framework
depicted in Algorithm 2.

At each step, the derivatives of W with respect to A, Ay, and
A3 are calculated and stored in dW/dAq, 0W/0A,, and oW /A3,
respectively. These derivatives further contribute to determining
the first Piola-Kirchhoff stresses P, Pj., and P, as indicated in
Egs. (14) and (15). In the algorithm, the first step is to concate-
nate all the principal stretches and stresses into one column, re-
spectively. This tricky recombination is crucial for code execution
because the expression tree is constrained to follow the format of

Algorithm 2
Framework of the Customized Loss Function for the Stretch-based Symbolic Regres-
sion.

Input: Principal stretches of uniaxial tension A ,, uniaxial compression
Muer and simple shear Ay g, with k in 1, 2, 3; First Piola-Kirchhoff stress
from tension Py, compression P, and shear Pg;

Output: Normalized mean square error, Lyeq;

1: Concatenate all the principal stretches and stresses into one column,
respectively;
2: Calculate the derivatives of strain energy density w.r.t principal stretches,

v 0w dw.
01 Thy ' ks’
3: Determine the predicted first Piola-Kirchhoff stress: Py, = & — 2 82,
u
o OW o W pr _ Mo 9w Mo L1
uc = i, Auc 0kp? 78S T 2% 41 00y A3 1 0%z
4: Evaluate the loss:
Puei=Phi 112 Pici=Plei 112 Pyi—P .
Lpred Nm Z” “ u“” + N Z” 5 u“” + N Z” =5 m”

5: return Lyq.
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the Ogden model. Thus, differentiation operations of W with re-
spect to each principal stretch share equal weight. This allows us
to snmphfy the derivatives of W with respect to a single variable,
e.g., BA |x A A, . Notably, the convexity requirement is not

enforced as described for the Invariant-based Symbolic Regression
because the nonlinearity parameter «; is allowed to be negative.
However, the coefficient /Lk/()[,% must be strictly positive to ensure
the positivity of shear stiffness [58]. Hence, the rank-one convexity
condition will be validated post hoc by determining the positive
definiteness of the Hessian matrix, as described in Section 2.1. The
evolving expressions are restricted to polynomial functions.

2.2.3. Strain-based symbolic regression

Strain-based Symbolic Regression takes the principal strains
(€1, €, €3) of the right stretch tensor U as input and the strain
energy function W (e, €, €3) as output. The principal strains are
also referred to as Biot strains, representing the strain measure in
the normal direction. The relation between Biot strain and princi-
pal stretch is described as:

€i=)\,,‘—1, iin 1, 2, 3 (]6)

In contrast to Stretch-based Symbolic Regression, where an Ogden
functional format is specified for the expression tree, Strain-based
Symbolic Regression considers the strain energy function as a poly-
nomial series of the Biot strain measure [53],

with

n
W(er, €. €)=Y Brlek + ek +€b).
k=1

(17)

Using the relation defined in Eq. (16), we can reformulate the
mathematic representation of stresses in terms of the principal
strains (€1, €, €3). For the case of unconfined uniaxial tension
and compression, the nominal uniaxial stress can be determined
as:

v 1 o

&1 (e +1),/(e+1) €2

In the simple shear test prescribed in the x-y plane, the shear
stress has the following expression:

(@+1? 0V (@+D)’ ¥

T @+ 1?4106 (4124106

For Strain-based Symbolic Regression, we also use the normalized
mean square error to assess the difference between the predicted
stress P* and experimental stresses P. Additionally, we customize
the objective function to ensure thermodynamic consistency, as
outlined in Algorithm 3. In each iteration, the derivatives of W

Py = (18)

(19)

Algorithm 3
Framework of the customized loss function for the strain-based symbolic regres-
sion.

Input: Principal strains of uniaxial tension € ., uniaxial compression € ,,
and simple shear € i, with k in 1, 2, 3; First Piola-Kirchhoff stress from
tension Py, compression P, and shear Ps;

Output: Normalized mean square error, Lpq;

1. Concatenate all the principal strains and stresses into one column,
respectively;

2. Calculate the derivatives of strain energy density w.r.t principal strains,
oW W 9w .
Je,’ e’ de3’ . - .

3. Derive the principal stretches based on given principal strains
Meur = €kur + 1, Mgy = €k + 1, A s = €xss + 1, with kin 1, 2, 3;

. Determine the predicted first Piola-Kirchhoff stress: P, = 2% _ 22w 0¥

ut = Je; Mue 0€"
pro— AV _ o u 0w Mo W M aw
uc = 9e Muc 062" 7SS T 22 41 J€ 13,+1 96
5. Evaluate the loss:
PuiP Pui—P: Pyi—P:
Lpred = 5 ZII ot |1? + R ZH S |2+ 5 ZH “pm ||

6. return Lpred
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with respect to €1, €;, and €3 are calculated and stored in dW/de€q,
dW/0ey, and 0W/de3, respectively. Furthermore, concatenation is
also performed to facilitate the differentiation operation. Herein,
we impose no restriction on the sign of f;, however, the positiv-
ity of shear modulus is strictly enforced by considering the con-
sistency condition, namely, the isotropic hyperelastic model should
be consistent with linear elasticity theory for small strains [59],

_1[229(0.0,0) 82W(0.0.0) ¥ (0,0.0)
2 0e? 0€;0¢€; 0€;

Here, 0W (0, 0,0)/d¢; indicates the derivates of W(eq, €, €3)
in the reference configuration where all principal strains have a
constant value of 0. The polyconvexity condition will be post-
checked as described in Section 2.1 and the evolving expressions
are confined to polynomial functions.

] >0. (20)

2.2.4. Training data and implementation details

In our study, we trained our models simultaneously using data
from three loading modes—uniaxial tension, uniaxial compression,
and simple shear—and evaluated their fitting accuracy within this
same data regime. This approach was selected based on insights
gained from testing different training scenarios. As illustrated in
Figures S4-S6, employing a multi-mode training approach results
in more accurate overall fittings across the three loading modes
compared to the single-mode training, particularly excelling in
capturing the inherent nonlinearity of soft tissues under large de-
formations. Both the synthetic and experimental datasets comprise
41 data points for each loading scenarios, resulting in a total of 123
data points included in the training dataset for multi-mode train-
ing. The synthetic training data was generated based on presumed
function formats with the inputs of stretch (A, y) and outputs of
the stresses (Pj;, Pi2). Experimental data was extracted from the
literature using an open-source digitizer tool [4].

All symbolic regression analyses were performed using PySR
[51], a powerful open-source package developed alongside the Julia
library SymbolicRegression.jl. During the training of Invariant-based
Symbolic Regression, the binary operators are restricted to addition
(+) and multiplication (*), while the unary operators are limited
to the exponential (exp), square (x2), cube (x3), and user-defined
logarithmic functions (In(1/(1 — x))). The training time is set to 30
min or a maximum of 1000 iterations or an early stopping criterion
of MSE lower than 1e-3, whichever is reached first. The maximum
depth of the expression tree is set to 10, and the maximum com-
plexity is constrained to 100. Notably, we customize the complex-
ity of each operator to penalize their occurancy preference (the de-
fault is 1). Additionally, the nested behavior of the exponential and
logarithmic functions is forbidden, while the square and cube op-
erators are restricted to occur, if desired, only once inside the ex-
ponential and logarithmic functions. These nested constraints are
defined for sufficient simplification of the enforcement regarding
the convex and non-decreasing requirements.

During the training of Stretch-based Symbolic Regression, the bi-
nary operators are restricted to addition (+), multiplication (*), and
polynomial functions. Here, the exponents of polynomial functions
are limited to normal values within the range of (—30, 30). The
training time, maximum depth, and maximum complexity are the
same as those of the Invariant-based Symbolic Regression. However,
we introduce functional constraints and penalize variables more
than constant to avoid the occurrence of variable exponents. Again,
the nested behavior of polynomial function is forbidden. A consis-
tent training setup is employed for the Strain-based Symbolic Re-
gression. We adopt the default criterion (“best”) to guide the model
selection process. Detailed training setups are summarized in Table
S1. For each algorithm, the training is repeated at least three times,
and favorable candidates, such as models with the top four scores,
are selected as the target models. All trainings were performed on
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a Legion PC equipped with a six-core Intel Core 17-8750H 2.2 GHz
CPU, 4 GB NVIDIA GTX 1050Ti GPU, and 24GB of memory.

3. Numerical results and discussion

In this study, our primary objective is to investigate the capa-
bility of symbolic regression algorithms in autonomously identify-
ing suitable hyperelastic models for soft tissues, specifically focus-
ing on the human brain cortex. The suitability of a hyperelastic
model is characterized by its accuracy, generalizability, and phys-
ical admissibility, namely, adherence to the physical constraints,
as outlined in Section 2.1. Prior to application, we initially con-
ducted equation search on synthetic dataset to validate the appli-
cability of the algorithms. Subsequently, three distinct endeavors
were undertaken for models’ discovery on the human brain cor-
tex based on multi-mode experimental data, wherein invariants,
principal stretches, principal strains were employed as the model
inputs, respectively. Furthermore, the predictive capabilities of the
three algorithms were evaluated regarding the interpolation and
extrapolation performance. Finally, we assessed the robustness of
symbolic regression by testing the model discovery performance
on synthetic data embedded with varying levels of noise.

3.1. Model verification with synthetic data

The synthetic data was generated based on five classical hyper-
elastic models that are commonly utilized to characterize the ma-
terial behavior of soft tissues: Mooney Rivlin model, Gent model,
Demiray model, Holzapfel model, and Ogden model. The detailed
mathematic expressions for each model are as follows:

Weene=-1.91n (1 - 1.2[I; - 3)),
Wogden =0.01 (}\1*18 FagB A 3)’
Woemiray = 1.66(exp (0.88[1; — 3]) — 1),

\I‘Holzapfel = 5.6<6Xp (3[1] - 3]2) — ])’
Whtooney Riviin = 0-87[1i — 3] + 0.86[11 — 3]* + 0.98[L; — 3] + 0.43[L — 3]".

(21)

Three loading modes (uniaxial tension, uniaxial compression,
and simple shear) were considered, with stress data generated in
terms of predefined stretches using mechanical expressions de-
fined in Section 2.2. The Invariant-based Symbolic Regression al-
gorithm was employed for the first four invariant-based models,
while the Ogden model data was trained using the Stretch-based
Symbolic Regression algorithm. The predicted models are visually
presented in Fig. 2. As shown, all models were successfully pre-
dicted using our algorithms, precisely aligning with the synthetic
data.

Although the model setups primarily follow the patterns out-
lined in Table S1, special considerations were made for each al-
gorithm to ensure the accuracy and efficiency in discovering the
target functions. First, a constant shift was manually added for Og-
den model, Demiray model, and Holzapfel model to enforce the
normalization or stress-free condition at the reference state. For
example, in the case of the Demiray model with a direct output
of W =1.661exp(0.8802[I; — 3]), a constant shift value of —1.661
was prescribed to ensure zero strain energy (W = 0) in the ref-
erence configuration (I; = 3). This constant shift would not affect
the stress measure as it may vanish under the differentiation oper-
ation. An alternative but automated approach involves customiz-
ing the exponential operator as (exp(x) — 1), like the approach
used for logarithmic function (—In(1 —x)), as seen in Figure S2.
However, it should be noted that integrating customized opera-
tors would significantly increase the training time: the algorithm
with the embedded operator can discover the target model within
merely 100 iterations, whereas the one with customized operator
requires nearly 350 iterations to find the same model. Second, we
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Ogden model: ¥ = 0.0102(A78 + ;18 + 1318 - 3)

Demiray model: ¥ = 1.661(exp(0.8802[I; — 3]) — 1)

Gent model: ¥ = —1.8991In(1 — 1.201[/; — 3])

Holzapfel model: ¥ = 5.602(exp(3.001[; —3]?) — 1)

Mooney Rivlin model: ¥ = 0.8702[I; — 3] + 0.8593[I, — 3] + 0.9798[I, — 3] + 0.4303[I, — 3]

Fig. 2. Validation of symbolic regression algorithm. Models were trained simultaneously with data from three loading modes, and tested with tension (a), compression (b)
and shear (c) data individually. Dots illustrate the synthetic data generated from five classical hyperelastic models that widely used for human brain characterization. Specific

mathematic expressions of predicted hyperelastic models are provided in (d).

constrained the order of polynomial operator (x¥) to be strictly
positive by introducing a ceiling function. To further improve ef-
ficiency in the equation search, the value of y was restricted to
the range of (0, 5) and (—30, 30) for the Mooney Rivlin model and
Ogden model, respectively. The successful reproductions of these
models confirm the applicability and accuracy of our algorithms in
the automated discovery of strain energy functions within hypere-
lastic regimes. Upon validation, we started to perform the symbolic
regression based on experimental data, aiming to discover a suit-
able hyperelastic model for the human brain cortex.

3.2. Hyperelastic models discovered by the invariant-based symbolic
regression algorithm

Fig. 3 illustrates four superior hyperelastic models discovered
for the human brain cortex using the Invariant-based Symbolic Re-
gression algorithm. These models were trained simultaneously with
data from three loading modes, thus the combined loss func-
tion defined in Eq. (12) was employed for regression optimiza-
tion and tested individually for each loading mode. The fitting per-
formance of each model is evaluated by the R? value, defined as
R2=1- % (P, — Pi*)z/ % (P. — P)%, where P is the mean of exper-

i=1 i=1

imental stress. Detailed mathematical expressions of each model
are provided at the bottom of the figure. As shown, these four
predicted models, though employing distinct formulas, exhibit sat-
isfactory performances in characterizing the material behaviors in
uniaxial tension, uniaxial compression, and simple shear scenarios.
Notably, all models are exclusively dependent on the second in-
variant. This observation aligns with recent findings [24,60]. Exam-
ining at curves, a consistent trend is observed across all models:
overestimation in tension occurs once the stretch is greater than
5 %, underestimation persists throughout compression, and accu-
rate fitting is observed with simple shear data. The consistent un-
derperformance in tension and compression data indicates poten-
tial data inconsistency with the hyperelasticity assumption [20]. In
essence, the experimental data may not be equally reliable for dif-
ferent loading modes. To address this issue, we propose introduc-
ing weighting factors in Eq. (12) to demonstrate the contribution
of each loading mode to the combined loss function.
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Interestingly, the predicted models W, and W, closely resem-
ble the models discovered by the CANN regularized with subset
selection (Ly regularization) [52]. However, our identified mod-
els W. and W, which exhibit comparable fitting performance, are
not covered in their research findings. Conversely, two hyperelas-
tic models presented in their work with satisfactory fitting ac-
curacy are not discovered by our current algorithm. One is con-
structed by terms ([l —3]2) and (exp([l, —3]) — 1), and another
is formed by (exp([I; —3]) — 1) and (exp([l, — 3]2) —1). This dis-
crepancy suggests the potential existence of multiple optima for
the current optimization problem. For further exploration, it is
crucial to consider either an enriched function space or more
diverse loading modes when performing symbolic regression or
CANN. Among the four models we discovered, the third model
W, = 0.017(exp(27.91[I, — 3]) — 1) exhibits the highest fitting ac-
curacy with the simplest form. Therefore, it serves as the optimal
model discovered by the Invariant-based Symbolic Regression algo-
rithm.

Within the framework of invariants, Fig. 4 provides a compari-
son on the fitting performance of the optimal hyperelastic model
discovered by symbolic regression, multiple regression, and arti-
ficial neural networks. The results for the latter two models are
derived from our recent paper [60], where artificial neural net-
works followed the idea of CANNs [17], but utilized a different loss
function, the mean absolute percentage error (MAPE). The compar-
ison reveals no significant differences among the three models, ex-
cept that the symbolic regression model exhibits a smaller under-
estimation in tension, leading to a marginally higher R? value of
0.908, as shown in Fig. 4a. Though achieving comparable perfor-
mance, the symbolic regression algorithm demonstrates significant
advantages in computational cost. On our platform, a complete ex-
ecution of symbolic regression took nearly 20 min. In comparison,
CANN cost 30 min for training, while multiple regression requires
almost 1 hour due to its exhaustive traversal over the entire can-
didate space.

For invariant-based hyperelastic models, critical physical admis-
sible conditions elucidated in Section 2.1, such as the polyconvexity
requirement, have been predefined and embedded into the sym-
bolic regression framework. Therefore, the four models unveiled in
Fig. 3 are inherently designed to satisfy the convexity requirement.
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Fig. 3. Four distinct hyperelastic models discovered with invariant-based algorithm. Models are trained simultaneously with data from three loading modes, and tested with
tension, compression and, shear data individually. Dots illustrate the experimental data of the human brain cortex. R? indicates the goodness of fit. Mathematical expressions

for each strain energy function are provided at the bottom of the figure.
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Wep = 0.017 * (exp(27.910 x [I, — 3]) — 1)

A

-
Wyr = 0.024 * (exp(22.111 % [I, — 3]) — 1)

Wyy = 0.552 * [I, — 3] — 2.858 x In(1 — 2.483 * [I, — 3]?)

Fig. 4. Symbolic regression vs Multiple regression and artificial neural network. Comparison on fitting performance of invariant-based hyperelastic models derived from
symbolic regression (SR), multiple regression (MR), and neural network (NN). Models are trained simultaneously with data from three loading modes, and tested with
tension (a), compression (b), and shear data (c), individually. Dots illustrate the experimental data of the human brain cortex. R? indicates the goodness of fit. Mathematical
expressions for each strain energy function are provided at the bottom of the figure.

To substantiate this claim, we illustrate the contours of the identi-
fied strain energy functions with respect to principal stretches A;
and A,, as depicted in Figs. 5 and 6. Despite incorporating dis-
tinct functional operators, the contour lines of these strain energy
functions consistently display elliptic shapes encircling the center
point, representing the stress-free reference state (A; =1, A, = 1),
particularly evident in Fig. 5. This observation signifies the rigor-
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ous fulfillment of convexity for the strain energy function within
the training data regime. Furthermore, the convexity is preserved
beyond the training range, as shown in Fig. 6. It is noteworthy
that the different deformation ranges illustrated in Fig. 6 are cho-
sen for enhanced visualization. The fulfillment of convexity is more
straightforwardly illustrated in the 3D surface plot of the strain
energy function, as shown in Figure S3. Ultimately, the physical
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W, =11.016 * [I, — 3]* + 0.389 = [I, — 3]

W, = 0.398 * [I, — 3] + exp(10.637 * [I, — 3]3) — 1

W, = 0.017 * (exp(27.910 * [I, —3]) = 1) ¥4 = 0.351  [I, — 3] + 0.004 * (exp(47.131 % [, — 3]) — 1)

Fig. 5. Convexity of four invariant-based hyperelastic models within the training data regime. Contours of the four strain energy functions discovered by Invariant-based
Symbolic Regression algorithm within the training data regime, (a) Wg, (b) Wy, (¢) W, (d) W,. Black dots represent the location of global minimum. Mathematical expressions

for each strain energy function are provided at the bottom of the figure.

validity regarding the polyconvexity condition have been clearly
demonstrated for the four hyperelastic models discovered by the
Invariant-based Symbolic Regression algorithm.

3.3. Hyperelastic models identified by the stretch-based symbolic
regression algorithm

Fig. 7 shows the four superior hyperelastic models discovered
for the human brain cortex, using the Stretch-based Symbolic Re-
gression algorithm. All four predicted models exhibit promising
fitting accuracy in describing material behaviors within uniaxial
tension, uniaxial compression, and simple shear scenarios, each
achieving an R? value greater than 0.9 for all loading modes. In
contrast to the performance of invariant-based models that show
limitations in uniaxial tension and compression, the stretch-based
hyperelastic models significantly outperform them in describing
uniaxial deformations, particularly in compressions. All stretch-
based models demonstrate perfect alignment with the compres-
sive data. Conversely, the invariant-based models consistently un-
derestimate compressive forces throughout deformation, leading
to R? values all below 0.8, as evident in Fig. 3. This observation
is consistent with recent findings [58]. The superior performance
of stretch-based hyperelastic models is particularly pronounced in
nonlinear stages, such as in regions where tension or compression
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exceeds 5 %. This demonstrates their effectiveness in capturing the
inherent nonlinearity of the experimental data [61,62].

Similar efforts have been made using stretch-based approaches,
particularly the generalized Ogden model, to characterize the ma-
terial behavior of the human brain cortex [1,58]. The one-term
Ogden model in Ref. [1] shares an identical expression with our
first model (W, in Fig. 7). The generalized Ogden models [58]
identified by the principal stretch-based CANN exhibit lower ac-
curacy compared to our predicted models (W, ¥¢, ¥,), achieving
R? values of 0.938, 0.985, and 0.987 for tension, compression, and
shear, respectively. Notably, their model includes a significantly
greater number of terms compared to ours [58], indicating that we
achieved higher accuracy with a more succinct model form. This
disparity is primarily attributed to the smaller function space they
employed, where the polynomial order is restricted to the range of
(=30, 10). In contrast, this value is searched from a wider range of
(=30, 30) in our study.

Among the four models presented in Fig. 7, the last two
models, W =0.0035 z(x ~24 _1) +0.0003 Z(PO —1)and ¥, =

0.004 Z(A “B_1)+0. 0003 Z(A29 -1, demonstrate comparably

high accuracy in fitting the multi-mode data. As such, these
models serve as the optimal outcomes derived from the Stretch-
based Symbolic Regression algorithm. Unlike the invariant-based
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Fig. 6. Convexity of four invariant-based hyperelastic models beyond the training data regime. Contours of the four strain energy functions discovered by Invariant-based
Symbolic Regression algorithm beyond the training data regime, (a) Wq, (b) Wy, (c) W, (d) W,. Black dots represent the location of global minimum. Mathematical expressions

for each strain energy function are provided at the bottom of the figure.

hyperelastic models, which enforce strict polyconvexity on the
output function, stretch-based may exhibit non-convexity due to
the random combinations of polynomial series with arbitrary or-
ders [47]. Hence, we checked the ellipticity along the principal
directions for each model derived from the Stretch-based Sym-
bolic Regression algorithm by assessing the positive definiteness
of the Hessian matrix, as defined in Eq. (7). The results are pre-

Table 1

sented in Table 1. The positive determinants and real eigenvalues
of the Hessian matrix confirm the positive definiteness of tangent
(82W/d2?), thereby validating the local ellipticity of the strain en-
ergy functions within the training regime.

Representations of the convexity of all four stretch-based hyper-
elastic models are present in Figs. 8 and 9. In Fig. 8, the contour
lines all exhibit near-elliptic shapes encircling the center points

Ellipticity checks for stretch-based hyperelastic models. 32W/dA? are the second derivatives of ¥
with respect to principal stretch A;, with i in 1, 2, 3; min(det[H]) is the minimal determinant of
the Hessian matrix [H]; min(32W/dA?) denotes the minimal value of the ith eigenvalue of [H]. W,
W, W, W, correspond to the four stretch-based hyperelastic models shown in Fig. 7. Experimental
data of the human brain cortex are employed for calculations. Here, ellipticity along the principal

directions was assessed.

Ellipticity Checks v, W, W, \

92W/92? 299802 1751477 0.274A%% +2.0811;7%°  0.260A% +2.20511;%
min(det[H]) 26.951 5.369 13.074 14.983
min(92W/9A2) 0.405 0.134 1.569 1.577

min(92W/91%) 0.405 0.134 1.569 1.577

min(92W/91%) 0.036 0.006 1.568 1.576

? Positive definite  Yes Yes Yes Yes

? Ellipticity of W Yes Yes Yes Yes
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Fig. 7. Four distinct Ogden-form hyperelastic models discovered with stretch-based algorithm. Models are trained simultaneously with data from three loading modes, and
tested with tension, compression, and shear data individually. Dots illustrate the experimental data of the human brain cortex. R? indicates the goodness of fit. Mathematical
expressions for each strain energy function are provided at the bottom of the figure.

that correspond to the stress-free reference state (A1 =1, A, = 1).
This observation confirms that the predicted strain energy func-
tions satisfy the convexity requirement within the training data.
Furthermore, we expanded the synthetic stretches ranges to ex-
amine whether the convexity is preserved beyond the training
range. Results are shown in Fig. 9, where different deformation
ranges are selected for enhanced visualization. Though all mod-
els present concave shapes with global minimum locating at the
center and higher value at the outer boundaries, the strict adher-
ence to convexity requirements is not maintained, particularly for
W, and Y,. In Fig. 9a, the contour lines resemble a right trian-
gle with the hypotenuse posing a significant non-convex shape.
This issue is also evident for W, in Fig. 9b, suggesting a poten-
tial loss of convexity for W, and W, under large deformations.
Similar observations were also reported in investigations of the
one-term Ogden model [47]. Nonetheless, the remaining two mod-
els (W, and W,) still preserve their convexity beyond the train-
ing data regime, as illustrated in Fig. 9c and d. A clearer depic-
tion of the convexity fulfillment is shown in Figure S4, where we
generated 3D surface plots to illustrate the strain energy function
with respect to principal stretches A; and A,. These plots effec-
tively illustrate the convexity behaviors of hyperelastic models dis-
covered by the Stretch-based Symbolic Regression algorithm. How-
ever, it is important to note that there may be potential convexity
loss in certain scenarios, as observed in W, and W, under large
deformations.
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3.4. Hyperelastic models predicted by the strain-based symbolic
regression algorithm

Unlike the Invariant-based Symbolic Regression or principal
Stretch-based Symbolic Regression algorithms, the Strain-based Sym-
bolic Regression algorithm identified a single, unique model,

W =) " (2820.76€f +43.27¢! — 13.72€] + 1.37¢€}). (22)
i

Here, ¢; represents the normal strain and is related to principal
stretch by €; = A; — 1. The fitting performance of this strain-based
model is shown in Fig. 10. As illustrated, the strain-based model
exhibits remarkable fitting accuracy in capturing material behav-
iors in uniaxial tension, uniaxial compression, and simple shear
scenarios, achieving R? values greater than 0.99.

Fig. 11 depicts a comparison among the optimal models pre-
dicted by Invariant-based Symbolic Regression, Stretch-based Sym-
bolic Regression, and Strain-based Symbolic Regression algorithms,
respectively. As seen, the strain-based model exhibits the highest
fitting accuracy with experimental data across all three loading
modes. This promising fitting behavior pertaining to the strain-
based model was also reported in our recently published pa-
per [53], where the multiple regression method, combined with
the Akaike’s information criteria (AIC), was used to identify the
optimal hyperelastic model within a confined polynomial space,
with an order range of (0,10). Interestingly, the polynomial series
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Fig. 8. Convexity of the four stretch-based hyperelastic models within the training data regime. Contours of the four strain energy functions discovered by Stretch-based
Symbolic Regression algorithm within the training data regime, (a) Vg, (b) W, (c) W, (d) W,. Black dots represent the location of global minimum. Mathematical expressions

for each strain energy function are provided at the bottom of the figure.

selected by multiple regression model is identical to those iden-
tified by our symbolic regression model (€, €, €7, €?), though
the coefficients differ. Notably, the polynomial orders available
for symbolic regression algorithm are confined within (—30, 30),
indicating that the polynomial set discovered by multiple re-
gression is indeed optimal for the given range. It is notewor-
thy that though multiple regression demonstrates satisfactory ca-
pability in model discovery, substantial human efforts and com-
putational costs are required, especially when dealing with a
vast functional space. For example, when the polynomial order
is confined within (—30, 30), the potential equation combinations
amount to 259, making it impractical to traverse completely us-
ing multiple regression. This underscores the advantages of evo-
lution algorithms over traditional regression methods like multi-
ple regression in functions searching and parameter optimization
[63,64].

Analogously, the ellipticity of the strain-based model along
principal directions was evaluated by examining the positive-
definiteness of the Hessian matrix. Within the training data
regime, the minimal determinant of the Hessian matrix is 3.158,
while the minimal values for the three eigenvalues (92W/9A2,
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92W /9232, 92W/922) are 0.422, 0.422, and 0.420, respectively. The
positive determinant and real eigenvalues guarantee the positive
definiteness of the Hessian matrix, which further confirms the lo-
cal ellipticity of the identified strain energy function within the
training regime. Furthermore, the consistency condition (positiv-
ity of shear modulus), as defined in Eq. (20), is also satisfied,
as the coefficient before the second order term (eiz) is positive
(1.37).

A more straightforward illustration of convexity is provided by
the 3D surface plots and contour plots, as illustrated in Fig. 12.
Within the incompressibility framework, the strain energy func-
tion exhibits a distinct concave shape, with its minimum oc-
curring at the reference state (A; = A, =1), as seen in Fig. 12a
and b. Additionally, the coercivity condition is also satisfied, as
the strain energy function continues to achieve its local maxi-
mum with increasing tensile or compressive deformations. How-
ever, the peak strain energy function under compression is signif-
icantly higher than its tensile counterpart under the same level
of deformation. The dissimilar behaviors under tension and com-
pression potentially explains the prominence of strain-based mod-
els in capturing the data nonlinearity, as shown in Fig. 11. If
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for each strain energy function are provided at the bottom of the figure.
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Fig. 10. Hyperelastic model discovered with strain-based algorithm. Models are trained simultaneously with data from three loading modes, and tested with tension (a),
compression (b) and, shear (c) data individually. Dots illustrate the experimental data of the human brain cortex. R? indicates the goodness of fit.

we relax the compressibility constraint, the strain energy demon- Noted, the incompressibility constraint is imposed in this situation.
strates perfect symmetry with respect to A; and A,, as shown in From the figure, it is evident that the convexity observed within
Fig. 12c and d. the training regime (Fig. 13a) is maintained beyond the training

To assess the convexity beyond the training data regime, we ex- dataset (Fig. 13b), even in the case with 60 % deformation. This
panded the synthetic stretches ranges to 60 % tension and com- result is intriguing because, in the Strain-based Symbolic Regres-
pression and generated a contour plot, as presented in Fig. 13. sion algorithm, we applied more relaxed restrictions on the func-
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global minimum.
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Fig. 14. Interpolation and extrapolation capabilities of invariant-based model. Four distinct hyperelastic models discovered with invariant-based symbolic regression al-
gorithm. From left to right, the first two models are present to evaluate models’ predictive capability regarding interpolation (interp), while the last two models are for
extrapolation (extrap). All models are trained with 90 % of the multi-mode data, as indicated by dots with light color, and tested with remaining 10 % dataset, as indicated

by dots with dark color. R? indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure.

tion format, allowing both coefficients and polynomial orders to be
unrestricted, which led to negative coefficients as seen in Eq. (22).
Despite this, the strain-based energy function maintains rigorous
ellipticity and preserves convexity even under large deformations,
whereas the stretch-based energy functions may lose convexity, as
illustrated in Fig. 9. Moreover, the strain-based functions f(¢;) can
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be expressed as stretch-based polynomials g(};) using the rela-
tions €; = A; — 1. This suggests that the constraints enforcing posi-
tive coefficients in the stretch-based symbolic regression algorithm
may be overly restrictive. A less stringent prior confinement, com-
bined with rigorous posterior checks, could potentially yield more

satisfactory results.
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dark color. R? indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure.

3.5. Interpolation and extrapolation capabilities of symbolic
regression algorithms

In this section, we evaluated the interpolation and extrapolation
capabilities of our symbolic regression algorithms for hyperelastic
model discovery. Given the critical role of data in model training
and the typical scarcity of experimental data, it is imperative to
address various challenges such as the absence of diverse loading
modes due to limited experimental apparatus. As depict in Figures
§5-S7, insights from single-mode training endeavors provide guid-
ance on optimal loading modes for model characterization. For ex-
ample, simple shear loading is favorable for characterizing models
using the invariant-based approach, whereas uniaxial compression
is suggested for stretch-based or strain-based methods. Another
types of data scarcity involves oversized intervals in data sampling
or a limited range in testing apparatus. The former may result in
potential oversights regarding intermediate data information [65],
while the latter may could miss capturing data features during
large deformations [66]. Therefore, we also investigated the inter-
polation and extrapolation capabilities of our algorithms. In both
cases, 90 % of the data were allocated to the training dataset, with
the remaining 10 % designated for testing. Specifically, to exam-
ine the interpolation capabilities, we divided the full-field training
data into five subintervals for each training mode and randomly
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selected one data point from each interval to construct the testing
dataset, using the remaining data for training. For assessing ex-
trapolation capabilities, we constructed the training dataset from
the bottom 90 % of stretch-stress paired data (sorted by increasing
stretch), with the remaining 10 % serving as the testing dataset.
Fig. 14 illustrates the fitting accuracy of invariant-based hyper-
elastic models trained with 90 % of the entire dataset, indicated
by light colors. Two candidate models are presented to evaluate
the predictive capabilities regarding interpolation and extrapola-
tion (referred to as “interpolated models” and “extrapolated mod-
els” in the following context unless otherwise noted). As shown
in the figure, despite being trained on different dataset, both in-
terpolated and extrapolated models demonstrate consistent predic-
tive trends: overestimating tension data, underestimating compres-
sion data, and aligning well with shear data. These trends are also
observed in models trained with full-field data, as seen in Figs. 3
and 4. This consistency may indicate the constrained capability of
invariant-based models in capturing the significant non-linearity
occurring within the large deformation range. Additionally, the in-
terpolated models demonstrate comparable training and testing ac-
curacy for each loading mode, while the extrapolated models tend
to fairly predict the testing data, especially for tension and com-
pression. This suggests that our algorithms possess superior in-
terpolation capabilities compared to extrapolation capabilities. In-
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Fig. 16. Interpolation and extrapolation capabilities of strain-based model. Four distinct hyperelastic models discovered with strain-based symbolic regression algorithm.
From left to right, the first two models are present to evaluate models’ predictive capability regarding interpolation (interp), while the last two models are for extrapolation
(extrap). All models are trained with 90 % of the multi-mode data, as indicated by dots with light color, and tested with remaining 10 % dataset, as indicated by dots with
dark color. R? indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure.

triguingly, one of the interpolating models (Wiyrp1) and one of the
extrapolating models (Wexrqp1) share the exact same format as the
models trained with full-field data (W, and ¥, in Fig. 3), differing
only in the constants. This potentially validates the robustness of
our algorithms.

Fig. 15 illustrates the fitting accuracy of stretch-based hypere-
lastic models trained with 90 % of the entire dataset, indicated by
light colors. Analogously, both interpolated and extrapolated mod-
els exhibit consistent predictive trends. Unlike the invariant-based
models, all stretch-based models achieve promising fitting accu-
racy in predicting compression and shear data. Even for tension,
the models still maintain satisfying performances until stretches
exceed 8 %. Furthermore, the interpolated models show compa-
rable training and testing accuracy for each loading mode, while
the extrapolated models moderately predict the testing dataset
for compression and shear. However, extrapolated stretch-based
models still fail to predict the tension within the testing data
regime. Similarly, the strain-based models demonstrate satisfying
performance comparable to the stretch-based models, as shown
in Fig. 16. The strain-based models also accurately predict tension
data, especially for the two interpolated models. Despite this en-
hanced performance, the extrapolated strain-based models still fail
to predict tension within the testing data regime. Interestingly, the
second interpolated model (Wjpsrpy) exhibits comparable perfor-
mance as the model trained with full-field data (see Eq. (22) and

Fig. 10), using only three terms. This suggests a more favorable
model selection, considering the tradeoff between model’s accu-
racy and complexity.

3.6. Robustness evaluation for symbolic regression algorithms

In this section, we investigated the robustness of our symbolic
regression algorithms for hyperelastic model discovery. All evalu-
ations were performed on synthetic data generated from prede-
fined hyperelastic models, similar in form to our identified mod-
els: W =0.0170 * (exp(27.9100 * [I, — 3]) — 1) for the Invariant-
based Symbolic Regression algorithm, W =0.0079x (A9 —1)

1
for the Stretch-based Symbolic Regression algorithm, and W =
Z(43.2700>x<6i4 +1.3700x€?) for the Strain-based Symbolic Regres-

1

sion algorithm. Artificial Gaussian noises were incorporated into
the synthetic data to mimic the perturbations encountered in real
experiments,

Ptest

__ psynthetic
ik — Pl

noise
B

N, oy) Vie{l,..., Ngaa}, k€ {ut, uc, ss},

(23)

where k represents loading modes: uniaxial tension (ut), uniaxial
compression (uc), and simple shear (ss); PSynthetlc means the ith

noise
P ~
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Table 2
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Robustness test for the invariant-based algorithm. Effects of prescribed noise on symbolic regression predictions. The
target strain energy function is represented as W = 0.0170 * (exp(27.9100 = [l, — 3]) — 1). A prediction is deemed right
when the mathematic format of the prediction model coincides with the target model.

Noise, o MSE Predicted W ? Right Prediction
0 150 x 107" 0.0170 * (exp(27.9100 % [L — 3]) — 1) Yes
0.0001 220 x1071° 0.0170 * (exp(27.9085 [, —3]) — 1) Yes
0.001 1.02 x 1078 0.0170 * (exp(27.9063 « [, — 3]) — 1) Yes
0.002 1.51 x 1076 0.0171 % (exp(27.8814 x [, —3]) — 1) Yes
0.005 1.15 x 107° 0.0170 % (exp(27.8227 * [, — 3]) — 1) Yes
0.01 3.99 x107° 0.0170 % (exp(27.8616 [, — 3]) — 1) Yes
0.02 2.04 x107* 0.0168 * (exp(28.0941 « [I, —3]) — 1) Yes
0.05 1.05 x 1073 0.0168 * (exp(28.1500 % [I, — 3]) — 1) Yes
0.1 479 x 1073 0.0227 * (exp(23.4639 [, — 3]) — 1) Yes
0.2 2.10 x 1072 [ -3] No
o= 0.00 o =0.01 o = 0.05 o= 0.10
05F R2 — 1000 7l 05 R2— 0999 | 05F B2 _ 068
£03 i
02
1 102 1.04 1.06 1.08 1.1 1 102 1.04 1.06 1.08 1.1 1 102 1.04 1.06 1.08 1.1
A A A
-1.0 -1.0 2 __ °
.. R? =0.999 b -Lop B =0887 °
e 0.8
=-0.6 F < -0.6
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£ 0.4 < "
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Fig. 17. Robustness test for invariant-based algorithm. Effects of prescribed noise on the predictions of symbolic regression. Models are trained simultaneously with synthetic
data from three loading modes, and tested with tension, compression, and shear data individually. Dots illustrate the generated synthetic data. R? indicates the goodness of

fit.

synthetic stress data under kth loading mode; Pir’ll?is‘* denotes the
prescribed noise, sampled from a Gaussian distribution with zero
mean and standard deviation o}. Here, we applied a consistent rel-
ative deviation to each loading mode, thus the actual standard de-
viation was scaled based on the maximum stress of each mode,
Oy = 0 * Py - Relative deviations ranging from 0 to 20 % were
utilized to assess the robustness of our symbolic regression algo-
rithms. The training setups for each noise case remained consistent
as outlined in Table S1.

For invariant-based models, prediction results along with the
corresponding MSE are shown in Table 2, while the fitting perfor-
mances under four typical noise scenarios are illustrated in Fig. 17.
As seen, our algorithm is capable of precisely discovering the pre-
defined mathematic format of the target strain energy function
even with a 10 % noise prescription. However, the accuracy of data
fitting continues to diminish as noise amplifies. With a 20 % noise
imposition, the data distributions become too random to reveal
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a discernible mathematic trend, resulting in the failure of precise
predictions. An analogous effect is observed for the stretch-based
and strain-based symbolic regression algorithms, as illustrated in
Figures S8 and S9, with their detailed functions presented in Table
S2 and S3, respectively. Consequently, it is evident that our algo-
rithms demonstrate satisfactory robustness in the current model
discovery scenarios.

4. Conclusion and future endeavors

We proposed a symbolic regression framework capable of
autonomously identifying interpretable hyperelastic models from
sparse experimental data while ensuring adherence to physical
laws. Our study explored three distinct approaches to hyperelas-
tic models—invariant-based, principal stretch-based, and normal
strain-based—to unveil the capabilities of our symbolic regression
algorithms. To ensure the physical validity of the predicted con-
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stitutive models, we customized the symbolic regression algorithm
by integrating the polyconvexity condition into the objective func-
tions for the invariant-based algorithm and validating rank-one
convexity post hoc for model predictions from stretch-based and
strain-based algorithms. After validating our algorithms on syn-
thetic data, we extended our study to the human brain cortex
using experimental data across three loading modes. We demon-
strated the convexity requirements both within and beyond the
experimental data regime for each discovered model. Additionally,
we examined the interpolation and extrapolation capabilities of
our algorithms based on partially selected training dataset. Finally,
we assessed the robustness of our algorithms using synthetic data
embedded with artificial Gaussian noises.

Our results reveal that symbolic regression can discover accu-
rate hyperelastic models with parsimonious mathematic expres-
sions in invariant-based, stretch-based, and strain-based scenarios.
Among all discovered models, the strain-based model exhibits su-
perior performance in fitting the experimental data, with an R?
value exceeding 0.99 for all loading modes. Additionally, both prin-
cipal stretch-based and strain-based models effectively capture the
nonlinearity and tension-compression asymmetry inherent in the
human brain cortex. Convexity checks validate the rigorous fulfill-
ment of polyconvexity/ellipticity within and beyond the training
data regime, except for certain stretch-based hyperelastic models
that may lose convexity under large deformations. The evaluation
of predictive capabilities indicates promising interpolation capabil-
ities for all three models and acceptable extrapolation performance
for stretch-based and strain-based models. Robustness tests under-
score the accuracy and precision of our proposed symbolic regres-
sion algorithms.

In present study, we leveraged symbolic regression for identify-
ing constitutive material models for the human brain cortex within
the hyperelasticity context. Naturally, our approach is readily ap-
plicable to model discovery for other brain regions, including the
corona radiata and corpus callosum [1], or other soft tissues like
skin [67,68] and muscles [69]. In addition to hyperelasticity, the
exploration of other constitutive behaviors in soft tissues such as
viscosity and plasticity presents intriguing future avenues, akin to
similar investigations in alloy composites [32] and concrete beams
[49]. Furthermore, our current model discovery utilized data from
three loading modes, uniaxial tension, uniaxial compression, and
simple shear. Incorporating a more diverse range of loading scenar-
ios, such as biaxial experiments [70], will significantly contribute
to the comprehensive characterization of material behaviors, par-
ticularly in complex loading cases. While the current study focuses
on identifying hyperelastic models under incompressibility, future
research will investigate the effects of relaxing incompressibility.
Moreover, the framework can also incorporate with Finite Element
models to perform inverse parameter identification [71].
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