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ABSTRACT

The ability to automatically discover interpretable mathematical models from data could forever change how
we model soft matter systems. For convex discovery problems with a unique global minimum, model discovery
is well-established. It uses a classical top-down approach that first calculates a dense parameter vector, and
then sparsifies the vector by gradually removing terms. For non-convex discovery problems with multiple
local minima, this strategy is infeasible since the initial parameter vector is generally non-unique. Here we
propose a novel bottom-up approach that starts with a sparse single-term vector, and then densifies the vector
by systematically adding terms. Along the way, we discover models of gradually increasing complexity, a
strategy that we call best-in-class modeling. To identify and select successful candidate terms, we reverse-
engineer a library of sixteen functional building blocks that integrate a century of knowledge in material
modeling with recent trends in machine learning and artificial intelligence. Yet, instead of solving the NP
hard discrete combinatorial problem with 2!® = 65,536 possible combinations of terms, best-in-class modeling
starts with the best one-term model and iteratively repeats adding terms, until the objective function meets a
user-defined convergence criterion. Strikingly, for most practical purposes, we achieve good convergence with
only one or two terms. We illustrate the best-in-class one- and two-term models for a variety of soft matter
systems including rubber, brain, artificial meat, skin, and arteries. Our discovered models display distinct
and unexpected features for each family of materials, and suggest that best-in-class modeling is an efficient,
robust, and easy-to-use strategy to discover the mechanical signatures of traditional and unconventional soft
materials. We anticipate that our technology will generalize naturally to other classes of natural and man made
soft matter with applications in artificial organs, stretchable electronics, soft robotics, and artificial meat.

1. Motivation

Automating model discovery is precisely what this manuscript is
about. We propose a novel technology that leverages recent develop-

Exactly 200 years ago, Augustin-Louis Cauchy formalized the con-
cept of stress [1]. Ever since then, research in mechanics has focused
on discovering mathematical models that map strains onto stresses [2].
As we now know, this is by no means trivial. In fact, for more almost
a century, the limiting roadblock between experiments and simulation
has been the process of material modeling [3]: Material modeling is
limited to expert specialists, prone to user bias, and vulnerable to
human error. Yet, today, as we are discovering new soft materials at
an unprecedented rate, material modeling has become more important
than ever. Soft materials are emerging everywhere, in artificial organs,
wearable devices, stretchable electronics, soft robotics, smart textiles,
and even in artificial meat. This creates a unique opportunity: What if
we could take the human out of the loop and automate the process of
model discovery?

* Corresponding author.

ments in artificial intelligence [4], machine learning [5], and consti-
tutive neural networks [6] to autonomously discover the best model
and parameters to describe soft matter systems. Our approach builds on
recent developments to systematically learn stresses from strains using
neural networks [7-9]. However, rather than using generic off-the-shelf
network architectures, we embrace a recent trend in the mechanics
community to develop our own constitutive neural networks that satisfy
physical restrictions and thermodynamic constraints [10,11]. While
most of these approaches focus on finding the best-fit model regardless
of model complexity [12,13], our goal is to discover models that not
only explain given data, but are also interpretable and generalizable by
design [14-16]. Practically speaking, the models we seek to discover
need to be sparse.
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Fig. 1. Constitutive neural network for best-in-class modeling. The network takes
the deformation gradient F as input and outputs the free energy function y from
which we calculate the stress P = dy/0F. The network first calculates functions of four
invariants [I, — 3],[I, — 3],[I, — 1],[I5 — 1] and feeds them into its two hidden layers.
The first layer generates the first and second powers (o) and (o)? of the invariants and
the second layer applies the identity and exponential function (o) and exp(o) to these
powers multiplied by the weights w* = [w], ..., w](]. The free energy function y is the
sum of these sixteen color-coded terms, multiplied by the weights w = [w,, ..., w¢]. Red
terms associated with the weights w, ..., wy are isotropic terms; blue terms associated
with the weights w,, ..., w,q are anisotropic terms. We train the network by minimizing
the error between model P(F,w,w*) and data P to learn the network parameters w
and w*, and apply L, regularization to fine-tune the sparsity of the parameter vector w.

Sparse regression is a special type of regression that prevents over-
fitting by training a large number of parameters to zero [17]. This
is especially useful in high-dimensional settings, where it generates
simple interpretable models with a small subset of non-zero parame-
ters [18]. Sparse regression translates model discovery into a discrete
subset selection or feature extraction task that is known in statistics
as L, regularization [19]. In the context of linear regression, subset
selection has become standard textbook knowledge [20]. In the context
of nonlinear regression, when analytical solutions are rare, subset se-
lection is much more nuanced, general recommendations are difficult,
and feature extraction becomes highly problem-specific [21]. To be
clear, this limitation is not exclusively inherent to automated model
discovery with constitutive neural networks; it applies to distilling
scientific knowledge from data in general [22]. In fluid mechanics,
a typical example is turbulence modeling, where we seek to approx-
imate intricate interactions between different scales that can be well
represented through polynomials [23]. In solid mechanics, we seek
to approximate complex material behaviors at the microscopic scale
through a combination of polynomials [24], exponentials [25,26], log-
arithms [27], and powers [28,29]. In the context of model discovery,
polynomial models translate into a convex linear optimization problem
with a single unique global minimum, while exponential, logarithmic,
or power models translate into a non-convex nonlinear optimization
problem with possibly multiple local minima [30]. This raises the
question how do we robustly discover interpretable and generalizable
constitutive models from data?

Two competing strategies have emerged to discover interpretable
mathematical models: sparsification and densification. For convex dis-
covery problems with a unique global minimum, sparsification has
been well established through a top-down approach [23,31]. It first
calculates a dense parameter vector at the global minimum, and then
sparsifies the parameter vector by sequential thresholding, and removes
the least relevant terms [32,33]. For non-convex discovery problems
with multiple local minima, this strategy is infeasible since different ini-
tial conditions may result in non-unique initial parameter vectors [2].
Instead of trying to sparsify an initially dense parameter vector, it
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seems reasonable to gradually densify an initially sparse parameter
vector from scratch [34]. This bottom-up approach iteratively solves
a sequence of discrete combinatorial problems, and densifies the pa-
rameter vector by sequentially adding the most relevant terms [30].
Importantly, instead of solving the NP hard discrete combinatorial prob-
lem associated with screening all possible combinations of terms [35],
we gradually add terms, starting with the best-in-class one-term model,
and iteratively repeat adding terms, until the overall loss function meets
a user-defined convergence criterion. For most practical purposes, it
is sufficient to limit the number of desirable terms to one, two, or
three, and identify the best-in-class model of each class. The objective
of this manuscript is to establish the concept of best-in-class modeling
and discover the best one- and two-term models for five distinct soft
matter systems: rubber, brain, artificial meat, skin, and arteries.

2. Continuum mechanics

Kinematics. Throughout this manuscript, we illustrate best-in-class
model discovery for mechanical test data from tension, compression,
and shear tests. During mechanical testing [36], particles X of the
undeformed sample map to particles x = ¢(X) of the deformed sample
via the deformation map ¢. Its gradient with respect to the undeformed
coordinates X is the deformation gradient F with Jacobian J,

F=Vyp and J =det(F). €h)

Here we consider perfectly incompressible materials with a constant
Jacobian J = 1, and transversely isotropic materials with one pro-
nounced direction n,. The undeformed direction vector has a unit
length, || ny || = 1, and maps onto the deformed direction vector, n =
F - ny, with a stretch, || n|| = A,. We characterize the deformation state
of the sample through the two isotropic invariants I, and I, and two
anisotropic invariants I, and I5 [37],

L= 3[?—[F-F]:[FF]]

I,= [F'-F]:1I =3
ny-[F'-F1* ngy,

2
Iy=ng-[F'-Fl-ny, Is= @

and note that the third invariant is constant, I; = J? = 1, and the fourth
invariant is the stretch of the direction vector squared, I, = 2.

Constitutive equations. We reverse-engineer a free energy function
for perfectly incompressible, transversely isotropic, hyperelastic mate-
rials as a function of these four invariants [I, — 3], [I, — 3], [14 — 1],
[I5 — 1], raised to the first and second powers, (0)! and (0)?, embedded
into the identity (o) and the exponential function (exp(o)—1) [11]. Fig. 1
illustrates how the weighted sum of all sixteen terms defines the strain
energy function y(F) [38],

v =w [I; =3] +w, [expw; [I;-3])-1]
ws 1 =3P+ wy [expw] [I, =31 - 1]
ws [I = 3] + wg [exp(wy [I,—-3])-1]
wy [ =31 + wg [expw}y [1, =31~ 1]
wy [Iy =11 + wyg Lexp(wi, [I;—11)—1]
wiy [y =112 + wyy [expw}, [y = 117) = 1]
wiz s =11 + wyy lexpw}, [Is—11) - 1]
+wis [Is = 117 + wyg [expwiy [Is =117~ 11,

3

+ + + 4+ + +

To satisfy perfect incompressibility, we correct the free energy function
by the pressure term, w* = —p[J — 1], where p is the hydrostatic
pressure that we determine from the boundary conditions. We consider
hyperelastic materials that satisfy the second law of thermodynamics.
Their Piola stress P = dy(F)/0F is the derivative of the free energy
w(F) with respect to the deformation gradient F,

dy ¢
P=22 _pFt. 4
oF P 4
This results in the following explicit representation of the Piola stress
[391],
_ oy oI,

v ol o ol
T 9l OF

v oLy v ol
oI, oF

al, oF

oy 015 —
IS _pFt. 5
o oF 7 )
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with the following explicit expressions of the derivatives with respect
to the four invariants [38],

2

6TW = w; + w, w; exp(w; [1; -31)

61/} + 200 = 3l[w; + wy w) expw [I, —31)]

A ws + wg w’g exp(w; [I, -3])

ayf + 200 = 3llw; + wg w} expw) [1,—31)] ®)
o, = wy + wyg wl‘o exp(wz0 [1, — 1]2)

61// + 201y - w) + wyy wi, exp(w12 [1y —117)]

* k
615 = w3+ wiy wi, exp(wi, [Is —11)

+ 2[5 = 1lws+ wye wi exp(w, [1s — 117)].

Our model contains 24 model parameters in total, sixteen with the unit
of stiffness, w = [w|, w,, w3, Wy, Ws, We, Wy, Wy, Wy, Wig, Wy}, Wiz, W13,
w14, wls,wm], and eight unit-less, w* = [l,w;, 1,w4, 1,w6, l,wg, l’wl()’
1, w* T L, w .1, w ol where all eight odd unit-less weights are constant
and equal to one. To comply with physical constraints, we constrain all

parameters to always remain non-negative, w > 0 and w* > 0.
3. Data

We consider data from homogeneous uniaxial tension and com-
pression, simple shear, pure shear, equibiaxial extension, and biaxial
extension tests on vulcanized rubber [40], human brain gray and white
matter [41], artificial meat tofurkey [42], porcine skin [38], and human
aortic media and adventitia [43].

Uniaxial tension and compression. For the case of uniaxial tension
and compression, with a stretch 4 in the {I,1}-direction, such that
F = diag{ A,4""/2,271/2} and P = diag{ P,;,0,0}, the stress-stretch
relation for isotropic materials [16] is

[/1— %] . @

Simple shear. For the case of simple shear, with a shear y in the {1,2}-
direction, such that F, =y, the shear stress—strain relation for isotropic
materials [16] is

0 0
P2 |2,
oI, ' oI,

014/ 10y

P =2 —-
ar, T

®

Pure shear. For the case of pure shear of a long rectangular specimen
stretched with A along its short axis in the {I,1}-direction, and no
deformation along it long axis in the {2,2}-direction, such that F =
diag { A,1,471} and P = diag{ P,;, P».,0}, the stress-stretch relations
for isotropic materials [11] are

e[ 3] @

0 0
P A7 | PR I
oI, © oI, JE aII oI,

Equibiaxial extension. For the case of equibiaxial extension, with
a stretch 4 in the {1,1}- and {2,2}-directions, such that F = diag
{4 A2} and P = diag { P;, P»,0}, the stress—stretch relation for
isotropic materials [11] is

oy 0y
P,=2 + A A= =P, 10

! [011 ‘312] [ /15] 2 a0
Biaxial extension. For the case of biaxial extension, with stretches
A, and A, in the {1,1}- and {2,2}-directions, such that F = diag
{ A1, 42, (41 4))"! } and P = diag { P};, Py,,0 }, the stress-stretch relations
for transversely isotropic materials with one single fiber family [38] are

9 N=2=-A]
P, =2 [AI_L] N [11,12_._# w

22| o1, 1272 ol

1721 12 3

+2  Ajcos‘a Y ota A?cosza v
oI, oI5 an

Pp=2 |1 —— | ¥ o 22 ettt Y

+2 Aysin’a ikid +4 Asin’a w

o 2 T
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Fig. 2. Best-in-class rubber models. Discovered one-term models, diagonal, and two-
term models, off-diagonal, for isotropic vulcanized rubber. Models are made up of
eight functional building blocks: linear, exponential linear, quadratic, and exponential
quadratic terms of the first invariant /,, rows and columns 1 to 4, and of the second
invariant I,, rows and columns 5 to 8. The color code indicates the quality of fit to
vulcanized rubber data [40], ranging from dark blue, best fit, to dark red, worst fit.

The stress—stretch relations for transversely isotropic materials with two
symmetric fiber families are identical to Eq. (11), with the 0¥ /dI, and
0¥ /oI5 terms multiplied by an additional factor two [43]. Importantly,
for both cases, one single fiber family and two symmetric fiber families,
it is critical that the samples are mounted symmetrically to the stretch
directions to ensure a shear-free homogeneous deformation state.

4. Best-in-class modeling

To discover the best-in-class models and parameters w and w*,
we minimize the loss function L that penalizes the error between the
discovered model and the experimental data. We characterize this error
as the mean squared error, the L,-norm of the difference between
model P(F;, w,w*) and data Pi, divided by the number of data points
Ngata- We apply L, regularization and supplement the loss function by
the product of the L, norm of the parameter vector w, weighted by a
penalty parameter a,

Ndata
Law.w*: F) = —— Y |P(Fw.w") - P, > +alwlo— min.  (12)
data ;=] w

The L, norm is often referred to as the sparse norm and is not a norm
in a strict mathematical sense. It refers to the pseudo-norm, ||w ||, =
Z:’:l I(w; # 0), where I(o) is the indicator function that is one if the
condition inside the parenthesis is true and zero otherwise. As such, the
L, norm counts the number of non-zero entries in a vector and is an
explicit switch to penalize model complexity. In the following sections,
we minimize the loss function (12) to discover the best models and
parameters for rubber, brain, artificial meat, skin, and arteries, report
the discovered best-in-class one- and two-term models, and compare
them to traditional models used in the literature.

Best-in-class rubber models. To discover the best model and pa-
rameters for rubber, we use the popular and widely studied uniaxial
tension, equibiaxial tension, and pure shear experiments on vulcanized
rubber [11,40]. Fig. 2 summarizes the discovered best-in-class one-
term models on the diagonal and the best-in-class two-term models
on the off-diagonal, where rows and columns 1 to 4 relate to the
first invariant I; and rows and columns 5 to 8 relate to the second
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Fig. 3. Best-in-class brain models. Discovered one-term models, diagonal, and two-
term models, off-diagonal, for isotropic human gray matter. Models are made up of
eight functional building blocks: linear, exponential linear, quadratic, and exponential
quadratic terms of the first invariant I;, rows and columns 1 to 4, and of the second
invariant I,, rows and columns 5 to 8. The color code indicates the quality of fit to
gray matter data [41], ranging from dark blue, best fit, to dark red, worst fit.

invariant I,. Not surprisingly, the best-in-class one-term model is the
linear first-invariant neo Hooke model [44],

v=w [l -3],

with w, = 0.182MPa, followed by the quadratic model first-invariant
model with w; = 0.003 MPa and the exponential linear first-invariant
Demiray model [25] with w, = 0.319 MPa and w; = 0.063. The best-in-
class two-term model is the linear and exponential linear first-invariant
neo Hooke-Demiray model,

w=w [I} =31+ w,lexpw; [ I} =3 —1],

with w; = 0.165MPa, w, = 0.082MPa, and w; = 0.070, followed by
the linear and quadratic first-invariant model with w; = 0.129MPa
and w; = 0.002MPa and the linear and exponential quadratic first-
invariant model with w; = 0.182MPa, w, = 0.015MPa, and wz =0.002.
Strikingly, the popular linear first- and second-invariant Mooney Rivlin
model [45,46] with w; = 0.179MPa and ws; = 0.004MPa is only
the fourth-best two-term model, and performs worse than three other
two-term models that feature only the first invariant.

What have we discovered? By simultaneously discovering the best model
and parameters — rather than first selecting a model and then fitting
its parameters to data — we discover three previously overlooked two-
term models for rubber, one with two parameters and two with three,
that outperform the widely used Mooney Rivlin model in simultane-
ously explaining the behavior of vulcanized rubber in uniaxial tension,
equibiaxial extension, and pure shear. The discovery of an entirely
novel first-invariant-only family of rubber models is quite unexpected,
especially because this data set for rubber has been widely studied
as a popular benchmark problem for the constitutive modeling of
polymers [3,40,47,48].

Best-in-class brain models. To discover the best model and parame-
ters for human brain, we use uniaxial tension, uniaxial compression,
and simple shear experiments on human gray and white matter tis-
sue [16,41,49]. Figs. 3 and 4 summarize the discovered best-in-class
one-term models on the diagonal and the best-in-class two-term models
on the off-diagonal. Strikingly, the quality of fit for the one-term models
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Fig. 4. Best-in-class brain models. Discovered one-term models, diagonal, and two-
term models, off-diagonal, for isotropic human white matter. Models are made up of
eight functional building blocks: linear, exponential linear, quadratic, and exponential
quadratic terms of the first invariant I;, rows and columns 1 to 4, and of the second
invariant I,, rows and columns 5 to 8. The color code indicates the quality of fit to
white matter data [41], ranging from dark blue, best fit, to dark red, worst fit.

follows exactly the same order for both tissue types: The best-in-class
one-term model is the quadratic second-invariant model,

w=w;[1,-37,

with w; = 19.599kPa for gray and w, = 8.671kPa for white matter,
followed by the exponential quadratic, exponential linear, and linear
models, all in the second invariant I,, and then by the exponential
quadratic, quadratic, exponential linear, and linear models, all in the
first invariant I,. Notably, the widely used linear first-invariant neo
Hooke model [44], y = w, [I; — 3], with w; = 0.796kPa for gray and
wy = 0.330kPa for white matter, is the worst of all one-term models and
Demiray model [25], v = w, [exp(wé[ll —3]) — 1], that was designed
specifically for soft biological tissues is the second worst. For both tissue
types, four models score equally well amongst the best-in-class two-
term models: the four combinations of the linear or exponential linear
second-invariant term with the quadratic or exponential quadratic
second-invariant term. Of those, the simplest model is the linear and
quadratic second-invariant model with only two-parameters,

w=ws[l,—31+w,[1, -3,

with ws = 0.406kPa and w,; = 11.178kPa for gray and ws = 0.179 kPa
and w,; = 4.750kPa for white matter. Surprisingly, the popular lin-
ear first and second-invariant Mooney Rivlin model [45,46] performs
poorly compared to all other two-term models: For both gray and white
matter, its first-invariant parameter is zero, w; = 0.000kPa, and only
the second-invariant parameter is active, with ws; = 0.840kPa for gray
and ws = 0.354kPa for white matter.

What have we discovered? An interesting observation is that the best-in-
class plots for gray and white matter in Figs. 3 and 4 look remarkably
similar, with best fits towards the lower right corner and worst fits
towards the upper left. These features are in stark contrast to the best-
in-class plot for rubber in Fig. 2, which we would not have expected
from looking at the data or the fit to a specific model alone. Interest-
ingly, the gold standard approach to first select a model and then fit its
parameters to data would have resulted in the two worst performing
models, the neo Hooke [44] and Demiray [25] models, which are
widely used, but poorly suited for human brain tissue [41]. Instead,
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Fig. 5. Best-in-class artificial meat models. Discovered one-term models, diagonal,
and two-term models, off-diagonal, for isotropic artificial meat tofurkey. Models are
made up of eight functional building blocks: linear, exponential linear, quadratic, and
exponential quadratic terms of the first invariant I;, rows and columns 1 to 4, and of
the second invariant 7,, rows and columns 5 to 8. The color code indicates the quality
of fit to artificial meat tofurkey data [42], ranging from dark blue, best fit, to dark
red, worst fit.

our holistic approach discovers a whole new family of second-invariant
models [50] that has been overlooked by previous approaches [16,
51]. Strikingly, all second-invariant models consistently outperform the
first-invariant models, in both, the best-in-class one-term and two-term
categories, both for gray and white matter [30].

Best-in-class artificial meat models. To discover the best model
and parameters for artificial meat, we use uniaxial tension, uniax-
ial compression, and torsion experiments on tofurkey, a plant-based
meat substitute of tofu and seitan made from soybean and wheat
protein [42]. Fig. 5 summarizes the discovered best-in-class one-term
models on the diagonal and the best-in-class two-term models on
the off-diagonal. Interestingly, the best-in-class one-term model is the
exponential linear second-invariant model,

w = we [exp(wg [ 1, =31 — 1],

with ws = 15.661kPa and w; = 2.020, closely followed by the expo-
nential linear first-invariant Demiray model [25] with w, = 15.656 kPa
and w; = 2.021, the linear second-invariant Blatz Ko model [52] with
ws = 32.075kPa, and the linear first-invariant neo Hooke model [44]
with w,; = 32.083 kPa. Interestingly, the best-in-class two-term models
all only contain a single active term, which implies that the additional

second term does not improve the overall fit of the model.

What have we discovered? Using our fully automated approach, we
have discovered the first ever interpretable model for the plant-based
meat substitute tofurkey, a product of soybean and wheat protein. In
a naive approach, we would probably have selected the popular neo
Hooke or Mooney Rivlin models to describe this new material. Instead,
our automated model discovery reveals that exponential linear models,
either in the first or second invariant, provide a better fit than these two
models. Unexpectedly, if we were to select a linear model, our study
reveals that the second-invariant [ I, —3 ] Blatz Ko model [52], explains
the experimental data better than the first-invariant [I; — 3] neo
Hooke model [44]. More broadly, this raises the question why second-
invariant models have traditionally been overlooked in constitutive
modeling [53].

Best-in-class skin models. To discover the best model and parameters
for skin, we use biaxial extension experiments on porcine skin [38,54].
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Fig. 6. Best-in-class skin models. Discovered one-term models, diagonal, and two-
term models, off-diagonal, for transversely isotropic porcine skin. Models are made
up of sixteen functional building blocks: linear, exponential linear, quadratic, and
exponential quadratic terms of the first invariant I,, rows and columns 1 to 4, second
invariant I,, rows and columns 5 to 8, fourth invariant 7,, rows and columns 9 to 12,
and fifth invariant 5, rows and columns 13 to 16. The color code indicates the quality
of fit to porcine skin data [54], ranging from dark blue, best fit, to dark red, worst fit.

Fig. 6 summarizes the discovered best-in-class one-term models on the
diagonal and the best-in-class two-term models on the off-diagonal,
where rows and columns 1 to 8 related to the isotropic first and second
invariants I; and I, and rows and columns 9 to 16 related to the
anisotropic fourth and fifth invariants I, and Is. Interestingly, the
best-in-class one-term model is the quadratic fifth-invariant model,

V/=W15[15—1]2

with w5 = 0.080 MPa, closely followed by the exponential quadratic
fifth-invariant model, with w;¢ = 0.024 MPa and w}, = 1.934, and the
exponential quadratic fourth-invariant model with w;, = 0.185MPa
and wy, = 1.929. Only after these three, we find the isotropic one-
term models, with the quadratic and exponential quadratic first- and
second-invariant models ranking equally well on fourth place. The
linear first-invariant neo Hooke model [44] with w, = 0.153MPa
and the linear second-invariant the Blatz Ko model [52] with w, =
0.141 MPa share the ninth rank amongst all one-term models. The best
in class two-term model combines the exponential quadratic first- and

fourth-invariant terms,
w = wy [exp(w); [ I =317 = 11+ wyy [expw], [ 1, — 11>~ 1],

with w, = 0.243kPa and w; = 1811 and w;, = 0.115kPa and
wy, = 1.858. It is followed by a class of models in the last row and
column that combine the exponential quadratic fifth-invariant term,
wig [exp(w’l‘ﬁ [Is— 31)2— 1], with the linear or quadratic first invariant,
the exponential linear second invariant, or the linear, quadratic, or
exponential quadratic fourth invariant. Notably, neither the classical
linear first- and fourth-invariant Lanir model [55] for fibrous connec-
tive tissues with w, = 0.078 MPa and w, = 0.037 MPa, nor the clas-
sical linear first-invariant and exponential quadratic fourth-invariant
Holzapfel model [26] for collagenous tissues, with w, = 0.000 MPa,
w), = 0.237MPa, and wj, = 1.783, are amongst the best-in-class
two-term models.

What have we discovered? A somewhat unexpected observation is the
excellent performance of the quadratic and exponential quadratic fifth-
invariant terms in the last two rows and columns. These two terms
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Fig. 7. Best-in-class human artery models. Discovered one-term models, diagonal,
and two-term models, off-diagonal, for transversely isotropic human arterial media.
Models are made up of sixteen functional building blocks: linear, exponential linear,
quadratic, and exponential quadratic terms of the first invariant I,, rows and columns
1 to 4, second invariant I,, rows and columns 5 to 8, fourth invariant I,, rows and
columns 9 to 12, and fifth invariant I5, rows and columns 13 to 16. The color code
indicates the quality of fit to human arterial media data [56], ranging from dark blue,
best fit, to dark red, worst fit.

outperform nearly all other models, both in the one- and two-term
categories. The only exception is the best-in-class exponential quadratic
first- and fourth-invariant model, a modification of the classical
Holzapfel model [26] that replaces the linear isotropic neo Hooke
term, w,[I; — 3], by a nonlinear isotropic Holzapfel-type term, w,
[exp(wj [ I,-31?)~1] in the first invariant I,. This simple modification of
our automated model discovery improves the performance of the clas-
sical Holzapfel model and would not have been obvious from looking
at the data alone. Microstructurally, our discovery suggests that in skin,
not only the collagen fibers, but also the extracellular matrix, display
an exponential stiffening with increasing tissue deformation [38].

Best-in-class artery models. To discover the best model and parame-
ters for arteries, we use biaxial extension experiments on the media and
adventitia layers of a human artery [43,56]. Figs. 7 and 8 summarize
the discovered best-in-class one-term models for the media and the
adventitia. Strikingly, the four best one-term models are identical for
both layers: The best-in-class one-term model is the exponential linear
first-invariant Demiray model [25],

w = w; [exp(w; [ [ =31)- 1],

with w, = 4.929kPa and w = 3.090 for the media and w, =
1.866kPa and w3 = 2.586 for the adventitia, followed by the linear
first-invariant Blatz Ko model [52] with ws = 22.964 kPa for the media
and ws = 6.336kPa for the adventitia, and the exponential linear first-
invariant model with wg = 5.462kPa and w; = 2.247 for the media
and w, = 2.713kPa and w; = 1.570 for the adventitia. The linear
first-invariant neo Hooke model [44] only ranks fourth for the media
with w; = 29.107kPa and fifth for the adventitia with 8.025 kPa. For
both layers, the best-in-class two-term models combine an isotropic
exponential linear term, either in I, or I,, with an anisotropic quadratic
or exponential quadratic term, either in I, or I5. An illustrative example
is the combination of the exponential linear first-invariant Demiray
term [25] with the exponential quadratic fourth-invariant Holzapfel
term [26],

w = w; [expw} [1; — 31— 1]+ wyy [expw, [ I, — 31— 1],
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Fig. 8. Best-in-class human artery models. Discovered one-term models, diagonal,
and two-term models, off-diagonal, for transversely isotropic human arterial adventitia.
Models are made up of sixteen functional building blocks: linear, exponential linear,
quadratic, and exponential quadratic terms of the first invariant I,, rows and columns
1 to 4, second invariant I,, rows and columns 5 to 8, fourth invariant I,, rows and
columns 9 to 12, and fifth invariant /5, rows and columns 13 to 16. The color code
indicates the quality of fit to human arterial adventitia data [56], ranging from dark
blue, best fit, to dark red, worst fit.

with w, = 4.567kPa, w} = 2.934, w,, = 2.399kPa, and wy, = 2.146 for

the media and w, = 1.711kPa, w; = 2469, w; = 0.249 kPa, and w’l‘2 =
3.969 for the adventitia. Similar to skin, the classical linear first- and
fourth-invariant Lanir model [55] for fibrous connective tissues with
w, = 26.757kPa and wy = 1.834kPa for the media and w, = 7.837kPa
and wy = 0.127 kPa for the adventitia fails to explain the experimental
data of arteries accurately. While the classical linear first-invariant
and exponential quadratic fourth-invariant Holzapfel model [26] for
collagenous tissues with w; = 24.403kPa, w;, = 0.929kPa, and w},
= 4.427 for the media and w, = 6.451kPa, w;, = 0.150kPa, and wy},
= 6.585 for the adventitia performs reasonably well, it does not rank

among the best-in-class two-term models.

What have we discovered? Interestingly, the best-in-class plots for the
media and adventitia of a human aorta in Figs. 7 and 8 look almost
identical, with best fits in the upper right and lower left quadrants
that combine an isotropic I; or I, term with an anisotropic I, or
Is term, and worst fits in the lower right quadrant that combines
exclusively anisotropic terms in I, or Is. For both aortic layers, these
features are much more pronounced than for skin in Fig. 6, which
we cannot conclude from looking at the data or the fit to a specific
model alone. The gold standard model for arterial tissue is the Holzapfel
model [26] that combines an isotropic linear first-invariant term and an
anisotropic exponential quadratic fourth-invariant term, y = w, [ I, —
31+ wyy [exp(wy, [ 1 — 31)? - 1]. Automatic model discovery suggests
to replace the linear isotropic neo Hooke term [44], w, [ I; — 3], with
the nonlinear isotropic Demiray term [25], w, [exp(w;[ll -3D-1].
The additional second parameter of the Demiray term, the exponential
weight factor w3, provides an additional degree of freedom, which
results in a better overall fit to the data, as Figs. 7 and 8 confirm. Our
holistic approach autonomously discovers an exponential isotropic term
that has previously been overlooked by transversely isotropic soft tissue
models, but promises a much better explanation of the data, with only
minor modifications, at no additional computational cost. Interestingly,
the nonlinearity in the first invariant has also been acknowledged by
the dispersion version of the Holzapfel model [57], v = % ull, =31+
% alexp(b[x I} +[1-3«k]I, -1 1?) — 11/b, which introduces a coupling
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Fig. 9. Best-in-class one- and two-term models for soft matter systems. Stress as a function of stretch for vulcanized rubber, human gray matter, human white matter, artificial
meat tofurky, porcine skin, human aortic media, and human aortic adventitia. Each set of six graphs displays three different experiments in each column and the best-in-class one-
and two-term models in each row. Circles represent the experimental data; color-coded regions represent the discovered model terms, eight for the top four isotropic materials

and sixteen for the bottom three anisotropic materials.

of the first and fourth invariants inside the exponential quadratic
term [58]. Microstructurally, our observation suggests that in arteries,
not only a single collagen fiber direction, but either fiber dispersion or
the entire extracellular matrix, contribute to an isotropic exponential
stiffening with increasing tissue deformation [43].

Finally, to illustrate the goodness of fit of our discovered mod-
els, Fig. 9 summarizes the performance of the best-in-class one- and
two-term models for our four isotropic materials, vulcanized rubber,
human gray matter, human white matter, and artificial meat tofurky,
and for our three anisotropic materials, porcine skin, human aortic
media, and human aortic adventitia. Each set contains six graphs that
display three different experiments in each column and the best-in-
class one- and two-term models in each row. The circles represent
the experimental data [38,40,41,43,49] and the color-coded regions

represent the discovered model terms. For the four isotropic materials,
we illustrate the performance of the discovered models for all three
training data sets. For the three anisotropic materials, we showcase
three selected training data sets out of a total of ten. The graphs confirm
that the discovered models perform well at explaining all three tests
and that the performance generally increases when adding a second
term. Strikingly, even these relatively simple models of only one or
two terms are capable of relatively accurately representing this a wide
variety of soft matter systems.

5. Discussion

Distilling knowledge from data lies at the very heart of any scientific
discipline [4,22]. In the context of solid mechanics, this challenge
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translates into discovering constitutive models that map strains onto
stresses [39]. For more than a century, this has been a human-centered
process in which a researcher first selects a mathematical model-
or even invents an entirely new one-and then fits its parameters to
data [2]. This process is naturally limited to expert specialists, prone
to user bias, and vulnerable to human error. Yet, for decades, this has
been the gold standard approach; understandably so, because accurate
parameter fitting is mathematically challenging and computationally
expensive [14]. It is easy to see though that this approach is inherently
limited, and even the worlds’s best parameters tell us nothing about
the goodness of fit of the model itself [3]. Fortunately, non-convex op-
timization and statistical learning have massively advanced throughout
the past two decades [18,21,35], and computational power is no longer
a limiting factor. With the recent raise in machine learning and artificial
intelligence, it seems natural to re-think the traditional approach, and
ask: Whether and how can we discover both model and parameters
simultaneously?

When exploring model discovery, importantly, we should not loose
sight of our initial objective: Our goal is not to identify just any model
that achieves the best fit to the data [3]. In fact, for a finite number of
data points, we can always find a model that fits all points exactly. This
is precisely what the universal approximation theorem teaches us [59]:
A neural network with at least one hidden layer with a sufficient
number of nodes and nonlinear activation functions can approximate
any continuous function to an arbitrary degree of accuracy. Yet, this
is not what we want to do here. Instead, our goal is to discover the
best interpretable model with physically meaningful parameters to explain
experimental data [14]. We essentially seek sparse models, models that
are easy to understand, interpret, and communicate, models that are
simple enough to explain the data, but not too simple.

To emphasize simplicity, we start with the simplest of all models
that consist of only one term. We select this term from a library of
eight terms for isotropic materials, or sixteen terms for transversely
isotropic materials [38], using a discrete combinatorics approach [30].
We fit each one-term model by minimizing the loss function, the error
between model and data, determine its model parameters, and record
the remaining loss. The model with the lowest loss is the best-in-class
one-term model, the model with the darkest blue color on the diagonal
of the best-in-class plots for rubber, brain, artificial meat, skin, and
arteries in Figs. 2 to 8. Comparing the best-in-class one-term models
already provides a lot more insight than any traditional material mod-
eling approach: Against our intuition, the best-in-class one-term models
are different for each family of materials, featuring the first, seventh,
sixth, fifteenth, and second terms; yet, they are identical for gray and
white matter of the human brain and for the medial and adventitial
layers of the human aorta. Strikingly, while the best-in-class linear first-
invariant model for rubber, the classical neo Hooke model [44], and
the exponential linear first-invariant model for arteries, the Demiray
model [25], are well known and widely used, the best-in-class quadratic
first-invariant model for the brain, the exponential linear first-invariant
model for artificial meat, and the quadratic fifth-invariant model for
skin are novel and somewhat unexpected. These results suggest that we
more often than not turn to established existing models that are widely
used for traditional materials, but are not necessarily the best models
for novel families of materials such as artificial meat.

Our observations for the best-in-class one-term models generalize
to the two-term models: For both classes of models, it is inexpen-
sive, illustrative, and intuitive to map out the loss function across
the 8 x 8 or 16 x 16 model discovery space. From a quick side-by-
side comparison, we conclude that the best-in-class one- and two-term
models are quite different for each family of materials; yet, they are
surprisingly similar for both human brain regions [41] and both human
artery layers [56]. For all materials, except for artificial meat [42],
adding a second term improves the overall fit, as we conclude from
the darker blue colors off of the diagonal in Figs. 2 to 4 and 6 to
8. In agreement with our intuition, for both skin and arteries, the
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best-in-class two-term model combines an isotropic first-invariant and
an anisotropic fourth-invariant term, both quadratic exponential for
skin, and exponential linear and exponential quadratic for arteries.
Unexpectedly, neither the best-in-class two-term model for skin nor
for arteries features the linear first-invariant neo Hooke term [44] of
the original Holzapfel model [26]. Instead, both feature an exponen-
tial first-invariant term that suggests that the isotropic extracellular
matrix behaves nonlinearly, possibly because of randomly oriented
collagen fibers, as suggested by the dispersion version of the Holzapfel
model [57]. Notably, for all five materials, we observe a satisfactory
reduction of the loss function with only one or two terms. In a re-
cent study of cardiac tissue, with a more complex fully orthotropic
microstructure, we have shown that the concept best-in-class modeling
generalizes smoothly to three- or more-term models [60]. Taken to-
gether, our results suggest that best-in-class modeling provides a quick
and intuitive insight into the macroscopic behavior-and possibly even
the microstructural architecture—of traditional and new isotropic and
transversely isotropic hyperelastic materials.

6. Conclusion

Throughout this manuscript, we have proposed, illustrated, and
discussed a novel method to discover interpretable constitutive models
from data: best-in-class modeling. In the age of machine learning,
a plethora of alternative approaches is currently emerging to derive
mathematical models for natural and man-made soft matter systems.
While these classical machine learning models provide an excellent fit
to the data, most of them are non-generalizable and non-interpretable,
they tend to overfit sparse data, and violate physical laws. Here we
integrate a century of knowledge in material modeling with recent
trends in machine learning and artificial intelligence to discover sparse
constitutive models that are generalizable and interpretable by design,
while also obeying the fundamental laws of physics. Notably, we do not
solve the NP hard discrete combinatorial problem of subset selection
by screening all possible combinations of terms. Instead, we start
with the best one-term model and iteratively repeat adding terms, to
reduce the objective function below a user-defined threshold level. We
illustrate the concept of best-in-class modeling for a variety of soft
matter systems with eight-term models for rubber, brain, and artificial
meat, and sixteen-term models for skin and arteries, which feature 256
and 65,536 possible combinations of terms. Our results suggest that,
for all five families of materials, it is sufficient to limit the number
of relevant terms to one or two. This implies that we only need to
analyze 4 x 8 one-term and 4 x 28 two-term isotropic and 3 x 16
one-term and 3 X 120 two-term transversely isotropic models, a total
of 552 discrete models. Our discovered models reveal several distinct
and unexpected features for each family of materials and suggest that
best-in-class modeling is an efficient, robust, and easy-to-use strategy
to discover the mechanical signatures of traditional and unconventional
soft matter systems. Our technology reveals novel insights to character-
ize, create, and functionalize soft materials and promises to accelerate
discovery and innovation of soft matter systems including artificial
organs, stretchable electronics, soft robotics, and artificial meat.

CRediT authorship contribution statement

Kevin Linka: Writing — review & editing, Writing — original draft,
Visualization, Validation, Software, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Ellen Kuhl: Writing
- review & editing, Writing — original draft, Visualization, Validation,
Methodology, Investigation, Data curation, Conceptualization.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



K. Linka and E. Kuhl
Data availability

All data and discovered models will be available at https://github.
com/LivingMatterLab/CANN.

Acknowledgments

This work was supported by the Emmy Noether Grant 533187597
Computational Soft Material Mechanics Intelligence to Kevin Linka and
by the NSF CMMI Award 2320933 Automated Model Discovery for Soft
Matter and the ERC Advanced Grant 101141626 DISCOVER to Ellen
Kuhl.

References

[1] A.L. Cauchy, Recherches sur l’equilibre et le mouvement intérieur des corps
solides ou fluides, élastiques ou non élastiques, Bull. Soc. Philomath. Paris (1823)
9-13.

[2] R.W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental
data, Comput. Mech. 34 (2004) 484-502.

[3] H. He, Q. Zhang, Y. Zhang, J. Chen, L. Zhang, F. Li, A comparative study of 85
hyperelastic constitutive models for both unfilled fubber and highly filled rubber
nanocomposite material, Nano Mater. Sci. 4 (2022) 64-82.

[4] S. Kramer, M. Cerrato, S. Dzeroski, R. King, Automated scientific discovery: From
equation discovery to autonomous discovery systems, 2023, http://dx.doi.org/10.
48550/arXiv.2305.02251, arXiv.

[5] M. Alber, A. Buganza Tepole, W. Cannon, S. De, S. Dura-Bernal, K. Garikipati,
G.E. Karniadakis, W.W. Lytton, P. Perdikaris, L. Petzold, E. Kuhl, Integrating
machine learning and multiscale modeling: Perspectives, challenges, and opportu-
nities in the biological, biomedical, and behavioral sciences, npj Digital Medicine
2 (2019) 115.

[6] K. Linka, M. Hillgartner, K.P. Abdolazizi, R.C. Aydin, M. Itskov, C.J. Cyron,
Constitutive artificial neural networks: A fast and general approach to predictive
data-driven constitutive modeling by deep learning, J. Comput. Phys. 429 (2021)
110010.

[7] J.N. Fuhg, N. Bouklas, On physics-informed data-driven isotropic and anisotropic
constitutive models through probabilistic machine learning and space-filling
sampling, Comput. Methods Appl. Mech. Engrg. 394 (2022) 114915.

[8] D.K. Klein, M. Fernandez, R.J. Martin, P. Neff, O. Weeger, Polyconvex anisotropic
hyperelasticity with neural networks, J. Mech. Phys. Solids 159 (2022) 105703.

[9] V. Tac, F.C. Sree, M.K. Rausch, A. Buganza Tepole, Data-driven modeling of
the mechanical behavior of anisotropic soft biological tissue, Eng. Comput. 73
(2022) 49-65.

[10] L. Linden, D.K. Klein, K.A. Kalinka, J. Brummund, O. Weeger, M. Késtner, Neural
networks meet hyperelasticity: A guide to enforcing physics, J. Mech. Phys. Solids
179 (2023) 105363.

[11] K. Linka, E. Kuhl, A new family of constitutive artificial neural networks towards
automated model discovery, Comput. Methods Appl. Mech. Engrg. 403 (2023)
115731.

[12] F. As’ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network
approach in data-driven constitutive modeling, Internat. J. Numer. Methods
Engrg. 123 (2022) 2738-2759.

[13] V. Tac, K. Linka, F. Sahli Costabal, E. Kuhl, A. Buganza Tepole, Benchmarking
physics-informed frameworks for data-driven hyperelasticity, Comput. Mech. 73
(2024) 49-65.

[14] S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learn-
ing, Dynamical Systems, and Control, first ed., Cambridge University Press,
Massachusetts, 2019.

[15] M. Flaschel, S. Kumar, L. De Lorenzis, Automated discovery of generalized
standard material models with EUCLID, Comput. Methods Appl. Mech. Engrg.
405 (2023) 115867.

[16] K. Linka, S.R. St Pierre, E. Kuhl, Automated model discovery for human brain
using constitutive artificial neural networks, Acta Biomater. 160 (2023) 134-151.

[17] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc.
Ser. B 58 (1996) 267-288.

[18] J.H. Friedman, Sparse regression in and classification, Int. J. Forecast. 28 (2012)
722-738.

[19] LE. Frank, J.H. Friedman, A statistical view of some chemometrics regression
tools, Technometrics 35 (1993) 109-135.

[20] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, second
ed., Springer, New York, 2009.

[21] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical
Learning, second ed., Springer, New York, 2013.

[22] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data,
Science 324 (2009) 81-85.

[23] S.L. Brunton, J.P. Proctor, J.N. Kutz, Discovering governing equations from data
by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci.
113 (2016) 3932-3937.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Extreme Mechanics Letters 70 (2024) 102181

S. Hartmann, P. Neff, Polyconvexity of generalized polynomial-type hyperelastic
strain energy functions for near-incompressibility, Int. J. Solids Struct. 40 (2003)
2767-2791.

H. Demiray, A note on the elasticity of soft biological tissues, J. Biomech. 5
(1972) 309-311.

G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for
arterial wall mechanics and comparative study of material models, J. Elasticity
61 (2000) 1-48.

A. Gent, A new constitutive relation for rubber, Rubber Chem. Technol. 69
(1996) 59-61.

R.W. Ogden, Large deformation isotropic elasticity — on the correlation of theory
and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. Ser. A
326 (1972) 565-584.

K. Valanis, R.F. Landel, The strain-energy function of a hyperelastic material in
terms of the extension ratios, J. Appl. Phys. 38 (1967) 2997-3002.

J.A. McCulloch, S.R. St. Pierre, K. Linka, E. Kuhl, On sparse regression, Ip-
regularization, and automated model discovery, Internat. J. Numer. Methods
Engrg. (2024) e7481.

M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discovery of interpretable
hyperelastic constitutive laws, Comput. Methods Appl. Mech. Engrg. 381 (2021)
113852.

Z. Wang, J.B. Estrada, E.M. Arruda, K. Garikipati, Inference of deformation mech-
anisms and constitutive response of soft material surrogates of biological tissue
by full-field characterization and data-driven variational system identification, J.
Mech. Phys. Solids 153 (2021) 104474.

L. Zhang, H. Schaeffer, On the convergence of the SINDy algorithm, Multisc.
Model. Simul. 17 (2019) 948-972.

D.P. Nikolov, S. Srivastava, B.A. Abeid, U.M. Scheven, E.M. Arruda, K. Garikipati,
J.B. Estrada, Ogden material calibration via magnetic resonance cartography,
parameter sensitivity and variational system identification, Phil. Trans. R. Soc.
A 380 (2022) 20210324.

B.H. Korte, J. Vgyen, Combinatorial Optimization, Springer, Berlin, 2011.

C. Truesdell, W. Noll, Non linear field theories of mechanics, in: S. Fliigge (Ed.),
Encyclopedia of Physics, Vol. 1II/3, Spinger, Berlin, 1965.

AJM Spencer, Theory of invariants, in: A.C. Eringen (Ed.), Continuum Physics,
vol. 1, Academic Press, New York, 1971, pp. 239-353.

K. Linka, A. Buganza Tepole, G.A. Holzapfel, E. Kuhl, Automated model discovery
for skin: Discovering the best model, data, and experiment, Comput. Methods
Appl. Mech. Engrg. 403 (2023) 115731.

G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach to
Engineering, John Wiley & Sons, Chichester, 2000.

L.R.G. Treloar, Stress-strain data for vulcanised rubber under various types of
deformation, Trans. Faraday Soc. 40 (1944) 59-70.

S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Jaybaeck, Kohnert, M. Bauer,
F. Paulsen, P. Steinmann, E. Kuhl, G.A. Holzapfel, Mechanical characterization
of human brain tissue, Acta Biomater. 48 (2017) 319-340.

S.R. St Pierre, D. Rajasekharan, E.C. Darwin, K. Linka, M.E. Levenston, E. Kuhl,
Discovering the mechanics of artificial and real meat, Comput. Methods Appl.
Mech. Engrg. 415 (2023) 116236.

M. Peirlinck, K. Linka, J.A. Hurtado, G.A. Holzapfel, E. Kuhl, Democratizing
biomedical simulation through automated model discovery and a univer-
sal material subroutine, 2023, http://dx.doi.org/10.1101/2023.12.06.570487,
bioRxiv.

L.R.G. Treloar, Stresses and birefringence in rubber subjected to general
homogeneous strain, Proc. Phys. Soc. 60 (1948) 135-144.

M. Mooney, A theory of large elastic deformations, J. Appl. Phys. 11 (1940)
582-590.

R.S. Rivlin, Large elastic deformations of isotropic materials. IV. Further devel-
opments of the general theory, Philos. Trans. R. Soc. Lond. Ser. A 241 (1948)
379-397.

R. Mahnken, Strain mode-dependent weighting functions in hyperelasticity
accounting for verification, validation, and stability of material parameters, Arch.
Appl. Mech. 92 (2022) 713-754.

P. Steinmann, M. Hossain, G. Possart, Hyperelastic models for rubber-like
materials: consistent tangent operators and suitability for Treloar’s data, Arch.
Appl. Mech. 82 (2012) 1183-1217.

S.R. St Pierre, K. Linka, E. Kuhl, Principal-stretch-based constitutive neural
networks autonomously discover a subclass of Ogden models for human brain
tissue, Brain Multiphys. 4 (2023) 100066.

E. Kuhl, A. Goriely, I too love 12: A new class of hyperelastic isotropic
incompressible models based solely on the second invariant, J. Mech. Phys. Solids
188 (2024) 105670.

M. Peirlinck, K. Linka, J.A. Hurtado, E. Kuhl, On automated model discovery
and a universal material subroutine for hyperelastic materials, Comput. Methods
Appl. Mech. Eng. 418 (2024) 116534.

P.J. Blatz, W.L. Ko, Application of finite elastic theory to the deformation of
rubbery materials, Trans. Soc. Rheol. 6 (1962) 223-251.

C.O. Horgan, R.W. Ogden, G. Saccomandi, A theory of stress softening of
elastomers based on finite chain extensibility, Proc. R. Soc. Lond. Ser. A 460
(2004) 1737-1754.


https://github.com/LivingMatterLab/CANN
https://github.com/LivingMatterLab/CANN
https://github.com/LivingMatterLab/CANN
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb1
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb1
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb1
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb1
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb1
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb2
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb2
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb2
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb3
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb3
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb3
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb3
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb3
http://dx.doi.org/10.48550/arXiv.2305.02251
http://dx.doi.org/10.48550/arXiv.2305.02251
http://dx.doi.org/10.48550/arXiv.2305.02251
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb5
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb6
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb7
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb7
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb7
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb7
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb7
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb8
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb8
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb8
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb9
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb9
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb9
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb9
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb9
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb10
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb10
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb10
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb10
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb10
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb11
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb11
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb11
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb11
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb11
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb12
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb12
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb12
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb12
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb12
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb13
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb13
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb13
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb13
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb13
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb14
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb14
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb14
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb14
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb14
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb15
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb15
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb15
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb15
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb15
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb16
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb16
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb16
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb17
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb17
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb17
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb18
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb18
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb18
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb19
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb19
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb19
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb20
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb20
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb20
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb21
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb21
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb21
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb22
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb22
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb22
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb23
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb23
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb23
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb23
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb23
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb24
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb24
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb24
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb24
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb24
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb25
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb25
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb25
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb26
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb26
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb26
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb26
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb26
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb27
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb27
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb27
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb28
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb28
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb28
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb28
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb28
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb29
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb29
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb29
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb30
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb30
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb30
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb30
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb30
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb31
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb31
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb31
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb31
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb31
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb32
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb33
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb33
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb33
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb34
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb35
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb36
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb36
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb36
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb37
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb37
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb37
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb38
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb38
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb38
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb38
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb38
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb39
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb39
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb39
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb40
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb40
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb40
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb41
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb41
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb41
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb41
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb41
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb42
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb42
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb42
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb42
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb42
http://dx.doi.org/10.1101/2023.12.06.570487
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb44
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb44
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb44
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb45
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb45
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb45
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb46
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb46
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb46
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb46
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb46
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb47
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb47
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb47
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb47
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb47
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb48
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb48
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb48
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb48
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb48
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb49
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb49
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb49
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb49
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb49
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb50
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb50
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb50
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb50
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb50
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb51
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb51
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb51
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb51
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb51
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb52
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb52
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb52
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb53
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb53
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb53
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb53
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb53

K. Linka and E. Kuhl

[54]

[55]

[56]

[57]

V. Tac, F. Sahli Costabal, A. Buganza Tepole, Data-driven tissue mechanics with
polyconvex neural ordinary differential equations, Comput. Methods Appl. Mech.
Engrg. 398 (2022) 115248.

Y. Lanir, Constitutive equations for fibrous connective tissues, J. Biomech. 16
(1983) 1-12.

J.A. Niestrawska, C. Viertler, P. Regitnig, T.U. Cohnert, G. Sommer, G.A.
Holzapfel, Microstructure and mechanics of healthy and aneurysmatic abdominal
aortas: experimental analysis and modelling, J. R. Soc. Interface 13 (2016)
20160620.

T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers
with distributed collagen fibre orientations, J. R. Soc. Interface 3 (2006) 15-35.

10

[58]

[59]

[60]

Extreme Mechanics Letters 70 (2024) 102181

J.A. Niestrawska, D.C. Haspinger, G.A. Holzapfel, The influence of fiber dis-
persion on the mechanical response of aortic tissues in health and disease:
a computational study, Comput. Methods Biomech. Biomed. Eng. 21 (2018)
99-112.

K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators, Neural Netw. 2 (1989) 359-366.

D. Martonova, M. Peirlinck, K. Linka, G.A. Holzapfel, S. Leyendecker, E. Kuhl,
Automated model discovery for human cardiac tissue: Discovering the best model
and parameters, Comput. Methods Appl. Mech. Engrg. 428 (2024) 117078.


http://refhub.elsevier.com/S2352-4316(24)00061-0/sb54
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb54
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb54
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb54
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb54
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb55
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb55
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb55
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb56
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb57
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb57
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb57
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb58
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb59
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb59
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb59
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb60
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb60
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb60
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb60
http://refhub.elsevier.com/S2352-4316(24)00061-0/sb60

	Best-in-class modeling: A novel strategy to discover constitutive models for soft matter systems
	Motivation
	Continuum mechanics
	Data
	Best-in-class modeling
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


