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ABSTRACT

Textile fabrics have unique mechanical properties, which make them ideal candidates for many engi-
neering and medical applications: They are initially flexible, nonlinearly stiffening, and ultra-anisotropic.
Various studies have characterized the response of textile structures to mechanical loading; yet, our un-
derstanding of their exceptional properties and functions remains incomplete. Here we integrate biaxial
testing and constitutive neural networks to automatically discover the best model and parameters to
characterize warp knitted polypropylene fabrics. We use experiments from different mounting orienta-
tions, and discover interpretable anisotropic models that perform well during both training and testing.
Our study shows that constitutive models for warp knitted fabrics are highly sensitive to an accurate
representation of the textile microstructure, and that models with three microstructural directions out-
perform classical orthotropic models with only two in-plane directions. Strikingly, out of 2'* =16,384 pos-
sible combinations of terms, we consistently discover models with two exponential linear fourth invariant
terms that inherently capture the initial flexibility of the virgin mesh and the pronounced nonlinear stiff-
ening as the loops of the mesh tighten. We anticipate that the tools we have developed and prototyped
here will generalize naturally to other textile fabrics—woven or knitted, weft knit or warp knit, polymeric
or metallic-and, ultimately, will enable the robust discovery of anisotropic constitutive models for a wide
variety of textile structures. Beyond discovering constitutive models, we envision to exploit automated
model discovery as a novel strategy for the generative material design of wearable devices, stretchable
electronics, and smart fabrics, as programmable textile metamaterials with tunable properties and func-
tions. Our source code, data, and examples are available at https://github.com/LivingMatterLab/CANN.

Statement of significance

Textile structures are rapidly gaining popularity in many biomedical applications including tissue engi-
neering, wound healing, and surgical repair. A precise understanding of their unique mechanical proper-
ties is critical to tailor them to their specific functions. Here we integrate mechanical testing and machine
learning to automatically discover the best models for knitted polypropylene fabrics. We show that warp
knitted fabrics possess a complex symmetry with three distinct microstructural directions. Along these,
the behavior is dominated by an exponential linear term that characterize the initial flexibility of the vir-
gin mesh and the nonlinear stiffening as the loops of the fabric tighten. We expect that our technology
will generalize naturally to other fabrics and enable the robust discovery of complex anisotropic models
for a wide variety of textile structures.

© 2024 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.

1. Motivation

Synthetic meshes have unique mechanical properties [3], which
make them ideal candidates for many engineering and medical ap-
plications [19]: Under small deformations they display a remark-
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nounced nonlinear stiffening, and under varying loading scenarios,
they reveal an ultra-anisotropic response [18]. Their compliant na-
ture allows them to effortlessly undergo large deformations while
maintaining structural integrity [9]. Their inherent porosity encour-
ages fluid flow and nutrient exchange, crucial for many biolog-
ical or technical functions [41]. Their anisotropic nature enables
them to adapt and function effectively in complex dynamic en-
vironments [38]. Collectively, these unique features make meshes
highly suitable for a range of biomedical applications, including
surgical repair, drug delivery, wound healing, implant design, and
tissue engineering [37]. Beyond biomedicine, meshes are becoming
increasingly popular in other technical applications including fil-
tration systems, protective gear, flexible electronics, and structural
reinforcement [29].

The microstructure of the mesh is critical to its function. The
mechanical properties of the mesh directly affect how well it in-
tegrates within its environment, distributes stresses, and provides
structural support [7]. In fabric mechanics, we distinguish two fun-
damentally different types of meshes: woven and knitted [18].
The microstructure of woven fabrics consists of warp threads run-
ning lengthwise and shute or weft threads running widthwise. The
shute threads are woven over and under the warp threads inter-
lacing them at right angles to create a tight and stable grid-like
pattern with two orthogonal microstructural directions, the warp
direction w and the shute direction s. Along these directions, wo-
ven fabrics are rather stiff; off-set at 45 degrees, they are fairly
compliant, meaning they have a high tensile stiffness, but a low
shear stiffness [44]. The microstructure of knitted fabrics consists
of interlocking loops of yarn, creating a flexible and stretchable
textile structure that can easily adapt its shape and undergo large
deformations while maintaining structural integrity [24]. We dis-
tinguish two families of knitted structures: weft-knitted and warp
knitted [21]. The microstructure of weft knitted fabrics consists of
horizontal rows of interlocking loops. It is made by looping a single
yarn back and forth horizontally across the fabric width, creating
interconnected loops, row by row, with two orthogonal microstruc-
tural directions, the production or wale direction w and the yarn
direction s. Regardless of the direction of loading, weft knitted fab-
rics tend to be extremely extensible and dimensionally unstable
[55]. The microstructure of warp knitted fabrics consists of vertical
columns of interlocking loops. It is made by looping multiple par-
allel yarns vertically along the fabric length, zigzagging between
two neighboring columns, creating interconnected loops, column
by column, with the production or warp direction w and one or
multiple yarn directions s; and s;;. In the warp direction, warp-
knitted fabrics are fairly stiff; in the yarn directions, the stiffness
is tunable by the interlocking pattern [50]. Of the three different
microstructures in Fig. 1, warp knitted structures are the most tun-
able: The design space of a single loop spans 3 x 2 x 3 = 18 pos-
sibile configurations, three for the incoming yarn, two for the loop
itself-open or closed-, and three for the outgoing yarn [21]. For
warp knitted structures made with two guide bars, this already re-
sults in 18 x 18 = 324 possible combinations, and modern knitting
machines have four or more guide bars. This opens tremendous
opportunities to design warp knitted fabrics with mechanically-
guided microstructures and custom-designed properties [4].
Synthetic meshes play an integral role in surgical repair. Ini-
tially introduced for hernia repair in the 1950s, the primary goal
of synthetic meshes is to reinforce weakened or damaged struc-
tures and provide durable structural integrity. Hernia repair is a
common surgery, with more than 20 million procedures each year
[54]. In spite of this high prevalence, complications are relatively
common, with 11 percent of patients reporting postoperative ab-
dominal pain [42]. Hernia repairs use various methods to close the
wound in the abdominal wall, but the most common surgical in-

462

Acta Biomaterialia 189 (2024) 461-477

weft knitted

woven T_st
- ————
e S e E= e
SEmm e e e
el
e R R
e
- — —— — —
e e e e e

tW.  warp knitted s, -j&v Si

Fig. 1. Microstructure of woven, weft and warp knitted fabrics. Woven fabrics con-
sist of a series of parallel warp strands alternately passed over and under by a set of
parallel shute strands creating a microstructure with two orthogonal directions, the
warp direction w and the shute direction s. Knitted fabrics consists of continuous
filaments that are looped around one another. Weft knitted fabrics consists of hori-
zontal rows of interlocking loops creating a microstructure with two orthogonal di-
rections, the production or wale direction w and the yarn direction s. Warp knitted
fabrics consists of vertical columns of interlocking loops creating a microstructure
with a warp direction w and one or more yarn directions s; and s;;.

tervention is to suture a synthetic mesh over the wound [53]. In
addition to the surface properties of the mesh at the mesh tis-
sue interface that determine the durability of the reconstruction
[23], it is essential that the surgeon selects a mesh with appropri-
ate size, suture factors, and biomechanical properties [40]. A mis-
match between the mechanics of the mesh and the surrounding
tissue can increase the risk of postoperative failure [7]. To assess
the mechanical biocompatibility of a synthetic mesh, we must un-
derstand its mechanical properties [13]. Thus, there is a critical
need to develop constitutive models for synthetic meshes to bet-
ter understand how they interact with the surrounding tissue [31].
Here, as a first step, we limit this understanding to the hyperelastic
regime, and do not consider dynamic [20] or frictional [39] effects.
Within this regime, previous studies have performed biaxial testing
of various mesh patches [9]; however, these studies only extracted
a few phenomenological parameters and did not combine data
from multiple experiments into a unified mechanistic constitutive
model. The benefit of obtaining a fully three-dimensional hyper-
elastic constitutive model from experimental data is that such a
model would describe the stress state of the mesh induced by any
possible deformation, including complex states that we do not test
experimentally, but may well occur in vivo [51]. However, here
we will not follow the traditional approach, propose yet another
phenomenological model, and fit its parameters to data. Instead,
our objective is to discover a microstructurally motivated hyperelastic
constitutive model for warp-knitted fabrics and establish a robust set
of experimental and computational techniques to autonomously dis-
cover the best constitutive models and parameters for a variety of
woven, weft and warp knitted textile structures and other synthetic
microstructural materials.

Constitutive modeling requires deep expert knowledge. A con-
stitutive model aims to predict the internal stress state of a ma-
terial as a function of its strain. In particular, in developing elas-
tic constitutive models, we assume that the Piola stress tensor is
a function of the deformation gradient tensor [17]. There are vari-
ous approaches to infer this relationship between the deformation
gradient and the Piola stress from mechanical testing data. Classi-
cal approaches attempt to fit a few unknown parameters of well-
known phenomenological models such as the neo Hooke model
[60], the Lanir model [22], or the Demiray model [8]. The chal-
lenge with this approach is that it requires a profound domain ex-
pertise to select an appropriate model, and we may need to re-
peat model selection and parameter identification several times to
identify a model that fits the data well. Constitutive neural net-
works use physics-informed insights about constitutive models as
well as powerful deep learning methods to simultaneously discover
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the function form of the constitutive model and learn its appro-
priate parameters [26]. While the first family of constitutive neu-
ral networks only discovered isotropic models for materials such
as rubber [26], brain [27] or plant-based meat [47], more recent
networks can now discover transversely isotropic models for skin
[28] or arteries [45]. Here we explore how to expand constitutive
neural networks to discover more complex anistropic constitutive
models from biaxial extension data.

Constitutive neural networks can autonomously discover the
best model and parameters. A constitutive neural network is a
machine learning model that takes the deformation gradient as
an input and outputs the Piola stress for a specific material [25].
Constitutitve artificial neural networks take advantage of physical
laws and assumptions about the material to constrain the input-
output relationship that the network discovers, similar to physics-
informed neural networks [49]. However, constitutive neural net-
works differ from physics-informed neural networks, which alter
the loss function to satisfy physical laws. Instead, constitutive neu-
ral networks modify the architecture of the underlying machine
learning model such that, regardless of the model parameters, the
discovered model exactly satisfies the relevant physical laws [26].
The particular assumptions that motivate the design of hyperelas-
tic constitutive neural networks are material objectivity, thermody-
namic consistency, incompressibility, and material symmetry. Prior
work has enforced various forms of symmetry including isotropy
[26], transverse isotropy [28], and orthotropy [30]; here we as-
sume that warp-knitted meshes have either two or three charac-
teristic microstructural orientations in the plane of the mesh. Un-
like most previous work that trains anisotropic constitutive neural
networks exclusively by using homogeneous tests [58], we explore
how to use biaxial testing data when neither of the loading axes
are aligned with the symmetry planes of the material [52]. We ac-
knowledge that this violates the condition of homogeneity; yet, it
allows us to train our network with a broader class of deforma-
tions, and discover models that are more robust when predicting
stresses in response to deformation states that the network has
not previously seen during training [59]. Finally, while constitu-
tive neural networks are able to discover constitutive models by
selecting from a large set of possible strain energy functions, the
most useful constitutive models have only a small number of pa-
rameters and are therefore interpretable [5]. Various regularization
techniques can help reduce the number of non-zero parameters
without significantly sacrificing model accuracy [14]. Prior work
has shown that, when computationally tractable, Ly regularization
is the best method for identifying the optimal n-term model for
a fixed, small n [32]. When n is too large for L, optimization, L,
regularization with 0 < p < 1 can effectively reduce the number of
non-zero terms [46], without significantly decreasing model accu-
racy [12]. Here we will apply both approaches, compare the dis-
covered models, and make recommendations which regularization
to choose.

2. Methods
2.1. Experimental methods

We prepared samples from a 0.5 mm thick warp knitted sur-
gical mesh of extruded polypropylene designed for surgical repair
(PROLENE® Ethicon, Inc., Somerville, NJ), to test under biaxial load-
ing in a CellScale BioTester 5000. We define the warp direction of
the mesh as the direction along which the loops are aligned, which
is also the direction in which the mesh is stiffest.

We then define the shute directions in the plane of the mesh, ei-
ther as one direction orthogonal to the warp direction inclined by
90 degrees, or as two directions symmetrically inclined to the warp
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Fig. 2. Biaxial testing of the mesh in two orientations. The top row shows the two-
fiber model with one warp and one shute direction w and s, and the bottom row
shows the three-fiber model with one warp and two shute directions w and s; and
sy The left column illustrates the mesh in the 0/90 or 0/+60/-60 orientations, and
the right column illustrates the mesh in the -45/+45 or -45/+15/+75 orientations.

direction by 60 degrees. We cut the mesh into square sections two
different orientations: In the first orientation, which we denote as
the 0/90 orientation or 0/+60/-60 orientation, the sample is aligned
with the warp direction; in the second orientation, which we de-
note as the -45/+45 orientation or -45/+15/+75 orientation, the sides
of the sample are 45 degrees offset from the warp direction. Fig. 2
illustrates the samples of each orientation, mounted into the test-
ing device. In the 0/90 or 0/+60/-60 orientation, in the left column,
we place the tines of the biaxial testing device in the loops of the
mesh. To prevent the mesh from unravelling, we avoid placing the
tines in the row of loops that is closest to the edge of the sample.
In the -45/+45 or -45/+15/+75 orientation, in the right column, we
place the tines in the loops of the mesh where feasible, but due to
the geometry of the mesh not all tines fit exactly into a loop. To
reduce the likelihood of unraveling, we use a larger mesh area in
this orientation.

We test a total of ten samples, five for each orientation [10].
Once we mount each sample into the device, we apply a 30 mN
preload along both axes to establish a consistent reference config-
uration [61]. After preloading, we record the spacing between the
tines as the gauge length, and perform five consecutive tests with
30 seconds of rest between each test [33]. Each test consists of
linearly increasing the applied stretch for 100 seconds, followed by
linearly decreasing the applied stretch for 100 seconds until the
sample returns to its unstretched state. Table 1 summarizes the
maximum stretches in each direction for each of the five tests. We
perform all five tests on each of the ten samples. However, to min-
imize the effect of preload, we randomize the order of the tests for
each sample.

2.2. Stress and strain analysis

We process the data from the CellScale BioTester 5000 to obtain
the average Piola stress for given stretch values A; and A,. First,
we convert the force and displacement measurements to stresses
and stretches. To do so, we measured the sample thickness t with
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Table 1

Definition of five biaxial test settings. Maximum
stretches A; and A, for the five different tests of each
sample. We increase the stretch linearly for 100 sec-
onds until reaching the maximum stretch for each
test, then decrease it linearly for 100 seconds to
the undeformed configuration, and hold the sample
in the undeformed configuration for 30 seconds be-
tween consecutive tests. To minimize the effect of
preload, we randomize the order of the tests for each

sample.
experiment  max stretch Aq max stretch A,
strip-x 1.10 1.00
off-x 1.10 1.05
equibiax 1.10 1.10
off-y 1.05 1.10
strip-y 1.00 1.10

calipers and set the gauge lengths L; and L, to the initial spacing
between the tines in the 1- and 2-directions. Then, we computed
the stretches A; and A, and the Piola stresses P;; and P,5,

I E

A= - _ 2
=1 Lt

Ay = L (1)
where [; and [, are the measured gauge lengths and F; and F,
are the measured forces in the 1- and 2-directions. The result are
five loading and five unloading curves for each of the ten samples.
We resample and average all curves at equidistant stretch inter-
vals to obtain an averaged stress pair {Pj;, P,,} for each stretch pair
{A1,Ay}. Finally, for the samples mounted in the -45/+45 orienta-
tion, we use symmetry with respect to the diagonale and average

the ten recorded stress-stretch curves to five distinct curves.

2.3. Kinematics

We characterize the deformation through the mapping x =
@(X ) that maps a point X in the reference configuration to a point
x the deformed configuration. We then describe the local deforma-
tion using the deformation gradient,

F = Vxo(X). (2)

Multiplying F with its transpose F' introduces the symmetric right
Cauchy Green deformation tensor C,

C=F'F. (3)

To characterize the deformation of an orthotropic material, we
introduce the three isotropic invariants, Iy, I, I3, and a set of
anisotropic invariants, Iy;, Ig;; [35,56],

I =[F-F]:1 opl; =2F
L = %[I%—[Ft~F]:[Ft~F]] opb, = 2L1F —2F.F'.F
I; = det(Ft-F) =J? ol = det(F)F (4)
I = [F*-F]: [i; @ ;] Oply = 2F - [; @ fij]
Iyij=[F*-F]: [l @m]¥™  Oplyj=2F-[; @ A;]Y™],

where I is the identity tensor, n; with i,j=1,...,ng, are the

unit warp and shute directions in the undeformed reference con-
figuration, and ng;; is the number of microstructural directions of
our model. Since we are unable to measure the deformation in
the thickness direction of the mesh, we assume that the mesh
is perfectly incompressible, I3 = 1. In our biaxial extension tests,
we stretch the sample in two orthogonal directions, A > 1 and
Xy > 1. The incompressibility condition, I5 = 22 A3 12 =1, defines
the stretch in the thickness direction as A3 = (A; A5)~! < 1. We as-
sume that the deformation remains homogeneous and shear free,
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and the deformation gradient F remains diagonal,
F:diag{xl,xz, (xlxz)”}. (5)

Next, we specify the invariants (4) in terms of the stretches A; and
A, for two the microstructural architectures in Figs. 1 and 2, the
two-fiber model and the three-fiber model.

2.3.1. Two-fiber model

For the two-fiber model, we assume that we can represent the
mesh through two orthogonal fiber families, one in the warp direc-
tion w, and one in the shute direction s, inclined against the warp
direction by /2 = 90°,

w=[ cos (ay), sin (ozw),O]t
t

(6)

s = [—sin (aw), cos (aw).0]

where o, is the warp angle, the angle of the warp direction
against the 1-direction. We now specify the invariants (4) in terms
of the biaxial stretches A; and A, and the warp angle o,

b= 22422+ (MAy)

L =A2+172+ (A1k2)2

Lo = A3 cos? (o) + A3 sin? (ory) = A2
lss = A2sin® (o) + A2 cos? (o) = A2
Isws = (A3 — A3) sin () cos (ctw)

and take their derivatives,

1
Ay ha, (Mika)
MAZ+ AT A + AT AAg T + AT A

ol
Orly

= 2 diag
= 2 diag
OFlyy = 2 diag { A1c0s? (), A2sin? (ory), 0
A15in? (0ty), A2€0S% (atw), 0
—A18in (2ay), Az sin (2aw), 0} .

OFlss 2 diag

diag

aFISWS
(8)

Our two-fiber model has five distinct invariants, I;, I, Iy, lss, Igws,
where Iy, and I4 take the interpretation of the squared stretches
in the warp and shute directions A, and As, and Ig,,s character-
izes the interaction between the warp and shute directions. For the
special case of the 0/90 orientation, the anisotropic invariants are

I4w = )\% 145 = )\% (9)

and we already see that this setup is incapable of probing the in-
teraction between the warp and shute directions since Ig,,; = 0. For
the special case of the +45/-45 orientation, the anisotropic invari-
ants are

low=3 A+ 23] Ls=31A+A3] Isws=3[-A]+A3]  (10)

and we already see that this setup is incapable of distinguishing
between the warp and shute directions since I, = I4s.

ISWS = 0,

2.3.2. Three-fiber model
The potential shortcomings of the two-fiber model motivate a
more advanced three-fiber model with three fiber families, one in
the warp direction w, and two in the shute directions s; and sy,
symmetrically inclined against the warp direction by +m /3 = +60°
and - /3 = -60°,
]

0
0]

sy = [cos (o — §7),sin (aw—7),0]

w = [cos (aw), sin (o),

(11)

t
s = [cos (aw+ 3 7). sin (ot + 3 7). ‘
t
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where oy, denotes the warp angle against the 1-direction. We now
specify the invariants (4) in terms of the biaxial stretches A; and
A, and the warp angle oy,

L =A2+ 23+ (AMAy) 2
L =272+ 252 + (MA)?
law = A3 cos?(aw) + A3 sin® (aw) =A%
Iy, = A3 cos?(aw + 1) + A3 sin® (o + 3 71) = A2
lis, = A3 cos?(aw — 3 70) + 23 sin’ (o — § 1) =22,
Isws, = A2 cos(otw) cos(aty+3 70) + A3 sin(ony) 51n(aw+ 377)
Igws, = A% cos(ow) cos(aw—3 1) + A3 sin(ony) sin(onw— 1 )
Isss, = A% cos(ow+5 1) cos(otw— 3 77)

+ A2 sin(ow+3 ) sin(onw— 3 )

(12)

Our three-fiber model has eight distinct invariants, Iy, L, law, las,
Iasiy Isws» Iswsy» Isss;» Where Ly, s, lys, take the interpretation
of the squared stretches in the warp and shute directions Ay, As;,
Asy and Igys;, Igws,, Iss;s, characterizes the interaction between the
warp and shute directions. For the special case of the 0/+60/-60
orientation, the anisotropic invariants are

ALy = ia24322)
M M

a3t +333]
3lA3 =323,

Iy 14511

(13)

ISWS, = 18W5" = 18515,, =

and we notice the microstructural symmetry of the two shute di-
rections as lgs, = g, and Igys, = Igws,- For the special case of the
-45/+15/+75 orientation, the anisotropic invariants are

Lw =[+} A2 + [+3 143
= [k — 1313 4 [+d + 4314
L, = [+3+5V31A2 + [+1 - V3143 (14)
Iows, = [+7 = 3V3IA% + [+ + 3V3123
Isws, = [+% + V3122 + [+ - 13143
Igss, = [—% 122 4+ [—% 123,

and we immediately notice that the three-fiber model invariants
are much richer than the two-fiber model invariants.

2.4. Constitutive modeling

A constitutive model is a material-specific function that esti-
mates the stress in a material given its deformation history. In the
case of a hyperelastic constitutive model, the stress, in our case the
Piola stress P, only depends on the current deformation state, in
our case the deformation gradient F, such that P = P(F). To satisfy
thermodynamic consistency, we can express the stress as a func-
tion of the strain energy density ¢ as P = dvy/ (F)/dF, which we
reformulate in terms of our set of invariants ¥ (Iy, I, I3, I, Isij),

YAl Y oL ayal 8y dly | 9y
T 9L OF " 3k OF ' 9k OF ' 9l OF ' dly; OF -

(15)

where i, j=1,...,ng; is the number of microstructural directions
of our model. We explicitly enforce incompressibility by select-
ing the term in the third invariant as ¥ (I3) = —p [J— 1], such
that dy/dl3 - dl3/0F = —pF~t. Here p acts as a Lagrange multi-
plier that we determine from the zero-thickness-stress condition.

2.5. Biaxial testing

In biaxial extension tests, we stretch the sample in two or-
thogonal directions, A; > 1 and A, > 1, and, by incompressibility,
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A3 = (A Az2)"1 < 1. We assume that the deformation remains ho-
mogeneous and shear free, and that the resulting Piola stress P re-
mains diagonal,

P:diag{P11,P22,0}. (16)

We use the isotropic first and second invariants I = A% + A% +
(MAz)72 and L = A7? + 432 + (MAz)? from Eq. (7) and their
derivatives from Eq. (8) to determine the pressure p from the zero-
thickness-stress condition in the third direction,

Y 1 1

A2A2 BN
Egs. (15) and (17) then provide an explicit analytical expression for
the nominal stresses P;; and P, in terms of the stretches A; and
A, and the warp angle o,. We acknowledge that biaxial testing is
limited to characterize the stress-stretch behavior within the plane,
and does not allow us to make any assessment of the out-of-plane
behavior of the fabric.

oy

33 0 thus 812

P=2—5— (17)

2.5.1. Two-fiber model

For the two-fiber model, the free energy function is a function
of five terms, W = V¥ (1, b, Iy, Lus, Igys), and the nominal stresses
Py; and Py, have five terms, one for each invariant,

1 oy 1\oy
Py = 2()\.1 - )\_3)\,2> al; +2()\. )\,2 )812
oy
+2 Aqcos? (aw)a—+2A151n (aW)814
S
— Asinaw) BIW as)
1 oy oy
Py = 2(}\,2 - ) +2<)\,2)\2 )
A2A3 ) oL b
+2 Xy sin? (ozw)— + 2 A5 cos?(aty) a1
4s
+ Azsin(Rory) 8811”/
8ws

Here we make an important observation: Counterintuitively, the
eighth-invariant term, 0 /dlg,s contributes negatively to the
stresses in the 1-direction and positively to the stresses in the 2-
direction. This contradicts our general intuition, and potentially vi-
olates the condition of material symmetry. We therefore drop the
dependence on the eighth invariant and reduce our set of invari-
ants to four, ¥ = ¥ (I3, I, Iy, I45). For the special case of the 0/90
orientation, with oy, = 0 = 0°, the biaxial Piola stresses simplify
to

B 1 Blﬁ 2_ 1 oY oy
B 1 aw 3 1\oy oy
Py =2 )»2—7)\%)»% L, +2 }»)»2—73 8712+2)L28145'

For the special case of the -45/+45 orientation, with oy = -7 /4 =
—45°, the stresses are

1\ v v

el )i o)

)»?)»% oL al,
(200

3I4w 8145 (20)

5 1 \oy 22 Y

Py =2 2_7)\2)9 A +2 2—* L
v oy

+A <814w+ aI4s '
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2.5.2. Three-fiber model

For the three-fiber model, for similar reasons as above, we
drop the dependence on the eighth invariants and reduce our set
of invariants to five, ¥ =¥ (I1, I, law, lus; s, ). We now express
the fourth invariants of the three-fiber model, gy, lss, lss,, in
terms of the invariants of the two-fiber model, lay, lss, Igws, lao) =
Ly cos? (o) + I SinZ(Olo) + Igys sin(2a,) . For our specific three-
fiber model, with (o) = {w,s;, sy}, and «, = {0, +%71, —%n }, this
allows us express the nominal stresses Py; and Py, using Eq. (18),

Py — z(xl - @)%}f +2<M% B kl?)gl’f

+2 Ajcos? (aw)(g,liv + 411 3114{ % ;Z)

st (32 +322)

- s (Z LI -
2 = 2(*2 - A%lxg) ot 2<m2 ) ;> "

12 Aycos? (aw)(aa;j:v + 4112?11{, lgfi)

+2 Apsin? (aw) (i 3;{ % z?zi,)

_ Azsin(2aw)<f g,l/f - ? 881f> '

For the special case of the 0/+60/-60 orientation, with oy =07 =
0°, the biaxial Piola stresses become

_ 1 oy , 1 \oy
=2 ) 3 <20t ) 5
1 oy Yy Yy
+z“(4az4w+az45, 3l )
_ 1 \oy 2 1\oy
P22_2<)L2_)»%)»3>8I1+2<)L1)\'2_)\%)812

3. [0y
+§)L] (8145,+ >

For the special case of the -45/+15/+75 orientation, with oy =
—1 /4 = —45°, the biaxial Piola stresses are
) 7

oY

814511

1)y 1
Pu=2( A — gy ) +2( 203 - 5 ) 5
b (1 A;A%)Enl (12 22 ) o
Iy V3 ay V3
+<1+2>814s,+ 1-
19
+2<x3,\2—p> Ld
2

+Aq <8I4w
B 1 \oy
Pzz_z(“‘xfxg) £
V3\ oy V3
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kL
+Ao (31/[ +

aI4w (1 B

2.6. Constitutive neural networks

31”)
Oisi ) )

)_

.
0 14511

T2

Motivated by the previous considerations, we design two con-
stitutive neural networks to learn the free energy function ¥, a
two-fiber network based on four invariants and a three-fiber net-
work based on five invariants.
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Fig. 3. Two-fiber constitutive neural network. The network takes the two isotropic
invariants I; and I, and the two anisotropic invariants I, and I of the warp and
shute directions w and § as input. The first layer generates powers (o) and (o0)? of
the input and the second layer applies the identity (o) and exponential function
(exp(o)) to these powers. The network learns the free energy function ¥ as the
weighted sum of the final layer, from which it derives the stress P.

2.6.1. Two-fiber network

Our first neural network approximates a strain energy func-
tion in terms of four invariants I;, b, Iy, Iss and has 28 param-
eters or network weights, w = {wq, ..., Wig; Wi wi,}, 14 inter-
nal weights w; between its two hidden layers and 14 external
weights w; out of its final hidden layer. We assume that the in-
dividual contributions to the free energy are fully decoupled. For
the isotropic terms ¥ (I;) and ¥ (), we adapt an isotropic con-
stitutive neural network initially designed for rubber-like materi-
als [26]. For the anisotropic terms v (I4,,) and ¥ (I45), we adapt
an anisotropic constitutive neural network initially designed for ar-
teries [45], with the additional constraint that the linear and ex-
ponential linear terms in the warp direction, —wowj[lsy, — 1] and
wg[ exp(wj[ls — 1]) — 1], and in the shute direction, —w1 w3, [l4s —
1] and wyp[exp(wi,[ls — 1]) — 1], are not independent but share
the same weights [63]. The free energy function for the two-fiber
network takes the following explicit form,

.....

Y =wr wi [lI =3] +w; [exp(w; [ -3] ) —1]
+ws wi [l —3+ws [exp(w} [ —3]?) —1]
+ws wi [ 3] +ws [exp(wg [ —3] ) —1]
+wy; wy [, —3PP+ws [exp(wj [ —3]*) —1] (24)
— Wy Wy [l —1] +wy [exp(wg [lgw—1] ) —1]

+ Wio Wig [Law =112+ wny [exp(Wy; [Law —1]?) — 1]
— Wi Wi, [Igs —1] +wip[exp(wi, [lss —1] ) — 1]
+ Wiz Wig [Lss —11P4+wia[exp(Wiy [Ls —117) —1].

Fig. 3 summarizes the architecture of the two-fiber family consti-
tutive neural network.

2.6.2. Three-fiber architecture

Our second model architecture approximates a strain energy
function in terms of five invariants I, I, I4y, ls5, Issy and has 28
parameters or network weights, w = {wy, ..., Wig; W3 wi,}, 14
internal weights w; between its two hidden layers and 14 exter-
nal weights w; out of its final hidden layer. We use a similar neu-
ral network as before, and assume that the two shute directions $;
and s;; have the same microstructure and share the same weights

Wip, W13, Wyg and wi,, wi;, wi,. The free energy function for the

.....
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Fig. 4. Three-fiber constitutive neural network. The network takes the two isotropic
invariants I; and I, and the three anisotropic invariants I, and I, and I, of the
warp and shute directions w and §; and §j; as input. The first layer generates powers
(o) and (o)? of the input and the second layer applies the identity (o) and exponen-
tial function (exp(o)) to these powers. The network learns the free energy function
Y as the weighted sum of the final layer, from which it derives the stress P. We
assume that the two shute directions §; and s; have the same microstructure and
share the same weights.

three-fiber network takes the following explicit form,

Y=w wi [} -3] +w; [exp(w; [} -3])-1]
+ws wi [ =3P+ws [exp(w) [ -3]%)—1]
+ws wi [ —3] +we [exp(wg [ —-3])—1]
+wy; wy [l =32+ws [exp(w} [, —3])—1]
— Wy Wy [law —1] +wo [exp(wWg [law —1] ) — 1]

25
Wi Wiy [Law — 1P+ wy [exp(wi, g —12) —1] (2>

— Wi Wi, [lgs, —1] +wia[exp(wi, [lss, —1] ) — 1]
+ Wiz Wig [Las, =112+ wia [ exp(Wiy [lss, —1]%) — 1]
— Wia Wi, [lgs, —1] +wiz [ exp(wi, [lss, —1] ) — 1]
+ Wiz Wig [Lss, =112+ wia [ exp(Wiy [Lss, —11%) — 1].

Fig. 4 summarizes the architecture of the three-fiber family consti-
tutive neural network.

2.7. Model training

To discover models and parameters W=
{wi,....wig;wi, ..., wi,} that best describe our synthetic mesh,
we use the Adam optimizer to perform gradient descent on a
weighted least squared error loss function L that penalizes the
error between the discovered model P(F,, W) and the experimental

data P at i=1,...,ng,, discrete points, supplemented by Ly
regularization,
Ndata Y ) 2
LW F) = — W +L,(W) — min. (26)
Ndata i1 max w

To account for all experiments equally, we weigh the error of
each of the stress-stretch curve by the inverse of its maximum
stress Pmax [32]. For the Ly regularization, we supplement the loss
function by an «-weighted regularization term, Ly = o || W || with
[|W]|g = Z?;”l I(w; # 0), where I(o) is the indicator function that
is one if the condition inside the parenthesis is true and zero oth-
erwise. In practice, instead of solving the full discrete combinato-
rial problem and exploring all possible 2! = 16, 384 combinations
of terms, we only explore the weights and losses of the possible
14 one-term models and 91 two-term models by explicitly setting
all other terms to zero. For the Ly 5 regularization, we supplement
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the loss function by an a-weighted regularization, Lys = o || W ||8:§
with [|[w|$2 =314 \/TR(w;. wi)], where P is the color-coded
area of the stress contribution of the i-th term across all load-
ing modes that we compute by summing the strain energies at
the maximum displacement for each loading mode. The penalty
parameter ¢« sets the strength of the Lys regularization. We in-
crease o progressively until the fit of the model to the data starts
to become noticeably worse. To minimize the training time and
ensure that the initial model creates predictions that are of the
same order of magnitude as the data, we initialize all weights with
a uniform distribution W =~ Uniform([0, y)), where we choose y
such that, in expectation, the total area under the measured stress-
stretch curve equals the total area under the predicted stress-
stretch curve.

3. Results

We perform all experiments as described in Section 2.1 and
examine the data for each individual experiment. Figs. 5 and 6
show the loading and unloading curves for the 0/90 orientation
in the top two rows and for the -45/+45 orientation in the bot-
tom row. The solid lines represent the means of n =15 tests and
the shaded areas represent the standard deviations. In all experi-
ments, we observe significant hysteresis between the loading and
unloading curves. The stress remains constant during the thirty-
second holding between each experiment, from which we con-
clude that the difference in loading and unloading is a result of mi-
crostructural rearrangements of the mesh, rather than a viscous ef-
fect. For model discovery, for each experiment type, we extract the
stretches and average stresses across the n =5 tests during load-
ing and unloading and summarize the stretch-stress data of all ten
experiments in Table 2.

3.1. Mechanical signature of warp knitted fabric

All fifteen stress-stretch curves in Figs. 5 and 6 display a sim-
ilar trend: During the first half of the loading interval, the mesh
behaves very compliant and the recorded stresses remain low; dur-
ing the second half, the mesh stiffens and the stresses increase ex-
ponentially. Although present during both loading and unloading,
this trend is less visible in the loading curves in Fig. 5 than in the
unloading curves in Fig. 6, which also display smaller standard de-
viations. Intuitively, we expect the mesh to be stiffer in the warp
than in the shute direction and Figs. 5 and 6 and Table 2 confirm
our expectation: In the strip-w and strip-s tests, the peak warp
stress of 484 kPa is about twice as large as the peak shute stress
of 256 kPa. In the equibiaxial test, the peak warp stress of 966 kPa
is about one third larger than the peak shute stress of 714 kPa. We
also expect the mesh to be stiffer in the 0/90 orientation, for which
the loading axes are aligned with the warp and shute directions,
than in the -45/+45 orientation, for which the loading axes are ro-
tated by 45 degrees against the warp and shute directions. In the
strip-x and strip-y tests, the peak stress of 219 kPa is significantly
lower than either of the two peak stresses of 484 kPa and 256 kPa
of the unrotated setting. In the equibiaxial test, the peak stress of
442 kPa is also lower than two biaxial peak stresses of 966 kPa
and 714 kPa of the unrotated setting. Taken together, our mea-
surements confirm that knitted meshes display unique mechanical
properties including an remarkable initial flexibility, a pronounced
nonlinear stiffening, and an extreme anisotropy. To gain further in-
sights into these characteristics, we now analyze the data using our
constitutive neural networks and discover the two- and three-fiber
models that best characterize our mesh.
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Fig. 5. Biaxial test data during loading. Warp and shute stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top rows, and in the
-45/+45 orientation, bottom row. Solid lines represent the means of n =5 tests, shaded areas represent the standard deviations.
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Fig. 6. Biaxial test data during unloading. Stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top rows, and in the -45/+45 orienta-
tion, bottom row. Solid lines represent the means of n =5 tests, shaded areas represent the standard deviations.

3.2. Two-fiber architecture

First, we train the full network using the two-fiber architec-
ture in Fig. 3. We initialize the model parameters randomly and
train the network without any regularization. Then, we use these
trained parameters to re-initialize the parameters and train the
network using Ly s regularization with a regularization parameter
o =0.001. We use data from all experiments for training. Fig. 7
shows the discovered model, with the contributions of each dis-
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covered stress term in a different color. The network discovers
four non-zero terms, one is the exponential linear first invariant
I; Demiray term [8], one is a quadratic first invariant I; term, and
two are the exponential quadratic fourth warp and shute invariant
I4,, and I45 Holzapfel terms [16],

¥ = Sailexp(bill —3D—11/by + Ll - 3P
+ Sazlexp(ballaw — 112)~11/b2 + jas[exp(bs[Ls — 11%)—1]/b3
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Table 2

Biaxial test data. Stress-stretch data for strip-x, off-x, equibiax, off-y, and strip-y tests in the 0/90 orientation, top, and in the

Stress values are the means of n = 5 loading and unloading tests.
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-45/+45 orientation, bottom.

0/90 orientation

0/90 orientation

0/90 orientation

0/90 orientation

0/90 orientation

strip-w off-w equi-biax off-s strip-s
Aw i As=1.10:1.00 AwiAs=1.10:1.05 AwiAs=1.10:1.10 Aw:As=1.05:1.10 Aw i As=1.00:1.10

w Ow Os w Ow Os Aw Ow Os As Ow Os As Ow Os
[-] [kPa] [kPa] [-] [kPa] [kPa] [-] [kPa] [kPa] [-] [kPa] [kPa] [-] [kPa] [kPa]
1.000 0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00
1.006  4.49 1.59 1.006  4.88 6.88 1.006  5.68 10.01 1.006  2.82 8.59 1.006 1.76 10.05
1.013  7.12 2.70 1.013  8.82 11.91 1.013  10.11 18.32 1.013 541 16.36 1.013  3.00 17.28
1.019  9.68 3.54 1.019 13.66 17.67 1.019  16.06 27.79 1.019 8.16 24.28 1.019 394 24.33
1.025 1293 4.72 1.025 1945 23.20 1.025  24.63 38.59 1.025 11.59 33.14 1.025 5.11 31.47
1.031 17.01 6.14 1.031  27.21 30.27 1.031 3691 53.24 1.031 16.10 43.14 1.031  6.77 39.30
1.038  22.62 7.97 1.038  38.38 39.25 1.038  55.25 71.20 1.038  21.61 54.36 1.038  8.79 47.74
1.044 3155 10.21 1.044  53.89 50.07 1.044  80.88 94.46 1.044  28.99 67.80 1.044 1137 57.02
1.050 44.58 13.31 1.050  74.58 62.77 1.050 114.03 12229 1.050 38.82 84.24 1.050 1441 67.33
1.056  62.93 17.64 1.056  103.79  79.64 1.056  157.77 156.84 1.056  52.57 10339 1.056 18.01 78.80
1.063  86.50 23.21 1.063  140.76  99.45 1.063  213.88  198.11 1.063  69.17 126.07 1.063 2321 91.84
1.069 116.72  29.97 1.069 187.30 124.63 1.069 28390 247.19 1.069  90.47 153.03 1.069 2922 107.24
1.075 15529 39.31 1.075  247.71 156.25 1.075 37058 306.65 1.075 119.61 18594 1.075 36.77 124.38
1.081 20450 51.40 1.081  322.51 19398 1.081 473.17 37449 1.081 15546  225.04 1.081 4575 145.31
1.088  269.71 67.25 1.088  421.10 24098 1.088 59890 456.81 1.088  203.65 27528 1.088 57.79 171.06
1.094 357.00 87.38 1.094 54829 301.55 1.094 753.88 561.17 1.094 270.62 340.53 1.094 7418 204.12
1.100 484.04 115.51 1.100 72481 38576 1.100 966.14 714.12 1.100 36555 437.14 1.100 9621 256.15

-45/+45 orientation

strip-x

-45/+45 orientation

off-x

-45/+45 orientation
equi-biax

-45/+45 orientation

off-y

-45/+45 orientation

strip-y

AxiAy=1.10:1.00

AxiAy=1.10:1.05

AeiAy=110:1.10

AxiAy=1.05:1.10

AxiAy=1.00:1.05

Ax Oy oy Ax Oy oy Ax Oy oy Ay Oy oy Ay Oy oy

[-1] [kPa] [kPa] [-] [kPa] [kPa] [-] [kPa] [kPa] [-] [kPa] [kPa] [-1] [kPa] [kPa]
1.000  0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00 1.000  0.00 0.00
1.006  9.70 2.08 1.006 8.78 6.80 1.006  9.96 9.96 1.006  6.80 8.78 1.006  2.08 9.70
1.013  15.58 3.36 1.013 1445 10.71 1.013  15.61 15.61 1.013  10.71 14.45 1.013 336 15.58
1.019  20.89 4.33 1.019  19.82 14.15 1.019  21.62 21.62 1.019 14.15 19.82 1.019 433 20.89
1.025  26.47 5.26 1.025  25.66 17.83 1.025  28.56 28.56 1.025 17.83 25.66 1.025 5.26 26.47
1.031 32.24 6.31 1.031 31.86 21.74 1.031 3647 36.47 1.031 21.74 31.86 1.031 631 32.24
1.038 3830 7.32 1.038  38.95 25.78 1.038  45.83 45.83 1.038 2578 38.95 1.038 7.32 38.30
1.044 4541 8.44 1.044 4791 30.97 1.044  58.50 58.50 1.044  30.97 47.91 1.044 8.44 45.41
1.050 53.15 9.83 1.050 58.33 37.14 1.050  73.30 73.30 1.050 37.14 58.33 1.050 9.83 53.15
1.056  62.09 11.48 1.056  70.30 44.19 1.056  91.43 91.43 1.056  44.19 70.30 1.056 1148  62.09
1.063  72.81 13.81 1.063  84.18 52.68 1.063 11337 11337 1.063  52.68 84.18 1.063 13.81 7281
1.069 85.34 16.47 1.069 101.18 62.96 1.069 13885 138.85 1.069  62.96 101.18 1.069 1647 85.34
1.075 100.14  19.79 1.075 12149 7530 1.075 17042 17042 1.075 75.30 12149 1.075 19.79  100.14
1.081 117.90  23.78 1.081 146.91  90.74 1.081 211.22 21122 1.081 90.74 146.91 1.081 23.78 117.90
1.088  140.27  29.07 1.088 17891 109.49 1.088 26298 26298 1.088 109.49 17891 1.088  29.07 14027
1.094 16938  36.57 1.094 223.03 13623 1.094 32839 32839 1.094 13623 223.03 1.094 36.57 169.38
1.100 218.89  50.19 1.100 297.23  181.10 1.100 44178 44178 1.100 181.10 297.23 1.100 50.19  218.89

where the stiffness-like parameters are a; = 91.24 kPa, ; = 3794
kPa, a; = 3.31 kPa, as = 5.30 kPa, and the nonlinearity parameters
are by = 0.17, b, = 127.20, b3 = 94.68. Fig. 7 illustrates the dis-
covered two-fiber model along with the biaxial test data. It high-
lights four different terms in four characteristic colors and quanti-
fies the goodness of all 15 fits in terms of the R? values. The indi-
vidual stress-stretch plots suggest that the discovered model per-
forms fairly well on the experiments in the 0/90 orientation, but
performs poorly on the strip-x experiment in the -45/+45 orien-
tation, where it significantly under-predicts the x-stress and over-
predicts the y-stress. This reduces the mean R? value across all
tests to 0.7573.

Additionally, we train a subset of the network in Fig. 3 with
only anisotropic terms. To do this, we constrain the weights of
all eight isotropic terms to equal zero, wy,...,wg = 0. We again
use Lgs regularization with a regularization parameter « = 0.001
and use all data for training. Fig. 8 shows the discovered two-
fiber model with no isotropic terms. The network discovers two
anisotropic terms, both are the exponential linear Weiss terms
[63], one in the fourth warp invariant I, and one in the fourth
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shute invariant Iy,
¥ = laj[exp(bi[law — 1]) — 1]/b1 — a1 [Law — 1]
+ Ty [exp(ba[lss — 11) — 11/by — 35 [lss — 1]

with the two stiffness-like parameters a; = 2.998 kPa, a, = 9.811
kPa, and the two nonlinearity parameters by = 21.07, b, = 12.63.
Notably, the fit of this model is extremely poor. The mean R? value
across all tests is as low as 0.5104, and five tests have R? values
of zero. We conclude that the orthotropic two-fiber model with
no isotropic terms fails to accurately describe the behavior of the
mesh.

Next, instead of sparsifying the model and reducing the num-
ber of terms with Ly s regularization, we use Ly regularization to
identify the best one- and two-term models by sampling all 14 sin-
gle terms and all 91 pairs of two terms and minimizing the mean
squared error of the 105 models. Fig. 9 shows the minimized loss
for all 105 combination of terms with the one-term models on the
diagonale and the two-term models off the diagonale. For the two-
fiber architecture, the best-in-class two-term model consists of one
isotropic term, the exponential linear first invariant I; Demiray [8],
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Fig. 7. Discovered two-fiber model and biaxial test data. We train the two-fiber constitutive neural network from Fig. 3 on all 15 data sets and sparsify the discovered model
with Lys regularization. The network discovers a four-term model with two isotropic terms and two anisotropic terms, which we plot in their characteristic colors. The R?
values suggest that the discovered model performs decent on most of the tests in the 0/90 orientation, but performs particularly poorly on the strip-x experiment in the
-45(+45 orientation where it underpredicts the x-stress and overpredicts the y-stress. The mean R? value across all tests is 0.7573.
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Fig. 8. Discovered anisotropic two-fiber model and biaxial test data. We train the two-fiber constitutive neural network from Fig. 4 on all 15 data sets and constrain the
weights for the isotropic terms to be zero. The network discovers a two-term model with one term that is a function of the fourth warp invariant Iy, and one that is a
function of the fourth shute invariant Iy, which we plot in their characteristic colors. The R? values suggest that the discovered model performs poorly on most tests, with
R? values of zero for several tests. The mean R? value across all tests is 0.5104.
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Fig. 9. Best-in-class one- and two-term two-fiber models. All models are made up
of 14 functional building blocks: linear, exponential linear, quadratic, and exponen-
tial quadratic terms of the first invariant I;, rows and columns 1 to 4, of the second
invariant L, rows and columns 5 to 8, of the fourth warp invariant I, rows and
columns 9 to 11, and of the fourth shute invariant I4; rows and columns 12 to 14.
The color code indicates the mean squared error of the 14 one-term models on the
diagonale, and of the 91 two-term models on the off-diagonale, ranging from dark
blue, best fit, to dark red, worst fit. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

and one anisotropic term, the exponential quadratic fourth warp
invariant I, Holzapfel term [16],

¥ = ai [exp(bi[I; —3]) — 1]/by
+ 303 [exp(ba[law — 112) — 1]/bs,

with the two stiffness-like parameters a; = 25.20 kPa and a, =
0.40 kPa, and the two nonlinearity parameters by = 17.30 and b,
= 127.30, and achieves a training loss of 0.077. Strikingly, while the
data suggest that the mesh is highly anisotropic, the models with
only anisotropic terms perform the worst.

3.3. Three-fiber architecture

Second, we train the full network using the three-fiber archi-
tecture in Fig. 4. Again, we initialize the model parameters ran-
domly and train the network without any regularization. Then, we
use these trained parameters to re-initialize the parameters and
train the network using Lys regularization with a regularization
parameter o = 0.001. We use data from all experiments for train-
ing. Fig. 10 shows the discovered model, with the contributions of
each discovered stress term in a different color. The network dis-
covers three non-zero terms, one is the exponential quadratic first
invariant I; Holzapfel term [16], and two are the exponential linear
fourth warp and shute invariants Iy, and Iy and I, Weiss terms
[63],

Ip’:
+
+

sai[exp(bi [l — 31*) — 1]/b;

3a2[exp(by[law — 1]) — 11/by — Saz[law — 1]
yas[exp(bs[ls, — 1]) — 11/bs — Yas[lss, — 1]

where the stiffness-like parameters are a; = 2427 kPa, a, = 0.16
kPa, as 81.77 kPa, and the nonlinearity parameters are b,
0.51, b, = 37.65, b3 = 4.78. Fig. 10 shows the discovered three-

fiber model along with the biaxial test data. Similar to the two-
fiber model in Fig. 7, the three-fiber model performs fairly well on
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the experiments in the 0/90 orientation. However, in contrast to
the two-fiber model, the three-fiber model also performs well on
the strip-x experiment in the +45/-45 orientation and achieves an
R? of 0.98 in the x-direction and 0.93 in the y-direction compared
to the two-fiber model with only 0.67 in the x-direction and 0.10
in the y-direction. Its mean R? value across all tests is 0.8614.

Additionally, we train a subset of the network in Fig. 4 with
only anisotropic terms. Again, we constrain the weights of all eight
isotropic terms to equal zero, wq,...,wg =0, use Lgs regulariza-
tion with o = 0.001, and use all data for training. Fig. 11 shows
the discovered three-fiber model with no isotropic terms. Similar
to the two-term case, the network discovers two anisotropic terms,
both are exponential linear Weiss terms [63], one in the fourth
warp invariant Iy, and one in the fourth shute invariants Iy, and
Las;»

Y = 3a; [exp(by[law — 1]) — 11/by — 3ay [law — 1]

- 2
]]) - 1]/b2 - %(12 ]I4S:.u* 1]

+ %az [exp(b, (g5, —
with the two stiffness-like parameters, a; = 1.26 kPa, a, = 28.93
kPa, and the two nonlinearity parameters by = 24.55, b, = 7.20.
Notably, the anisotropic three-fiber model in Fig. 11 with a mean
R? value of 0.8199 provides a much better fit to the data than
the anisotropic two-fiber model in Fig. 8 with a mean R? value of
0.5104, and, without any isotropic terms, performs almost as good
as the three-fiber model in Fig. 10 with a mean R? value of 0.8614.

Finally, we use Ly regularization to identify the best one- and
two-term models by sampling all 14 single terms and all 91 pairs
of two terms. Fig. 12 shows the minimized loss for all 105 com-
bination of terms. The first eleven terms in the three-fiber archi-
tecture are identical to the first eleven terms in the two-fiber ar-
chitecture, which means the only difference between Figs. 9 and
12 are the last three rows and columns associated with the shute
invariants Iy, and lss,. Interestingly, for the three-fiber architec-
ture, the best-in-class two-term model is identical to the discov-
ered non-isotropic model with two exponential linear Weiss terms
[63], one in the fourth warp invariant Iy, and one in the fourth
shute invariants Is5; and Iy,

¥ = laj[exp(bi[law — 1]) — 1]/b1 — a1 [Law — 1]
+ a; [exp(by(lss,, — 1]) = 1]/by — 305 llas,, — 1]

with the two stiffness-like parameters, a; = 1.26 kPa, a, = 28.93
kPa, and the two nonlinearity parameters b; = 24.55, b, = 7.20,
and a training loss of 0.04. Strikingly, of all possible one- and two-
term models, the best model characterizes the warp knitted mesh
without any isotropic terms, and is exclusively made up of expo-
nential linear terms of the squared stretches along the microstruc-
tural directions of the mesh.

3.4. Training and testing

To demonstrate that our discovered models have predictive ca-
pability beyond the data used in training, we train the network us-
ing a subset of the data and use the remaining data to test model
performance. Yet, rather than randomly partitioning the available
data into a training and test sets, we choose each of the tests to
either be entirely part of the training set or test set. This is be-
cause the observations within a single test are highly correlated,
and a constitutive model is most useful if it is capable of accu-
rately predicting the resulting stress when the applied deformation
takes a form that differs from the training data. We train the net-
work with the three-fiber architecture from Fig. 4 using four differ-
ent training sets: the first training set consists of all experiments,
the second consists of only experiments in the 0/90 orientation;
the third consists of only experiments in the +45/-45 orientation;
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Fig. 10. Discovered three-fiber model and biaxial test data. We train the three-fiber constitutive neural network from Fig. 4 on all 15 data sets and sparsify the discovered
model with Lys regularization. The network discovers a three-term model with one isotropic term and two anisotropic terms, which we plot in their characteristic colors.
The R? values suggest that the discovered model performs well on all fifteen tests. The mean R? value across all tests is 0.8614.
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Fig. 11. Discovered anisotropic three-fiber model and biaxial test data. We train the three-fiber constitutive neural network from Fig. 4 on all 15 data sets and constrain the
weights for the isotropic terms to be zero. The network discovers a two-term model with one term that is a function of the fourth warp invariant I, and one that is a
function of the fourth shute invariants I, and Iy, which we plot in their characteristic colors. The model that is discovered is very similar to the optimal two-term model
shown in Fig. 12. The R? values suggest that, even without isotropic terms, the discovered model performs well across all fifteen tests. The mean R? value across all tests is

0.8199.
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Fig. 12. Best-in-class one- and two-term three-fiber models. All models are made
up of 14 functional building blocks: linear, exponential linear, quadratic, and expo-
nential quadratic terms of the first invariant I;, rows and columns 1 to 4, of the sec-
ond invariant I, rows and columns 5 to 8, of the fourth warp invariant I, rows and
columns 9 to 11, and of the fourth shute invariants I, and I, rows and columns
12 to 14. The color code indicates the mean squared error of the 14 one-term mod-
els on the diagonale, and of the 91 two-term models on the off-diagonale, ranging
from dark blue, best fit, to dark red, worst fit. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 13. Performance of three-fiber network for four different training sets. The
columns represent the four training sets: data from only the 0/90 orientation, data
from only the +45/-45 orientation, all data, and all data except the strip-s data in
the 0/90 orientation. The rows represent the coefficients of determination of the
warp stress in the 0/90 orientation, the shute stress in the 0/90 orientation, and
the x stress in the +45/-45 orientation. To accurately predict the stress in all load-
ing conditions, the training set must include data from both the 0/90 and +45/-45
orientations.

and the fourth consists of all experiments except strip-shute load-
ing in the 0/90 orientation. Fig. 13 shows the resulting coefficient
of determination R? for each stress-stretch curve when training the
model on each of these four training sets. The figure illustrates that
it is insufficient to train exclusively on the tests in the 0/90 orien-
tation or on tests in the +45/-45 orientation; data from both orien-
tations are essential to fully understand the constitutive behavior
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of our mesh. Notably, the model performance on the strip-shute
tests when trained with all data except strip-shute is remarkably
similar to the model performance when trained on all data. This
suggests that the model is capable of extrapolating to unseen data,
and shows that it does not overfit the training data.

4. Discussion

Synthetic meshes have unique mechanical properties, which
make them ideal candidates for many engineering and medical ap-
plications. The objective of this study was to provide insights into
the mechanical signature of synthetic meshes using an integrative ap-
proach that combines biaxial testing and automated model discovery.
We prototyped this approach using a 0.5 mm thick warp knitted
surgical mesh of extruded polypropylene. We tested the mesh in
two different orientations, the 0/90 orientation with the loading
axis aligned with the warp direction, and the -45/+45 orientation
with the loading axis inclined by 45 degrees to the warp direction.
We compared two families of microstructural models, a two-fiber
model with a warp direction w and one orthogonal shute direc-
tion $, and a three-fiber model with a warp direction w and two
symmetrical shute directions $; and $j; inclined by 60 degrees. Our
study confirms our intuition that knitted meshes display a remark-
able initial flexibility, a pronounced nonlinear stiffening, and an ex-
treme anisotropy. Beyond these expected observations, it also re-
veals several exciting features of polypropylene meshes.

Exponential linear fourth invariant terms dominate the consti-
tutive response of polypropylene meshes. Throughout this study,
we pursued different approaches to discover the best model and
parameters to characterize textile structures. We trained a full
neural network with fourteen independent terms and a subset
of the network with only the six anisotropic terms, both for the
two- and three-fiber model, with pronounced directions inclined
by either 90 or 60 degrees. This allows us to discover the best
model and parameters out of 2 = 16,384 and 2% =64 possi-
ble combinations of terms. Strikingly, one term reoccured consis-
tently through automated model discovery: the exponential linear
fourth invariant term, } alexp(b[ly — 1]) — 1]/b— } a[ls — 1]. Orig-
inally proposed for soft biological tissues [63], this term is ideally
suited to characterize the remarkable initial flexibility of the virgin
mesh and the pronounced nonlinear stiffening as the loops of the
mesh tighten upon loading. Of all four discovered models in Figs.
7, 8, 10, and 11, three prominently feature this exponential linear
fourth invariant term, both in the warp and shute directions I4,,
and I4, highlighted through the turquoise and blue colors. We con-
firm the dominance of these two terms with an entirely indepen-
dent best-in-class modeling study in Figs. 9 and 12 that also iden-
tifies the turquoise and blue terms to make up the best-in-class
two-term model out of 91 possible two-term models, both for the
two- and three-fiber microstructure. Interestingly, the full network
model in Fig. 10 with a mean R? value of 0.8614 performs only
marginally better than the reduced network model in Fig. 11 with
a mean R? value of 0.8199. This suggest that we can confidently
use the discovered two-term fourth-invariant model that features
no isotropic terms to characterize the ultra-anisotropic nature of
polypropylene meshes.

Mixed invariant terms are critical to characterize the interac-
tion of the warp and shute directions. To systematically explore
the importance of the mixed invariant Ig,,, we studied two differ-
ent microstructural models. Fig. 2 illustrates their two distinct mi-
crostructures, which represent the loops of the mesh as through
warp direction w and the underlap through a single orthogonal
shute direction § or two shoot directions $; and §j;, symmetrically
offset by 60 degrees [21]. A direct comparison of the performance
of our discovered two-fiber and three-fiber models in Figs. 7 and
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10 suggests that incorporating detailed microstructural informa-
tion along all three directions is critical for model accuracy [57].
In Fig. 7, we can see that the two-fiber model significantly under-
predicts the x-stress and over-predicts the y-stress for the strip-x
experiment in the +45/-45 orientation. To show that this error is a
direct consequence of the two-fiber model, we take a closer look at
the anisotropic stress contributions. In particular, when the strain
energy is not a function of Ig,, the contribution of the anisotropic
terms to the x- and y-stress in the +45/-45 orientation is P2l
Ax(0Yr /014y, + 0 /0145) and P;y“i = Ay (0 /014y + 0 /0ly5), thus,
P /PAM = ).x/Ay. At maximum strip-x loading in the +45/-45 ori-
entation, the stretches are Ay = 1.1 and Ay = 1.0, such that Ay/Ay =
1.1, and the stresses are P3N =219 kPa and Pyl = 50 kPa, such
that P /P3t = 4.38. We can directly see this discrepancy in Fig. 8,
where the discovered model has an R? value of zero for the x-
stress in strip-x loading in the +45/-45 orientation. This suggests
that an appropriate model for warp knitted meshes should indeed
be a function of the mixed invariant Ig,,. If the strain energy v is a
function of the mixed invariant Ig,,s [34], the derivative dv//0lg,s
contributes a positive component to P& and a negative compo-
nent to P)‘}}E‘i. For positive mixed invariants, d1//dlg,s > 0, such that
Pant > pani, and thus P3M/Pant > Ax/Ay, which is what we observe
in Table 2. This observation is in line with several previous studies
that have acknowledged the importance of the mixed invariant for
double-fiber reinforced nonlinear elastic materials [36].

Understanding the shear response is critical to model textile
structures. Even with an appropriate constitutive neural network
that is informed by the microstructure of the mesh, our inabil-
ity to measure shear strain in biaxial loading [10] results in a
loss of model accuracy in certain loading modes. Most obviously,
when comparing Figs. 7 and 10, we notice that the model gen-
erally under-predicts the shute and warp stresses in the 0/90
orientation, and over-predicts the x- and y-stresses in the +45/-
45 orientation. When taking a closer look at the states of maxi-
mum deformation in equibiaxial loading, we see that when A, =
As=A=1.1 in the 0/90 orientation, the invariants and mixed
invariants are identical to when Ay =iy =1 =1.1 in the +45/-
45 orientation. In both cases, I; =2A%2 +A~% and I, =212 4+ 24
and Iy, =l =A% and Ig,s =0. As a result, the strain energy
Y and its partial derivatives are identical in both cases. Thus,
P@r‘}\} =2A 81&/314\,‘, and Psasni =2\ 81)0/3145 and P;Xni =A (81#/314‘,\, +
0y /01y + 0 /lgys). Since Igys = 0 and ¥ is an even function of
Igws, by symmetry, we know that dvr/dlg,s =0, and thus, Pyw +
Pss = 2 Px. However, looking at the data, Pyw + PBs = 996 kPa +
714 kPa = 1710 kPa, while 2Py =884 kPa. This contradiction
is triggered by our assumptions in Eqs. (5) and (16) that the
deformation remains homogeneous and shear free at all times,
such that the deformation gradient F remains diagonal, Ff =
diag { Ax. Ay. Ay'A; 1 }. This condition holds for samples loaded in
biaxial tension, if their microstructure is symmetric about the two
loading directions. While this is true for isotropic materials in gen-
eral, and it holds for orthotropic materials in the 0/90 configura-
tion, it does not always hold for orthotropic materials in the +45/-
45 configuration: Loading non-symmetrically mounted orthotropic
materials in biaxial tension tests may actually result in non-zero
shear strains [52]. Since the CellScale BioTester 5000 grips the ma-
terial using slender tines that are stiff in tension but compliant in
bending, a more accurate boundary condition would be that the
axial stretches are equal to the values measured by the device, and
the shear stresses are equal to zero. In this case, the shear strains
would be non-zero and would take the values that minimize the
strain energy given the prescribed axial stretches in the two load-
ing directions. This change would decrease the predicted strain en-
ergy in the +45/-45 orientation, while leaving the strain energy
in the 0/90 orientation unchanged. As a result, we would expect
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2P < Pyw + P, which is indeed what we observe in Table 2. To
accurately incorporate this effect, we would need to measure the
shear strain, which the CellScale BioTester 5000 does not directly
control or measure.

Our networks reliably extrapolate to unseen data. Our study
confirms, that with an appropriate microstructural representation,
our constitutive neural network discovers generalizable anisotropic
constitutive models, provided that we use training data from both
the 0/90 and +45/-45 orientations. From the goodness-of-fit bar
plots in Fig. 13, it is clear that training on only data from the 0/90
orientation results in inaccurate model predictions in the +45/-45
orientation, and vice versa. This result is not surprising since cer-
tain characteristics of the material are only active and visible in
one of the two orientations. In particular, in the +45/-45 orienta-
tion, by symmetry Iy, = I4s for all loading states, which means that
it is not possible to independently probe the I, and I4 terms.
Similarly, in the 0/90 orientation, Ig,s =0 for all loading states
of the two-fiber models, so we cannot measure the effect of Ig,
on the stress. Thus, the training data must consist of data from
both orientations for the model to robustly predict stresses un-
der all possible conditions. Another interesting observation from
Fig. 13 is that, when training on all the available data except the
strip-shute data in the 0/90 configuration, the discovered model
achieves similar R? values for the training and test data when
compared to the model trained on all the data. This suggests that
our model is not overfitting the data, and that when trained on
a subset of data from both orientations, it is able to accurately
predict the stresses for deformation states that we do not use in
training.

From model discovery to generative material design. Our consti-
tutive neural networks in Figs. 3 and 4 solve the forward problem
to discover the best model and parameters that describe a given ma-
terial, in our case the textile microstructure. Inversely, we could
use our constitutive neural networks and solve the inverse prob-
lem to discover the best material for a given model and parameters,
for example, a desired directional stiffness.

Both problems combined represent a classical example for bidi-
rectional learning where layer-wise relevance propagation can pro-
vide insight into the forward problem of model discovery, whereas
layer-wise relevance backpropagation can provide insight into the
inverse problem of material discovery [2]. Alternatively, recent ad-
vances in structural feature representation and generative neural
networks now allow us to more efficiently design materials with
tailored properties and functions. In materials science, generative
neural networks are currently gaining immense popularity in the
design of solid-state crystalline materials [65], where the features
that represent the crystalline microstructure are the atom type, the
lattice vectors, and the atomic coordinates in the Euclidian space
[43]. In textile science, these features naturally translate into yarn
type, yarn angles, and knot or loop coordinates. Two popular and
emerging models for inverse material design are variational au-
toencoders and generative adversarial networks [64]. A variational
autoencoder consists of an encoder that transforms the input sam-
ple feature vector into the latent space where it generates the la-
tent space vector z from a normal distribution N(o, ;) and a de-
coder that reconstructs the sample from the given hidden distribu-
tion. A generative adversarial network consists of a generator that
generates samples from random noise variables and a discrimina-
tor that determines whether a sample is valid or invalid. Fig. 14
compares the material design process with our constitutive neural
network for forward model discovery and inverse material discov-
ery with these two popular generative neural networks, variational
autoencoders and generative adversarial networks. Adapting neural
network modeling to design programmable textile metamaterials
with tunable properties and functions would open unique oppor-
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Fig. 14. Material design with generative neural networks. Constitutive neural net-
works solve the forward problem to discover models and parameters for given mi-
crostructures, and could solve the inverse problem to discover materials for given
models and parameters. A variational autoencoder for generative material design
combines an encoder to transform the input sample feature vector into the la-
tent space where it generates the latent space vector z from a normal distribution
N(o, i) and a decoder to reconstruct the sample from the given hidden distribution.
A generative adversarial network for generative material design combines a generator
to generate samples from random noise variables and a discriminator to determine
whether a sample is valid or invalid.

valid

tunities in textile science with possible applications to wearable
devices, stretchable electronics, and smart fabrics.

Limitations and future directions. Our study presents a first step
in characterizing textile structures using automated model dis-
covery. Here we prototype this approach for a single warp knit-
ted polypropylene mesh. While our experience with other mate-
rial types [27,28,30,48] suggests that our approach will generalize
naturally to other textile structures-woven, werf knitted or warp
knitted-our current study has a few limitations that point towards
future research directions: First, our current study is limited to
the hyperelastic regime. However, we have recorded separate load-
ing and unloading data and expanding the model discovery pro-
cess the inelastic regime using viscoelastic [62] or general inelas-
tic [15] constitutive artificial neural networks would be the next
logical step. Second, our study focuses on characterizing the two-
dimensional in-plane behavior or the fabric structure. Expanding
it to a more physiological fully three-dimensional in- and out-of-
plane characterization is conceptually possible, but would require
additional tests, for example, the ball burst test that characterizes
the indentation response of the fabric as a thin membrane [6].
Third, our biaxial test setup uses square samples mounted by tines
or rakes [10]. Alternatively, we could have mounted the samples
using clamps, and we plan to investigate the impact of different
mounting techniques in a future study. Finally, our current study
assumes a homogeneous shear free state. A possible future exten-
sion would be to quantify shear strains using full field data from
digital image correlation [1] and embed model discovery within
the solution of real boundary value problems with possibly het-
erogeneous stresses and stretches [11].

5. Conclusion

Characterizing the mechanical properties of synthetic meshes
is critical to understand their unique properties and functions. To
date, identifying appropriate constitutive models for woven and
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knitted textiles poses a critical barrier to mechanically tailoring
and fine-tuning these structures to individual needs. Machine-
learning approaches can discover anisotropic constitutive models
from biaxial data; yet, existing approaches are limited to train-
ing data from a single mounting orientation. Here we show that
this approach can result in superficial constitutive models that
generalize poorly to unseen data. In contrast, the new approach
we advocate here uses data from at least two different mount-
ing orientations, and robustly discovers models that perform well
during both training and testing. Importantly, our study shows
that the accuracy of the discovered models is highly sensitive to
an accurate representation of the microstructural architecture of
the sample: Even if the textile fabric appears orthotropic at first
glance, an accurate kinematic characterization of both warp and
shute directions is critical to discover robust and reliable models.
We demonstrate that these models are dominated by exponen-
tial linear fourth invariant terms that uniquely capture the remark-
able initial flexibility, pronounced nonlinear stiffening, and extreme
anisotropy of warp knitted polypropylene meshes. We anticipate
that the tools we have developed here will generalize naturally to
other textile fabrics-woven or knitted, weft knit or warp knit, with
laid-in stitches or plain, polymeric or metallic-and, ultimately, will
enable the robust discovery of anisotropic constitutive models for
a wide variety of textile structures. Beyond discovering constitu-
tive models, we envision to exploit automated model discovery as
a novel strategy for the generative material design of wearable de-
vices, stretchable electronics, and smart fabrics, as programmable
textile metamaterials with tunable properties and functions.
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