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s u m m a r y 

 

West Nile Virus (WNV) is a mosquito-borne pathogen that primarily infects birds. Infections can spillover to humans and cause 

a spectrum of clinical symptoms, including WNV neuroinvasive disease. The extrinsic incubation period (EIP) is the time taken 

for a mosquito to become infectious following the ingestion of an infected blood meal. Characterising how the EIP varies with 

temperature is an essential part of predicting the impact and transmission dynamics of WNV. We re-analyse existing 

experimental data using Bayesian time delay models, allowing us to account for variation in how quickly individual mosquitoes 

developed disseminated WNV infections. In these experiments, cohorts of Culex pipiens mosquitoes were infected with WNV 

and kept under different temperature conditions, being checked for disseminated infection at defined timepoints. We find that 

EIPs are best described with a Weibull distribution and become shorter log-linearly with temperature. Under 18°C, less than 

1% of infected Cx. pipiens had a disseminated infection after 5 days, compared to 9.73% (95% CrI: 7.97 to 11.54) at 25°C and 

42.20% (95% CrI: 38.32 to 46.60) at 30°C. In the hottest experimental temperature treatment (32°C), the EIP50 was estimated 

at 3.78 days (CrI: 3.42 to 4.15) compared to over 100 days in the coolest treatment (15°C). The variance of EIPs was found to 

be much larger at lower temperatures than higher temperatures, highlighting the importance of characterising the time delay 

distribution associated with the EIP. We additionally demonstrate a competitive advantage of WNV strain WN02 over NY99, 

where the former infects mosquitoes more quickly at colder temperatures than the latter. This research contributes crucial 

parameters to the WNV literature, providing essential insights for modellers and those planning interventions. 
Crown Copyright © 2024 Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access artic le 

under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Introduction 

Vector-borne diseases (VBD) are responsible for a substantial burden of 

mortality and morbidity worldwide. West Nile Virus (WNV) is a mosquito-borne 

pathogen that primarily infects birds1; however, infections can spillover into 

humans and other mammals. Mammals are dead-end hosts with no prospect 

of onward transmission, although they can experience symptoms of infection. 

In humans, approximately 26% of cases are asymptomatic and most cases 

present with mild,2 self-limiting flu-like symptoms. However, a small share of 

WNV cases (< 1%) develop into WNV neuroinvasive disease (WNV NID). The 

risk of WNV NID is age dependent,3 with intensive care and long-term disability 

potential outcomes. WNV NID has a high case mortality rate of 10%.4 

Regrettably, there is no currently licenced human vaccine or specific treatment 

of WNV.5 The primary ornithophilic vector for WNV is Culex pipiens,6,7 which 

has a broad geographic distribution including Northern Africa, North America, 

Europe and Asia. 

WNV was first isolated in West Nile district of Uganda8 and is now 

commonly found in Africa, Europe, the Middle East, North America and West 
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Asia.9 WNV is spreading throughout Europe, with introductions moving further 

north in recent years including detections in Germany3 and the Netherlands.10 

WNV was introduced to the Americas in 1999, with a likely Israeli origin.11,12 

Following crow die offs and severe cases of WNV in New York, the pathogen 

has spread across the Americas.13 Preceding 2002, the WNV strain NY99 was 

dominant until the swift expansion of a new strain, WN02.14 Due to its 

increasing global prominence, improving our understanding of key 

epidemiological parameters is essential to understand the risk posed by WNV. 

The extrinsic incubation period (EIP) is the length of time it takes for a 

mosquito to become infectious after taking an infected blood meal. For the 

mosquito to transmit, the virus must infect the midgut before disseminating to 

secondary tissues and finally reaching the salivary glands. The EIP is 

temperature sensitive because higher temperatures lead to faster rates of viral 

replication and – as mosquitoes are poikilotherms – their internal body 

temperature is largely determined by the ambient environmental 

temperature. The specific relationship between EIP and temperature varies 

between viruses.15,16 

0163-4453/Crown Copyright © 2024 Published by Elsevier Ltd on behalf of The British Infection Association. This is an open access article under the CC BY license (http:// 

creativecommons.org/licenses/by/4.0/).  
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The EIP is a crucial parameter for modelling dynamics of WNV transmission. 

A minimum requirement for transmission is that the mosquito must live at 

least as long as the EIP. This is because a second blood meal must be taken 

after the mosquito has become infectious to facilitate onward transmission. 

There is a dearth of high-quality data on the EIP of WNV (and other pathogens 

such as dengue) due to the challenges of working with live viruses, poor data 

reporting (e.g. failing to declare cohort sample sizes) and limitations in data 

analysis (e.g. failing to account for right or interval censoring). Indeed, very few 

experimental studies have analysed the effect of temperature on the EIP of 

WNV17,18 with others analysing EIP in only one temperature condition.19 

WNV dynamic transmission models (and derived metrics such as R0) 

typically make simplifying assumptions about the EIP. The duration of the EIP 

is often represented as point estimates using summary statistics such as the 

EIP50 (the number of days post infection by which 50% of mosquitoes are 

infectious) or averages from lab and/or field experiments.20 This ignores the 

considerable heterogeneity at the level of individual mosquitoes, where even 

under tightly controlled experimental conditions, variance in the time taken 

for mosquitoes to become infected is considerable. For instance, the EIP of 

dengue has been demonstrated to be log-normally distributed,15 with 

significant variation in EIP, particularly at lower temperatures. Accounting for 

the variation in EIP on transmission potential of vector-borne diseases has 

been quantitatively demonstrated as a significant and overlooked confounder 

of transmission models, particularly at low temperatures.21 Our understanding 

of the series of seemingly unlikely events (a relatively short-lived vector taking 

a blood meal during the viraemic phase of an infected host and surviving long 

enough to take another blood meal) is improved by characterising the 

distributed delays involved. 

In this study, we reanalyse experimental data where adult mosquitoes 

were infected and maintained under different temperature regimes.18 Cohorts 

of Cx. pipiens were infected with live virus and subsets tested for disseminated 

infection at set timepoints. We interpret the row-level observations associated 

with these data, accounting for the left and right censoring inherent in this 

experimental design. This contrasts with how these data are often interpreted, 

modelling proportions with binomial error. By comparing different 

distributions to model the delay between infection and dissemination, we 

characterise the distribution of WNV EIPs observed across the different 

temperature treatments. 

Methods 

Data and experimental design 

This analysis used data from a laboratory study with permission from the 

authors.18 The authors infected cohorts of lab reared Cx. pipiens mosquitoes 

with WNV (one of two strains, NY99 or WN02). A total of 2145 mosquitoes 

were held at multiple different temperatures (15°C, 18°C, 22°C, 32°C), with a 

target sample size of 25 mosquitoes removed without replacement at defined 

timepoints for each temperature treatment. A plaque assay on Vero cells22 was 

used to determine if the mosquito was infected with WNV and if the virus had 

disseminated to the legs. The authors used the capillary assay on saliva 

secretions to test for infection in saliva. We chose to model the data on leg 

dissemination, as it is often a more reliable proxy of whether transmission is 

feasible through mosquito saliva.23 Full details on precise experimental 

protocols can be found in the  

original publication.18 

A challenge of this experimental setup is that the precise timing of 

dissemination could not be directly observed, as dissemination status was only 

determined at pre-defined timepoints using a plaque assay.22 Therefore, data 

were censored in one of two ways. For mosquitoes in which dissemination had 

occurred, data were interval censored: dissemination could have occurred at 

any point from when the infectious blood meal was taken to the date on which 

they were sampled. For mosquitoes where dissemination had not occurred, 

data were right censored as dissemination occurred after the time of sampling, 

with no upper bound. 

The data were collected as cohorts of mosquitoes (sampled at predefined 

timepoints t) that either did or did not have disseminated infection when 

tested. For mosquitoes that had disseminated infection at time t, we modelled 

an interval censored EIP (y) between the minimum possible time of zero days 

(
y

min =0) and maximum possible number of days t (
y

max = t). Those mosquitoes 

without disseminated infection at time t were modelled with only a minimum 

value of y (
y

min = t), as only times prior to t could be ruled out. 

Statistical modelling 

We chose to compare four candidate distributions for the individual-level 

variation of WNV EIP in Cx. pipiens: the exponential, gamma, Weibull, and 

lognormal, based on Chan and Johansson.15 All distributions have support for 

positive continuous values and have been used to model the EIP of VBD in 

other studies.15,16 While the exponential is a special case of the Gamma 

distribution, an exponential EIP is often assumed in SEIR (Susceptible, Exposed, 

Infected, Recovered) models of vector-borne disease transmission. This makes 

it important to evaluate how suitable this specific distribution of EIPs is for the 

data. 

For an observation of EIP within an interval [
y

min, 
y

max], the log- likelihood 

(log L ) was modelled as: 

logL ( ) = log(CDF (ymax; ) CDF (ymin; )), 

where CDF(t; ) is the cumulative distribution function of the chosen 

distribution with parameters . For right censored observations (where only 
y

min 

is known), the likelihood was calculated as: logL ( ) = log(1  CDF (ymin; )). 

We compared three functions to explore the effect of temperature on the 

EIP, f (T). A null model assumed no effect of temperature, a second assumed a 

log-linear effect of temperature, and the third a log-quadratic effect. These 

functions were implemented for each distribution as in15 with details outlined 

in Table 1: 

 

Statistical models were fit with the Bayesian model-building programming 

language “stan”24 using Hamiltonian Monte Carlo (HMC) methods, interfaced 

through “R”.25 Results are presented  

f    

f          

f          
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with 95% credible intervals (CrIs). Models were compared using the leave one 

out cross validation information criterion scores (LOOIC).26 

A second analysis was conducted to determine if the two tested strains, 

WN02 and NY99, had different thermal responses. Following the outcome 

from the model selection described above, we tested to see if including strain 

specific effects in the model was supported. We did so by comparing the set of 

interactions for each strain on the parameters of f (T) using LOOIC.26 

Results 

Data 

These data describe 2145 censored observations of WNV EIP in Cx. pipiens 

mosquitoes, split across 4 different temperature groups (15°C = 545; 18°C = 

550; 22°C = 527; 32°C = 523). Of these observations, most were right censored 

(1686, where only a minimum EIP was observed) and the rest interval censored 

(459, where a maximum and minimum EIP were observed). Approximately half 

of the mosquitoes had disseminated infections with each strain of WNV used 

in the study (1079 mosquitoes with WN02 and 1066 with strain NY99). 

Statistical modelling 

We tested the pairwise combinations of exponential, gamma, Weibull, 

lognormal with an invariant, log-linear and log-quadratic response to 

temperature. A Weibull distribution with a log-linear temperature dependent 

response had the lowest LOOIC with a score of 1451 (Fig. 1A). The next best 

model was the gamma distribution with a log-linear response (1458), which 

was within the standard error of the estimated LOOIC for the Weibull (56). This 

is unsurprising given the similarity between the two distributions. There was 

no support for a quadratic response which suggests that – at least between the 

temperature ranges tested in this study (15 to 32°C) – the temperature 

response was monotonic. This does not preclude a more complex relationship 

between EIP and temperature at thermal extremes, just that it is not evident 

in these data. Parameter values (median values with 95% credible intervals) 

are reported in Table 2. 

The model predictions are compared to the data in Fig. 1B. The effect of 

temperature is acute; at 22°C, just over 10% (10.52%, 95% CrI: 8.91 to 12.21) 

of Cx. pipiens were had a disseminated infection after 10 days, compared to 

over 95% at 32°C (95.97%, 95% CrI: 92.94 to 97.96). The full temperature 

dependent response is shown in Fig. 1C, with the temperature dependent EIP50 

marked as a black contour (the number of days following infection where 50% 

of mosquitoes are estimated to be infected). In our models, the EIP50 is the 

median of the Weibull distribution. 

In Fig. 2A we show how the EIP50 varies with temperature, alongside the 

standard deviation. This was calculated using the formulas given in Table 1; 

note that for the given parametrisation of the Weibull, the median decreases 

with increases in f (T). As the Weibull assumes an increasing variance with the 

mean, it can capture the increased role that variation in EIPs plays at lower 

temperatures, with far more conserved EIPs when temperatures are warmer. 

The EIP50 falls from 110.67 days (95% CrI: 94.62 to134.50) at 15°C to 5.60 days 

(95% CrI: 5.04 to 6.25) at 30°C. The standard deviation falls from 81.40 (95% 

CrI: 63.20 to 108.98) at 15°C to 4.10 (95% CrI: 3.53 to 4.82) at 30°C. Illustrative 

examples of the Weibull density function are provided in Fig. 2B to 

demonstrate the extent to which the distribution of EIPs changes with 

temperature. 

We compared model structures for f (T) where the strains were described 

by the same log-linear response, one where each strain was modelled with a 

different intercept but the same slope, f (T) = exp NY99 + T , and one where both 

parameters we alWN02 

lowed to vary, f (T) = exp NY99 + NY99 T . Model selection  
 WN02 WN02 

narrowly favoured a response where both the intercept and slope of the log-

linear thermal response differed between strains, with a LOOIC of 1433 (SE: 

57.48), compared to 1442 (SE: 57.01) for a model where only the intercept 

varied. The parameters for this model are given in Table 2. 

Fig. 3 shows the effect of strain on the EIP for the selected model. Panel 3A 

shows that NY99 is characterised by longer EIPs at lower temperatures, but 

that the difference between strains is negated at the highest temperatures. In 

Fig. 3B, we show the fitted cumulative probability to the data from each 

temperature treatment; the model fit to the data in the highest temperature 

treatment shows the importance of the interaction term on the slope  so that 

the model can equalise EIPs. It is likely that if there were more experimental 

temperature treatments between 22 and 32°C there would be clearer 

statistical support for the strain specific slope. Fig. 3C summarises the 

difference in the cumulative probability of infection for WN02 compared to 

NY99, with cool colours showing parity between strains and hotter colours an 

advantage for WN02. 

Discussion 

Models of vector-borne diseases often have to make simplifying 

assumptions about parameters and processes due to a lack of experimental, 

semi-field or field data examining crucial components of the transmission 

cycle.20 This can lead to inaccurate model outputs and conclusions.21 This is true 

for an important component of transmission dynamics, the extrinsic incubation 

period (EIP), where point estimates from summary statistics, or averages from 

lab and / or field experiments are used in models.20 We addressed this by 

characterising the relationship between temperature and the distribution of 

EIPs for West Nile Virus (WNV), a virus with a substantial public health burden. 

We found that WNV infections disseminated more rapidly in Cx. pipiens at 

higher temperatures: at 22°C, just over 10% (10.52%, 95% CrI: 8.914 to 12.211) 

were infectious after 10 days, compared to over 95% at 32°C (95.97%, 95% CrI: 

92.94 to 97.96). Within the  

Table 1  
Parametrisations of time delay EIP models. Note that there is no closed form expression for the median of the gamma distribution.  
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Fig. 1. A compares the 

leave one out cross-

validation information 

criterion (LOOIC) for 

models using different 

distributions to describe 

extrinsic incubation 

periods (columns) using 

different assumptions 

about the shape of the 

temperature dependent 

relationship (rows). A 

Weibull distribution 

using a log-linear 

relationship with 

temperature was the 

preferred model. B 

shows how the fitted 

Weibull cumulative 

density function fits raw 

proportion data at each 

temperature treatment 

in the study. C shows the 

estimated percentage of 

mosquitoes with a 

disseminated infection 

through time and across 

temperatures. The 

median (50% of 

mosquitoes with 

disseminated infection, 

or EIP50) is marked as a 

black contour. 

temperature range 

examined (15 to 

32°C), the 

relationship 

between 

temperature and 

WNV EIP is positive 

and log-linear. We 

suggest that future 

empirical studies 

should examine the 

impact of higher 

temperatures on 

WNV EIP, so that 

temperature 

dependent models 

of EIP can be applied 

across a broader 

temperature range 

(additional 

temperature 

treatments 

between 22 and 

32°C would also be 

beneficial). 

Fortunately, the 

data presented in 

this paper cover a 

relevant range of 

temperatures with 

respect to both viral 

replication and Culex lifespans.27,28 

We examined which of the exponential, gamma, Weibull, or log- normal 

distributions was most appropriate to describe the individual-level variation of 

WNV EIP. These were the same distributions as examined by Chan et al. when 

fitting models of yellow fever EIPs16 and dengue EIPs.15 Our results show that 

WNV EIPs in Cx. pipiens are best described by the Weibull distribution. In the 

literature it has been demonstrated that yellow fever EIPs are also Weibull 

distributed,16 but dengue 

EIPs are log-normally distributed.15 Furthermore, we found that the 

exponential distribution was the least appropriate for modelling EIPs, as was 

the case for dengue and yellow fever.15,16 In some cases (such as a simple 

ordinary differential equation models), the dwell time in model compartments 

is exponentially distributed. As we demonstrate, this assumption would 

misrepresent the true timing of WNV dissemination in Cx. pipiens. This is 

because the exponential distribution assumes that the highest probability 

density falls on the very shortest EIPs that are not empirically overserved or 

indeed probable. The consequences for not using the best delay distribution 

for EIPs in epidemiological models is substantial, particularly at lower 

temperatures.21 Thus, it is important to characterise the distribution of EIPs for 

different viruses, which requires row-level empirical data and appropriate 

analyses. These data are not currently available for multiple prominent, 

emerging arboviruses (for example, Usutu and chikungunya), highlighting the 

necessity for further empirical studies. 

Our work emphasises the importance of modelling individual variation in 

the temperature dependent distribution of WNV EIP, especially when 

modelling WNV in cooler areas. Regions with lower temperatures are of 

interest to modellers due to the Northward geographic expansion of WNV, 

with reports increasing in Europe.3,10 We found that at lower temperatures, 

where the EIP is longer, our model captures the empirically observed increased 

variation of WNV EIPs. Using fixed parameters such as the EIP50 / mean EIP can 

underestimate the proportion of mosquitoes infectious, as shorter EIPs are 

ignored at these lower temperatures unless the correct delay distribution is 

applied. This is because empirically observed EIPs that are substantially shorter 

than the median or mean value are ignored. With a relatively short-lived vector 

(such as mosquitoes), capturing rapidly disseminated infections is very 

consequential for transmission.21 By not fully accounting for the correct 

distribution of WNV EIPs, researchers could underestimate WNV transmission 

risk in cooler areas. 

Our results suggest that WN02 may have a competitive advantage over 

NY99 up to approximately 32 °C, due to having a shorter median EIP under 

these conditions. An advantage in EIP  

Table 2  
Model coefficients for the two strains combined, as well as WN02 and NY99 separately (median with 95% credible intervals).  

 

Both strains combined −8.39 (95% CrIs: −8.77 to −8.05) 0.21 (95% CrI: 0.20 to 0.23) 1.58 (95% CrI: 1.44 to 1.72) 
WN02 −7.94 (95% CrIs: −8.37 to −7.53) 0.20 (95% CrI: 0.18 to 0.22) 1.59 (95% CrI: 1.45 to 1.73) 
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NY99 −8.94 (95% CrIs: −9.48 to −8.45) 0.23 (95% CrI: 0.21 to 0.25) 

 
duration across this broad temperature range likely has a large epidemiological 

effect, as Cx. pipiens lives longer at lower and intermediate temperatures.27 

The comparative probability of transmission for WN02 is therefore increased 

because the shorter EIPs associated with this strain coincide with temperatures 

where Cx. pipiens lifespans are typically longer. Indeed, at the temperatures 

where the strains are comparable (∼32°C) Cx. pipiens lifespans are short.27 This 

evidence supports the hypothesis that the shorter EIP of WN02 has contributed 

to the strain outcompeting NY99.18,29 It is important to note that beyond the 

hottest / coldest temperature treatments we have no data; it may be the case 

that the strains remain comparable beyond 32°C, or that the advantage WN02 

is not present below 15°C. We therefore recommend that the model 

coefficients are not extrapolated beyond the range explored in this study. 

The strains examined in this study exist in an unusual context, with the 

WNV strains in the Americas sharing a single common Israeli ancestor that was 

introduced relatively recently. It has subsequently diversified in isolation from 

the rest of the world.13 As WNV must be vectored between birds, we would 

expect that intercontinental transmission events are primarily contingent on 

migratory bird movements, with the introduction to the USA from abroad an 

exception, not a rule. In this research we have demonstrated that key 

epidemiological differences can exist between strains of WNV. Given that the 

strains being transmitted in Western Europe are clustered separately from 

strains in Israel (and therefore the Americas),30 we suggest that experiments 

examining the properties of specific, locally circulating strains are important 

for epidemiological models to reflect local patterns of transmission. 

It is important to note that these models were fit to data from a laboratory 

study, which limits the transferability of results. Laboratory conditions provide 

a much more constant environment than in nature: for instance, natural 

variation in temperature (e.g. diurnal temperature cycles) and other 

confounders are omitted and mosquitoes are confined to a uniform space. 

Furthermore, blood feeding occurs from an artificial membrane system, rather 

than live birds. The plaque assay used to detect disseminated infections in 

samples has been thoroughly validated for WNV, although imperfect 

performance may lead to imperfect detection.22 Using lab strains of 

mosquitoes can also be a substantial confounder. However, laboratory studies 

also provide some key benefits: measurements of temperature are precise, 

and the effects of confounding variables are prevented. 

The use of a lineage of Cx. pipiens in this experiment is sensible and 

appropriate. The species has a propensity for biting birds which maintains 

cycles of transmission in the WNV avian reservoir.6 It is also considered the 

primary vector bridge vector from the avian resevoir to humans and other 

mammals in North America.31 The role of vectors can, however, be 

geographically dependent. For instance, studies that examine the EIP in other 

bridge vectors, such as Cx. modestus, would be of value to assess the spillover 

risk to humans in Europe.32 Indeed, understanding geographically localised 

patterns of the host selection functional response of Culex species (when faced 

with a choice of hosts) is essential for accurately describing transmission cycles. 

To our knowledge, this research is the first use of time delay models to 

characterise the temperature dependent EIP of WNV. The research highlights 

the acute sensitivity of the WNV EIP to temperature and characterises the 

importance role of the variation in EIP across individual mosquitoes, 

particularly at low temperatures. With analyses often focused on the climatic 

“leading edge” of the pathogen, the role of variation in key epidemiological 

parameters becomes more important. We hope that the parameters 

estimated in this study will be useful for epidemiological modellers of WNV. 

 

Fig. 2. A shows how the log10-scale temperature dependent EIP50 in blue and standard deviation of the EIP in red. B shows how this log-linear relationship with temperature changes the shape of the 

Weibull distribution for a range of temperatures. 
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Fig. 3. A shows the predicted temperature dependent median (EIP50) for the two strains. B shows 

the fit of the two-strain model to the raw proportions. C shows the increase in the share of 

mosquitoes with disseminated infections associated with WN02 compared to NY99. 
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