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a b s t r a c t 
Textile fabrics have unique mechanical properties, which make them ideal candidates for many engi- 
neering and medical applications: They are initially flexible, nonlinearly stiffening, and ultra-anisotropic. 
Various studies have characterized the response of textile structures to mechanical loading; yet, our un- 
derstanding of their exceptional properties and functions remains incomplete. Here we integrate biaxial 
testing and constitutive neural networks to automatically discover the best model and parameters to 
characterize warp knitted polypropylene fabrics. We use experiments from different mounting orienta- 
tions, and discover interpretable anisotropic models that perform well during both training and testing. 
Our study shows that constitutive models for warp knitted fabrics are highly sensitive to an accurate 
representation of the textile microstructure, and that models with three microstructural directions out- 
perform classical orthotropic models with only two in-plane directions. Strikingly, out of 214 = 16,384 pos- 
sible combinations of terms, we consistently discover models with two exponential linear fourth invariant 
terms that inherently capture the initial flexibility of the virgin mesh and the pronounced nonlinear stiff- 
ening as the loops of the mesh tighten. We anticipate that the tools we have developed and prototyped 
here will generalize naturally to other textile fabrics–woven or knitted, weft knit or warp knit, polymeric 
or metallic–and, ultimately, will enable the robust discovery of anisotropic constitutive models for a wide 
variety of textile structures. Beyond discovering constitutive models, we envision to exploit automated 
model discovery as a novel strategy for the generative material design of wearable devices, stretchable 
electronics, and smart fabrics, as programmable textile metamaterials with tunable properties and func- 
tions. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN. 
Statement of significance 
Textile structures are rapidly gaining popularity in many biomedical applications including tissue engi- 
neering, wound healing, and surgical repair. A precise understanding of their unique mechanical proper- 
ties is critical to tailor them to their specific functions. Here we integrate mechanical testing and machine 
learning to automatically discover the best models for knitted polypropylene fabrics. We show that warp 
knitted fabrics possess a complex symmetry with three distinct microstructural directions. Along these, 
the behavior is dominated by an exponential linear term that characterize the initial flexibility of the vir- 
gin mesh and the nonlinear stiffening as the loops of the fabric tighten. We expect that our technology 
will generalize naturally to other fabrics and enable the robust discovery of complex anisotropic models 
for a wide variety of textile structures. 
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This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

∗ Corresponding author. 
E-mail address: ekuhl@stanford.edu (E. Kuhl) . 

1. Motivation 
Synthetic meshes have unique mechanical properties [3] , which 

make them ideal candidates for many engineering and medical ap- 
plications [19] : Under small deformations they display a remark- 
able initial flexibility , under large deformations, they exhibit a pro- 
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nounced nonlinear stiffening , and under varying loading scenarios, 
they reveal an ultra-anisotropic response [18] . Their compliant na- 
ture allows them to effortlessly undergo large deformations while 
maintaining structural integrity [9] . Their inherent porosity encour- 
ages fluid flow and nutrient exchange, crucial for many biolog- 
ical or technical functions [41] . Their anisotropic nature enables 
them to adapt and function effectively in complex dynamic en- 
vironments [38] . Collectively, these unique features make meshes 
highly suitable for a range of biomedical applications, including 
surgical repair, drug delivery, wound healing, implant design, and 
tissue engineering [37] . Beyond biomedicine, meshes are becoming 
increasingly popular in other technical applications including fil- 
tration systems, protective gear, flexible electronics, and structural 
reinforcement [29] . 
The microstructure of the mesh is critical to its function . The 
mechanical properties of the mesh directly affect how well it in- 
tegrates within its environment, distributes stresses, and provides 
structural support [7] . In fabric mechanics, we distinguish two fun- 
damentally different types of meshes: woven and knitted [18] . 
The microstructure of woven fabrics consists of warp threads run- 
ning lengthwise and shute or weft threads running widthwise. The 
shute threads are woven over and under the warp threads inter- 
lacing them at right angles to create a tight and stable grid-like 
pattern with two orthogonal microstructural directions, the warp 
direction w and the shute direction s . Along these directions, wo- 
ven fabrics are rather stiff; off-set at 45 degrees, they are fairly 
compliant, meaning they have a high tensile stiffness, but a low 
shear stiffness [44] . The microstructure of knitted fabrics consists 
of interlocking loops of yarn, creating a flexible and stretchable 
textile structure that can easily adapt its shape and undergo large 
deformations while maintaining structural integrity [24] . We dis- 
tinguish two families of knitted structures: weft-knitted and warp 
knitted [21] . The microstructure of weft knitted fabrics consists of 
horizontal rows of interlocking loops. It is made by looping a single 
yarn back and forth horizontally across the fabric width, creating 
interconnected loops, row by row, with two orthogonal microstruc- 
tural directions, the production or wale direction w and the yarn 
direction s . Regardless of the direction of loading, weft knitted fab- 
rics tend to be extremely extensible and dimensionally unstable 
[55] . The microstructure of warp knitted fabrics consists of vertical 
columns of interlocking loops. It is made by looping multiple par- 
allel yarns vertically along the fabric length, zigzagging between 
two neighboring columns, creating interconnected loops, column 
by column, with the production or warp direction ⃗ w and one or 
multiple yarn directions sI and sII . In the warp direction, warp- 
knitted fabrics are fairly stiff; in the yarn directions, the stiffness 
is tunable by the interlocking pattern [50] . Of the three different 
microstructures in Fig. 1 , warp knitted structures are the most tun- 
able: The design space of a single loop spans 3 × 2 × 3 = 18 pos- 
sibile configurations, three for the incoming yarn, two for the loop 
itself–open or closed–, and three for the outgoing yarn [21] . For 
warp knitted structures made with two guide bars, this already re- 
sults in 18 × 18 = 324 possible combinations, and modern knitting 
machines have four or more guide bars. This opens tremendous 
opportunities to design warp knitted fabrics with mechanically- 
guided microstructures and custom-designed properties [4] . 

Synthetic meshes play an integral role in surgical repair. Ini- 
tially introduced for hernia repair in the 1950s, the primary goal 
of synthetic meshes is to reinforce weakened or damaged struc- 
tures and provide durable structural integrity. Hernia repair is a 
common surgery, with more than 20 million procedures each year 
[54] . In spite of this high prevalence, complications are relatively 
common, with 11 percent of patients reporting postoperative ab- 
dominal pain [42] . Hernia repairs use various methods to close the 
wound in the abdominal wall, but the most common surgical in- 

Fig. 1. Microstructure of woven, weft and warp knitted fabrics. Woven fabrics con- 
sist of a series of parallel warp strands alternately passed over and under by a set of 
parallel shute strands creating a microstructure with two orthogonal directions, the 
warp direction w and the shute direction s . Knitted fabrics consists of continuous 
filaments that are looped around one another. Weft knitted fabrics consists of hori- 
zontal rows of interlocking loops creating a microstructure with two orthogonal di- 
rections, the production or wale direction w and the yarn direction s . Warp knitted 
fabrics consists of vertical columns of interlocking loops creating a microstructure 
with a warp direction w and one or more yarn directions sI and sII . 
tervention is to suture a synthetic mesh over the wound [53] . In 
addition to the surface properties of the mesh at the mesh tis- 
sue interface that determine the durability of the reconstruction 
[23] , it is essential that the surgeon selects a mesh with appropri- 
ate size, suture factors, and biomechanical properties [40] . A mis- 
match between the mechanics of the mesh and the surrounding 
tissue can increase the risk of postoperative failure [7] . To assess 
the mechanical biocompatibility of a synthetic mesh, we must un- 
derstand its mechanical properties [13] . Thus, there is a critical 
need to develop constitutive models for synthetic meshes to bet- 
ter understand how they interact with the surrounding tissue [31] . 
Here, as a first step, we limit this understanding to the hyperelastic 
regime, and do not consider dynamic [20] or frictional [39] effects. 
Within this regime, previous studies have performed biaxial testing 
of various mesh patches [9] ; however, these studies only extracted 
a few phenomenological parameters and did not combine data 
from multiple experiments into a unified mechanistic constitutive 
model. The benefit of obtaining a fully three-dimensional hyper- 
elastic constitutive model from experimental data is that such a 
model would describe the stress state of the mesh induced by any 
possible deformation, including complex states that we do not test 
experimentally, but may well occur in vivo [51] . However, here 
we will not follow the traditional approach, propose yet another 
phenomenological model, and fit its parameters to data. Instead, 
our objective is to discover a microstructurally motivated hyperelastic 
constitutive model for warp-knitted fabrics and establish a robust set 
of experimental and computational techniques to autonomously dis- 
cover the best constitutive models and parameters for a variety of 
woven, weft and warp knitted textile structures and other synthetic 
microstructural materials. 
Constitutive modeling requires deep expert knowledge . A con- 
stitutive model aims to predict the internal stress state of a ma- 
terial as a function of its strain. In particular, in developing elas- 
tic constitutive models, we assume that the Piola stress tensor is 
a function of the deformation gradient tensor [17] . There are vari- 
ous approaches to infer this relationship between the deformation 
gradient and the Piola stress from mechanical testing data. Classi- 
cal approaches attempt to fit a few unknown parameters of well- 
known phenomenological models such as the neo Hooke model 
[60] , the Lanir model [22] , or the Demiray model [8] . The chal- 
lenge with this approach is that it requires a profound domain ex- 
pertise to select an appropriate model, and we may need to re- 
peat model selection and parameter identification several times to 
identify a model that fits the data well. Constitutive neural net- 
works use physics-informed insights about constitutive models as 
well as powerful deep learning methods to simultaneously discover 

462



J.A. McCulloch and E. Kuhl Acta Biomaterialia 189 (2024) 461–477

the function form of the constitutive model and learn its appro- 
priate parameters [26] . While the first family of constitutive neu- 
ral networks only discovered isotropic models for materials such 
as rubber [26] , brain [27] or plant-based meat [47] , more recent 
networks can now discover transversely isotropic models for skin 
[28] or arteries [45] . Here we explore how to expand constitutive 
neural networks to discover more complex anistropic constitutive 
models from biaxial extension data. 
Constitutive neural networks can autonomously discover the 
best model and parameters . A constitutive neural network is a 
machine learning model that takes the deformation gradient as 
an input and outputs the Piola stress for a specific material [25] . 
Constitutitve artificial neural networks take advantage of physical 
laws and assumptions about the material to constrain the input- 
output relationship that the network discovers, similar to physics- 
informed neural networks [49] . However, constitutive neural net- 
works differ from physics-informed neural networks, which alter 
the loss function to satisfy physical laws. Instead, constitutive neu- 
ral networks modify the architecture of the underlying machine 
learning model such that, regardless of the model parameters, the 
discovered model exactly satisfies the relevant physical laws [26] . 
The particular assumptions that motivate the design of hyperelas- 
tic constitutive neural networks are material objectivity, thermody- 
namic consistency, incompressibility, and material symmetry. Prior 
work has enforced various forms of symmetry including isotropy 
[26] , transverse isotropy [28] , and orthotropy [30] ; here we as- 
sume that warp-knitted meshes have either two or three charac- 
teristic microstructural orientations in the plane of the mesh. Un- 
like most previous work that trains anisotropic constitutive neural 
networks exclusively by using homogeneous tests [58] , we explore 
how to use biaxial testing data when neither of the loading axes 
are aligned with the symmetry planes of the material [52] . We ac- 
knowledge that this violates the condition of homogeneity; yet, it 
allows us to train our network with a broader class of deforma- 
tions, and discover models that are more robust when predicting 
stresses in response to deformation states that the network has 
not previously seen during training [59] . Finally, while constitu- 
tive neural networks are able to discover constitutive models by 
selecting from a large set of possible strain energy functions, the 
most useful constitutive models have only a small number of pa- 
rameters and are therefore interpretable [5] . Various regularization 
techniques can help reduce the number of non-zero parameters 
without significantly sacrificing model accuracy [14] . Prior work 
has shown that, when computationally tractable, L0 regularization 
is the best method for identifying the optimal n -term model for 
a fixed, small n [32] . When n is too large for L0 optimization, Lp 
regularization with 0 < p ≤ 1 can effectively reduce the number of 
non-zero terms [46] , without significantly decreasing model accu- 
racy [12] . Here we will apply both approaches, compare the dis- 
covered models, and make recommendations which regularization 
to choose. 
2. Methods 
2.1. Experimental methods 

We prepared samples from a 0.5 mm thick warp knitted sur- 
gical mesh of extruded polypropylene designed for surgical repair 
(PROLENE® Ethicon, Inc., Somerville, NJ), to test under biaxial load- 
ing in a CellScale BioTester 50 0 0. We define the warp direction of 
the mesh as the direction along which the loops are aligned, which 
is also the direction in which the mesh is stiffest. 

We then define the shute directions in the plane of the mesh, ei- 
ther as one direction orthogonal to the warp direction inclined by 
90 degrees, or as two directions symmetrically inclined to the warp 

Fig. 2. Biaxial testing of the mesh in two orientations. The top row shows the two- 
fiber model with one warp and one shute direction w and s , and the bottom row 
shows the three-fiber model with one warp and two shute directions w and sI and 
sII . The left column illustrates the mesh in the 0/90 or 0/+60/-60 orientations, and 
the right column illustrates the mesh in the -45/+45 or -45/+15/+75 orientations. 
direction by 60 degrees. We cut the mesh into square sections two 
different orientations: In the first orientation, which we denote as 
the 0/90 orientation or 0/+60/-60 orientation , the sample is aligned 
with the warp direction; in the second orientation, which we de- 
note as the -45/+45 orientation or -45/+15/+75 orientation , the sides 
of the sample are 45 degrees offset from the warp direction. Fig. 2 
illustrates the samples of each orientation, mounted into the test- 
ing device. In the 0/90 or 0/+60/-60 orientation, in the left column, 
we place the tines of the biaxial testing device in the loops of the 
mesh. To prevent the mesh from unravelling, we avoid placing the 
tines in the row of loops that is closest to the edge of the sample. 
In the -45/+45 or -45/+15/+75 orientation, in the right column, we 
place the tines in the loops of the mesh where feasible, but due to 
the geometry of the mesh not all tines fit exactly into a loop. To 
reduce the likelihood of unraveling, we use a larger mesh area in 
this orientation. 

We test a total of ten samples, five for each orientation [10] . 
Once we mount each sample into the device, we apply a 30 mN 
preload along both axes to establish a consistent reference config- 
uration [61] . After preloading, we record the spacing between the 
tines as the gauge length, and perform five consecutive tests with 
30 seconds of rest between each test [33] . Each test consists of 
linearly increasing the applied stretch for 100 seconds, followed by 
linearly decreasing the applied stretch for 100 seconds until the 
sample returns to its unstretched state. Table 1 summarizes the 
maximum stretches in each direction for each of the five tests. We 
perform all five tests on each of the ten samples. However, to min- 
imize the effect of preload, we randomize the order of the tests for 
each sample. 
2.2. Stress and strain analysis 

We process the data from the CellScale BioTester 50 0 0 to obtain 
the average Piola stress for given stretch values λ1 and λ2 . First, 
we convert the force and displacement measurements to stresses 
and stretches. To do so, we measured the sample thickness t with 
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Table 1 
Definition of five biaxial test settings. Maximum 
stretches λ1 and λ2 for the five different tests of each 
sample. We increase the stretch linearly for 100 sec- 
onds until reaching the maximum stretch for each 
test, then decrease it linearly for 100 seconds to 
the undeformed configuration, and hold the sample 
in the undeformed configuration for 30 seconds be- 
tween consecutive tests. To minimize the effect of 
preload, we randomize the order of the tests for each 
sample. 

experiment max stretch λ1 max stretch λ2 
strip-x 1.10 1.00 
off-x 1.10 1.05 
equibiax 1.10 1.10 
off-y 1.05 1.10 
strip-y 1.00 1.10 

calipers and set the gauge lengths L1 and L2 to the initial spacing 
between the tines in the 1- and 2-directions. Then, we computed 
the stretches λ1 and λ2 and the Piola stresses P11 and P22 , 
λ1 = l1 

L1 λ2 = l2 
L2 P11 = F1 

L2 t P22 = F2 
L1 t (1) 

where l1 and l2 are the measured gauge lengths and F1 and F2 
are the measured forces in the 1- and 2-directions. The result are 
five loading and five unloading curves for each of the ten samples. 
We resample and average all curves at equidistant stretch inter- 
vals to obtain an averaged stress pair { P11 , P22 } for each stretch pair 
{ λ1 , λ2 } . Finally, for the samples mounted in the -45/+45 orienta- 
tion, we use symmetry with respect to the diagonale and average 
the ten recorded stress-stretch curves to five distinct curves. 
2.3. Kinematics 

We characterize the deformation through the mapping x = 
ϕ( X ) that maps a point X in the reference configuration to a point 
x the deformed configuration. We then describe the local deforma- 
tion using the deformation gradient, 
F = ∇X ϕ(X ) . (2) 
Multiplying F with its transpose F t introduces the symmetric right 
Cauchy Green deformation tensor C, 
C = F t · F . (3) 
To characterize the deformation of an orthotropic material, we 
introduce the three isotropic invariants, I1 , I2 , I3 , and a set of 
anisotropic invariants, I4 i , I8 i j [35,56] , 

I1 = [ Ft · F ] : I ∂F I1 = 2 F 
I2 = 1 

2 [ I2 
1 − [ Ft · F ] : [ Ft · F ]] ∂F I2 = 2 I1 F − 2 F · Ft · F 

I3 = det (Ft · F ) = J2 ∂F I3 = det (F ) F−t 
I4 i = [ Ft · F ] : [⃗ ni ! ⃗ ni ] ∂F I4i = 2 F · [⃗ ni ! ⃗ ni ] 
I8 i j = [ Ft · F ] : [⃗ ni ! ⃗ nj ]sym ∂F I8 i j = 2 F · [⃗ ni ! ⃗ nj ]sym ] , 

(4) 
where I is the identity tensor, ni, j with i, j = 1 , . . . , ndir are the 
unit warp and shute directions in the undeformed reference con- 
figuration, and ndir is the number of microstructural directions of 
our model. Since we are unable to measure the deformation in 
the thickness direction of the mesh, we assume that the mesh 
is perfectly incompressible, I3 = 1 . In our biaxial extension tests, 
we stretch the sample in two orthogonal directions, λ1 ≥ 1 and 
λ2 ≥ 1 . The incompressibility condition, I3 = λ2 

1 λ2 
2 λ2 

3 = 1 , defines 
the stretch in the thickness direction as λ3 = (λ1 λ2 )−1 ≤ 1 . We as- 
sume that the deformation remains homogeneous and shear free, 

and the deformation gradient F remains diagonal, 
F = diag { 

λ1 , λ2 , (λ1 λ2 )−1 } 
. (5) 

Next, we specify the invariants (4) in terms of the stretches λ1 and 
λ2 for two the microstructural architectures in Figs. 1 and 2 , the 
two-fiber model and the three-fiber model. 
2.3.1. Two-fiber model 

For the two-fiber model, we assume that we can represent the 
mesh through two orthogonal fiber families, one in the warp direc- 
tion w, and one in the shute direction s , inclined against the warp 
direction by π/ 2 = 90◦, 
w = [ cos ( αw ) , sin ( αw ) , 0 ]t 
s = [− sin ( αw ) , cos ( αw ) , 0 ]t 

, (6) 
where αw is the warp angle, the angle of the warp direction 
against the 1-direction. We now specify the invariants (4) in terms 
of the biaxial stretches λ1 and λ2 and the warp angle αw , 
I1 = λ2 

1 + λ2 
2 + (

λ1 λ2 )−2 
I2 = λ−2 

1 + λ−2 
2 +

(
λ1 λ2 )2 

I4 w = λ2 
1 cos 2 ( αw ) + λ2 

2 sin 2 ( αw ) = λ2 
w 

I4 s = λ2 
1 sin 2 ( αw ) + λ2 

2 cos 2 ( αw ) = λ2 
s 

I8ws = (λ2 
2 − λ2 

1 ) sin ( αw ) cos ( αw ) 
(7) 

and take their derivatives, 
∂F I1 = 2 diag { 

λ1 , λ2 , (
λ1 λ2 )−1 } 

∂F I2 = 2 diag {λ1 λ2 
2 + λ−1 

1 λ−2 
2 , λ2 

1 λ2 + λ−2 
1 λ−1 

2 , λ1 λ−1 
2 + λ−1 

1 λ2 }
∂F I4 w = 2 diag { 

λ1 cos 2 ( αw ) , λ2 sin 2 ( αw ) , 0} 
∂F I4 s = 2 diag { 

λ1 sin 2 ( αw ) , λ2 cos 2 ( αw ) , 0} 
∂F I8ws = diag {−λ1 sin ( 2 αw ) , λ2 sin ( 2 αw ) , 0}

. 
(8) 

Our two-fiber model has five distinct invariants, I1 , I2 , I4 w , I4 s , I8 ws , 
where I4 w and I4 s take the interpretation of the squared stretches 
in the warp and shute directions λw and λs , and I8 ws character- 
izes the interaction between the warp and shute directions. For the 
special case of the 0/90 orientation, the anisotropic invariants are 
I4 w = λ2 

1 I4 s = λ2 
2 I8 ws = 0 , (9) 

and we already see that this setup is incapable of probing the in- 
teraction between the warp and shute directions since I8 ws = 0 . For 
the special case of the +45/-45 orientation, the anisotropic invari- 
ants are 
I4 w = 1 

2 [ λ2 
1 + λ2 

2 ] I4 s = 1 
2 [ λ2 

1 + λ2 
2 ] I8 ws = 1 

2 [ −λ2 
1 + λ2 

2 ] , (10) 
and we already see that this setup is incapable of distinguishing 
between the warp and shute directions since I4 w = I4 s . 
2.3.2. Three-fiber model 

The potential shortcomings of the two-fiber model motivate a 
more advanced three-fiber model with three fiber families, one in 
the warp direction w, and two in the shute directions sI and sII , 
symmetrically inclined against the warp direction by + π/ 3 = +60◦

and −π/ 3 = −60◦, 
w = [cos ( αw ) , sin ( αw ) , 0

]t 
sI = [cos (αw + 1 

3 π)
, sin (αw + 1 

3 π)
, 0

]t 
sII = [cos (αw − 1 

3 π)
, sin (αw − 1 

3 π)
, 0 ]t (11) 
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where αw denotes the warp angle against the 1-direction. We now 
specify the invariants (4) in terms of the biaxial stretches λ1 and 
λ2 and the warp angle αw , 
I1 = λ2 

1 + λ2 
2 + (λ1 λ2 )−2 

I2 = λ−2 
1 + λ−2 

2 + (λ1 λ2 )2 
I4 w = λ2 

1 cos 2 (αw ) + λ2 
2 sin 2 (αw ) = λ2 

w 
I4 sI = λ2 

1 cos 2 (αw + 1 
3 π ) + λ2 

2 sin 2 (αw + 1 
3 π ) = λ2 

sI 
I4 sII = λ2 

1 cos 2 (αw − 1 
3 π ) + λ2 

2 sin 2 (αw − 1 
3 π ) = λ2 

sII 
I8 wsI = λ2 

1 cos (αw ) cos (αw + 1 
3 π ) + λ2 

2 sin (αw ) sin (αw + 1 
3 π ) 

I8 wsII = λ2 
1 cos (αw ) cos (αw − 1 

3 π ) + λ2 
2 sin (αw ) sin (αw − 1 

3 π ) 
I8 sI sII = λ2 

1 cos (αw + 1 
3 π ) cos (αw − 1 

3 π ) 
+ λ2 

2 sin (αw + 1 
3 π ) sin (αw − 1 

3 π ) 
(12) 

Our three-fiber model has eight distinct invariants, I1 , I2 , I4 w , I4 sI , 
I4 sII , I8 wsI , I8 wsII , I8 sI sII , where I4 w , I4 sI , I4 sII take the interpretation 
of the squared stretches in the warp and shute directions λw , λsI , 
λsII and I8 wsI , I8 wsII , I8 sI sII characterizes the interaction between the 
warp and shute directions. For the special case of the 0/+60/-60 
orientation, the anisotropic invariants are 
I4 w = λ2 

1 I4 sI = 1 
4 [ λ2 

1 + 3 λ2 
2 ] I4 sII = 1 

4 [ λ2 
1 + 3 λ2 

2 ] 
I8 wsI = 1 

2 λ2 
1 I8 wsII = 1 

2 λ2 
1 I8 sI sII = 1 

4 [ λ2 
1 − 3 λ2 

2 ] , (13) 
and we notice the microstructural symmetry of the two shute di- 
rections as I4 sI = I4 sII and I8 wsI = I8 wsII . For the special case of the 
-45/+15/+75 orientation, the anisotropic invariants are 
I4 w = [+ 1 

2 ] λ2 
1 + [+ 1 

2 ] λ2 
2 

I4 sI = [+ 1 
2 − 1 

4 √ 
3 ] λ2 

1 + [+ 1 
2 + 1 

4 √ 
3 ] λ2 

2 
I4 sII = [+ 1 

2 + 1 
4 √ 

3 ] λ2 
1 + [+ 1 

2 − 1 
4 √ 

3 ] λ2 
2 

I8 wsI = [+ 1 
4 − 1 

4 √ 
3 ] λ2 

1 + [+ 1 
4 + 1 

4 √ 
3 ] λ2 

2 
I8 wsII = [+ 1 

4 + 1 
4 √ 

3 ] λ2 
1 + [+ 1 

4 − 1 
4 √ 

3 ] λ2 
2 

I8 sI sII = [− 1 
4 ] λ2 

1 + [− 1 
4 ] λ2 

2 , 
(14) 

and we immediately notice that the three-fiber model invariants 
are much richer than the two-fiber model invariants. 
2.4. Constitutive modeling 

A constitutive model is a material-specific function that esti- 
mates the stress in a material given its deformation history. In the 
case of a hyperelastic constitutive model, the stress, in our case the 
Piola stress P , only depends on the current deformation state, in 
our case the deformation gradient F , such that P = P (F ) . To satisfy 
thermodynamic consistency, we can express the stress as a func- 
tion of the strain energy density ψ as P = ∂ψ (F ) /∂F , which we 
reformulate in terms of our set of invariants ψ (I1 , I2 , I3 , I4 i , I8 i j ) , 
P = ∂ψ 

∂ I1 ∂ I1 
∂F + ∂ψ 

∂ I2 ∂ I2 
∂F + ∂ψ 

∂ I3 ∂ I3 
∂F + ∂ψ 

∂ I4 i ∂ I4i 
∂F + ∂ψ 

∂ I8 i j ∂ I8ij 
∂F . (15) 

where i, j = 1 , . . . , ndir is the number of microstructural directions 
of our model. We explicitly enforce incompressibility by select- 
ing the term in the third invariant as ψ (I3 ) = −p [ J − 1 ] , such 
that ∂ψ /∂ I3 · ∂ I3 /∂F = −p F−t . Here p acts as a Lagrange multi- 
plier that we determine from the zero-thickness-stress condition. 
2.5. Biaxial testing 

In biaxial extension tests, we stretch the sample in two or- 
thogonal directions, λ1 ≥ 1 and λ2 ≥ 1 , and, by incompressibility, 

λ3 = (λ1 λ2 )−1 ≤ 1 . We assume that the deformation remains ho- 
mogeneous and shear free, and that the resulting Piola stress P re- 
mains diagonal, 
P = diag { P11 , P22 , 0 } . (16) 
We use the isotropic first and second invariants I1 = λ2 

1 + λ2 
2 + 

(λ1 λ2 )−2 and I2 = λ−2 
1 + λ−2 

2 + (λ1 λ2 )2 from Eq. (7) and their 
derivatives from Eq. (8) to determine the pressure p from the zero- 
thickness-stress condition in the third direction, 
P33 = 0 thus p = 2 1 

λ2 
1 λ2 

2 ∂ψ 
∂ I1 + 2(

1 
λ2 

1 + 1 
λ2 

2 
)

∂ψ 
∂ I2 . (17) 

Eqs. (15) and (17) then provide an explicit analytical expression for 
the nominal stresses P11 and P22 in terms of the stretches λ1 and 
λ2 and the warp angle αw . We acknowledge that biaxial testing is 
limited to characterize the stress-stretch behavior within the plane, 
and does not allow us to make any assessment of the out-of-plane 
behavior of the fabric. 
2.5.1. Two-fiber model 

For the two-fiber model, the free energy function is a function 
of five terms, ψ = ψ (I1 , I2 , I4 w , I4 s , I8 ws ) , and the nominal stresses 
P11 and P22 have five terms, one for each invariant, 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 

+2 λ1 cos 2 (αw ) ∂ψ 
∂ I4 w + 2 λ1 sin 2 (αw ) ∂ψ 

∂ I4 s 
− λ1 sin (2 αw ) ∂ψ 

∂ I8 ws 
P22 = 2(

λ2 − 1 
λ2 

1 λ3 
2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 

+2 λ2 sin 2 (αw ) ∂ψ 
∂ I4 w + 2 λ2 cos 2 (αw ) ∂ψ 

∂ I4 s 
+ λ2 sin (2 αw ) ∂ψ 

∂ I8 ws . 

(18) 

Here we make an important observation: Counterintuitively, the 
eighth-invariant term, ∂ ψ/∂ I8 ws , contributes negatively to the 
stresses in the 1-direction and positively to the stresses in the 2- 
direction. This contradicts our general intuition, and potentially vi- 
olates the condition of material symmetry. We therefore drop the 
dependence on the eighth invariant and reduce our set of invari- 
ants to four, ψ = ψ (I1 , I2 , I4 w , I4 s ) . For the special case of the 0/90 
orientation, with αw = 0 π = 0◦, the biaxial Piola stresses simplify 
to 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 + 2 λ1 ∂ψ 

∂ I4 w 
P22 = 2(

λ2 − 1 
λ2 

1 λ3 
2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 + 2 λ2 ∂ψ 

∂ I4 s . 
(19) 

For the special case of the -45/+45 orientation, with αw = −π/ 4 = 
−45◦, the stresses are 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 

+λ1 ( ∂ψ 
∂ I4 w + ∂ψ 

∂ I4 s 
)

P22 = 2(
λ2 − 1 

λ2 
1 λ3 

2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 

+λ2 ( ∂ψ 
∂ I4 w + ∂ψ 

∂ I4 s 
)

. 
(20) 
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2.5.2. Three-fiber model 
For the three-fiber model, for similar reasons as above, we 

drop the dependence on the eighth invariants and reduce our set 
of invariants to five, ψ = ψ (I1 , I2 , I4 w , I4 sI , I4 sII ) . We now express 
the fourth invariants of the three-fiber model, I4 w , I4 sI , I4 sII , in 
terms of the invariants of the two-fiber model, I4 w , I4 s , I8 ws , I4(◦) = 
I4 w cos 2 (α◦) + Is sin 2 (α◦) + I8 ws sin (2 α◦) . For our specific three- 
fiber model, with (◦) = { w, sI , sII } , and α◦ = { 0 , + 1 

3 π , − 1 
3 π } , this 

allows us express the nominal stresses P11 and P22 using Eq. (18) , 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 

+2 λ1 cos 2 (αw ) ( ∂ψ 
∂ I4 w + 1 

4 ∂ψ 
∂ I4 sI + 1 

4 ∂ψ 
∂ I4 sII 

)

+2 λ1 sin 2 (αw ) (3 
4 ∂ψ 

∂ I4 sI + 3 
4 ∂ψ 

∂ I4 sII 
)

− λ1 sin (2 αw ) (√ 
3 

2 ∂ψ 
∂ I4 sI −

√ 
3 

2 ∂ψ 
∂ I4 sII 

)

P22 = 2(
λ2 − 1 

λ2 
1 λ3 

2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 

+2 λ2 cos 2 (αw ) ( ∂ψ 
∂ I4 w + 1 

4 ∂ψ 
∂ I4 sI + 1 

4 ∂ψ 
∂ I4 sII 

)

+2 λ2 sin 2 (αw ) (3 
4 ∂ψ 

∂ I4 sI + 3 
4 ∂ψ 

∂ I4 sII 
)

− λ2 sin (2 αw ) (√ 
3 

2 ∂ψ 
∂ I4 sI −

√ 
3 

2 ∂ψ 
∂ I4 sII 

)
. 

(21) 

For the special case of the 0/+60/-60 orientation, with αw = 0 π = 
0◦, the biaxial Piola stresses become 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 

+1 
2 λ1 (4

∂ψ 
∂ I4 w + ∂ψ 

∂ I4 sI + ∂ψ 
∂ I4 sII 

)

P22 = 2(
λ2 − 1 

λ2 
1 λ3 

2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 

+3 
2 λ1 ( ∂ψ 

∂ I4 sI + ∂ψ 
∂ I4 sII 

)
. 

(22) 

For the special case of the -45/+15/+75 orientation, with αw = 
−π/ 4 = −45◦, the biaxial Piola stresses are 
P11 = 2(

λ1 − 1 
λ3 

1 λ2 
2 
)

∂ψ 
∂ I1 + 2

(
λ1 λ2 

2 − 1 
λ3 

1 
)

∂ψ 
∂ I2 

+λ1 ( ∂ψ 
∂ I4 w +

(
1 + √ 

3 
2 

)
∂ψ 
∂ I4 sI +

(
1 − √ 

3 
2 

)
∂ψ 
∂ I4 sII 

)

P22 = 2(
λ2 − 1 

λ2 
1 λ3 

2 
)

∂ψ 
∂ I1 + 2

(
λ2 

1 λ2 − 1 
λ3 

2 
)

∂ψ 
∂ I2 

+λ2 ( ∂ψ 
∂ I4 w +

(
1 − √ 

3 
2 

)
∂ψ 
∂ I4 sI +

(
1 + √ 

3 
2 

)
∂ψ 
∂ I4 sII 

)
. 

(23) 

2.6. Constitutive neural networks 
Motivated by the previous considerations, we design two con- 

stitutive neural networks to learn the free energy function ψ , a 
two-fiber network based on four invariants and a three-fiber net- 
work based on five invariants. 

Fig. 3. Two-fiber constitutive neural network. The network takes the two isotropic 
invariants I1 and I2 and the two anisotropic invariants I4 w and I4 s of the warp and 
shute directions ⃗ w and ⃗  s as input. The first layer generates powers (◦) and (◦)2 of 
the input and the second layer applies the identity (◦) and exponential function 
(exp (◦)) to these powers. The network learns the free energy function ψ as the 
weighted sum of the final layer, from which it derives the stress P. 
2.6.1. Two-fiber network 

Our first neural network approximates a strain energy func- 
tion in terms of four invariants I1 , I2 , I4 w , I4 s and has 28 param- 
eters or network weights, ⃗ w = { w1 , . . . , w14 ; w∗

1 , . . . , w∗
14 } , 14 inter- 

nal weights w∗
i between its two hidden layers and 14 external 

weights wi out of its final hidden layer. We assume that the in- 
dividual contributions to the free energy are fully decoupled. For 
the isotropic terms ψ (I1 ) and ψ (I2 ) , we adapt an isotropic con- 
stitutive neural network initially designed for rubber-like materi- 
als [26] . For the anisotropic terms ψ (I4 w ) and ψ (I4 s ) , we adapt 
an anisotropic constitutive neural network initially designed for ar- 
teries [45] , with the additional constraint that the linear and ex- 
ponential linear terms in the warp direction, −w9 w∗

9 [ I4 w − 1] and 
w9 [ exp (w∗

9 [ I4 − 1]) − 1] , and in the shute direction, −w12 w∗
12 [ I4 s −

1] and w12 [ exp (w∗
12 [ I4 − 1]) − 1] , are not independent but share 

the same weights [63] . The free energy function for the two-fiber 
network takes the following explicit form, 
ψ = w1 w∗

1 [ I1 −3] + w2 [ exp (w∗
2 [ I1 −3] ) − 1] 

+ w3 w∗
3 [ I1 −3]2 + w4 [ exp (w∗

4 [ I1 −3]2 ) − 1] 
+ w5 w∗

5 [ I2 −3] + w6 [ exp (w∗
6 [ I2 −3] ) − 1] 

+ w7 w∗
7 [ I2 −3]2 + w8 [ exp (w∗

8 [ I2 −3]2 ) − 1] 
− w9 w∗

9 [ I4 w −1] + w9 [ exp (w∗
9 [ I4 w −1] ) − 1] 

+ w10 w∗
10 [ I4 w −1]2 + w11 [ exp (w∗

11 [ I4 w −1]2 ) − 1] 
− w12 w∗

12 [ I4 s −1] + w12 [ exp (w∗
12 [ I4 s −1] ) − 1] 

+ w13 w∗
13 [ I4 s −1]2 + w14 [ exp (w∗

14 [ I4 s −1]2 ) − 1] . 
(24) 

Fig. 3 summarizes the architecture of the two-fiber family consti- 
tutive neural network. 
2.6.2. Three-fiber architecture 

Our second model architecture approximates a strain energy 
function in terms of five invariants I1 , I2 , I4 w , I4 sI , I4 sII and has 28 
parameters or network weights, ⃗ w = { w1 , . . . , w14 ; w∗

1 , . . . , w∗
14 } , 14 

internal weights w∗
i between its two hidden layers and 14 exter- 

nal weights wi out of its final hidden layer. We use a similar neu- 
ral network as before, and assume that the two shute directions ⃗  sI 
and sII have the same microstructure and share the same weights 
w12 , w13 , w14 and w∗

12 , w∗
13 , w∗

14 . The free energy function for the 
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Fig. 4. Three-fiber constitutive neural network. The network takes the two isotropic 
invariants I1 and I2 and the three anisotropic invariants I4 w and I4 sI and I4 sII of the 
warp and shute directions ⃗ w and ⃗  sI and ⃗  sII as input. The first layer generates powers 
(◦) and (◦)2 of the input and the second layer applies the identity (◦) and exponen- 
tial function (exp (◦)) to these powers. The network learns the free energy function 
ψ as the weighted sum of the final layer, from which it derives the stress P. We 
assume that the two shute directions ⃗  sI and sII have the same microstructure and 
share the same weights. 
three-fiber network takes the following explicit form, 
ψ = w1 w∗

1 [ I1 −3] + w2 [ exp (w∗
2 [ I1 −3] ) − 1] 

+ w3 w∗
3 [ I1 −3]2 + w4 [ exp (w∗

4 [ I1 −3]2 ) − 1] 
+ w5 w∗

5 [ I2 −3] + w6 [ exp (w∗
6 [ I2 −3] ) − 1] 

+ w7 w∗
7 [ I2 −3]2 + w8 [ exp (w∗

8 [ I2 −3]2 ) − 1] 
− w9 w∗

9 [ I4 w −1] + w9 [ exp (w∗
9 [ I4 w −1] ) − 1] 

+ w10 w∗
10 [ I4 w −1]2 + w11 [ exp (w∗

11 [ I4 w −1]2 ) − 1] 
− w12 w∗

12 [ I4 sI −1] + w12 [ exp (w∗
12 [ I4 sI −1] ) − 1] 

+ w13 w∗
13 [ I4 sI −1]2 + w14 [ exp (w∗

14 [ I4 sI −1]2 ) − 1] 
− w12 w∗

12 [ I4 sII −1] + w12 [ exp (w∗
12 [ I4 sII −1] ) − 1] 

+ w13 w∗
13 [ I4 sII −1]2 + w14 [ exp (w∗

14 [ I4 sII −1]2 ) − 1] . 

(25) 

Fig. 4 summarizes the architecture of the three-fiber family consti- 
tutive neural network. 
2.7. Model training 

To discover models and parameters ⃗ w = 
{ w1 , . . . , w14 ; w∗

1 , . . . , w∗
14 } that best describe our synthetic mesh, 

we use the Adam optimizer to perform gradient descent on a 
weighted least squared error loss function L that penalizes the 
error between the discovered model P (Fi , ⃗ w ) and the experimental 
data ˆ Pi at i = 1 , . . . , ndata discrete points, supplemented by Lp 
regularization, 
L ( ⃗ w ; F ) = 1 

ndata 
ndata ∑ 
i =1 

∣∣∣∣

∣∣∣∣
P (Fi , ⃗ w ) − ˆ Pi 

Pmax 
∣∣∣∣

∣∣∣∣
2 
+ Lp ( ⃗ w ) → min 

w . (26) 
To account for all experiments equally, we weigh the error of 
each of the stress-stretch curve by the inverse of its maximum 
stress Pmax [32] . For the L0 regularization, we supplement the loss 
function by an α-weighted regularization term, L0 = α || ⃗ w ||0 with 
|| ⃗ w ||0 = ∑ nw 

i =1 I (wi * = 0) , where I (◦) is the indicator function that 
is one if the condition inside the parenthesis is true and zero oth- 
erwise. In practice, instead of solving the full discrete combinato- 
rial problem and exploring all possible 214 = 16 , 384 combinations 
of terms, we only explore the weights and losses of the possible 
14 one-term models and 91 two-term models by explicitly setting 
all other terms to zero. For the L0 . 5 regularization, we supplement 

the loss function by an α-weighted regularization, L0 . 5 = α || ⃗ w ||0 . 5 
0 . 5 

with || ⃗ w ||0 . 5 
0 . 5 = ∑ 14 

i =1 √ 
| Pi (wi , w∗

i ) | , where Pi is the color-coded 
area of the stress contribution of the i -th term across all load- 
ing modes that we compute by summing the strain energies at 
the maximum displacement for each loading mode. The penalty 
parameter α sets the strength of the L0 . 5 regularization. We in- 
crease α progressively until the fit of the model to the data starts 
to become noticeably worse. To minimize the training time and 
ensure that the initial model creates predictions that are of the 
same order of magnitude as the data, we initialize all weights with 
a uniform distribution ⃗ w = + Uniform ([0 , γ )) , where we choose γ
such that, in expectation, the total area under the measured stress- 
stretch curve equals the total area under the predicted stress- 
stretch curve. 
3. Results 

We perform all experiments as described in Section 2.1 and 
examine the data for each individual experiment. Figs. 5 and 6 
show the loading and unloading curves for the 0/90 orientation 
in the top two rows and for the -45/+45 orientation in the bot- 
tom row. The solid lines represent the means of n = 5 tests and 
the shaded areas represent the standard deviations. In all experi- 
ments, we observe significant hysteresis between the loading and 
unloading curves. The stress remains constant during the thirty- 
second holding between each experiment, from which we con- 
clude that the difference in loading and unloading is a result of mi- 
crostructural rearrangements of the mesh, rather than a viscous ef- 
fect. For model discovery, for each experiment type, we extract the 
stretches and average stresses across the n = 5 tests during load- 
ing and unloading and summarize the stretch-stress data of all ten 
experiments in Table 2 . 
3.1. Mechanical signature of warp knitted fabric 

All fifteen stress-stretch curves in Figs. 5 and 6 display a sim- 
ilar trend: During the first half of the loading interval, the mesh 
behaves very compliant and the recorded stresses remain low; dur- 
ing the second half, the mesh stiffens and the stresses increase ex- 
ponentially. Although present during both loading and unloading, 
this trend is less visible in the loading curves in Fig. 5 than in the 
unloading curves in Fig. 6 , which also display smaller standard de- 
viations. Intuitively, we expect the mesh to be stiffer in the warp 
than in the shute direction and Figs. 5 and 6 and Table 2 confirm 
our expectation: In the strip-w and strip-s tests, the peak warp 
stress of 484 kPa is about twice as large as the peak shute stress 
of 256 kPa. In the equibiaxial test, the peak warp stress of 966 kPa 
is about one third larger than the peak shute stress of 714 kPa. We 
also expect the mesh to be stiffer in the 0/90 orientation, for which 
the loading axes are aligned with the warp and shute directions, 
than in the -45/+45 orientation, for which the loading axes are ro- 
tated by 45 degrees against the warp and shute directions. In the 
strip-x and strip-y tests, the peak stress of 219 kPa is significantly 
lower than either of the two peak stresses of 484 kPa and 256 kPa 
of the unrotated setting. In the equibiaxial test, the peak stress of 
442 kPa is also lower than two biaxial peak stresses of 966 kPa 
and 714 kPa of the unrotated setting. Taken together, our mea- 
surements confirm that knitted meshes display unique mechanical 
properties including an remarkable initial flexibility , a pronounced 
nonlinear stiffening , and an extreme anisotropy . To gain further in- 
sights into these characteristics, we now analyze the data using our 
constitutive neural networks and discover the two- and three-fiber 
models that best characterize our mesh. 
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Fig. 5. Biaxial test data during loading. Warp and shute stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top rows, and in the 
-45/+45 orientation, bottom row. Solid lines represent the means of n = 5 tests, shaded areas represent the standard deviations. 

Fig. 6. Biaxial test data during unloading. Stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top rows, and in the -45/+45 orienta- 
tion, bottom row. Solid lines represent the means of n = 5 tests, shaded areas represent the standard deviations. 
3.2. Two-fiber architecture 

First, we train the full network using the two-fiber architec- 
ture in Fig. 3 . We initialize the model parameters randomly and 
train the network without any regularization. Then, we use these 
trained parameters to re-initialize the parameters and train the 
network using L0 . 5 regularization with a regularization parameter 
α = 0 . 001 . We use data from all experiments for training. Fig. 7 
shows the discovered model, with the contributions of each dis- 

covered stress term in a different color. The network discovers 
four non-zero terms, one is the exponential linear first invariant 
I1 Demiray term [8] , one is a quadratic first invariant I1 term, and 
two are the exponential quadratic fourth warp and shute invariant 
I4 w and I4 s Holzapfel terms [16] , 
ψ = 1 

2 a1 [exp (b1 [ I1 − 3])−1] /b1 + 1 
2 µ1 [ I1 − 3]2 

+ 1 
2 a2 [exp (b2 [ I4 w − 1]2 )−1] /b2 + 1 

2 a3 [exp (b3 [ I4 s − 1]2 )−1] /b3 
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Table 2 
Biaxial test data. Stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top, and in the -45/+45 orientation, bottom. 
Stress values are the means of n = 5 loading and unloading tests. 

0/90 orientation 0/90 orientation 0/90 orientation 0/90 orientation 0/90 orientation 
strip-w off-w equi-biax off-s strip-s 

λw : λs = 1 . 10 : 1 . 00 λw : λs = 1 . 10 : 1 . 05 λw : λs = 1 . 10 : 1 . 10 λw : λs = 1 . 05 : 1 . 10 λw : λs = 1 . 00 : 1 . 10 
λw σw σs λw σw σs λw σw σs λs σw σs λs σw σs 
[- ] [kPa ] [kPa ] [- ] [kPa ] [kPa ] [- ] [kPa ] [kPa ] [- ] [kPa ] [kPa ] [- ] [kPa ] [kPa ] 
1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 
1.006 4.49 1.59 1.006 4.88 6.88 1.006 5.68 10.01 1.006 2.82 8.59 1.006 1.76 10.05 
1.013 7.12 2.70 1.013 8.82 11.91 1.013 10.11 18.32 1.013 5.41 16.36 1.013 3.00 17.28 
1.019 9.68 3.54 1.019 13.66 17.67 1.019 16.06 27.79 1.019 8.16 24.28 1.019 3.94 24.33 
1.025 12.93 4.72 1.025 19.45 23.20 1.025 24.63 38.59 1.025 11.59 33.14 1.025 5.11 31.47 
1.031 17.01 6.14 1.031 27.21 30.27 1.031 36.91 53.24 1.031 16.10 43.14 1.031 6.77 39.30 
1.038 22.62 7.97 1.038 38.38 39.25 1.038 55.25 71.20 1.038 21.61 54.36 1.038 8.79 47.74 
1.044 31.55 10.21 1.044 53.89 50.07 1.044 80.88 94.46 1.044 28.99 67.80 1.044 11.37 57.02 
1.050 44.58 13.31 1.050 74.58 62.77 1.050 114.03 122.29 1.050 38.82 84.24 1.050 14.41 67.33 
1.056 62.93 17.64 1.056 103.79 79.64 1.056 157.77 156.84 1.056 52.57 103.39 1.056 18.01 78.80 
1.063 86.50 23.21 1.063 140.76 99.45 1.063 213.88 198.11 1.063 69.17 126.07 1.063 23.21 91.84 
1.069 116.72 29.97 1.069 187.30 124.63 1.069 283.90 247.19 1.069 90.47 153.03 1.069 29.22 107.24 
1.075 155.29 39.31 1.075 247.71 156.25 1.075 370.58 306.65 1.075 119.61 185.94 1.075 36.77 124.38 
1.081 204.50 51.40 1.081 322.51 193.98 1.081 473.17 374.49 1.081 155.46 225.04 1.081 45.75 145.31 
1.088 269.71 67.25 1.088 421.10 240.98 1.088 598.90 456.81 1.088 203.65 275.28 1.088 57.79 171.06 
1.094 357.00 87.38 1.094 548.29 301.55 1.094 753.88 561.17 1.094 270.62 340.53 1.094 74.18 204.12 
1.100 484.04 115.51 1.100 724.81 385.76 1.100 966.14 714.12 1.100 365.55 437.14 1.100 96.21 256.15 

-45/ + 45 orientation -45/ + 45 orientation -45/ + 45 orientation -45/ + 45 orientation -45/ + 45 orientation 
strip-x off-x equi-biax off-y strip-y 

λx : λy = 1 . 10 : 1 . 00 λx : λy = 1 . 10 : 1 . 05 λx : λy = 1 . 10 : 1 . 10 λx : λy = 1 . 05 : 1 . 10 λx : λy = 1 . 00 : 1 . 05 
λx σx σy λx σx σy λx σx σy λy σx σy λy σx σy 
[−] [kPa ] [kPa ] [−] [kPa ] [kPa ] [−] [kPa ] [kPa ] [−] [kPa ] [kPa ] [−] [kPa ] [kPa ] 
1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 1.000 0.00 0.00 
1.006 9.70 2.08 1.006 8.78 6.80 1.006 9.96 9.96 1.006 6.80 8.78 1.006 2.08 9.70 
1.013 15.58 3.36 1.013 14.45 10.71 1.013 15.61 15.61 1.013 10.71 14.45 1.013 3.36 15.58 
1.019 20.89 4.33 1.019 19.82 14.15 1.019 21.62 21.62 1.019 14.15 19.82 1.019 4.33 20.89 
1.025 26.47 5.26 1.025 25.66 17.83 1.025 28.56 28.56 1.025 17.83 25.66 1.025 5.26 26.47 
1.031 32.24 6.31 1.031 31.86 21.74 1.031 36.47 36.47 1.031 21.74 31.86 1.031 6.31 32.24 
1.038 38.30 7.32 1.038 38.95 25.78 1.038 45.83 45.83 1.038 25.78 38.95 1.038 7.32 38.30 
1.044 45.41 8.44 1.044 47.91 30.97 1.044 58.50 58.50 1.044 30.97 47.91 1.044 8.44 45.41 
1.050 53.15 9.83 1.050 58.33 37.14 1.050 73.30 73.30 1.050 37.14 58.33 1.050 9.83 53.15 
1.056 62.09 11.48 1.056 70.30 44.19 1.056 91.43 91.43 1.056 44.19 70.30 1.056 11.48 62.09 
1.063 72.81 13.81 1.063 84.18 52.68 1.063 113.37 113.37 1.063 52.68 84.18 1.063 13.81 72.81 
1.069 85.34 16.47 1.069 101.18 62.96 1.069 138.85 138.85 1.069 62.96 101.18 1.069 16.47 85.34 
1.075 100.14 19.79 1.075 121.49 75.30 1.075 170.42 170.42 1.075 75.30 121.49 1.075 19.79 100.14 
1.081 117.90 23.78 1.081 146.91 90.74 1.081 211.22 211.22 1.081 90.74 146.91 1.081 23.78 117.90 
1.088 140.27 29.07 1.088 178.91 109.49 1.088 262.98 262.98 1.088 109.49 178.91 1.088 29.07 140.27 
1.094 169.38 36.57 1.094 223.03 136.23 1.094 328.39 328.39 1.094 136.23 223.03 1.094 36.57 169.38 
1.100 218.89 50.19 1.100 297.23 181.10 1.100 441.78 441.78 1.100 181.10 297.23 1.100 50.19 218.89 

where the stiffness-like parameters are a1 = 91.24 kPa, µ1 = 3794 
kPa, a2 = 3.31 kPa, a3 = 5.30 kPa, and the nonlinearity parameters 
are b1 = 0.17, b2 = 127.20, b3 = 94.68. Fig. 7 illustrates the dis- 
covered two-fiber model along with the biaxial test data. It high- 
lights four different terms in four characteristic colors and quanti- 
fies the goodness of all 15 fits in terms of the R2 values. The indi- 
vidual stress-stretch plots suggest that the discovered model per- 
forms fairly well on the experiments in the 0/90 orientation, but 
performs poorly on the strip-x experiment in the -45/+45 orien- 
tation, where it significantly under-predicts the x-stress and over- 
predicts the y-stress. This reduces the mean R2 value across all 
tests to 0.7573. 

Additionally, we train a subset of the network in Fig. 3 with 
only anisotropic terms. To do this, we constrain the weights of 
all eight isotropic terms to equal zero, w1 , . . . , w8 = 0 . We again 
use L0 . 5 regularization with a regularization parameter α = 0 . 001 
and use all data for training. Fig. 8 shows the discovered two- 
fiber model with no isotropic terms. The network discovers two 
anisotropic terms, both are the exponential linear Weiss terms 
[63] , one in the fourth warp invariant I4 w and one in the fourth 

shute invariant I4 s , 
ψ = 1 

2 a1 [exp (b1 [ I4 w − 1]) − 1] /b1 − 1 
2 a1 [ I4 w − 1] 

+ 1 
2 a2 [exp (b2 [ I4 s − 1]) − 1] /b2 − 1 

2 a2 [ I4 s − 1] 
with the two stiffness-like parameters a1 = 2.998 kPa, a2 = 9.811 
kPa, and the two nonlinearity parameters b1 = 21.07, b2 = 12.63. 
Notably, the fit of this model is extremely poor. The mean R2 value 
across all tests is as low as 0.5104, and five tests have R2 values 
of zero. We conclude that the orthotropic two-fiber model with 
no isotropic terms fails to accurately describe the behavior of the 
mesh. 

Next, instead of sparsifying the model and reducing the num- 
ber of terms with L0 . 5 regularization, we use L0 regularization to 
identify the best one- and two-term models by sampling all 14 sin- 
gle terms and all 91 pairs of two terms and minimizing the mean 
squared error of the 105 models. Fig. 9 shows the minimized loss 
for all 105 combination of terms with the one-term models on the 
diagonale and the two-term models off the diagonale. For the two- 
fiber architecture, the best-in-class two-term model consists of one 
isotropic term, the exponential linear first invariant I1 Demiray [8] , 
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Fig. 7. Discovered two-fiber model and biaxial test data. We train the two-fiber constitutive neural network from Fig. 3 on all 15 data sets and sparsify the discovered model 
with L0 . 5 regularization. The network discovers a four-term model with two isotropic terms and two anisotropic terms, which we plot in their characteristic colors. The R2 
values suggest that the discovered model performs decent on most of the tests in the 0/90 orientation, but performs particularly poorly on the strip-x experiment in the 
-45/+45 orientation where it underpredicts the x-stress and overpredicts the y-stress. The mean R2 value across all tests is 0.7573. 

Fig. 8. Discovered anisotropic two-fiber model and biaxial test data. We train the two-fiber constitutive neural network from Fig. 4 on all 15 data sets and constrain the 
weights for the isotropic terms to be zero. The network discovers a two-term model with one term that is a function of the fourth warp invariant I4 w and one that is a 
function of the fourth shute invariant I4 s , which we plot in their characteristic colors. The R2 values suggest that the discovered model performs poorly on most tests, with 
R2 values of zero for several tests. The mean R2 value across all tests is 0.5104. 
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Fig. 9. Best-in-class one- and two-term two-fiber models. All models are made up 
of 14 functional building blocks: linear, exponential linear, quadratic, and exponen- 
tial quadratic terms of the first invariant I1 , rows and columns 1 to 4, of the second 
invariant I2 , rows and columns 5 to 8, of the fourth warp invariant I4 w rows and 
columns 9 to 11, and of the fourth shute invariant I4 s rows and columns 12 to 14. 
The color code indicates the mean squared error of the 14 one-term models on the 
diagonale, and of the 91 two-term models on the off-diagonale, ranging from dark 
blue, best fit, to dark red, worst fit. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
and one anisotropic term, the exponential quadratic fourth warp 
invariant I4 w Holzapfel term [16] , 
ψ = 1 

2 a1 [exp (b1 [ I1 − 3]) − 1] /b1 
+ 1 

2 a2 [exp (b2 [ I4 w − 1]2 ) − 1] /b2 , 
with the two stiffness-like parameters a1 = 25.20 kPa and a2 = 
0.40 kPa, and the two nonlinearity parameters b1 = 17.30 and b2 
= 127.30, and achieves a training loss of 0.077. Strikingly, while the 
data suggest that the mesh is highly anisotropic, the models with 
only anisotropic terms perform the worst. 
3.3. Three-fiber architecture 

Second, we train the full network using the three-fiber archi- 
tecture in Fig. 4 . Again, we initialize the model parameters ran- 
domly and train the network without any regularization. Then, we 
use these trained parameters to re-initialize the parameters and 
train the network using L0 . 5 regularization with a regularization 
parameter α = 0 . 001 . We use data from all experiments for train- 
ing. Fig. 10 shows the discovered model, with the contributions of 
each discovered stress term in a different color. The network dis- 
covers three non-zero terms, one is the exponential quadratic first 
invariant I1 Holzapfel term [16] , and two are the exponential linear 
fourth warp and shute invariants I4 w and I4 sI and I4 sII Weiss terms 
[63] , 
ψ = 1 

2 a1 [exp (b1 [ I1 − 3]2 ) − 1] /b1 
+ 1 

2 a2 [exp (b2 [ I4 w − 1]) − 1] /b2 − 1 
2 a2 [ I4 w − 1] 

+ 1 
2 a3 [exp (b3 [ I4 sI ,I I − 1]) − 1] /b3 − 1 

2 a3 [ I4 sI ,I I − 1] 
where the stiffness-like parameters are a1 = 2427 kPa, a2 = 0.16 
kPa, a3 = 81.77 kPa, and the nonlinearity parameters are b1 = 
0.51, b2 = 37.65, b3 = 4.78. Fig. 10 shows the discovered three- 
fiber model along with the biaxial test data. Similar to the two- 
fiber model in Fig. 7 , the three-fiber model performs fairly well on 

the experiments in the 0/90 orientation. However, in contrast to 
the two-fiber model, the three-fiber model also performs well on 
the strip-x experiment in the +45/-45 orientation and achieves an 
R2 of 0.98 in the x-direction and 0.93 in the y-direction compared 
to the two-fiber model with only 0.67 in the x-direction and 0.10 
in the y-direction. Its mean R2 value across all tests is 0.8614. 

Additionally, we train a subset of the network in Fig. 4 with 
only anisotropic terms. Again, we constrain the weights of all eight 
isotropic terms to equal zero, w1 , . . . , w8 = 0 , use L0 . 5 regulariza- 
tion with α = 0 . 001 , and use all data for training. Fig. 11 shows 
the discovered three-fiber model with no isotropic terms. Similar 
to the two-term case, the network discovers two anisotropic terms, 
both are exponential linear Weiss terms [63] , one in the fourth 
warp invariant I4 w and one in the fourth shute invariants I4 sI and 
I4 sII , 
ψ = 1 

2 a1 [exp (b1 [ I4 w − 1]) − 1] /b1 − 1 
2 a1 [ I4 w − 1] 

+ 1 
2 a2 [exp (b2 (I4 sI ,I I − 1]) − 1] /b2 − 1 

2 a2 ] I4 sI ,I I − 1] 
with the two stiffness-like parameters, a1 = 1.26 kPa, a2 = 28.93 
kPa, and the two nonlinearity parameters b1 = 24.55, b2 = 7.20. 
Notably, the anisotropic three-fiber model in Fig. 11 with a mean 
R2 value of 0.8199 provides a much better fit to the data than 
the anisotropic two-fiber model in Fig. 8 with a mean R2 value of 
0.5104, and, without any isotropic terms, performs almost as good 
as the three-fiber model in Fig. 10 with a mean R2 value of 0.8614. 

Finally, we use L0 regularization to identify the best one- and 
two-term models by sampling all 14 single terms and all 91 pairs 
of two terms. Fig. 12 shows the minimized loss for all 105 com- 
bination of terms. The first eleven terms in the three-fiber archi- 
tecture are identical to the first eleven terms in the two-fiber ar- 
chitecture, which means the only difference between Figs. 9 and 
12 are the last three rows and columns associated with the shute 
invariants I4 sI and I4 sII . Interestingly, for the three-fiber architec- 
ture, the best-in-class two-term model is identical to the discov- 
ered non-isotropic model with two exponential linear Weiss terms 
[63] , one in the fourth warp invariant I4 w and one in the fourth 
shute invariants I4 sI and I4 sII , 
ψ = 1 

2 a1 [exp (b1 [ I4 w − 1]) − 1] /b1 − 1 
2 a1 [ I4 w − 1] 

+ 1 
2 a2 [exp (b2 (I4 sI ,I I − 1]) − 1] /b2 − 1 

2 a2 ] I4 sI ,I I − 1] 
with the two stiffness-like parameters, a1 = 1.26 kPa, a2 = 28.93 
kPa, and the two nonlinearity parameters b1 = 24.55, b2 = 7.20, 
and a training loss of 0.04. Strikingly, of all possible one- and two- 
term models, the best model characterizes the warp knitted mesh 
without any isotropic terms, and is exclusively made up of expo- 
nential linear terms of the squared stretches along the microstruc- 
tural directions of the mesh. 
3.4. Training and testing 

To demonstrate that our discovered models have predictive ca- 
pability beyond the data used in training, we train the network us- 
ing a subset of the data and use the remaining data to test model 
performance. Yet, rather than randomly partitioning the available 
data into a training and test sets, we choose each of the tests to 
either be entirely part of the training set or test set. This is be- 
cause the observations within a single test are highly correlated, 
and a constitutive model is most useful if it is capable of accu- 
rately predicting the resulting stress when the applied deformation 
takes a form that differs from the training data. We train the net- 
work with the three-fiber architecture from Fig. 4 using four differ- 
ent training sets: the first training set consists of all experiments, 
the second consists of only experiments in the 0/90 orientation; 
the third consists of only experiments in the +45/-45 orientation; 
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Fig. 10. Discovered three-fiber model and biaxial test data. We train the three-fiber constitutive neural network from Fig. 4 on all 15 data sets and sparsify the discovered 
model with L0 . 5 regularization. The network discovers a three-term model with one isotropic term and two anisotropic terms, which we plot in their characteristic colors. 
The R2 values suggest that the discovered model performs well on all fifteen tests. The mean R2 value across all tests is 0.8614. 

Fig. 11. Discovered anisotropic three-fiber model and biaxial test data. We train the three-fiber constitutive neural network from Fig. 4 on all 15 data sets and constrain the 
weights for the isotropic terms to be zero. The network discovers a two-term model with one term that is a function of the fourth warp invariant I4 w and one that is a 
function of the fourth shute invariants I4 sI and I4 sII , which we plot in their characteristic colors. The model that is discovered is very similar to the optimal two-term model 
shown in Fig. 12 . The R2 values suggest that, even without isotropic terms, the discovered model performs well across all fifteen tests. The mean R2 value across all tests is 
0.8199. 
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Fig. 12. Best-in-class one- and two-term three-fiber models. All models are made 
up of 14 functional building blocks: linear, exponential linear, quadratic, and expo- 
nential quadratic terms of the first invariant I1 , rows and columns 1 to 4, of the sec- 
ond invariant I2 , rows and columns 5 to 8, of the fourth warp invariant I4 w rows and 
columns 9 to 11, and of the fourth shute invariants I4 sI and I4 sII rows and columns 
12 to 14. The color code indicates the mean squared error of the 14 one-term mod- 
els on the diagonale, and of the 91 two-term models on the off-diagonale, ranging 
from dark blue, best fit, to dark red, worst fit. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.) 

Fig. 13. Performance of three-fiber network for four different training sets. The 
columns represent the four training sets: data from only the 0/90 orientation, data 
from only the +45/-45 orientation, all data, and all data except the strip-s data in 
the 0/90 orientation. The rows represent the coefficients of determination of the 
warp stress in the 0/90 orientation, the shute stress in the 0/90 orientation, and 
the x stress in the +45/-45 orientation. To accurately predict the stress in all load- 
ing conditions, the training set must include data from both the 0/90 and +45/-45 
orientations. 
and the fourth consists of all experiments except strip-shute load- 
ing in the 0/90 orientation. Fig. 13 shows the resulting coefficient 
of determination R2 for each stress-stretch curve when training the 
model on each of these four training sets. The figure illustrates that 
it is insufficient to train exclusively on the tests in the 0/90 orien- 
tation or on tests in the +45/-45 orientation; data from both orien- 
tations are essential to fully understand the constitutive behavior 

of our mesh. Notably, the model performance on the strip-shute 
tests when trained with all data except strip-shute is remarkably 
similar to the model performance when trained on all data. This 
suggests that the model is capable of extrapolating to unseen data, 
and shows that it does not overfit the training data. 
4. Discussion 

Synthetic meshes have unique mechanical properties, which 
make them ideal candidates for many engineering and medical ap- 
plications. The objective of this study was to provide insights into 
the mechanical signature of synthetic meshes using an integrative ap- 
proach that combines biaxial testing and automated model discovery. 
We prototyped this approach using a 0.5 mm thick warp knitted 
surgical mesh of extruded polypropylene. We tested the mesh in 
two different orientations, the 0/90 orientation with the loading 
axis aligned with the warp direction, and the -45/+45 orientation 
with the loading axis inclined by 45 degrees to the warp direction. 
We compared two families of microstructural models, a two-fiber 
model with a warp direction ⃗ w and one orthogonal shute direc- 
tion ⃗ s , and a three-fiber model with a warp direction ⃗ w and two 
symmetrical shute directions ⃗  sI and ⃗  sII inclined by 60 degrees. Our 
study confirms our intuition that knitted meshes display a remark- 
able initial flexibility , a pronounced nonlinear stiffening , and an ex- 
treme anisotropy . Beyond these expected observations, it also re- 
veals several exciting features of polypropylene meshes. 
Exponential linear fourth invariant terms dominate the consti- 
tutive response of polypropylene meshes . Throughout this study, 
we pursued different approaches to discover the best model and 
parameters to characterize textile structures. We trained a full 
neural network with fourteen independent terms and a subset 
of the network with only the six anisotropic terms, both for the 
two- and three-fiber model, with pronounced directions inclined 
by either 90 or 60 degrees. This allows us to discover the best 
model and parameters out of 214 = 16 , 384 and 26 = 64 possi- 
ble combinations of terms. Strikingly, one term reoccured consis- 
tently through automated model discovery: the exponential linear 
fourth invariant term, 1 

2 a [exp (b [ I4 − 1]) − 1] /b − 1 
2 a [ I4 − 1] . Orig- 

inally proposed for soft biological tissues [63] , this term is ideally 
suited to characterize the remarkable initial flexibility of the virgin 
mesh and the pronounced nonlinear stiffening as the loops of the 
mesh tighten upon loading. Of all four discovered models in Figs. 
7, 8, 10 , and 11 , three prominently feature this exponential linear 
fourth invariant term, both in the warp and shute directions I4 w 
and I4 s , highlighted through the turquoise and blue colors. We con- 
firm the dominance of these two terms with an entirely indepen- 
dent best-in-class modeling study in Figs. 9 and 12 that also iden- 
tifies the turquoise and blue terms to make up the best-in-class 
two-term model out of 91 possible two-term models, both for the 
two- and three-fiber microstructure. Interestingly, the full network 
model in Fig. 10 with a mean R2 value of 0.8614 performs only 
marginally better than the reduced network model in Fig. 11 with 
a mean R2 value of 0.8199. This suggest that we can confidently 
use the discovered two-term fourth-invariant model that features 
no isotropic terms to characterize the ultra-anisotropic nature of 
polypropylene meshes. 
Mixed invariant terms are critical to characterize the interac- 
tion of the warp and shute directions . To systematically explore 
the importance of the mixed invariant I8 ws , we studied two differ- 
ent microstructural models. Fig. 2 illustrates their two distinct mi- 
crostructures, which represent the loops of the mesh as through 
warp direction ⃗ w and the underlap through a single orthogonal 
shute direction ⃗ s or two shoot directions ⃗ sI and ⃗ sII , symmetrically 
offset by 60 degrees [21] . A direct comparison of the performance 
of our discovered two-fiber and three-fiber models in Figs. 7 and 
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10 suggests that incorporating detailed microstructural informa- 
tion along all three directions is critical for model accuracy [57] . 
In Fig. 7 , we can see that the two-fiber model significantly under- 
predicts the x-stress and over-predicts the y-stress for the strip-x 
experiment in the +45/-45 orientation. To show that this error is a 
direct consequence of the two-fiber model, we take a closer look at 
the anisotropic stress contributions. In particular, when the strain 
energy is not a function of I8 ws , the contribution of the anisotropic 
terms to the x- and y-stress in the +45/-45 orientation is Pani 

xx = 
λx (∂ψ /∂ I4 w + ∂ψ /∂ I4 s ) and Pani 

yy = λy (∂ψ /∂ I4 w + ∂ψ /∂ I4 s ) , thus, 
Pani 

xx /Pani 
yy = λx /λy . At maximum strip-x loading in the +45/-45 ori- 

entation, the stretches are λx = 1 . 1 and λy = 1 . 0 , such that λx /λy = 
1 . 1 , and the stresses are Pani 

xx = 219 kPa and Pani 
yy = 50 kPa, such 

that Pani 
xx /Pani 

yy = 4 . 38 . We can directly see this discrepancy in Fig. 8 , 
where the discovered model has an R2 value of zero for the x- 
stress in strip-x loading in the +45/-45 orientation. This suggests 
that an appropriate model for warp knitted meshes should indeed 
be a function of the mixed invariant I8 ws . If the strain energy ψ is a 
function of the mixed invariant I8 ws [34] , the derivative ∂ψ /∂ I8 ws 
contributes a positive component to Pani 

xx and a negative compo- 
nent to Pani 

yy . For positive mixed invariants, ∂ψ /∂ I8 ws > 0 , such that 
Pani 

xx ≥ Pani 
yy , and thus Pani 

xx /Pani 
yy ≥ λx /λy , which is what we observe 

in Table 2 . This observation is in line with several previous studies 
that have acknowledged the importance of the mixed invariant for 
double-fiber reinforced nonlinear elastic materials [36] . 
Understanding the shear response is critical to model textile 
structures . Even with an appropriate constitutive neural network 
that is informed by the microstructure of the mesh, our inabil- 
ity to measure shear strain in biaxial loading [10] results in a 
loss of model accuracy in certain loading modes. Most obviously, 
when comparing Figs. 7 and 10 , we notice that the model gen- 
erally under-predicts the shute and warp stresses in the 0/90 
orientation, and over-predicts the x- and y-stresses in the +45/- 
45 orientation. When taking a closer look at the states of maxi- 
mum deformation in equibiaxial loading, we see that when λw = 
λs = λ = 1 . 1 in the 0/90 orientation, the invariants and mixed 
invariants are identical to when λx = λy = λ = 1 . 1 in the +45/- 
45 orientation. In both cases, I1 = 2 λ2 + λ−4 and I2 = 2 λ−2 + λ4 
and I4 w = I4 s = λ2 and I8 ws = 0 . As a result, the strain energy 
ψ and its partial derivatives are identical in both cases. Thus, 
Pani 

ww = 2 λ∂ψ /∂ I4 w and Pani 
ss = 2 λ∂ψ /∂ I4 s and Pani 

xx = λ (∂ψ /∂ I4 w + 
∂ψ /∂ I4 s + ∂ψ /∂ I8 ws ) . Since I8 ws = 0 and ψ is an even function of 
I8 ws , by symmetry, we know that ∂ψ /∂ I8 ws = 0 , and thus, Pww + 
Pss = 2 Pxx . However, looking at the data, Pww + Pss = 996 kPa + 
714 kPa = 1710 kPa, while 2 Pxx = 884 kPa. This contradiction 
is triggered by our assumptions in Eqs. (5) and (16) that the 
deformation remains homogeneous and shear free at all times, 
such that the deformation gradient F remains diagonal, F f = 
diag { λx , λy , λ−1 

x λ−1 
y } . This condition holds for samples loaded in 

biaxial tension, if their microstructure is symmetric about the two 
loading directions. While this is true for isotropic materials in gen- 
eral, and it holds for orthotropic materials in the 0/90 configura- 
tion, it does not always hold for orthotropic materials in the +45/- 
45 configuration: Loading non-symmetrically mounted orthotropic 
materials in biaxial tension tests may actually result in non-zero 
shear strains [52] . Since the CellScale BioTester 50 0 0 grips the ma- 
terial using slender tines that are stiff in tension but compliant in 
bending, a more accurate boundary condition would be that the 
axial stretches are equal to the values measured by the device, and 
the shear stresses are equal to zero. In this case, the shear strains 
would be non-zero and would take the values that minimize the 
strain energy given the prescribed axial stretches in the two load- 
ing directions. This change would decrease the predicted strain en- 
ergy in the +45/-45 orientation, while leaving the strain energy 
in the 0/90 orientation unchanged. As a result, we would expect 

2 Pxx < Pww + Pss , which is indeed what we observe in Table 2 . To 
accurately incorporate this effect, we would need to measure the 
shear strain, which the CellScale BioTester 50 0 0 does not directly 
control or measure. 
Our networks reliably extrapolate to unseen data . Our study 
confirms, that with an appropriate microstructural representation, 
our constitutive neural network discovers generalizable anisotropic 
constitutive models, provided that we use training data from both 
the 0/90 and +45/-45 orientations. From the goodness-of-fit bar 
plots in Fig. 13 , it is clear that training on only data from the 0/90 
orientation results in inaccurate model predictions in the +45/-45 
orientation, and vice versa. This result is not surprising since cer- 
tain characteristics of the material are only active and visible in 
one of the two orientations. In particular, in the +45/-45 orienta- 
tion, by symmetry I4 w = I4 s for all loading states, which means that 
it is not possible to independently probe the I4 w and I4 s terms. 
Similarly, in the 0/90 orientation, I8 ws = 0 for all loading states 
of the two-fiber models, so we cannot measure the effect of I8 ws 
on the stress. Thus, the training data must consist of data from 
both orientations for the model to robustly predict stresses un- 
der all possible conditions. Another interesting observation from 
Fig. 13 is that, when training on all the available data except the 
strip-shute data in the 0/90 configuration, the discovered model 
achieves similar R2 values for the training and test data when 
compared to the model trained on all the data. This suggests that 
our model is not overfitting the data, and that when trained on 
a subset of data from both orientations, it is able to accurately 
predict the stresses for deformation states that we do not use in 
training. 
From model discovery to generative material design . Our consti- 
tutive neural networks in Figs. 3 and 4 solve the forward problem 
to discover the best model and parameters that describe a given ma- 
terial, in our case the textile microstructure. Inversely, we could 
use our constitutive neural networks and solve the inverse prob- 
lem to discover the best material for a given model and parameters, 
for example, a desired directional stiffness. 

Both problems combined represent a classical example for bidi- 
rectional learning where layer-wise relevance propagation can pro- 
vide insight into the forward problem of model discovery, whereas 
layer-wise relevance backpropagation can provide insight into the 
inverse problem of material discovery [2] . Alternatively, recent ad- 
vances in structural feature representation and generative neural 
networks now allow us to more efficiently design materials with 
tailored properties and functions. In materials science, generative 
neural networks are currently gaining immense popularity in the 
design of solid-state crystalline materials [65] , where the features 
that represent the crystalline microstructure are the atom type, the 
lattice vectors, and the atomic coordinates in the Euclidian space 
[43] . In textile science, these features naturally translate into yarn 
type, yarn angles, and knot or loop coordinates. Two popular and 
emerging models for inverse material design are variational au- 
toencoders and generative adversarial networks [64] . A variational 
autoencoder consists of an encoder that transforms the input sam- 
ple feature vector into the latent space where it generates the la- 
tent space vector z from a normal distribution N(σ , µ) and a de- 
coder that reconstructs the sample from the given hidden distribu- 
tion. A generative adversarial network consists of a generator that 
generates samples from random noise variables and a discrimina- 
tor that determines whether a sample is valid or invalid. Fig. 14 
compares the material design process with our constitutive neural 
network for forward model discovery and inverse material discov- 
ery with these two popular generative neural networks, variational 
autoencoders and generative adversarial networks. Adapting neural 
network modeling to design programmable textile metamaterials 
with tunable properties and functions would open unique oppor- 
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Fig. 14. Material design with generative neural networks. Constitutive neural net- 
works solve the forward problem to discover models and parameters for given mi- 
crostructures, and could solve the inverse problem to discover materials for given 
models and parameters. A variational autoencoder for generative material design 
combines an encoder to transform the input sample feature vector into the la- 
tent space where it generates the latent space vector z from a normal distribution 
N(σ , µ) and a decoder to reconstruct the sample from the given hidden distribution. 
A generative adversarial network for generative material design combines a generator 
to generate samples from random noise variables and a discriminator to determine 
whether a sample is valid or invalid. 
tunities in textile science with possible applications to wearable 
devices, stretchable electronics, and smart fabrics. 
Limitations and future directions . Our study presents a first step 
in characterizing textile structures using automated model dis- 
covery. Here we prototype this approach for a single warp knit- 
ted polypropylene mesh. While our experience with other mate- 
rial types [27,28,30,48] suggests that our approach will generalize 
naturally to other textile structures–woven, werf knitted or warp 
knitted–our current study has a few limitations that point towards 
future research directions: First, our current study is limited to 
the hyperelastic regime. However, we have recorded separate load- 
ing and unloading data and expanding the model discovery pro- 
cess the inelastic regime using viscoelastic [62] or general inelas- 
tic [15] constitutive artificial neural networks would be the next 
logical step. Second, our study focuses on characterizing the two- 
dimensional in-plane behavior or the fabric structure. Expanding 
it to a more physiological fully three-dimensional in- and out-of- 
plane characterization is conceptually possible, but would require 
additional tests, for example, the ball burst test that characterizes 
the indentation response of the fabric as a thin membrane [6] . 
Third, our biaxial test setup uses square samples mounted by tines 
or rakes [10] . Alternatively, we could have mounted the samples 
using clamps, and we plan to investigate the impact of different 
mounting techniques in a future study. Finally, our current study 
assumes a homogeneous shear free state. A possible future exten- 
sion would be to quantify shear strains using full field data from 
digital image correlation [1] and embed model discovery within 
the solution of real boundary value problems with possibly het- 
erogeneous stresses and stretches [11] . 
5. Conclusion 

Characterizing the mechanical properties of synthetic meshes 
is critical to understand their unique properties and functions. To 
date, identifying appropriate constitutive models for woven and 

knitted textiles poses a critical barrier to mechanically tailoring 
and fine-tuning these structures to individual needs. Machine- 
learning approaches can discover anisotropic constitutive models 
from biaxial data; yet, existing approaches are limited to train- 
ing data from a single mounting orientation. Here we show that 
this approach can result in superficial constitutive models that 
generalize poorly to unseen data. In contrast, the new approach 
we advocate here uses data from at least two different mount- 
ing orientations, and robustly discovers models that perform well 
during both training and testing. Importantly, our study shows 
that the accuracy of the discovered models is highly sensitive to 
an accurate representation of the microstructural architecture of 
the sample: Even if the textile fabric appears orthotropic at first 
glance, an accurate kinematic characterization of both warp and 
shute directions is critical to discover robust and reliable models. 
We demonstrate that these models are dominated by exponen- 
tial linear fourth invariant terms that uniquely capture the remark- 
able initial flexibility, pronounced nonlinear stiffening, and extreme 
anisotropy of warp knitted polypropylene meshes. We anticipate 
that the tools we have developed here will generalize naturally to 
other textile fabrics–woven or knitted, weft knit or warp knit, with 
laid-in stitches or plain, polymeric or metallic–and, ultimately, will 
enable the robust discovery of anisotropic constitutive models for 
a wide variety of textile structures. Beyond discovering constitu- 
tive models, we envision to exploit automated model discovery as 
a novel strategy for the generative material design of wearable de- 
vices, stretchable electronics, and smart fabrics, as programmable 
textile metamaterials with tunable properties and functions. 
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