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a b s t r a c t 
We introduce a data-driven framework to automatically identify interpretable and physically meaningful 
hyperelastic constitutive models from sparse data. Leveraging symbolic regression, our approach gener- 
ates elegant hyperelastic models that achieve accurate data fitting with parsimonious mathematic for- 
mulas, while strictly adhering to hyperelasticity constraints such as polyconvexity/ellipticity. Our inves- 
tigation spans three distinct hyperelastic models—invariant-based, principal stretch-based, and normal 
strain-based—and highlights the versatility of symbolic regression. We validate our new approach using 
synthetic data from five classic hyperelastic models and experimental data from the human brain cortex 
to demonstrate algorithmic efficacy. Our results suggest that our symbolic regression algorithms robustly 
discover accurate models with succinct mathematic expressions in invariant-based, stretch-based, and 
strain-based scenarios. Strikingly, the strain-based model exhibits superior accuracy, while both stretch- 
based and strain-based models effectively capture the nonlinearity and tension-compression asymmetry 
inherent to the human brain tissue. Polyconvexity/ellipticity assessment affirm the rigorous adherence to 
convexity requirements both within and beyond the training regime. However, the stretch-based mod- 
els raise concerns regarding potential convexity loss under large deformations. The evaluation of predic- 
tive capabilities demonstrates remarkable interpolation capabilities for all three models and acceptable 
extrapolation performance for stretch-based and strain-based models. Finally, robustness tests on noise- 
embedded data underscore the reliability of our symbolic regression algorithms. Our study confirms the 
applicability and accuracy of symbolic regression in the automated discovery of isotropic hyperelastic 
models for the human brain and gives rise to a wide variety of applications in other soft matter systems. 
Statement of significance 
Our research introduces a pioneering data-driven framework that revolutionizes the automated identifi- 
cation of hyperelastic constitutive models, particularly in the context of soft matter systems such as the 
human brain. By harnessing the power of symbolic regression, we have unlocked the ability to distill in- 
tricate physical phenomena into elegant and interpretable mathematical expressions. Our approach not 
only ensures accurate fitting to sparse data but also upholds crucial hyperelasticity constraints, including 
polyconvexity, essential for maintaining physical relevance. 

© 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are reserved, including those for text 
and data mining, AI training, and similar technologies. 

1. Introduction 
Constitutive relationship, articulating mechanical behaviors 

within specific configurations, plays indispensable roles in engi- 
neering analyses and in silico simulations [ 1-5 ]. In the general 
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context, we formulate constitutive relationships deploying vari- 
ous formats to capture material responses, including elasticity, 
hyperelasticity, viscoelasticity, or plasticity. A more concise ap- 
proach involves employing Onsager’s thermodynamic framework 
[ 6 , 7 ], where a scalar thermodynamic potential proves sufficient for 
fully characterizing the mechanical behaviors of diverse materials. 
Specifically, this individual potential comprises two independent 
counterparts: the reversible Helmholtz free energy potential and 
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the irreversible dissipation potential [ 8 ]. In cases with no dissipa- 
tive effects like plasticity or viscosity, the Helmholtz free energy 
alone is capable of characterizing the mechanical response, as in 
our current study. 

Constitutive relations are commonly characterized through ex- 
periments that typically record data in the form of displacement- 
force pairs or strain-stress pairs as their derivatives. The conven- 
tional strategy involves directly calibrating this data using regres- 
sion algorithms, such as the least square method. However, in 
these methods, a pre-established material model must be defined 
prior to calibration. Therefore, the efficacy of calibration is heav- 
ily reliant on the initial model selection, which is significantly in- 
fluenced and biased by individual experiences. Typically, massive 
efforts are invested in iteratively seeking an appropriate mate- 
rial model, resulting in a tedious and laborious calibration proce- 
dure [ 8 ]. More promising and automated approaches are the data- 
driven techniques, especially neural networks, which are primarily 
built on machine learning backbones and have emerged as versa- 
tile tools for facilitating the discovery of constitutive models. Clas- 
sic neural networks, such as Feed-Forward Neural Network (FFNN), 
adopt fully connected structures and are commonly trained with 
strain input and stress output. While these networks can accurately 
interpolate experimental data, they may struggle with overfitting 
and fail to extrapolate well outside the training regime [ 9 , 10 ]. 
To address these limitations, Physics Informed Neural Networks 
(PINN) are introduced, with particular considerations of physical 
laws [ 11 ]. This approach mainly operates in two ways: i) customiz- 
ing loss functions by introducing additional terms to penalize the 
violation of physical laws [ 12-14 ]; and ii) crafting network architec- 
tures in accordance with the physical validity constraints [ 15 , 16 ]. 
Representative examples are the Constitutive Artificial Neural Net- 
work (CANN) [ 17 ], Input Convex Neural Network (ICNN) [ 18 ], and 
the Neural Ordinary Differential Equations (NODE) [ 19 ]. Compre- 
hensive explanations and benchmark tests of the CANN, ICNN, and 
NODE models are available in a recent review [ 20 ]. Additional ef- 
forts include the Gaussian process [ 21 ], spline approximation [ 22 ], 
and probability inference [ 23 ]. Moreover, unsupervised investiga- 
tions into constitutive models, such as the Efficient Unsupervised 
Constitutive Law Identification and Discovery (EUCLID) model, have 
also been explored [ 8 ]. 

Data-driven methods based on machine learning, though 
promising in automated discovery of constitutive models, usu- 
ally share the following two weaknesses: i) Black Box Nature : The 
model discovery process often acts as a “black box”, making it im- 
possible to express predictions in explicit mathematic formulas. 
This lack of transparency largely restricts the interpretability and 
portability of the predicted model. ii) Limited Functional Space : The 
available functional space for model selection is often constrained. 
For instance, the CANN are confined to a functional set comprising 
only 12 exquisitely designed terms [ 24 ], while In EUCLID, the iden- 
tification of the material type and calibration of model parameters 
are simultaneously achieved by determining finite material param- 
eters within a generalized material library [ 8 ]. This limitation could 
potentially lead to challenges in navigating multiple local optima, 
thereby missing the global optimal constitutive model. 

Symbolic regression, an alternative data-driven approach widely 
used in scientific research [ 25-29 ], differs from the machine 
learning-based methods by employing genetic programming (GP) 
algorithms. This approach can automatedly decipher mathematic 
information from pure data without specific need of a priori 
knowledge about the investigated systems, thereby significantly 
enhancing interpretability [ 30 ]. Operating on tree structures, sym- 
bolic regression iteratively searches for candidate algebraic models 
that gradually match the provided data in an evolutional manner. 
Theoretically, the functional space in symbolic regression can be 
considered infinite. 

The utilization of symbolic regression in constitutive modeling 
has gained popularity in recent years. For example, sparse sym- 
bolic regression has been used to identify algebraic stress mod- 
els from high-fidelity simulation data, with the predicted models 
exhibiting significant superiority over traditional turbulent mod- 
els [ 31 ]. Additionally, symbolic regression has also been applied in 
model characterization and parameter calibration in the plasticity 
regime [ 32 ]. A recent study integrated PINNs with symbolic regres- 
sion and successfully discovered several novel reaction-diffusion 
models, capable of describing the spatio-temporal diffusion pat- 
terns of misfolded tau proteins in Alzheimer’s disease [ 13 ]. How- 
ever, few endeavors have been explored in the realm of hypere- 
lasticity. Limited studies involve the first attempt in characteriz- 
ing the multi-axial loading behaviors of vulcanized rubber [ 33 , 34 ] 
and a recent work in identifying hyperelastic models for particle- 
reinforced composites through the cooperation of symbolic regres- 
sion and FFNN models [ 35 ]. In the latter work, the neural net- 
work was employed to facilitate the differentiation operation and 
enforce physical admissibility laws, while the symbolic regression 
served as a mathematical toolbox to generate algebraic formu- 
las. Though achieving satisfactory accuracy, massive concurrent in- 
teractions between symbolic regression and neural networks in- 
evitably increase the computational cost, especially when the an- 
ticipated model incorporates a complicated format. Therefore, it re- 
mains an open question whether it is possible to discover hypere- 
lastic models solely within the framework of symbolic regression, 
while rigorously adhering to physical constraints. 

In this study, we aim to explore the capabilities of symbolic re- 
gression in automatedly discovering hyperelastic models that rigor- 
ously comply with physical requirements. To achieve this objective, 
we investigated three distinct hyperelastic scenarios, invariant- 
based, principal stretch-based, and normal strain-based hyperelas- 
tic models. These investigations are based on multi-mode experi- 
mental data from the human brain cortex [ 1 ]. In accordance with 
physical constraints, we meticulously design the modeling struc- 
tures, especially focusing on the objective functions. The structure 
of this paper is organized as follows: First, we introduce the the- 
ory of constitutive modeling, with particular emphasis on physi- 
cal constraints, and the symbolic regression algorithms, along with 
implementation details in Section 2 . Following validation against 
multiple synthetic datasets, the approaches are implemented on 
experimental data to discover hyperelastic models for the human 
brain cortex, with results and discussion presented in Section 3 . Fi- 
nally, we conclude our findings and outline potential directions for 
future explorations in Section 4 . 
2. Theoretical method and symbolic regression algorithm 

In this section, we revisit the fundamental theorem of con- 
tinuum mechanics and delineate crucial constraints essential for 
ensuring the physical admissibility of strain energy function de- 
rived through symbolic regression. First, we briefly review the de- 
scriptions pertaining to the kinematic equations and constitutive 
equations within the framework of continuum mechanics. Then, 
we delve into the critical conditions necessary to acknowledge the 
physical constraints of strain energy function, especially the re- 
quirement of convexity. Once these foundational aspects are estab- 
lished, we proceed to predict the general form of the strain energy 
function for human brain tissue based on experimental data using 
symbolic regression, the algorithm and implementation details of 
which will be introduced subsequently. 
2.1. Constitutive modeling 

In the context of continuum mechanics, the kinematics of a 
continuum body can be described by a one-to-one mapping de- 
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noted as x = ϕ(X ) , where a material particle initially positioned 
at X in the reference configuration B0 is carried to its new posi- 
tion x in the current configuration Bt . Quantitatively, we employ 
the deformation gradient F = ∇X ϕ to quantify the mapping of the 
line element from reference to current configuration, and the Ja- 
cobian J = det F to describe the associated volume alternation. Left 
multiplying F by its transpose F T yields the right Cauchy-Green 
deformation tensor C = F T F , which possesses three complete and 
irreducible principal scalar invariants, 
I1 = tr C = λ2 

1 + λ2 
2 + λ2 

3 , 
I2 = tr (cof C)

= 1 
2 (I2 

1 − tr (C2 )) = λ2 
1 λ2 

2 + λ2 
2 λ2 

3 + λ2 
1 λ2 

3 , 
I3 = det C = λ2 

1 λ2 
2 λ2 

3 , 
(1) 

where cof C = det (C )C−1 denotes the cofactor of C; tr (·) and det (·) 
are trace and determinant operators, respectively. The deformation 
gradient tensor F can be expressed as F = ∇X ϕ = 3 ∑ 

i =1 λi ni ! Ni , 
where λi , known as the principal stretches, are the square roots 
of the eigenvalues of the right Cauchy-Green deformation tensor 
C. The vectors ni and Ni represent the corresponding principal di- 
rections in the current and reference configurations, respectively. 
In the undeformed state, both the deformation gradient and the 
Cauchy-Green deformation tensor are identical to the unit tensor: 
F = I, C = I, and the Jacobian equals one, J = 1 . 

Furthermore, we introduce two types of stresses: the symmet- 
ric Cauchy stress σ , denoting the force per deformed area along 
the outward normal direction ns , and the asymmetric first Piola- 
Kirchhoff stress P , defined as the force per undeformed area along 
the outward normal direction Ns . The transpose of the latter is 
also known as nominal stress, which is commonly employed as 
the stress measure in experiments. The relation between these two 
stresses is characterized by Piola transformation: 
P = JσF−T or σ = J−1 PF T . (2) 
In general, the second-order stress tensor P is not symmetric and 
has nine independent components. 

The constitutive relationship establishes the connection be- 
tween strain and stress in a material, reflecting the material re- 
sponse under external stimuli like applied forces or temperature 
variation. This relationship is a fundamental aspect of the material 
behavior and is commonly expressed in mathematical or tenso- 
rial form, as exemplified by the first Piola-Kirchhoff stress and the 
deformation gradient, P = P (F ) . For hyperelastic materials, consti- 
tutive relations can be reformulated by positing the existence of 
the strain energy function ( "), i.e., the Helmholtz free energy. The 
strain energy function, under isothermal conditions, provides an 
implicit mathematical combination of the strain and stress tensors, 
P = ∂ "(F ) /∂ F . An elegant hyperelastic model should not only ex- 
hibit prominent accuracy in characterizing material behaviors but 
also preserve precision in dealing with perturbations or noise from 
experimental measurements [ 36 , 37 ]. To uphold these qualities, hy- 
perelastic models must rigorously adhere to physical laws such 
as thermodynamic consistency and possess well-posed mathemat- 
ical representations [ 38 ]. Furthermore, these models should be 
exquisitely crafted to meet the criteria of objectivity, stability, and, 
if desired, material symmetry and incompressibility [ 18 , 39 ]. For a 
comprehensive explanation of these criteria, please refer to the 
supplementary material. 

Material stability is crucial to ensure the existence and unique- 
ness of solutions for boundary-value problems [ 40 , 41 ]. Its mathe- 
matical representation equates to the convexity, which plays a piv- 
otal role as it implies ellipticity, thereby assuring material stability 
in a constitutive model by prescribing convex shapes [ 9 ]. Moreover, 
convexity ensures that the energy function exclusively attains its 
global minimum at thermodynamic equilibrium within the refer- 
ence configuration. However, general convexity is often considered 

too restrictive from physical perspectives and proves challenging to 
impose in practical mathematical applications [ 42 ]. Instead, a less 
restrictive requirement is the polyconvexity of the strain energy 
function [ 19 , 43 ]. Polyconvexity of "(F ) demands sufficient convex- 
ity concerning the extended domain formed by deformation gradi- 
ent F , its cofactor cof F , and determinant det F [ 44 ]. Therefore, there 
exists a representative strain energy function ˆ "(F ) such that: 
"( F ) = ˆ "

(
F , cof F , det F ). (3) 

Constructing a general function that precisely fulfills this re- 
quirement can be challenging, and a more flexible and pragmatic 
approach is to find subsets through the additive decomposition 
[ 45 ], 
ˆ "
(
F , cof F , det F ) = ˆ "F ( F ) + ˆ "cof (cof F ) + ˆ "det (det F ), (4) 

where ˆ "F , ˆ "cof , and ˆ "det are convex function with respect to F , 
cof F , and det F , respectively. Above considerations of polyconvexity 
all pertain to the deformation gradient F , however, the convexity 
with respect to F encounters incompatible with the principle of 
objectivity and is not suitable for finite elasticity. To address this 
limitation, we reformulate the polyconvexity condition by involv- 
ing the invariants of the right Cauchy Green deformation tensor C. 
Moreover, it is noteworthy that non-decreasing substitutions of in- 
variants , I1 = tr C, I2 = tr (cof C ) , I3 = det C, preserve convexity [ 35 ]. 
Therefore, the strain energy function can be further simplified as 
the summation of invariant-based functions, 
ˆ "F ( F ) + ˆ "cof (cof F ) + ˆ "det (det F ) = ˆ "I1 ( I1 ) + ˆ "I2 ( I2 ) + ˆ "I3 ( I3 ) , 

(5) 
where ˆ "I1 , ˆ "I2 , ˆ "I3 are convex functions with respect to the three 
invariants. Accounting for incompressibility, the contribution of I3 
can be neglected due to its constant value. Consequently, polycon- 
vexity enforces the forms of the strain energy function as "(F ) = 
ˆ "I1 (I1 ) + ˆ "I2 (I2 ) . 

An alternative and less restrictive convexity condition is rank- 
one convexity, commonly referred to as the strong ellipticity 
condition. The strain energy function remains elliptic when the 
Legendre-Hadamard condition is satisfied [ 42 ]: 
( M ! m ) : ∂2 "

∂F 2 : ( M ! m ) ≥ 0 (6) 
where M and m denote arbitrary vectors in the reference or mate- 
rial and current or spatial configurations. The ellipticity condition 
implies positive-semi-definiteness of the tangent tensor ∂2 "/∂F 2 , 
which is critical for maintaining material stability [ 38 , 46 ]. When 
the vectors are coaxial with the principal direction of the right 
stretch tensor U = √ 

C , i.e., N and n , the tangent tensor reduces to 
the following Hessian matrix, 

H =
 
       

∂2 "
∂λ2 

1 ∂2 "
∂λ1 ∂λ2 ∂2 "

∂λ1 ∂λ3 
∂2 "

∂λ2 ∂λ1 ∂2 "
∂λ2 

2 ∂2 "
∂λ2 ∂λ3 

∂2 "
∂λ3 ∂λ1 ∂2 "

∂λ3 ∂λ2 ∂2 "
∂λ2 

3 

 
       

, (7) 

here, λ1 , λ2 , λ3 are the three eigenvalues of U , corresponding to 
the principal stretches along three principal directions. If all three 
eigenvalues are positive and the determinant of the Hessian matrix 
H is positive, we can confirm the positive definiteness of H. How- 
ever, it is important to note that satisfying Eq. (7) only ensures 
ellipticity along the principal directions. To verify the ellipticity of 
strain energy function "(F ) across the entire space, we further ex- 
amined the contours of the strain energy function in the principal 
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stretch space [ 47 ]. Analogously, the additive decomposition can be 
applied to refine the available function subsets: 
"

(
λ1 , λ2 ,λ3 ) = "1 (λ1 ) + "2 (λ2 ) + "3 (λ3 ). (8) 
This decomposition ensures that all off-diagonal components 

of the Hessian matrix are zero, and its three eigenvalues directly 
correspond to the diagonal components: ∂2 "/∂ λ2 

1 , ∂2 "/∂ λ2 
2 , 

∂2 "/∂λ2 
3 . Notably, the polyconvexity condition is slightly more 

restrictive than the rank-one convexity condition. However, both 
conditions are sufficient conditions for the existence of minimiz- 
ers, indicating the potential existence of multiple local minimiz- 
ers under each condition. To address this issue, a coercivity con- 
dition can be introduced. The coercivity condition, also known as 
the growth condition, demands that the stresses should grow un- 
boundedly with infinite strains [ 35 , 48 ]. For simplicity, the strain 
energy " is considered infinite for infinite compression, J → 0 , and 
infinite expansion, J → ∞ . 

In the current study, the polyconvexity condition, along with 
the coercivity condition, is employed to determine the existence 
and uniqueness of the invariant-based strain energy function 
"(I1 , I2 ) , while the rank-one convexity condition, along with the 
coercivity condition, is utilized to verify the existence of global 
minimizers for the principal stretch-based or strain-based strain 
energy function "(λ1 , λ2 ,λ3 ) . 

2.2. Symbolic regression 
Symbolic regression stands out as a distinctive form of regres- 

sion, wherein a mathematic expression is autonomously identi- 
fied to best fit the provided dataset. Unlike conventional regression 
or data-driven methods that require predefined model structures, 
symbolic regression is capable of generating analytical expressions 
purely from data without the specific need of prior knowledge, 
thereby significantly enhancing the interpretability, generalizabil- 
ity, and flexibility of the model discovery process [ 30 ]. 

The algorithm for symbolic regression unfolds in an evolutional 
manner, known as genetic programming, which draws inspirations 
from the Darwinian principles of natural selection. Within GP, 
functional expressions are efficiently represented using a binary- 
tree structure, comprising nodes and branches, as illustrated in 
Fig. 1 a. A complete tree structure involves variables, mathematic 
operators (either unary or binary), and constants. In the initial 
stages, the algorithm randomly generates a population of symbolic 
tree expressions based on user-defined variables and operators, 
serving as candidate functionals. For each candidate expression, 
the fitness is evaluated through the calculation of the mean square 
error (MSE) between predicted outputs and target values. Expres- 
sions with higher fitness values are more likely to be selected as 
baselines for subsequent optimization, where the expression trees 

Fig. 1. Structure and operations of expression tree. (a). Representation of expression tree for an algebraic expression ( (0 . 5 − x ) ∗ exp (x ) + log (x ) ); (b). An example of the 
mutation operation; (c). An example of the crossover operation. 
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are modified primarily through two genetic operations: mutation 
and crossover. The mutation operation entails randomly altering 
some nodes in an expression tree, introducing genetic diversity 
in the population. An example is shown in Fig. 1 b, where a new 
offspring is generated by replacing the unary operator “log” with 
“sin”. On the other hand, the crossover operation permits the 
algorithms to create new offspring by combining building blocks 
from different parent individuals, as demonstrated in Fig. 1 c. These 
newly generated expressions become candidates for the next 
iteration. The iterative process of evaluation, selection, mutation, 
and crossover constitutes one evolution of the regression analysis. 
This cycle is repeated until the optimal expression is obtained or 
the maximum number of generations is reached [ 49 , 50 ]. 

To enhance interpretability and mitigate potential overfitting, 
achieving a balance between model accuracy and complexity is 
crucial. However, there is still a lack of consensus on the precise 
definition of these two terms. Herein, we adopt a proposed mea- 
sure [ 51 ] that defines complexity as the number of nodes in an ex- 
pression tree. The loss of expression L (Expr ) is then evaluated as a 
combination of the predictive loss Lpred (Expr ) and the complexity 
measure C(Expr ) , 
L( Expr ) = Lpred ( Expr ) · exp (frec [ C( Expr ) ] ), (9) 
where frec [C(Expr ) ] defines a combined measure of the frequency 
and recency of expressions occurring at the current complexity in 
the population [ 51 ]. The optimal expression is determined based 
on a score metric, as the negated derivative of the log-loss with 
respect to the complexity, −d[log (MAE )] / d C, here MAE denotes 
the mean absolute error between the prediction and the data. Fig- 
ure S1 presents an example illustrating the evolutionary process in 
searching for the target strain energy function. 

In this manuscript, we employ the symbolic regression algo- 
rithms introduced above to predict the optimal strain energy func- 
tion for human brain tissue. To explore the capabilities of sym- 
bolic regression, we incorporate three distinct sets of variables as 
model inputs: the invariants ( I1 , I2 ), principal stretches ( λ1 ,λ2 ,λ3 ), 
and principal strains ( ε1 , ε2 , ε3 ). The corresponding strain en- 
ergy functions we seek to discover are "(I1 , I2 ) , "(λ1 ,λ2 ,λ3 ) , 
"(ε1 , ε2 , ε3 ) , respectively. For clarity, we term the related algo- 
rithms as “Invariant-based Symbolic Regression ”, “Stretch-based Sym- 
bolic Regression ”, and “Strain-based Symbolic Regression ”. In each 
algorithm, we meticulously craft the model structure and objec- 
tive functions to ensure the physical admissibility of the strain en- 
ergy functions by adhering to the physical constraints outlined in 
Section 2.1 . 
2.2.1. Invariant-based symbolic regression 

Invariant-based Symbolic Regression takes the invariants 
( I1 , I2 , I3 ) of the right Cauchy-Green tensor C as input and 
the strain energy function " as output. The data used to train 
these symbolic regression models include the deformation gradi- 
ent F and the first Piola-Kirchhoff stresses P . Below, we briefly 
introduce the mathematical representations of these quantities 
based on the experimental measures for each loading mode. For 
a detailed derivation process, please refer to the Supplementary 
Material. 

In the case of unconfined uniaxial tension and compression 
tests, the specimen undergoes uniform deformation along the 
stretching direction, denoting as λ. Under the assumptions of ma- 
terial isotropy and perfect incompressibility, the uniaxial stress can 
be calculated as: 
P11 = 2(

∂"

∂ I1 + 1 
λ

∂"

∂ I2 
)(

λ − 1 
λ2 

)
P22 = P33 = 0 . (10) 

During the simple shear test, assuming a specified amount of shear 
( γ ) is applied in the x-y plane of an isotropic and perfectly in- 

compressible specimen, the shear stress has the following explicit 
form: 
P12 = 2(

∂"

∂ I1 + ∂"

∂ I2 
)

γ . (11) 
In this manuscript, we employ the normalized mean square er- 

ror to evaluate the loss between the predicted stress P∗ and the 
experimental stresses P , 
Lpred = 1 

Nut Nut ∑ 
i =1 ‖ Put,i − P∗

ut,i 
Pmax 

ut ‖2 + 1 
Nuc Nuc ∑ 

i =1 ‖ Puc,i − P∗
uc,i 

Pmax 
uc ‖2 + 1 

Nss Nss ∑ 
i =1 ‖ Pss,i − P∗

ss,i 
Pmax 

ss ‖2 . 
(12) 

Here, each loss term is normalized by the maximum experimental 
stress ( Pmax 

ut , Pmax 
uc , Pmax 

ss ) to mitigate the impact introduced by the 
choice of stress measure [ 52 , 53 ]. Put = P11 for tension ( λ > 1 ), Puc = 
P11 for tension ( λ < 1 ), and Pss = P12 for simple shear ( γ > 0 ). 

The data fed into Invariant-based Symbolic Regression involve the 
invariants ( I1 , I2 ) and stresses ( Put , Puc , Pss ). Performing symbolic 
regression on these data directly yields a relation between stresses 
and invariants, such as Put (I1 , I2 ) . However, thermodynamic con- 
sistency dictates an indirect relation, P = ∂ "/∂ F , implying that the 
target output of symbolic regression should be the strain energy 
"(I1 , I2 ) . To address this, we customize the objective function to 
enable auto-differentiation inside the loss function, as shown in 
Algorithm 1 . At each step, the derivatives of " with respect to I1 
and I2 are calculated and stored as ∂ "/∂ I1 and ∂ "/∂ I2 . These two 
derivatives are essential for determining the first Piola-Kirchhoff
stresses, as indicated in Eqs. (10) and (11) . Furthermore, to ensure a 
stress-free reference configuration, both invariants are shifted by 3 
at the initial stage. Regarding the polyconvexity condition, we en- 
force non-negativities for all constants by imposing an extremely 
large values into the loss function whenever any node constant be- 
comes negative, ensuring that the base models used to construct 
the hyperelastic model remain convex and non-decreasing (Sup- 
plementary Section 3) [ 17 , 35 ]. 

In symbolic regression, the expression tree theoretically can 
take an arbitrary functional shape. However, in consideration of 
the computational costs, we constrain the evolving expressions to 
be within the domain constructed by polynomial, exponential, and 
logarithmic functions. These forms are commonly utilized in the 
classical hyperelastic models, such as Mooney Rivlin model [ 54 ], 
Gent model [ 55 ], and Holzapfel model [ 56 ]. The detailed model se- 
tups are summarized in Table S1. Note that, the complexities and 
constraints can be flexibly tuned for specific problems. For exam- 
Algorithm 1 
Framework of the Customized Loss Function for the Invariant-based Symbolic Re- 
gression . 

Input: First and second invariants calculated from experimental stretches of 
uniaxial tension, uniaxial compression, and simple shear, I1 , I2 ; First 
Piola-Kirchhoff stress from tension Put , compression Puc , and shear Pss ; 
Output: Normalized mean square error, Lpred ; 
1: Shift I1 and I2 with 3 to ensure stress-free state at initial configuration; 
2: Concatenate the inputs of three loading modes data along the raw 

direction; 
3: Constrain all the constants to be non-negative; 
4: Calculate the derivatives of strain energy density w.r.t invariants, ∂"

∂ I1 , 
∂"
∂ I2 ; 

5: Calculate the stretches or shear for each loading mode, λut , λuc , λss ; 
6: Determine the predicted first Piola-Kirchhoff stress: 

P∗
ut = 2(λut − 1 

λ2 
ut )( ∂"

∂ I1 + 1 
λut ∂"

∂ I2 ) , P∗
uc = 2(λuc − 1 

λ2 
uc )( ∂"

∂ I1 + 1 
λuc ∂"

∂ I2 ) , 
P∗

ss = 2( ∂"
∂ I1 + ∂"

∂ I2 )γss ; 
7: Evaluate the loss: 

Lpred = 1 
Nut Nut ∑ 

i =1 ‖ Put,i −P∗
ut,i 

Pmax 
ut ‖2 + 1 

Nuc Nuc ∑ 
i =1 ‖ Puc,i −P∗

uc,i 
Pmax 

uc ‖2 + 1 
Nss Nss ∑ 

i =1 ‖ Pss,i −P∗
ss,i 

Pmax 
ss ‖2 ; 

8: return Lpred . 
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ple, we can adjust the complexity of the multiplication operator 
(“∗”) to a much larger value than that of addition operator (“+ ”) if 
we need to restrict the use of “∗” during functional evolution. 
2.2.2. Stretch-based symbolic regression 

Stretch-based Symbolic Regression takes the principal stretches 
( λ1 , λ2 , λ3 ) of the right stretch tensor U as input and the strain 
energy function "(λ1 , λ2 , λ3 ) as output. For this particular re- 
gression, we confined the functional format to rigorously follow 
the generalized Ogden model due to its demonstrated efficiency 
and suitability in describing the nonlinear and asymmetric me- 
chanical behaviors of isotropic soft tissue, such as the human brain 
[ 57 ], 
"

(
λ1 , λ2 , λ3 ) =

n ∑ 
k =1 

µk 
α2 

k 
[
λαk 

1 + λαk 
2 + λαk 

3 − 3 ], (13) 
where µk represents the shear stiffness, αk the nonlinearity pa- 
rameter. Prior to application, the first step is to convert the exper- 
imental measure of the right stretch tensor into its spectral repre- 
sentation, [ U ] = diag (λ1 , λ2 , λ3 ) . For the case of unconfined uni- 
axial tension and compression, the nominal uniaxial stress can be 
calculated as: 
P11 = ∂"

∂λ1 − 1 
λ1 √ 

λ1 
∂"

∂λ2 . (14) 
In the simple shear test prescribed in the x-y plane, the shear 

stress takes the following succinct expression: 
P12 = λ2 

1 
λ2 

1 + 1 ∂"

∂λ1 − λ2 
2 

λ2 
2 + 1 ∂"

∂λ2 . (15) 
For a detailed mathematic derivation of Eq. (15) , please refer to the 
Appendix B in our recently published paper [ 53 ]. 

Analogously, for Stretch-based Symbolic Regression , we employ 
the normalized mean square error to evaluate the loss between the 
predicted stress P∗ and experimental stresses P , with the expres- 
sion identical to Eq. (12) . Again, we customize the objective func- 
tion to ensure the thermodynamic consistency, with its framework 
depicted in Algorithm 2 . 

At each step, the derivatives of " with respect to λ1 , λ2 , and 
λ3 are calculated and stored in ∂ "/∂λ1 , ∂ "/∂λ2 , and ∂ "/∂λ3 , 
respectively. These derivatives further contribute to determining 
the first Piola-Kirchhoff stresses P∗

ut , P∗
uc , and P∗

ss , as indicated in 
Eqs. (14) and (15) . In the algorithm, the first step is to concate- 
nate all the principal stretches and stresses into one column, re- 
spectively. This tricky recombination is crucial for code execution 
because the expression tree is constrained to follow the format of 
Algorithm 2 
Framework of the Customized Loss Function for the Stretch-based Symbolic Regres- 
sion . 

Input: Principal stretches of uniaxial tension λk,ut , uniaxial compression 
λk,uc , and simple shear λk,ss , with k in 1, 2, 3; First Piola-Kirchhoff stress 
from tension Put , compression Puc , and shear Pss ; 
Output: Normalized mean square error, Lpred ; 
1: Concatenate all the principal stretches and stresses into one column, 

respectively; 
2: Calculate the derivatives of strain energy density w.r.t principal stretches, 

∂"
∂λ1 , ∂"

∂λ2 , ∂"
∂λ3 ; 

3: Determine the predicted first Piola-Kirchhoff stress: P∗
ut = ∂"

∂λ1 − λ2 , ut 
λ1 ,ut ∂"

∂λ2 , 
P∗

uc = ∂"
∂λ1 − λ2 , uc 

λ1 ,uc ∂"
∂λ2 , P∗

ss = λ2 
1 , ss 

λ2 
1 ,ss +1 ∂"

∂λ1 − λ2 
2 , ss 

λ2 
2 ,ss +1 ∂"

∂λ2 ; 
4: Evaluate the loss: 

Lpred = 1 
Nut Nut ∑ 

i =1 ‖ Put,i −P∗
ut,i 

Pmax 
ut ‖2 + 1 

Nuc Nuc ∑ 
i =1 ‖ Puc,i −P∗

uc,i 
Pmax 

uc ‖2 + 1 
Nss Nss ∑ 

i =1 ‖ Pss,i −P∗
ss,i 

Pmax 
ss ‖2 ; 

5: return Lpred . 

the Ogden model. Thus, differentiation operations of " with re- 
spect to each principal stretch share equal weight. This allows us 
to simplify the derivatives of " with respect to a single variable, 
e.g., ∂"

∂λ | 
λ=λ1 , λ2 , λ3 . Notably, the convexity requirement is not 

enforced as described for the Invariant-based Symbolic Regression 
because the nonlinearity parameter αk is allowed to be negative. 
However, the coefficient µk /α2 

k must be strictly positive to ensure 
the positivity of shear stiffness [ 58 ]. Hence, the rank-one convexity 
condition will be validated post hoc by determining the positive 
definiteness of the Hessian matrix, as described in Section 2.1 . The 
evolving expressions are restricted to polynomial functions. 
2.2.3. Strain-based symbolic regression 

Strain-based Symbolic Regression takes the principal strains 
( ε1 , ε2 , ε3 ) of the right stretch tensor U as input and the strain 
energy function "(ε1 , ε2 , ε3 ) as output. The principal strains are 
also referred to as Biot strains, representing the strain measure in 
the normal direction. The relation between Biot strain and princi- 
pal stretch is described as: 
εi = λi − 1 , with i in 1 , 2 , 3 (16) 

In contrast to Stretch-based Symbolic Regression , where an Ogden 
functional format is specified for the expression tree, Strain-based 
Symbolic Regression considers the strain energy function as a poly- 
nomial series of the Biot strain measure [ 53 ], 
"( ε1 , ε2 , ε3 ) = n ∑ 

k =1 βk (εk 
1 + εk 

2 + εk 
3 ). (17) 

Using the relation defined in Eq. (16) , we can reformulate the 
mathematic representation of stresses in terms of the principal 
strains ( ε1 , ε2 , ε3 ). For the case of unconfined uniaxial tension 
and compression, the nominal uniaxial stress can be determined 
as: 
P11 = ∂"

∂ε1 − 1 
( ε1 + 1 ) √ 

( ε1 + 1 ) ∂"

∂ε2 . (18) 
In the simple shear test prescribed in the x-y plane, the shear 

stress has the following expression: 
P12 = ( ε1 + 1 ) 2 

( ε1 + 1 ) 2 + 1 ∂"

∂ε1 − ( ε2 + 1 ) 2 
( ε2 + 1 ) 2 + 1 ∂"

∂ε2 . (19) 
For Strain-based Symbolic Regression , we also use the normalized 

mean square error to assess the difference between the predicted 
stress P∗ and experimental stresses P . Additionally, we customize 
the objective function to ensure thermodynamic consistency, as 
outlined in Algorithm 3 . In each iteration, the derivatives of "
Algorithm 3 
Framework of the customized loss function for the strain-based symbolic regres- 
sion . 

Input: Principal strains of uniaxial tension εk,ut , uniaxial compression εk,uc , 
and simple shear εk,ss , with k in 1, 2, 3; First Piola-Kirchhoff stress from 
tension Put , compression Puc , and shear Pss ; 
Output: Normalized mean square error, Lpred ; 
1. Concatenate all the principal strains and stresses into one column, 

respectively; 
2. Calculate the derivatives of strain energy density w.r.t principal strains, 

∂"
∂ε1 , ∂"

∂ε2 , ∂"
∂ε3 ; 

3. Derive the principal stretches based on given principal strains 
λk,ut = εk,ut + 1 , λk,uc = εk,uc + 1 , λk, ss = εk,ss + 1 , with k in 1, 2, 3; 

4. Determine the predicted first Piola-Kirchhoff stress: P∗
ut = ∂"

∂ε1 − λ2 , ut 
λ1 ,ut ∂"

∂ε2 , 
P∗

uc = ∂"
∂ε1 − λ2 , uc 

λ1 ,uc ∂"
∂ε2 , P∗

ss = λ2 
1 , ss 

λ2 
1 ,ss +1 ∂"

∂ε1 − λ2 
2 , ss 

λ2 
2 ,ss +1 ∂"

∂ε2 ; 
5. Evaluate the loss: 

Lpred = 1 
Nut Nut ∑ 

i =1 ‖ Put,i −P∗
ut,i 

Pmax 
ut ‖2 + 1 

Nuc Nuc ∑ 
i =1 ‖ Puc,i −P∗

uc,i 
Pmax 

uc ‖2 + 1 
Nss Nss ∑ 

i =1 ‖ Pss,i −P∗
ss,i 

Pmax 
ss ‖2 ; 

6. return Lpred . 
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with respect to ε1 , ε2 , and ε3 are calculated and stored in ∂ "/∂ε1 , 
∂ "/∂ε2 , and ∂ "/∂ε3 , respectively. Furthermore, concatenation is 
also performed to facilitate the differentiation operation. Herein, 
we impose no restriction on the sign of βk , however, the positiv- 
ity of shear modulus is strictly enforced by considering the con- 
sistency condition, namely, the isotropic hyperelastic model should 
be consistent with linear elasticity theory for small strains [ 59 ], 
µ = 1 

2 
[
∂2 "( 0 , 0 , 0 ) 

∂ε2 
i − ∂2 "( 0 , 0 , 0 ) 

∂εi ∂ε j + ∂"( 0 , 0 , 0 ) 
∂εi 

]
> 0 . (20) 

Here, ∂ "(0 , 0 , 0 ) /∂εi indicates the derivates of "(ε1 , ε2 , ε3 ) 
in the reference configuration where all principal strains have a 
constant value of 0. The polyconvexity condition will be post- 
checked as described in Section 2.1 and the evolving expressions 
are confined to polynomial functions. 
2.2.4. Training data and implementation details 

In our study, we trained our models simultaneously using data 
from three loading modes—uniaxial tension, uniaxial compression, 
and simple shear—and evaluated their fitting accuracy within this 
same data regime. This approach was selected based on insights 
gained from testing different training scenarios. As illustrated in 
Figures S4-S6, employing a multi-mode training approach results 
in more accurate overall fittings across the three loading modes 
compared to the single-mode training, particularly excelling in 
capturing the inherent nonlinearity of soft tissues under large de- 
formations. Both the synthetic and experimental datasets comprise 
41 data points for each loading scenarios, resulting in a total of 123 
data points included in the training dataset for multi-mode train- 
ing. The synthetic training data was generated based on presumed 
function formats with the inputs of stretch ( λ, γ ) and outputs of 
the stresses ( P11 , P12 ). Experimental data was extracted from the 
literature using an open-source digitizer tool [ 4 ]. 

All symbolic regression analyses were performed using PySR 
[ 51 ], a powerful open-source package developed alongside the Julia 
library SymbolicRegression.jl . During the training of Invariant-based 
Symbolic Regression , the binary operators are restricted to addition 
( + ) and multiplication (∗), while the unary operators are limited 
to the exponential (exp), square ( x2 ), cube ( x3 ), and user-defined 
logarithmic functions ( ln (1 / (1 − x ) ) ). The training time is set to 30 
min or a maximum of 10 0 0 iterations or an early stopping criterion 
of MSE lower than 1e-3, whichever is reached first. The maximum 
depth of the expression tree is set to 10, and the maximum com- 
plexity is constrained to 100. Notably, we customize the complex- 
ity of each operator to penalize their occurancy preference (the de- 
fault is 1). Additionally, the nested behavior of the exponential and 
logarithmic functions is forbidden, while the square and cube op- 
erators are restricted to occur, if desired, only once inside the ex- 
ponential and logarithmic functions. These nested constraints are 
defined for sufficient simplification of the enforcement regarding 
the convex and non-decreasing requirements. 

During the training of Stretch-based Symbolic Regression , the bi- 
nary operators are restricted to addition ( + ), multiplication (∗), and 
polynomial functions. Here, the exponents of polynomial functions 
are limited to normal values within the range of (−30, 30). The 
training time, maximum depth, and maximum complexity are the 
same as those of the Invariant-based Symbolic Regression . However, 
we introduce functional constraints and penalize variables more 
than constant to avoid the occurrence of variable exponents. Again, 
the nested behavior of polynomial function is forbidden. A consis- 
tent training setup is employed for the Strain-based Symbolic Re- 
gression . We adopt the default criterion (“best”) to guide the model 
selection process. Detailed training setups are summarized in Table 
S1. For each algorithm, the training is repeated at least three times, 
and favorable candidates, such as models with the top four scores, 
are selected as the target models. All trainings were performed on 

a Legion PC equipped with a six-core Intel Core I7–8750H 2.2 GHz 
CPU, 4 GB NVIDIA GTX 1050Ti GPU, and 24GB of memory. 
3. Numerical results and discussion 

In this study, our primary objective is to investigate the capa- 
bility of symbolic regression algorithms in autonomously identify- 
ing suitable hyperelastic models for soft tissues, specifically focus- 
ing on the human brain cortex. The suitability of a hyperelastic 
model is characterized by its accuracy, generalizability, and phys- 
ical admissibility, namely, adherence to the physical constraints, 
as outlined in Section 2.1 . Prior to application, we initially con- 
ducted equation search on synthetic dataset to validate the appli- 
cability of the algorithms. Subsequently, three distinct endeavors 
were undertaken for models’ discovery on the human brain cor- 
tex based on multi-mode experimental data, wherein invariants, 
principal stretches, principal strains were employed as the model 
inputs, respectively. Furthermore, the predictive capabilities of the 
three algorithms were evaluated regarding the interpolation and 
extrapolation performance. Finally, we assessed the robustness of 
symbolic regression by testing the model discovery performance 
on synthetic data embedded with varying levels of noise. 
3.1. Model verification with synthetic data 

The synthetic data was generated based on five classical hyper- 
elastic models that are commonly utilized to characterize the ma- 
terial behavior of soft tissues: Mooney Rivlin model, Gent model, 
Demiray model, Holzapfel model, and Ogden model. The detailed 
mathematic expressions for each model are as follows: 

"Gent = −1 . 9 ln ( 1 − 1 . 2[ I1 − 3] ) , 
"Ogden = 0 . 01

(
λ−18 

1 + λ−18 
2 + λ−18 

3 − 3
)
, 

"Demiray = 1 . 66( exp ( 0 . 88[ I1 − 3] ) − 1) , 
"Holzapfel = 5 . 6(

exp (3[ I1 − 3] 2 ) − 1
)
, 

"Mooney Rivlin = 0 . 87[ I1 − 3] + 0 . 86[ I1 − 3] 2 + 0 . 98[ I2 − 3] + 0 . 43[ I2 − 3] 2 . 
(21) 

Three loading modes (uniaxial tension, uniaxial compression, 
and simple shear) were considered, with stress data generated in 
terms of predefined stretches using mechanical expressions de- 
fined in Section 2.2 . The Invariant-based Symbolic Regression al- 
gorithm was employed for the first four invariant-based models, 
while the Ogden model data was trained using the Stretch-based 
Symbolic Regression algorithm. The predicted models are visually 
presented in Fig. 2 . As shown, all models were successfully pre- 
dicted using our algorithms, precisely aligning with the synthetic 
data. 

Although the model setups primarily follow the patterns out- 
lined in Table S1, special considerations were made for each al- 
gorithm to ensure the accuracy and efficiency in discovering the 
target functions. First, a constant shift was manually added for Og- 
den model, Demiray model, and Holzapfel model to enforce the 
normalization or stress-free condition at the reference state. For 
example, in the case of the Demiray model with a direct output 
of " = 1 . 661 exp (0 . 8802[I1 − 3 ] ) , a constant shift value of −1.661 
was prescribed to ensure zero strain energy ( " = 0 ) in the ref- 
erence configuration ( I1 = 3 ). This constant shift would not affect 
the stress measure as it may vanish under the differentiation oper- 
ation. An alternative but automated approach involves customiz- 
ing the exponential operator as (exp (x ) − 1 ), like the approach 
used for logarithmic function ( − ln (1 − x ) ), as seen in Figure S2. 
However, it should be noted that integrating customized opera- 
tors would significantly increase the training time: the algorithm 
with the embedded operator can discover the target model within 
merely 100 iterations, whereas the one with customized operator 
requires nearly 350 iterations to find the same model. Second, we 
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Fig. 2. Validation of symbolic regression algorithm. Models were trained simultaneously with data from three loading modes, and tested with tension (a), compression (b) 
and shear (c) data individually. Dots illustrate the synthetic data generated from five classical hyperelastic models that widely used for human brain characterization. Specific 
mathematic expressions of predicted hyperelastic models are provided in (d). 
constrained the order of polynomial operator ( xy ) to be strictly 
positive by introducing a ceiling function. To further improve ef- 
ficiency in the equation search, the value of y was restricted to 
the range of (0, 5) and (−30, 30) for the Mooney Rivlin model and 
Ogden model, respectively. The successful reproductions of these 
models confirm the applicability and accuracy of our algorithms in 
the automated discovery of strain energy functions within hypere- 
lastic regimes. Upon validation, we started to perform the symbolic 
regression based on experimental data, aiming to discover a suit- 
able hyperelastic model for the human brain cortex. 
3.2. Hyperelastic models discovered by the invariant-based symbolic 
regression algorithm 

Fig. 3 illustrates four superior hyperelastic models discovered 
for the human brain cortex using the Invariant-based Symbolic Re- 
gression algorithm. These models were trained simultaneously with 
data from three loading modes, thus the combined loss func- 
tion defined in Eq. (12) was employed for regression optimiza- 
tion and tested individually for each loading mode. The fitting per- 
formance of each model is evaluated by the R2 value, defined as 
R2 = 1 − N ∑ 

i =1 (Pi − P∗
i ) 2 / N ∑ 

i =1 (Pi − P̄ ) 2 , where P̄ is the mean of exper- 
imental stress. Detailed mathematical expressions of each model 
are provided at the bottom of the figure. As shown, these four 
predicted models, though employing distinct formulas, exhibit sat- 
isfactory performances in characterizing the material behaviors in 
uniaxial tension, uniaxial compression, and simple shear scenarios. 
Notably, all models are exclusively dependent on the second in- 
variant. This observation aligns with recent findings [ 24 , 60 ]. Exam- 
ining at curves, a consistent trend is observed across all models: 
overestimation in tension occurs once the stretch is greater than 
5 %, underestimation persists throughout compression, and accu- 
rate fitting is observed with simple shear data. The consistent un- 
derperformance in tension and compression data indicates poten- 
tial data inconsistency with the hyperelasticity assumption [ 20 ]. In 
essence, the experimental data may not be equally reliable for dif- 
ferent loading modes. To address this issue, we propose introduc- 
ing weighting factors in Eq. (12) to demonstrate the contribution 
of each loading mode to the combined loss function. 

Interestingly, the predicted models "a and "b closely resem- 
ble the models discovered by the CANN regularized with subset 
selection (L0 regularization) [ 52 ]. However, our identified mod- 
els "c and "d , which exhibit comparable fitting performance, are 
not covered in their research findings. Conversely, two hyperelas- 
tic models presented in their work with satisfactory fitting ac- 
curacy are not discovered by our current algorithm. One is con- 
structed by terms ([I2 − 3 ] 2 ) and (exp ([I2 − 3 ] ) − 1 ), and another 
is formed by (exp ([I2 − 3 ] ) − 1 ) and (exp ([I2 − 3 ] 2 ) − 1 ). This dis- 
crepancy suggests the potential existence of multiple optima for 
the current optimization problem. For further exploration, it is 
crucial to consider either an enriched function space or more 
diverse loading modes when performing symbolic regression or 
CANN. Among the four models we discovered, the third model 
"c = 0 . 017(exp (27 . 91[I2 − 3 ] ) − 1) exhibits the highest fitting ac- 
curacy with the simplest form. Therefore, it serves as the optimal 
model discovered by the Invariant-based Symbolic Regression algo- 
rithm. 

Within the framework of invariants, Fig. 4 provides a compari- 
son on the fitting performance of the optimal hyperelastic model 
discovered by symbolic regression, multiple regression, and arti- 
ficial neural networks. The results for the latter two models are 
derived from our recent paper [ 60 ], where artificial neural net- 
works followed the idea of CANNs [ 17 ], but utilized a different loss 
function, the mean absolute percentage error (MAPE). The compar- 
ison reveals no significant differences among the three models, ex- 
cept that the symbolic regression model exhibits a smaller under- 
estimation in tension, leading to a marginally higher R2 value of 
0.908, as shown in Fig. 4 a. Though achieving comparable perfor- 
mance, the symbolic regression algorithm demonstrates significant 
advantages in computational cost. On our platform, a complete ex- 
ecution of symbolic regression took nearly 20 min. In comparison, 
CANN cost 30 min for training, while multiple regression requires 
almost 1 hour due to its exhaustive traversal over the entire can- 
didate space. 

For invariant-based hyperelastic models, critical physical admis- 
sible conditions elucidated in Section 2.1 , such as the polyconvexity 
requirement, have been predefined and embedded into the sym- 
bolic regression framework. Therefore, the four models unveiled in 
Fig. 3 are inherently designed to satisfy the convexity requirement. 
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Fig. 3. Four distinct hyperelastic models discovered with invariant-based algorithm. Models are trained simultaneously with data from three loading modes, and tested with 
tension, compression and, shear data individually. Dots illustrate the experimental data of the human brain cortex. R2 indicates the goodness of fit. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 

Fig. 4. Symbolic regression vs Multiple regression and artificial neural network. Comparison on fitting performance of invariant-based hyperelastic models derived from 
symbolic regression (SR), multiple regression (MR), and neural network (NN). Models are trained simultaneously with data from three loading modes, and tested with 
tension (a), compression (b), and shear data (c), individually. Dots illustrate the experimental data of the human brain cortex. R2 indicates the goodness of fit. Mathematical 
expressions for each strain energy function are provided at the bottom of the figure. 
To substantiate this claim, we illustrate the contours of the identi- 
fied strain energy functions with respect to principal stretches λ1 
and λ2 , as depicted in Figs. 5 and 6 . Despite incorporating dis- 
tinct functional operators, the contour lines of these strain energy 
functions consistently display elliptic shapes encircling the center 
point, representing the stress-free reference state ( λ1 = 1 , λ2 = 1 ), 
particularly evident in Fig. 5 . This observation signifies the rigor- 

ous fulfillment of convexity for the strain energy function within 
the training data regime. Furthermore, the convexity is preserved 
beyond the training range, as shown in Fig. 6 . It is noteworthy 
that the different deformation ranges illustrated in Fig. 6 are cho- 
sen for enhanced visualization. The fulfillment of convexity is more 
straightforwardly illustrated in the 3D surface plot of the strain 
energy function, as shown in Figure S3. Ultimately, the physical 
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Fig. 5. Convexity of four invariant-based hyperelastic models within the training data regime. Contours of the four strain energy functions discovered by Invariant-based 
Symbolic Regression algorithm within the training data regime, (a) "a , (b) "b , (c) "c , (d) "d . Black dots represent the location of global minimum. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 
validity regarding the polyconvexity condition have been clearly 
demonstrated for the four hyperelastic models discovered by the 
Invariant-based Symbolic Regression algorithm. 
3.3. Hyperelastic models identified by the stretch-based symbolic 
regression algorithm 

Fig. 7 shows the four superior hyperelastic models discovered 
for the human brain cortex, using the Stretch-based Symbolic Re- 
gression algorithm. All four predicted models exhibit promising 
fitting accuracy in describing material behaviors within uniaxial 
tension, uniaxial compression, and simple shear scenarios, each 
achieving an R2 value greater than 0.9 for all loading modes. In 
contrast to the performance of invariant-based models that show 
limitations in uniaxial tension and compression, the stretch-based 
hyperelastic models significantly outperform them in describing 
uniaxial deformations, particularly in compressions. All stretch- 
based models demonstrate perfect alignment with the compres- 
sive data. Conversely, the invariant-based models consistently un- 
derestimate compressive forces throughout deformation, leading 
to R2 values all below 0.8, as evident in Fig. 3 . This observation 
is consistent with recent findings [ 58 ]. The superior performance 
of stretch-based hyperelastic models is particularly pronounced in 
nonlinear stages, such as in regions where tension or compression 

exceeds 5 %. This demonstrates their effectiveness in capturing the 
inherent nonlinearity of the experimental data [ 61 , 62 ]. 

Similar effort s have been made using stretch-based approaches, 
particularly the generalized Ogden model, to characterize the ma- 
terial behavior of the human brain cortex [ 1 , 58 ]. The one-term 
Ogden model in Ref. [ 1 ] shares an identical expression with our 
first model ( "a in Fig. 7 ). The generalized Ogden models [ 58 ] 
identified by the principal stretch-based CANN exhibit lower ac- 
curacy compared to our predicted models ( "b , "c , "d ), achieving 
R2 values of 0.938, 0.985, and 0.987 for tension, compression, and 
shear, respectively. Notably, their model includes a significantly 
greater number of terms compared to ours [ 58 ], indicating that we 
achieved higher accuracy with a more succinct model form. This 
disparity is primarily attributed to the smaller function space they 
employed, where the polynomial order is restricted to the range of 
(−30, 10). In contrast, this value is searched from a wider range of 
(−30, 30) in our study. 

Among the four models presented in Fig. 7 , the last two 
models, "c = 0 . 0035

∑ 
i (λ−24 

i − 1 ) + 0 . 0003
∑ 

i (λ30 
i − 1 ) and "d = 

0 . 004
∑ 

i (λ−23 
i − 1 ) + 0 . 0003

∑ 
i (λ29 

i − 1 ) , demonstrate comparably 
high accuracy in fitting the multi-mode data. As such, these 
models serve as the optimal outcomes derived from the Stretch- 
based Symbolic Regression algorithm. Unlike the invariant-based 
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Fig. 6. Convexity of four invariant-based hyperelastic models beyond the training data regime. Contours of the four strain energy functions discovered by Invariant-based 
Symbolic Regression algorithm beyond the training data regime, (a) "a , (b) "b , (c) "c , (d) "d . Black dots represent the location of global minimum. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 
hyperelastic models, which enforce strict polyconvexity on the 
output function, stretch-based may exhibit non-convexity due to 
the random combinations of polynomial series with arbitrary or- 
ders [ 47 ]. Hence, we checked the ellipticity along the principal 
directions for each model derived from the Stretch-based Sym- 
bolic Regression algorithm by assessing the positive definiteness 
of the Hessian matrix, as defined in Eq. (7) . The results are pre- 

sented in Table 1 . The positive determinants and real eigenvalues 
of the Hessian matrix confirm the positive definiteness of tangent 
( ∂2 "/∂λ2 

i ), thereby validating the local ellipticity of the strain en- 
ergy functions within the training regime. 

Representations of the convexity of all four stretch-based hyper- 
elastic models are present in Figs. 8 and 9 . In Fig. 8 , the contour 
lines all exhibit near-elliptic shapes encircling the center points 

Table 1 
Ellipticity checks for stretch-based hyperelastic models. ∂2 "/∂λ2 

i are the second derivatives of "
with respect to principal stretch λi , with i in 1, 2, 3; min (det [ H]) is the minimal determinant of 
the Hessian matrix [ H] ; min (∂2 "/∂λ2 

i ) denotes the minimal value of the ith eigenvalue of [ H] . "a , 
"b , "c , "d correspond to the four stretch-based hyperelastic models shown in Fig. 7 . Experimental 
data of the human brain cortex are employed for calculations. Here, ellipticity along the principal 
directions was assessed. 

Ellipticity Checks "a "b "c "d 
∂2 "/∂λ2 

i 2 . 998 λ−21 
i 1 . 751 λ−27 

i 0 . 274 λ28 
i + 2 . 081 λ−26 

i 0 . 260 λ27 
i + 2 . 2051 λ−25 

i 
min (det [ H]) 26.951 5.369 13.074 14.983 
min (∂2 "/∂λ2 

1 ) 0.405 0.134 1.569 1.577 
min (∂2 "/∂λ2 

2 ) 0.405 0.134 1.569 1.577 
min (∂2 "/∂λ2 

3 ) 0.036 0.006 1.568 1.576 
? Positive definite Yes Yes Yes Yes 
? Ellipticity of " Yes Yes Yes Yes 
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Fig. 7. Four distinct Ogden-form hyperelastic models discovered with stretch-based algorithm. Models are trained simultaneously with data from three loading modes, and 
tested with tension, compression, and shear data individually. Dots illustrate the experimental data of the human brain cortex. R2 indicates the goodness of fit. Mathematical 
expressions for each strain energy function are provided at the bottom of the figure. 
that correspond to the stress-free reference state ( λ1 = 1 , λ2 = 1 ). 
This observation confirms that the predicted strain energy func- 
tions satisfy the convexity requirement within the training data. 
Furthermore, we expanded the synthetic stretches ranges to ex- 
amine whether the convexity is preserved beyond the training 
range. Results are shown in Fig. 9 , where different deformation 
ranges are selected for enhanced visualization. Though all mod- 
els present concave shapes with global minimum locating at the 
center and higher value at the outer boundaries, the strict adher- 
ence to convexity requirements is not maintained, particularly for 
"a and "b . In Fig. 9 a, the contour lines resemble a right trian- 
gle with the hypotenuse posing a significant non-convex shape. 
This issue is also evident for "b in Fig. 9 b, suggesting a poten- 
tial loss of convexity for "a and "b under large deformations. 
Similar observations were also reported in investigations of the 
one-term Ogden model [ 47 ]. Nonetheless, the remaining two mod- 
els ( "c and "d ) still preserve their convexity beyond the train- 
ing data regime, as illustrated in Fig. 9 c and d. A clearer depic- 
tion of the convexity fulfillment is shown in Figure S4, where we 
generated 3D surface plots to illustrate the strain energy function 
with respect to principal stretches λ1 and λ2 . These plots effec- 
tively illustrate the convexity behaviors of hyperelastic models dis- 
covered by the Stretch-based Symbolic Regression algorithm. How- 
ever, it is important to note that there may be potential convexity 
loss in certain scenarios, as observed in "a and "b under large 
deformations. 

3.4. Hyperelastic models predicted by the strain-based symbolic 
regression algorithm 

Unlike the Invariant-based Symbolic Regression or principal 
Stretch-based Symbolic Regression algorithms, the Strain-based Sym- 
bolic Regression algorithm identified a single, unique model, 
" =

∑ 
i 

(
2820 . 76 ε6 

i + 43 . 27 ε4 
i − 13 . 72 ε3 

i + 1 . 37 ε2 
i ). (22) 

Here, εi represents the normal strain and is related to principal 
stretch by εi = λi − 1 . The fitting performance of this strain-based 
model is shown in Fig. 10 . As illustrated, the strain-based model 
exhibits remarkable fitting accuracy in capturing material behav- 
iors in uniaxial tension, uniaxial compression, and simple shear 
scenarios, achieving R2 values greater than 0.99. 

Fig. 11 depicts a comparison among the optimal models pre- 
dicted by Invariant-based Symbolic Regression, Stretch-based Sym- 
bolic Regression , and Strain-based Symbolic Regression algorithms, 
respectively. As seen, the strain-based model exhibits the highest 
fitting accuracy with experimental data across all three loading 
modes. This promising fitting behavior pertaining to the strain- 
based model was also reported in our recently published pa- 
per [ 53 ], where the multiple regression method, combined with 
the Akaike’s information criteria (AIC), was used to identify the 
optimal hyperelastic model within a confined polynomial space, 
with an order range of (0,10). Interestingly, the polynomial series 
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Fig. 8. Convexity of the four stretch-based hyperelastic models within the training data regime. Contours of the four strain energy functions discovered by Stretch-based 
Symbolic Regression algorithm within the training data regime, (a) "a , (b) "b , (c) "c , (d) "d . Black dots represent the location of global minimum. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 
selected by multiple regression model is identical to those iden- 
tified by our symbolic regression model ( ε6 

i , ε4 
i , ε3 

i , ε2 
i ), though 

the coefficients differ. Notably, the polynomial orders available 
for symbolic regression algorithm are confined within (−30, 30), 
indicating that the polynomial set discovered by multiple re- 
gression is indeed optimal for the given range. It is notewor- 
thy that though multiple regression demonstrates satisfactory ca- 
pability in model discovery, substantial human efforts and com- 
putational costs are required, especially when dealing with a 
vast functional space. For example, when the polynomial order 
is confined within (−30, 30), the potential equation combinations 
amount to 260 , making it impractical to traverse completely us- 
ing multiple regression. This underscores the advantages of evo- 
lution algorithms over traditional regression methods like multi- 
ple regression in functions searching and parameter optimization 
[ 63 , 64 ]. 

Analogously, the ellipticity of the strain-based model along 
principal directions was evaluated by examining the positive- 
definiteness of the Hessian matrix. Within the training data 
regime, the minimal determinant of the Hessian matrix is 3.158, 
while the minimal values for the three eigenvalues ( ∂2 "/∂λ2 

1 , 

∂2 "/∂ λ2 
2 , ∂2 "/∂ λ2 

3 ) are 0.422, 0.422, and 0.420, respectively. The 
positive determinant and real eigenvalues guarantee the positive 
definiteness of the Hessian matrix, which further confirms the lo- 
cal ellipticity of the identified strain energy function within the 
training regime. Furthermore, the consistency condition (positiv- 
ity of shear modulus), as defined in Eq. (20) , is also satisfied, 
as the coefficient before the second order term ( ε2 

i ) is positive 
(1.37). 

A more straightforward illustration of convexity is provided by 
the 3D surface plots and contour plots, as illustrated in Fig. 12 . 
Within the incompressibility framework, the strain energy func- 
tion exhibits a distinct concave shape, with its minimum oc- 
curring at the reference state ( λ1 = λ2 = 1 ), as seen in Fig. 12 a 
and b. Additionally, the coercivity condition is also satisfied, as 
the strain energy function continues to achieve its local maxi- 
mum with increasing tensile or compressive deformations. How- 
ever, the peak strain energy function under compression is signif- 
icantly higher than its tensile counterpart under the same level 
of deformation. The dissimilar behaviors under tension and com- 
pression potentially explains the prominence of strain-based mod- 
els in capturing the data nonlinearity, as shown in Fig. 11 . If 
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Fig. 9. Convexity of the four stretch-based hyperelastic models beyond the training data regime. Contours of the four strain energy functions discovered by Stretch-based 
Symbolic Regression algorithm beyond the training data regime, (a) "a , (b) "b , (c) "c , (d) "d . Black dots represent the location of global minimum. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 

Fig. 10. Hyperelastic model discovered with strain-based algorithm. Models are trained simultaneously with data from three loading modes, and tested with tension (a), 
compression (b) and, shear (c) data individually. Dots illustrate the experimental data of the human brain cortex. R2 indicates the goodness of fit. 
we relax the compressibility constraint, the strain energy demon- 
strates perfect symmetry with respect to λ1 and λ2 , as shown in 
Fig. 12 c and d. 

To assess the convexity beyond the training data regime, we ex- 
panded the synthetic stretches ranges to 60 % tension and com- 
pression and generated a contour plot, as presented in Fig. 13 . 

Noted, the incompressibility constraint is imposed in this situation. 
From the figure, it is evident that the convexity observed within 
the training regime ( Fig. 13 a) is maintained beyond the training 
dataset ( Fig. 13 b), even in the case with 60 % deformation. This 
result is intriguing because, in the Strain-based Symbolic Regres- 
sion algorithm, we applied more relaxed restrictions on the func- 
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Fig. 11. Symbolic regression with invariant-based algorithm vs stretch-based algorithm and strain-based algorithm . Comparison on fitting performance of optimal hyperelastic 
models derived from symbolic regression using three distinct algorithms. Models are trained simultaneously with data from three loading modes, and tested with tension (a), 
compression (b), and shear (c) data individually. Dots illustrate the experimental data of the human brain cortex. R2 indicates the goodness of fit. Mathematical expressions 
for each strain energy function are provided at the bottom of the figure. 

Fig. 12. Convexity of the hyperelastic model derived from strain-based algorithm. (a). 3D visualization of the strain energy function " with respect to principal stretch λ1 
and λ2 , ( λ3 = 1 / (λ1 λ2 ) ) within the training dataset of the human brain cortex; (b). Contour of the strain energy function in (a); (c). 3D visualization of the strain energy 
function " with respect to principal stretch λ1 and λ2 , ( λ3 = 1 ) from synthetic data; (d). Contour of the strain energy function in (c). Black dots represent the location of 
global minimum. 
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Fig. 13. Convexity of the strain-based hyperelastic model within and beyond the training data regime. Contours of the strain energy function discovered by Strain-based 
Symbolic Regression algorithm within (a) and beyond (b) the training data regime. Black dots represent the location of global minimum. 

Fig. 14. Interpolation and extrapolation capabilities of invariant-based model. Four distinct hyperelastic models discovered with invariant-based symbolic regression al- 
gorithm. From left to right, the first two models are present to evaluate models’ predictive capability regarding interpolation (interp), while the last two models are for 
extrapolation (extrap). All models are trained with 90 % of the multi-mode data, as indicated by dots with light color, and tested with remaining 10 % dataset, as indicated 
by dots with dark color. R2 indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure. 
tion format, allowing both coefficients and polynomial orders to be 
unrestricted, which led to negative coefficients as seen in Eq. (22) . 
Despite this, the strain-based energy function maintains rigorous 
ellipticity and preserves convexity even under large deformations, 
whereas the stretch-based energy functions may lose convexity, as 
illustrated in Fig. 9 . Moreover, the strain-based functions f (εi ) can 

be expressed as stretch-based polynomials g(λi ) using the rela- 
tions εi = λi − 1 . This suggests that the constraints enforcing posi- 
tive coefficients in the stretch-based symbolic regression algorithm 
may be overly restrictive. A less stringent prior confinement, com- 
bined with rigorous posterior checks, could potentially yield more 
satisfactory results. 
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Fig. 15. Interpolation and extrapolation capabilities of stretch-based model. Four distinct hyperelastic models discovered with stretch-based symbolic regression algorithm. 
From left to right, the first two models are present to evaluate models’ predictive capability regarding interpolation (interp), while the last two models are for extrapolation 
(extrap). All models are trained with 90 % of the multi-mode data, as indicated by dots with light color, and tested with remaining 10 % dataset, as indicated by dots with 
dark color. R2 indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure. 
3.5. Interpolation and extrapolation capabilities of symbolic 
regression algorithms 

In this section, we evaluated the interpolation and extrapolation 
capabilities of our symbolic regression algorithms for hyperelastic 
model discovery. Given the critical role of data in model training 
and the typical scarcity of experimental data, it is imperative to 
address various challenges such as the absence of diverse loading 
modes due to limited experimental apparatus. As depict in Figures 
S5-S7, insights from single-mode training endeavors provide guid- 
ance on optimal loading modes for model characterization. For ex- 
ample, simple shear loading is favorable for characterizing models 
using the invariant-based approach, whereas uniaxial compression 
is suggested for stretch-based or strain-based methods. Another 
types of data scarcity involves oversized intervals in data sampling 
or a limited range in testing apparatus. The former may result in 
potential oversights regarding intermediate data information [ 65 ], 
while the latter may could miss capturing data features during 
large deformations [ 66 ]. Therefore, we also investigated the inter- 
polation and extrapolation capabilities of our algorithms. In both 
cases, 90 % of the data were allocated to the training dataset, with 
the remaining 10 % designated for testing. Specifically, to exam- 
ine the interpolation capabilities, we divided the full-field training 
data into five subintervals for each training mode and randomly 

selected one data point from each interval to construct the testing 
dataset, using the remaining data for training. For assessing ex- 
trapolation capabilities, we constructed the training dataset from 
the bottom 90 % of stretch-stress paired data (sorted by increasing 
stretch), with the remaining 10 % serving as the testing dataset. 

Fig. 14 illustrates the fitting accuracy of invariant-based hyper- 
elastic models trained with 90 % of the entire dataset, indicated 
by light colors. Two candidate models are presented to evaluate 
the predictive capabilities regarding interpolation and extrapola- 
tion (referred to as “interpolated models” and “extrapolated mod- 
els” in the following context unless otherwise noted). As shown 
in the figure, despite being trained on different dataset, both in- 
terpolated and extrapolated models demonstrate consistent predic- 
tive trends: overestimating tension data, underestimating compres- 
sion data, and aligning well with shear data. These trends are also 
observed in models trained with full-field data, as seen in Figs. 3 
and 4 . This consistency may indicate the constrained capability of 
invariant-based models in capturing the significant non-linearity 
occurring within the large deformation range. Additionally, the in- 
terpolated models demonstrate comparable training and testing ac- 
curacy for each loading mode, while the extrapolated models tend 
to fairly predict the testing data, especially for tension and com- 
pression. This suggests that our algorithms possess superior in- 
terpolation capabilities compared to extrapolation capabilities. In- 
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Fig. 16. Interpolation and extrapolation capabilities of strain-based model. Four distinct hyperelastic models discovered with strain-based symbolic regression algorithm. 
From left to right, the first two models are present to evaluate models’ predictive capability regarding interpolation (interp), while the last two models are for extrapolation 
(extrap). All models are trained with 90 % of the multi-mode data, as indicated by dots with light color, and tested with remaining 10 % dataset, as indicated by dots with 
dark color. R2 indicates the goodness of fitting. Mathematical expressions for each strain energy function are provided at the bottom of the figure. 
triguingly, one of the interpolating models ( "interp1 ) and one of the 
extrapolating models ( "extrap1 ) share the exact same format as the 
models trained with full-field data ( "a and "b in Fig. 3 ), differing 
only in the constants. This potentially validates the robustness of 
our algorithms. 

Fig. 15 illustrates the fitting accuracy of stretch-based hypere- 
lastic models trained with 90 % of the entire dataset, indicated by 
light colors. Analogously, both interpolated and extrapolated mod- 
els exhibit consistent predictive trends. Unlike the invariant-based 
models, all stretch-based models achieve promising fitting accu- 
racy in predicting compression and shear data. Even for tension, 
the models still maintain satisfying performances until stretches 
exceed 8 %. Furthermore, the interpolated models show compa- 
rable training and testing accuracy for each loading mode, while 
the extrapolated models moderately predict the testing dataset 
for compression and shear. However, extrapolated stretch-based 
models still fail to predict the tension within the testing data 
regime. Similarly, the strain-based models demonstrate satisfying 
performance comparable to the stretch-based models, as shown 
in Fig. 16 . The strain-based models also accurately predict tension 
data, especially for the two interpolated models. Despite this en- 
hanced performance, the extrapolated strain-based models still fail 
to predict tension within the testing data regime. Interestingly, the 
second interpolated model ( "interp2 ) exhibits comparable perfor- 
mance as the model trained with full-field data (see Eq. (22) and 

Fig. 10 ), using only three terms. This suggests a more favorable 
model selection, considering the tradeoff between model’s accu- 
racy and complexity. 
3.6. Robustness evaluation for symbolic regression algorithms 

In this section, we investigated the robustness of our symbolic 
regression algorithms for hyperelastic model discovery. All evalu- 
ations were performed on synthetic data generated from prede- 
fined hyperelastic models, similar in form to our identified mod- 
els: " = 0 . 0170 ∗ (exp (27 . 9100 ∗ [I2 − 3 ] ) − 1 ) for the Invariant- 
based Symbolic Regression algorithm, " = 0 . 0079∗

∑ 
i (λ−19 

i − 1 ) 
for the Stretch-based Symbolic Regression algorithm, and " = ∑ 

i (43 . 2700∗ε4 
i + 1 . 3700∗ε2 

i ) for the Strain-based Symbolic Regres- 
sion algorithm. Artificial Gaussian noises were incorporated into 
the synthetic data to mimic the perturbations encountered in real 
experiments, 

Ptest 
i,k = Psynthetic 

i,k + Pnoise 
i,k , 

Pnoise 
i,k ∼ N ( 0 , (k ) ∀ i + { 1 , . . . , ndata } , k + { ut , uc , ss } , 

(23) 
where k represents loading modes: uniaxial tension (ut), uniaxial 
compression (uc), and simple shear (ss); Psynthetic 

i,k means the i th 
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Table 2 
Robustness test for the invariant-based algorithm. Effects of prescribed noise on symbolic regression predictions. The 
target strain energy function is represented as " = 0 . 0170 ∗ (exp (27 . 9100 ∗ [I2 − 3 ] ) − 1 ) . A prediction is deemed right 
when the mathematic format of the prediction model coincides with the target model. 

Noise, ( MSE Predicted " ? Right Prediction 
0 1 . 50 × 10 −11 0 . 0170 ∗ (exp (27 . 9100 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.0001 2 . 20 × 10 −10 0 . 0170 ∗ (exp (27 . 9085 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.001 1 . 02 × 10 −8 0 . 0170 ∗ (exp (27 . 9063 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.002 1 . 51 × 10 −6 0 . 0171 ∗ (exp (27 . 8814 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.005 1 . 15 × 10 −5 0 . 0170 ∗ (exp (27 . 8227 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.01 3 . 99 × 10 −5 0 . 0170 ∗ (exp (27 . 8616 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.02 2 . 04 × 10 −4 0 . 0168 ∗ (exp (28 . 0941 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.05 1 . 05 × 10 −3 0 . 0168 ∗ (exp (28 . 1500 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.1 4 . 79 × 10 −3 0 . 0227 ∗ (exp (23 . 4639 ∗ [I2 − 3 ] ) − 1 ) Yes 
0.2 2 . 10 × 10 −2 [I2 − 3 ] No 

Fig. 17. Robustness test for invariant-based algorithm. Effects of prescribed noise on the predictions of symbolic regression. Models are trained simultaneously with synthetic 
data from three loading modes, and tested with tension, compression, and shear data individually. Dots illustrate the generated synthetic data. R2 indicates the goodness of 
fit. 
synthetic stress data under k th loading mode; Pnoise 

i,k denotes the 
prescribed noise, sampled from a Gaussian distribution with zero 
mean and standard deviation (k . Here, we applied a consistent rel- 
ative deviation to each loading mode, thus the actual standard de- 
viation was scaled based on the maximum stress of each mode, 
(k = ( ∗ Pmax ,k . Relative deviations ranging from 0 to 20 % were 
utilized to assess the robustness of our symbolic regression algo- 
rithms. The training setups for each noise case remained consistent 
as outlined in Table S1. 

For invariant-based models, prediction results along with the 
corresponding MSE are shown in Table 2 , while the fitting perfor- 
mances under four typical noise scenarios are illustrated in Fig. 17 . 
As seen, our algorithm is capable of precisely discovering the pre- 
defined mathematic format of the target strain energy function 
even with a 10 % noise prescription. However, the accuracy of data 
fitting continues to diminish as noise amplifies. With a 20 % noise 
imposition, the data distributions become too random to reveal 

a discernible mathematic trend, resulting in the failure of precise 
predictions. An analogous effect is observed for the stretch-based 
and strain-based symbolic regression algorithms, as illustrated in 
Figures S8 and S9, with their detailed functions presented in Table 
S2 and S3, respectively. Consequently, it is evident that our algo- 
rithms demonstrate satisfactory robustness in the current model 
discovery scenarios. 
4. Conclusion and future endeavors 

We proposed a symbolic regression framework capable of 
autonomously identifying interpretable hyperelastic models from 
sparse experimental data while ensuring adherence to physical 
laws. Our study explored three distinct approaches to hyperelas- 
tic models—invariant-based, principal stretch-based, and normal 
strain-based—to unveil the capabilities of our symbolic regression 
algorithms. To ensure the physical validity of the predicted con- 
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stitutive models, we customized the symbolic regression algorithm 
by integrating the polyconvexity condition into the objective func- 
tions for the invariant-based algorithm and validating rank-one 
convexity post hoc for model predictions from stretch-based and 
strain-based algorithms. After validating our algorithms on syn- 
thetic data, we extended our study to the human brain cortex 
using experimental data across three loading modes. We demon- 
strated the convexity requirements both within and beyond the 
experimental data regime for each discovered model. Additionally, 
we examined the interpolation and extrapolation capabilities of 
our algorithms based on partially selected training dataset. Finally, 
we assessed the robustness of our algorithms using synthetic data 
embedded with artificial Gaussian noises. 

Our results reveal that symbolic regression can discover accu- 
rate hyperelastic models with parsimonious mathematic expres- 
sions in invariant-based, stretch-based, and strain-based scenarios. 
Among all discovered models, the strain-based model exhibits su- 
perior performance in fitting the experimental data, with an R2 
value exceeding 0.99 for all loading modes. Additionally, both prin- 
cipal stretch-based and strain-based models effectively capture the 
nonlinearity and tension-compression asymmetry inherent in the 
human brain cortex. Convexity checks validate the rigorous fulfill- 
ment of polyconvexity/ellipticity within and beyond the training 
data regime, except for certain stretch-based hyperelastic models 
that may lose convexity under large deformations. The evaluation 
of predictive capabilities indicates promising interpolation capabil- 
ities for all three models and acceptable extrapolation performance 
for stretch-based and strain-based models. Robustness tests under- 
score the accuracy and precision of our proposed symbolic regres- 
sion algorithms. 

In present study, we leveraged symbolic regression for identify- 
ing constitutive material models for the human brain cortex within 
the hyperelasticity context. Naturally, our approach is readily ap- 
plicable to model discovery for other brain regions, including the 
corona radiata and corpus callosum [ 1 ], or other soft tissues like 
skin [ 67 , 68 ] and muscles [ 69 ]. In addition to hyperelasticity, the 
exploration of other constitutive behaviors in soft tissues such as 
viscosity and plasticity presents intriguing future avenues, akin to 
similar investigations in alloy composites [ 32 ] and concrete beams 
[ 49 ]. Furthermore, our current model discovery utilized data from 
three loading modes, uniaxial tension, uniaxial compression, and 
simple shear. Incorporating a more diverse range of loading scenar- 
ios, such as biaxial experiments [ 70 ], will significantly contribute 
to the comprehensive characterization of material behaviors, par- 
ticularly in complex loading cases. While the current study focuses 
on identifying hyperelastic models under incompressibility, future 
research will investigate the effects of relaxing incompressibility. 
Moreover, the framework can also incorporate with Finite Element 
models to perform inverse parameter identification [ 71 ]. 
Declaration of competing interest 

The authors declare that they have no known competing finan- 
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 
CRediT authorship contribution statement 

Jixin Hou: Writing – original draft, Validation, Software, 
Methodology, Investigation. Xianyan Chen: Writing – review & 
editing, Formal analysis. Taotao Wu: Writing – review & edit- 
ing, Validation. Ellen Kuhl: Writing – review & editing, Validation. 
Xianqiao Wang: Writing – review & editing, Writing – original 
draft, Validation, Supervision, Funding acquisition, Conceptualiza- 
tion. 

Acknowledgement 
JH and XW acknowledges the support from National Sci- 

ence Foundation ( IIS-2011369 ) and National Institutes of Health 
( 1R01NS135574–01 ). EK acknowledges the partial support from 
National Science Foundation ( CMMI-2320933 ). 
Data availability statement 

The original contributions presented in the study are included 
in the article/supplemental material. Supplementary material asso- 
ciated with this article can be found in the online version. Further 
inquiries can be directed to the corresponding authors. 
Supplementary materials 

Supplementary material associated with this article can be 
found, in the online version, at doi:10.1016/j.actbio.2024.09.005 . 
References 

[1] S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, 
M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, Mechanical characterization of hu- 
man brain tissue, Acta Biomater. 48 (2017) 319–340 . 

[2] J. Hou, B. Park, C. Li, X. Wang, A multiscale computation study on bruise sus- 
ceptibility of blueberries from mechanical impact, Postharvest Biol. Technol. 
208 (2024) 112660 . 

[3] K. Mendis, R. Stalnaker, S. Advani, A constitutive relationship for large defor- 
mation finite element modeling of brain tissue, (1995). 

[4] P. Thamburaja, N. Nikabdullah, A macroscopic constitutive model for 
shape-memory alloys: theory and finite-element simulations, Comput. Meth- 
ods Appl. Mech. Eng. 198 (9) (2009) 1074–1086 . 

[5] S. Budday, G. Sommer, J. Haybaeck, P. Steinmann, G.A. Holzapfel, E. Kuhl, 
Rheological characterization of human brain tissue, Acta Biomater. 60 (2017) 
315–329 . 

[6] L. Onsager, Reciprocal relations in irreversible processes, I, Physical review 37 
(4) (1931) 405 . 

[7] L. Onsager, Reciprocal relations in irreversible processes, II, Physical review 38 
(12) (1931) 2265 . 

[8] M. Flaschel, S. Kumar, L. De Lorenzis, Automated discovery of generalized stan- 
dard material models with EUCLID, Comput. Methods Appl. Mech. Eng. 405 
(2023) 115867 . 

[9] S. Hartmann, P. Neff, Polyconvexity of generalized polynomial-type hyperelas- 
tic strain energy functions for near-incompressibility, Int. J. Solids. Struct. 40 
(11) (2003) 2767–2791 . 

[10] L. Qingbin, J. Zhong, L. Mabao, W. Shichun, Acquiring the constitutive relation- 
ship for a thermal viscoplastic material using an artificial neural network, J. 
Mater. Process. Technol. 62 (1–3) (1996) 206–210 . 

[11] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physic- 
s-informed machine learning, Nature Reviews Physics 3 (6) (2021) 422–440 . 

[12] Y. Leng, V. Tac, S. Calve, A.B. Tepole, Predicting the mechanical properties of 
biopolymer gels using neural networks trained on discrete fiber network data, 
Comput. Methods Appl. Mech. Eng. 387 (2021) 114160 . 

[13] Z. Zhang, Z. Zou, E. Kuhl, G.E. Karniadakis, Discovering a reaction–diffusion 
model for Alzheimer’s disease by combining PINNs with symbolic regression, 
Comput. Methods Appl. Mech. Eng. 419 (2024) 116647 . 

[14] I. Jeong, M. Cho, H. Chung, D.-N. Kim, Data-driven nonparametric identification 
of material behavior based on physics-informed neural network with full-field 
data, Comput. Methods Appl. Mech. Eng. 418 (2024) 116569 . 

[15] L. Linden, D.K. Klein, K.A. Kalina, J. Brummund, O. Weeger, M. Kästner, Neu- 
ral networks meet hyperelasticity: a guide to enforcing physics, J. Mech. Phys. 
Solids. 179 (2023) 105363 . 

[16] P. Chen, J. Guilleminot, Polyconvex neural networks for hyperelastic constitu- 
tive models: a rectification approach, Mech. Res. Commun. 125 (2022) 103993 . 

[17] K. Linka, E. Kuhl, A new family of Constitutive Artificial Neural Networks to- 
wards automated model discovery, Comput. Methods Appl. Mech. Eng. 403 
(2023) 115731 . 

[18] F. As’ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network 
approach in data-driven constitutive modeling, Int. J. Numer. Methods Eng. 123 
(12) (2022) 2738–2759 . 

[19] V. Tac, F. Sahli Costabal, A.B. Tepole, Data-driven tissue mechanics with poly- 
convex neural ordinary differential equations, Com put. Methods Appl. Mech. 
Eng. 398 (2022) 115248 . 

[20] V. Taç, K. Linka, F. Sahli-Costabal, E. Kuhl, A.B. Tepole, Benchmarking physic- 
s-informed frameworks for data-driven hyperelasticity, Comput. Mech. (2023) . 

[21] N. Ellmer, R. Ortigosa, J. Martínez-Frutos, A.J. Gil, Gradient enhanced gaussian 
process regression for constitutive modelling in finite strain hyperelasticity, 
Comput. Methods Appl. Mech. Eng. 418 (2024) 116547 . 
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