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Abstract: Accurate quantification of uncertainty in solar photovoltaic (PV) generation forecasts is
imperative for the efficient and reliable operation of the power grid. In this paper, a data-driven
non-parametric probabilistic method based on the Naive Bayes (NB) classification algorithm and
Dempster-Shafer theory (DST) of evidence is proposed for day-ahead probabilistic PV power fore-
casting. This NB-DST method extends traditional deterministic solar PV forecasting methods by
quantifying the uncertainty of their forecasts by estimating the cumulative distribution functions
(CDFs) of their forecast errors and forecast variables. The statistical performance of this method is
compared with the analog ensemble method and the persistence ensemble method under three dif-
ferent weather conditions using real-world data. The study results reveal that the proposed NB-DST
method coupled with an artificial neural network model outperforms the other methods in that its
estimated CDFs have lower spread, higher reliability, and sharper probabilistic forecasts with better
accuracy.

Keywords: Continuous rank probability score; Dempster-Shafer theory; naive Bayes classification;
probabilistic solar power forecasting; uncertainty quantification.

1. Introduction

Solar photovoltaic (PV) generation has been penetrating the power grid at an accel-
erating speed over the past decade as the world moves toward a more sustainable energy
grid. Integrating a large number of solar PV power plants into the existing conventional
grid presents significant challenges because solar PV generation is not dispatchable and
is often treated as a form of negative load in power grid operations. To efficiently maintain
the balance between generation and load in the power grid, both load and solar PV gen-
eration needs to be forecasted. These forecasts enable the proactive scheduling of dis-
patchable generation resources, allowing for the management of power ramping and the
timely allocation of generation reserves to address power uncertainty [1] [2]. Moreover,
solar PV power forecasting plays a significant role in predicting energy market imbal-
ances and optimizing bid scheduling [3].

To support the bidding strategy and operation of a day-ahead electric power market,
many data-driven forecasting methods have been developed to forecast solar PV genera-
tion. Typically, these day-ahead forecasting methods have forecast horizons between 24
and 48 hours, with a lead time of 24 hours. In other words, the first instance of the forecast
is 24 hours ahead in the future relative to the current time [4]. Because of the large lead
time, all forecasting methods inherently exhibit some levels of forecast errors that cannot
be overlooked. Based on how they handle the uncertainty associated with the forecast
errors, the forecasting methods can be broadly categorized into deterministic and
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probabilistic approaches. While deterministic methods provide a single-value forecast
without quantifying forecast uncertainty, probabilistic methods quantify forecast uncer-
tainty by estimating statistical properties of forecast variables, such as probability distri-
butions and prediction intervals (PIs) [5].

Many deterministic methods have been developed to accurately forecast solar PV
generation, gaining widespread acceptance in real-world applications [6, 7, 8, 9, 10]. Well-
recognized forecasting methods include artificial neural networks (ANN) [11], recurrent
neural networks (RNN) [12], long-short term memory (LSTM) [13], convolutional neural
network (CNN) [14], and support vector regression (SVR) [15, 16]. Deterministic forecast-
ing methods excel at estimating the expected solar PV generation and are valuable for
managing power ramping. Yet, they cannot be directly used to address the uncertainty
associated with solar PV generation.

Many probabilistic methods have been developed to quantify the uncertainty inher-
ent in solar PV forecasts. For instance, the persistence ensemble (PerEn) method assumes
that the forecasted solar PV generation follows a Gaussian distribution [17] and subse-
quently estimates its mean and variance. Meanwhile, the ensemble learning method
(ELM) [18] integrates various deterministic forecasting methods, including k-nearest
neighbors (kNN), decision trees, gradient boosting, random forest, lasso, and ridge re-
gression, to estimate forecast distributions. For deep learning, an improved deep ensem-
ble method, CNN-BiLSTM, is proposed in [19] for probabilistic wind speed forecasting,
where the outputs of the final CNN-BiLSTM layer are fitted to a Gaussian distribution to
estimate the mean and variance of the wind speed. Quantile regression (QR), on the other
hand, estimates the conditional quantiles of solar irradiance based on numerical weather
prediction (NWP) data [20]. In addition, an analog ensemble (AnEn) method is developed
by [21] and compared to QR and PerEn methods. The AnEn method requires a frozen
meteorological model to identify forecast points in the training dataset most similar to the
current forecast. Furthermore, Doubleday et al. propose to combine several deterministic
NWP model outputs using the Bayesian model averaging (BMA) technique to estimate
forecast distributions [22]. In [23], Gaussian process regression (GPR) with specific kernel
functions is applied to obtain prediction intervals of solar power forecast. This method
tries to quantify the forecast uncertainty by fitting the forecast errors to a standard normal
distribution. A sparse GPR method is proposed in [24] for probabilistic wind-gust fore-
casting by combining NWP data and on-site measurements. A variant of this method has
shown promise for solar power forecasting of geographically sparse distributed solar
plants [25]. The uncertainty quantified by probabilistic forecasting methods serves as a
valuable guide for operators in booking appropriate generation reserves.

However, these probabilistic forecasting methods have certain limitations and chal-
lenges. For example, the AnEn, ELM, CNN-BiLSTM, and BMA rely on the assumption
that a predefined family of probabilistic distributions can adequately characterize their
forecasts. The GPR-based approaches, however, non-parametrically forecasts the solar
power generation but fits the forecast error to a standard normal distribution to quantify
the uncertainty. As a result, discrepancies between actual and assumed distributions may
lead to significant errors. In addition, both the ELM and BMA methods require forecast
outputs from several NWP models, which is time-consuming and may introduce addi-
tional uncertainty due to variation across models. As such, these methods have not gained
widespread adoption in practical applications.

To overcome the above-mentioned limitations inherent in existing probabilistic fore-
casting methods and leverage the widespread acceptance of deterministic forecasting
methods, this paper proposes a data-driven non-parametric statistical method for day-
ahead probabilistic forecasting of PV power [26]. First, the method estimates the proba-
bility of the forecast error falling into a certain interval using the Naive Bayes (NB) classi-
fication technique. Then, the estimated evidence is combined using a suitable statistical
inference technique. Bayesian inference is a well-known method for combining independ-
ent evidence and has been utilized for many probabilistic forecasting applications, such
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as wind-gust speed forecasting [27]. However, it requires prior probabilities. To address 99
this limitation, a frequentist approach known as the Dempster-Shafer theory (DST) is uti- 100
lized in this paper to combine probabilities from various independent sources, specifically 101
from NB’s outputs. Hence, the proposed method is named the NB-DST method. Asanon- 102
parametric approach, the proposed NB-DST method provides the flexibility needed for 103
real-world applications. Distinguishing from other probabilistic methods such as BMA 104
and ELM, the proposed NB-DST method only requires a single deterministic model out- 105
put. A similar method is utilized for probabilistic wind-power forecast, which uses sparse 106
Bayesian classification networks that require proper initialization of hyperparameters and = 107
a large training dataset [28]. In comparison, the NB classifiers used in this paper are easier 108
to train with a small training dataset and outperform other methods like logistic regres- 109
sion [29]. 110
The proposed NB-DST method is a novel approach in the landscape of probabilistic 111
solar PV power forecasting. Unlike traditional methods that rely on predefined probabil- 112
istic distributions or extensive model ensembles, the NB-DST method uniquely combines 113
NB classification with DST to offer a non-parametric, scalable solution for quantifying 114
forecast uncertainty. This method not only addresses the limitations of existing probabil- 115
istic approaches by eliminating the need for prior probability distributions but also en- 116
hances adaptability to real-world forecasting scenarios. The purpose of this research is to 117
demonstrate the efficacy and practicality of the NB-DST method in improving the accu- 118
racy and reliability of day-ahead solar power forecasts, thereby supporting more in- 119
formed decision-making in grid management and energy market operations. 120
The structure of the rest of this paper is as follows: Section 2 outlines the proposed 121
NB-DST method. The performance evaluation metrics are introduced in Section 3. In Sec- 122
tion 4, the performance of the proposed method is compared with other methods utilizing 123
real-world data from a rooftop solar PV plant. Finally, conclusions are drawn, and future 124
work is discussed in Section 5. 125

2. NB-DST method for day-ahead solar PV forecast 126

This section introduces the proposed NB-DST method to estimate the cumulative 127
distribution function (CDF) of day-ahead solar PV forecasts. The application of the pro- 128
posed NB-DST method consists of the following four steps: (1) collect historical solar PV~ 129
generation and related weather data; (2) apply a deterministic forecasting method suchas 130
SVR, ANN, et al. to forecast solar PV generation and determine the forecast errors; (3) 131
utilize the NB method to determine the probability of the forecast errors falling into prob- 132
ability intervals; (4) employ the DST method to determine the CDF of forecast errors. The 133
procedure of applying the NB-DST method to quantify the day-ahead solar PV forecast 134

errors is detailed as follows. 135
136
2.1 Data collection 137

To perform day-ahead solar PV forecasting, day-ahead weather forecast, and solar 138
power generation data are collected. For a particular geographic location, historical 139
weather forecast data (W) and historical solar power generation data (s{) for the targeted 140
hour (1) and day (d) are collected. After identifying and removing bad data [30], the da- 141
taset is divided into three subsets (see Figure 1): (1) training dataset for building deter- 142
ministic forecasting models (about 75%), i.e., Try = {wi, s | d € D;}. (2) training dataset 143
for building the NB models (about 15%), i.e., Tr, = {w,s? | d € D,}. (3) testing dataset 144
for evaluating the performance of the NB-DST method (about 10%), ie, TS = 145
{wi, s |d € Ds}. 146
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Historical Dataset

ing Set — 1 (~75%) | Training Set—2 (~15%)  Test Set (~10%)

For training deterministic models For training NB models Test NB-DST 147
Figure 1. Segmentation of historical dataset for implementing the NB-DST method. 148
2.2 Deterministic forecasting methods and forecast errors 149

Using the training dataset Tr: as input, deterministic forecasting methods aim to 150
build models for forecasting solar PV generation 24 hours in advance: $f = 151
we(wi, sf~). Here, the output of the deterministic forecasting methods is a forecasting 152
model, denoted as f"“(-), which may include models used by SVR, ANN, and persis- 153
tence methods. To catch hourly variations, separate models are trained for each hour (h) 154
of the day, using historical data for the corresponding hour. 155
Furthermore, three distinct forecasting models are trained to accommodate different 156
weather conditions (wc): clear, overcast, and partially cloudy. These trained forecasting 157
models generate hourly day-ahead deterministic forecasts (3f) using dataset Tr2. Then, 158
forecast errors (¢p,) can be calculated using (1) as the difference between the observations 159
(s) and forecasts. 160

e = sf = 5 0

To apply the NB method, & is cast into equally divided intervals. First, the lower 161
and upper limits of historical forecast errors are determined as &*" = gréiDn gl and 162
2

&NV = max ef, respectively. Then, the historical error range [é"™, &1%¥] is divided into 163
2

L intervals of equal width. These intervals are defined as I} = interval(Low}, Upl), 164
where Low! = &M™ + (1 — 1)A, and Up}, = §M™ + 1A, for=1,2, -, Land A,= -

Finally, an NB binary classifier model is trained for each error interval at hour h.This 166
approach is chosen because the results of each NB model will serve as evidence for the 167
DST. Training a single multi-class NB classifier would result in only one mass function, 168
where estimated probabilities for each class sum to '1,' and individual class probabilities 169

do not form meaningful evidence for the DST. To train the NB classifier for hour /, the 170
day-ahead weather forecast data (w§) and solar power forecast data (§f) are used as pre- 171

max_zmin
n o —Sn

165

dictors (x¢ = [wﬁ, §,‘3]T). The target is represented as a binary class label, {0,1}, where ‘0" 172
represents the event that the forecast error falls outside the corresponding interval, and 173
‘1" represents the event that the forecast error falls inside the corresponding interval. 174
Mathematically, the labeling can be written as follows: 175

1 ifedell

1t e ) =
T (h h) 0 otherwise

)
where y} is the class label of a training sample of the I* NB classifier of hour h, 176
and 1(*) is an indicator function. 177
NB classifiers are trained using dataset Tr: and validated through the k-fold cross- 178
validation technique [31]. For the [ interval at hour h, the NB classifier provides two 179
probabilities: one for the forecast falling into the interval (p},) and another for it falling out 180
of the interval (1 — p}), where [ € {1,2, ..., L}. This procedure is illustrated in Figure 2. 181
182
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Figure 2. NB classifiers and corresponding probability outputs for forecast intervals at hour, h. 184
2.3 Probability estimation with the NB method 185

The NB method, a straightforward probabilistic classification algorithm based on 186
Bayes’ theorem of probabilistic inference [32], serves as a crucial tool in this study. Bayes” 187
theorem connects the conditional and marginal probabilities of two random variables, is 188
often used to calculate posterior probabilities based on given data. In this study, the NB 189
method is used to estimate P(ef € I} | x{), i.e., the probability of forecast errors &f fall- 190
ing into interval I; given the predictor feature vector x{. 191

To be concise, the following study will be focused on interval [ at hour / of day 4, so 192
that the superscripts ! and / can be dropped. Assume that the training data {x¢,y?} are 193
given for d =1,2,...,N,. Here, N, is the total number of days in Tr2. Symbol x% = 194
[x&, x&, =, xd,+,x3]T is a V-dimensional feature vector, which consists of day-ahead 195
weather forecast w? and solar power forecast $%. Symbol y¢ is the corresponding class 196
label defined in (2). An NB classifier computes the probabilities that an unclassified sam- 197
ple belongs to certain class label(s) conditioned on the feature values using Bayes’ theorem, 198
as depicted in (3). 199

fx|y=c(x) "P(Y =0) 3
Fer—@) - P(Y = 0) + fyy1 @) - P(Y = 1) ©)

Here, C €{0,1} is the class label, fyy—c(x) is the probability density function (PDF) 200
of feature vector x given that Y attains class label C, and P(Y = C) is the prior proba- 201
bility of class C. It is assumed that the prior probability follows a Bernoulli distribution. 202
The NB classifier assumes conditional independence of the features, meaning that 203
the value of a particular feature is considered independent of other features for a given 204
class, as expressed in (4). 205

4
friy=c(x) = nfxv|y=c(xu) 4)
v=1
Although this assumption may not always hold in some practical applications, NB 206
classifiers, when coupled with kernel density estimation (KDE), can still achieve accurate 207
estimations in such cases [32]. KDE is a non-parametric estimation technique for estimat- 208

PY=C|X=x) =

ing PDF, which can be described by (5.a). 209
N
f (x) = 1 i c(*= x4 .
0 = 72, K\ (5.2)

Here, fx(x) represents the KDE of the PDF of a random variable X given N, reali- 210
zations of x, [x;,Xp,..,%y,]~fx(x). The smoothing parameter A is also known as 211
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bandwidth. Additionally, K(-) denotes the kernel function. A commonly used choice for 212

this function is the Gaussian kernel, which is defined in (5.b). 213
x—x¢ 1 Y=t ’
K < ) = Ll (51)
1 V2

The KDE of the conditional PDF of the feature vector X given Y=C can be obtained 214
through (6). Here, N is the number of training samples belonging to class C, and 15 is 215
the bandwidth for the v** feature for class C and selected to optimize the Gaussian ker- 216

nel in (5.b). 217
218
v Nc¢ ne ne
f (x) = 1_[ L Z K (M) (6)
e v=1 NCAE ne=1 Ag

An NB classifier for a specific error interval is trained by simultaneously simulating 219
(3) and (6) for each training sample of the corresponding interval of a particular hour in 220
dataset Tr2. The output probabilities of an NB classifier for the I*" interval of hour h can 221
be written as (7). 222
223

ph= P(Y =1]X = x) (7.a)

1-pt=PY =0|X=x) (7.b)
224
225
226

2.4  Review of the DST 227

The DST is a mathematical framework employed to combine evidence from multiple 228
independent sources in the presence of uncertainty [26, 33]. The DST operates by collect- 229
ing information from individual sources represented by a mass function, also known as 230
(a.k.a.) the basic probability assignment (BPA). The BPAs are then merged using Dempster’s 231
rule of combination to determine the degrees of belief in a set of events of interest. 232

When formulating a problem for DST application, a set of all possible solutions, a.k.a. 233
the frame of discernment, is considered. It is assumed that the events of interest are sub- 234
sets of this frame. Let () represent frame of discernment and E represent an event of in- 235
terest, where E € Q. Then, E=Q—E represents the events in ) that are distinct from 236
event E.The BPA for Q isa function m: 2% - [0,1] that has the following two properties: 237

1) m(¢) = 0, where ¢ denotes the empty set. 238
2) Ygeoam(E) =1 where m(E) is the degree of belief assigned to event E. 239
240

Let m;,m,, ..., m, represent the BPAs for independent evidence Fy,F,,...,F, in sup- 241
port of event E from Q. Dempster’s rule of combination can be exploited to construct a new 242
mass function for combined evidence in support of E using (8). 243

m(E) = (m®m,® ... &dm,)(E) = % Z my(Fy) - my(Fy) - - my (F) 8)
FiNFN .. NF,=E

244
Here, @ denotes the operator for Dempster’s rule of combination, which performs or- 245
thogonal sum of mass functions supporting event E. And U is a normalization constant 246
representing the degree of conflict between individual BPAs, as described by (9). 247
248

U= Z my (Fy) - my(Fy) - = - my(F) (9)

FiNFyN ... NFy#¢

249

2.5 Incorporating evidence from NB classifiers using the DST 250
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The NB classifiers provide individual probabilities indicating the likelihood of fore- 251
cast errors falling within a specific interval. To accurately determine the final probability 252
of an error falling into a specified interval, DST is used to combine the evidence that the 253
error falls into that interval with the evidence that error does not fall into any other inter- 254
vals. Because there are L possible intervals for the error at hour h, there are L possible 255
events, which are denoted as E',E}, ..., El', ..., El' . Here, E' represents the event that the 256
error falls into interval I}, where {l € Z*:1 < [ < L}. The frame of discernment at hour h, 257
denoted by Q, can be written as (10). 258

0,=EPUErU..UE!MU ..U E} (10)

The mass functions of these individual events, a.k.a. BPAs, are obtained from the NB 259
classifiers. The mass function m;(E]') of the event E/ is defined in (11) for all values of 260

. Here, E—lh_ denotes the event that the error does not fall into the I*" interval. 261
my(Er') = pr (11.a)
m(El') =1 —pj, (11.b)

Because solar generation is inherently non-negative and cannot exceed the genera- 262
tion capacity of the solar power plant, the constraint described by (12) is imposed on solar 263
power generation. Here, s.,, represents the maximum generation capacity of the solar 264
power plant. 265

0 <sp < Seqp 12)

The range of the forecast error is then established using (13). The bounds on the index 266

of error interval are set through (14). Here, [-] represents the ceiling operation, lj,yer and 267
Lupper are the indices of the lowermost and uppermost error intervals such that 1< 268
Liower <" <lypper < L. 269
0<3,+¢&, < Scap

X 8 (13.a)
—Sp<¢& < Scap — Sh (13b)
l —8, — &7
lower — Ah (14.&)
l =L — Fv’rlnax - (Scap - §h)l
upper Ah (14-b)
270
The frame of discernment is updated according to the lowermost and uppermost er- 271
ror intervals, as shown in (15). 272
O =Efjy U UEL (15)

Here, instead of combining the evidence from the whole set of error intervals, the 273
frame of discernment is shrunk to a subset of M intervals, where M = lpper — ligwer +1 274
and M < L. Next, integrate these pieces of evidence using (8) and (9) to determine the 275
probabilities of the forecast errors that fall into each of these M intervals, which constitute 276

the mass function m(Eih) Vi:liower < U< lypper , asillustrated in (16). 277
m(Elh) = (mlloweremllower"’l@ eamlupper)(Eih) (16)

The CDF of the forecast error is derived by accumulating the probabilities. The set of 278
error  values  {&}, €2, .. ,&f, .., el} and their corresponding probabilities 279
{Pr, D2, . Br, .., DA} for the CDF are calculated using the interval bounds and the width, 280
as outlined in (17). 281

Eill = éiTin + (Liower = 1) Ay, (17.a)
en = &p + (k= DA, for k=2,3,--,M (17.b)
ﬁh = m(El,}ower) (17C)

ph =05 "+ m(E[  4k-1) for k=2,3,-,M (17.d)
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Data

Train
Deterministic
Models
(SVR/ANN)

Solar

Finally, the CDF of the solar generation at hour h is calculated by adding the day-
ahead deterministic forecast to the error values for hour h, as shown in (18). Here, $¥
represents the NB-DST forecast whose CDF value is pf.

Skf=ef+3, for1<k<M (18)
The framework of the NB-DST method is summarized in Figure 3. In this study, the
NB-DST method is coupled with three deterministic forecasting methods: SVR, ANN, and
QR (median only), resulting in SVR-NB-DST, QR-NB-DST, and ANN-NB-DST models,
respectively. To mitigate the risk of overfitting the NB-DST models to the training data, a

separate dataset, TS, is reserved for generating performance metrics to evaluate the mod-
els’ effectiveness.

Training stage 2 Testing

. Calculate hourly

' Predict using : i Train NB -
| trained ! I historical error | ! classifiers for |
1 SVR/ANN "1 range and divide " 1 each error ' CDF of
1 models ! | into intervals i interval ! error
4 ‘ A — 4 X o s o o mm ’ Blbe g, monf s #
Try TS prm e %
.  CDF of solar I
Tr, ‘ generation \

Figure 3. Framework of the proposed NB-DST method.

3. Performance metrics for evaluating probabilistic forecasts

Assessing probabilistic forecasts is more challenging than deterministic ones because
probabilistic forecasts have various statistical properties. As can be found in the literature,
many state-of-the-art probabilistic forecasting methods are only assessed using certain
sets of evaluation metrics. But the evaluation process needs to balance several critical as-
pects, such as forecast accuracy, reliability, sharpness, and uncertainty. This paper aims
at addressing this challenge by evaluating the probabilistic forecasting methods using a
handful of metrics that assess distinct aspects of the forecasts, providing the forecasters
with a framework for critical evaluation. In this section, these evaluation metrics are de-
fined to evaluate the performance of the probabilistic forecasts.

3.1 Continuous rank probability score
The continuous rank probability score (CRPS) is an evaluation metric widely used in
various forecasting domains, such as weather, solar and wind power, and load forecasting

[5, 34, 35]. It effectively measures forecast accuracy, reliability, and sharpness. CRPS is
defined in (19).

N
1 teo 2
CRPS = NZJ [p]’fcst(x) —o§h(x)] dx (19)
k=1""%

Here, ﬁ}‘cst(x) represents the CDF of the forecast at instant k. Symbol o;‘h (x) de-
notes the CDF of the observation at instance k, which is defined as ofh(x) =1(x = sp,).
Here, 1(-) is an indicator function, s, denotes the observed value of solar generation. N
stands for the total number of forecast instances in dataset TS.

A lower CRPS value is desirable, as it indicates that the estimated CDF has a lower
spread around the observation. It is evident from (19) that the CRPS penalizes any
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discrepancies between the forecasted CDF and the actual observations. Moreover, fora 313
deterministic forecast, the CRPS transforms into the mean absolute error (MAE). This prop- 314
erty makes the CRPS a preferred metric for comparing probabilistic and deterministic 315
forecasts. CRPS can be further decomposed into three components as outlined in (20) [36]. 316
The methods for calculating CRPS, along with its components - REL, UNC, and RES —are 317

detailed in [36] and used in this paper. 318
CRPS = Reliability (REL) + Uncertainty(UNC) — Resolution(RES) (20)
3.2 Brier score 319

The Brier score (BS) is a scoring function widely used to measure the accuracy of 320
probabilistic forecasts [37]. The BS for a probabilistic forecast at hour h is defined in (21). 321

M
1 , .
BS, = MZ[pé -y ]? 1)
]:

Here, ﬁ,{ represents the forecasted probability of event j happening at hour #. Term 322
y,{ is defined as y,{ =1I(s, =S ,’l ). M denotes the total number of events considered in the 323
probability forecast at hour h. To compute the BS for an entire day’s forecast, one can 324
average BS; across all hours, from h = 1to N, where N, represents the total number 325
of hours of the day. 326

3.3 Prediction interval coverage probability 327

After the CDF of the forecast is obtained from a probabilistic forecasting method, a 328
prediction interval (PI) of the forecast can be calculated. For a confidence level of 329
(1 — a) X 100%, the Pl is determined using (22). Here, $),, represents the t*" quantile of 330
the forecasted CDF, meaning P(S, < $,.) = T. 331

S a) (22)

Ply (1—ayx1009% = Interval (Sh a
) )

The prediction interval coverage probability (PICP) is a measure of the reliability of a 332
probabilistic forecasting method. PICP can be calculated from the (1 —a) x 100% Plas 333

outlined in (23) [38]. 334
1 &
PICP(a) = N_hz (8% € Pl (1-a)x100%) (23)
h=1

Here, 3$;, denotes the forecastathour h, Nj denotes the total number of forecasting 335
hours ina day, and 1(-) is an indicator function. A forecasting method is considered more 336
reliable if its PICP(a) is closer to the nominal coverage for the confidence intervals of the 337
same size. 338

3.4 Prediction interval normalized average width 339

The prediction interval normalized average width (PINAW) is a metric for measur- 340
ing the sharpness of a probabilistic forecast method [38]. Mathematically, PINAW is de- 341
fined in (24), where s, denotes the observed solar generation at hour h on the forecast 342
day. In this formula, the numerator computes the average width of the (1 —a) X 100% 343
PI of the probabilistic forecast, while the denominator computes the average hourly solar 344

power generation. A lower PINAW value is desirable, as it indicates a shaper forecast. 345
1 ey (o A
N_h h=1 (Sh,‘[=1—% - Sh,r:%)
PINAW (a) = T (24)
h
N_h h=15h
3.5 Coverage width criterion 346

The coverage width criterion (CWC) is defined in (25) [39] and can effectively address 347
the limitations of both the PICP and PINAW. While PICP values closer to the nominal 348
coverage indicate a more reliable forecast, they do not assess the sharpness of the forecast. 349
Conversely, a lower PINAW signifies a sharper forecast but does not measure its 350
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reliability. The CWC integrates both PICP and PINAW, providing a comprehensive met-
ric to evaluate the reliability and sharpness of a forecast simultaneously.

B PINAW for PICP = PINC

PICP — PINC
100

CWe = (25)

(k + B - PINAW) -<1+exp (—n- )) for PICP < PINC

Here, PINC represents the prediction interval nominal coverage. Symbols ¥, 8, and
n represent hyperparameters, which are chosen as suggested in [39]. A lower CWC value
is desirable, as it indicates that a probabilistic forecasting method is more reliable and
sharper.

4. Case study

In this section, day-ahead probabilistic forecasting of solar PV generation is per-
formed using the proposed NB-DST method. In addition to the SVR-NB-DST, QR-NB-
DST, and ANN-NB-DST methods, the study also implements the AnEn and PerEn meth-
ods [40] as benchmarks. Although there are many probabilistic methods in the literature,
they have not been widely adopted in practice. For example, the PerEn method is still
preferred for benchmarking within both industry settings and research environments,
such as those conducted by the US Department of Energy [41]. The effectiveness of these
methods is evaluated and compared using the performance metrics outlined in Section 3
using real-world data.

4.1 Data collection and selection

The solar generation data used in this study are collected from a 450-kW solar PV
plant located on the rooftop of the Target® store in Vestal, NY, USA (latitude 42°05'37.0"N,
longitude 76°00°06.0"W). This plant was established in 2016 with support from the New
York State Energy Research and Development Authority (NYSERDA). Hourly solar gen-
eration data of this plant between 2016 and 2022 are downloaded from NYSERDA’s web-
site [42].
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Visibility [
Cloud Cover [
Wind Chill |
Precipitation [
Snow Depth [
Wind Speed [
Wind Direction [

Input variables

Figure 4. PCC of weather variables with the hourly solar generation data.

Additionally, this study incorporates various weather variables that significantly in-
fluence solar irradiance [43]. Historical weather data for the study site from 2016 to 2021,
along with historical forecast data for 2022, are collected on an hourly basis from the web-
site of Visual Crossing weather data service [44]. The weather variables available in this
dataset are listed in Table 1. To select the predictor variables for the forecasting algo-
rithms, the correlation between solar generation and each numerical weather variable is
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measured using Pearson’s correlation coefficient (PCC) [45]. After pre-processing and re-
moving outliers from the data, the PCC for each numerical weather predictor variable
with solar generation data is calculated. The results are presented in Figure 4. It is ob-
served that temperature and visibility have a strong positive correlation with solar power
generation, while relative humidity and cloud cover have a strong negative correlation. The
correlations of other predictor variables are weak, as shown in Figure 4, and thus, these
variables are excluded from the model. Solar generation data from the previous day’s cor-
responding hours are also included in the model to account for the auto-correlation of the
solar power generation data.

The datasets used in this study are divided as follows: the data from 2016 to 2019 are
designated as the Tr: dataset, while data recorded from 2020 to 2021 are used as the Tr:
dataset. The data recorded in 2022 are used as the TS dataset. Because weather conditions

Table 1. Weather variables for the study site available from Visual Crossing weather data service
(2016-2022)

Weather variable Description Unit
Temperature Actual temperature °C
Dew point Dew point °C
Wind chill Wind chill factor °C
Heat index Heat index °C
Feels like Combination of tempe.rature, wind chill, and oC
heat index
Humidity Relative humidity %
Precipitation Amount of liquid equivalent precipitation mm
Snow depth Average amount of snow on the ground cm
Wind speed Wind speed at 10m above ground kmph
. L Direction of wind in reference to the north di-
Wind direction . degrees
rection
Pressure Sea level pressure mbars
Cloud cover Amount of sky covered with cloud %
Visibility Distance visible in daylight km
L Weather condition reported by the weather sta-
Conditions none

tion

are complex and have varying impact on solar PV generation, separate forecasting models
are built and evaluated under different cloud patterns. Accordingly, the datasets are fur-
ther divided into three categories on a daily basis according to the weather conditions using
the approach described in [46]: “clear,” “overcast”, and “partially cloudy”. The daily solar
generation profile on a clear day typically exhibits a smooth bell curve, with the power
generation peaking near the generation capacity during noon. On overcast days, the total
daily solar generation is significantly lower. On partially cloudy days, the hourly solar gen-
eration shows considerable fluctuation, characterized by multiple peaks and troughs
throughout the day.

Subsequently, the forecasting models are first trained using Tr: and Tr2 datasets for
each hour of the day under these distinct weather conditions. Then, the forecasting models
are evaluated using the performance metrics computed through the TS dataset. Note that
out of 365 days in the TS dataset, there are 124 days classified as “clear”, 129 days classified
as “overcast”, and 112 days classified as “partially cloudy”. The effectiveness of the forecast-
ing models is evaluated using a 5-fold cross-validation approach.

Table 2. Performance metrics of all the forecasting methods evaluated over the 124 “Clear” days.

Method

CRPS (%) CRPS Decomposition BS (%) PICP (%) PINAW CWC
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REL RES UNC
PerEn 11.14 1.20 48.38 58.32 6.87 91.62 19.87 119.32
AnEn 15.38 1.51 44.45 58.32 7.44 84.71 14.67 88.12
QR-NB-DST 7.86 1.58 52.04 58.32 573 87.18 9.33 56.08
SVR-NB-DST 7.97 141 51.76 58.32 541 86.35 9.81 58.96
ANN-NB-DST 6.28 1.38 53.42 58.32 4.62 88.42 7.25 43.60
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Figure 5. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “clear”
day (19 May 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, (e) PerEn. The
red dotted lines denote the actual hourly observations of solar power; the shaded areas denote the
95% PIs of the forecasted solar generation obtained from the corresponding methods.

4.2 Performance evaluation under “clear” weather conditions

This subsection focuses on assessing the probabilistic forecasting methods during
“clear” weather conditions. The performance metrics for the 124 “clear” days in the TS
dataset are calculated for all the methods and summarized in Table 2. It can be observed
from Table 2 that the three NB-DST methods outperform the AnEn and PerEn methods in
terms of the CRPS. Also, the BS values for the NB-DST methods are considerably lower
than those for the other methods, which indicates NB-DST’s higher accuracy. These three
NB-DST methods show satisfactory reliability and coverage with resolution metrics notably
surpassing those of the AnEn and PerEn methods. Also, a slightly lower value of the
PINAW for the ANN-NB-DST gives it an advantage over the other two NB-DST methods.
While the PICP values for the three NB-DST methods are comparable to those for the
AnEn and PerEn methods, the NB-DST methods, particularly ANN-NB-DST, exhibit su-
perior overall performance as indicated by their lower CWC values.
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To further illustrate the performance, Figure 5 shows the estimated 95% PIs from all
the forecasting methods for a particular “clear” day (19 May 2022). The 95% Pls are ob-
tained using (22) by setting a=0.05. It can be observed that the 95% PIs of the three NB-
DST methods are narrower than those of the two benchmark methods. Figure 6(a) shows
the CDF estimate for PV power at 10:00 AM on this “clear” day (19 May 2022). It can be
observed that the CDFs estimated using the ANN-NB-DST and the QR-NB-DST methods
exhibit the lowest deviation from the actual observation CDF. Although the CDF esti-
mated by the SVR-NB-DST method shows a deviation slightly higher than other NB-DST
methods, it still performs commendably when compared to the benchmark methods.

4.3 Performance evaluation under “overcast” weather conditions

In this subsection, the performance metrics are calculated over the 129 “overcast” days
in the TS dataset for all the probabilistic forecasting methods and are summarized in Table
3. Among these methods, the ANN-NB-DST stands out by achieving the lowest CRPS. It
also exhibits superior reliability and resolution, as indicated by its REL and RES values,
compared to the other methods. Notably, the resolution of all the NB-DST methods is su-
perior to the two benchmark methods as their PINAW values are much lower. While the
PICP values for the NB-DST methods are further from the ideal 95% nominal coverage
than the benchmark methods, their lower CWC values reflect better overall performance
considering both forecast reliability and sharpness. Additionally, the lower BS values of
the NB-DST methods suggest that the NB-DST methods are more accurate than the other
methods. Among the three NB-DST methods, the ANN-NB-DST method exhibits the most
impressive performance.
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Figure 6. Estimated CDFs of the PV power using all the probabilistic forecasting methods at 10:00
AM on (a) a “clear” day (19 May 2022), (b) an “overcast” day (18 December 2022), (c) a “partially
cloudy” day (09 July 2022). The solid black line represents the CDF of the actual observation.
Table 3. Performance metrics of all the forecasting methods evaluated over the 129 “Overcast” days.
CRPS Decomposition
Method CRPS (%) BS (%) PICP (%) PINAW CWC
REL RES UNC
PerEn 5.89 0.51 7.33 12.71 473 91.68 1316.20 7897.3
AnEn 6.21 0.54 7.04 12.71 5.61 89.54 1353.90 8123.5
QR-NB-DST 5.74 0.48 7.45 12.71 3.68 86.61 632.80 3796.9
SVR-NB-DST 6.78 0.39 6.32 12.71 3.87 85.47 670.94 4025.7
ANN-NB-DST 5.37 0.41 7.75 12.71 3.13 88.25 581.42 3488.6
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To further illustrate the performance, Figure 7 shows the 95% Pls obtained from the 458
forecasting methods on a particular “overcast” day (28 December 2022). It can be observed 459
that the 95% PIs for the AnEn and PerEn methods are notably broader than those for the 460
NB-DST methods. Additionally, the SVR-NB-DST method meets the targeted coverage 461
rate of 95% PlIs, whereas the coverage rates of the ANN-NB-DST and QR-NB-DST meth- 462
ods are lower than the targeted 95%. This variation highlights the challenges of forecasting 463
under overcast conditions. The estimated CDFs of the hourly solar generation estimated 464
by the forecasting methods at 10:00 AM on this “overcast” day (28 December 2022) are 465
illustrated in Figure 6(b). It can be observed from Figure 6(b) that the CDFs estimated by 466
the NB-DST methods align more closely to the actual observation CDF than those esti- 467
mated by the two benchmark methods. 468

4.4 Performance evaluation under “partially cloudy” weather conditions 469

In this subsection, the performance metrics are calculated over the 112 “partially 470
cloudy” days in the TS dataset for all the probabilistic forecasting methods and are sum- 471
marized in Table 4. It can be observed that the ANN-NB-DST method achieves the lowest 472
CRPS value, which indicates the best overall performance. Additionally, the reliability and 473
resolution of the ANN-NB-DST method are also superior to those of other NB-DST and 474
benchmark methods, as indicated by its lower value of REL and higher value of RES. 475
Moreover, the lower PINAW values of the NB-DST methods suggest that they have better 476
resolution than the AnEn and the PerEn methods. While the PICP values for the NB-DST 477
methods are not as good as those for the benchmark methods, the CWC values, which 478
consider both PICP and PINAW, suggest a better overall performance for the NB-DST 479
methods. Notably, the ANN-NB-DST method stands out with the lowest BS, indicating 480
the highest accuracy among the five methods. 481

Table 4. Performance metrics of all the forecasting methods evaluated over the 112 “partially cloudy” 482

days. 483
CRPS Decomposition
Method CRPS (%) BS (%) PICP (%) PINAW CWC
REL RES UNC
PerEn 9.30 0.55 33.93 42.68 524 90.86 27.67 166.12
AnEn 9.98 0.64 33.34 42.68 6.77 86.33 28.60 171.70
QR-NB-DST 8.15 0.65 35.18 42.68 5.72 88.28 16.92 101.62
SVR-NB-DST 8.55 0.78 34.91 42.68 528 84.91 17.37 104.32
ANN-NB-DST 6.21 0.49 36.96 42.68 3.94 87.89 13.24 79.54

Table 5. Performance metrics of all the forecasting methods evaluated over the 1-year testing dataset ~ 484

CRPS Decomposition
Method CRPS (%) BS (%) PICP (%) PINAW CWC
REL RES UNC

PerEn 8.72 0.76 29.44 37.40 5.61 91.41 480.42 2882.61
AnEn 10.48 0.90 27.82 37.40 6.59 86.91 492.26 2953.67
QR-NB-DST 7.20 091 31.11 37.40 5.00 87.32 232.01 1392.15
SVR-NB-DST 773 0.86 30.53 37.40 4.83 85.60 245.79 1474.82
ANN-NB-DST 5.94 0.76 32.23 37.40 3.88 88.20 212.01 1272.18

485

To further illustrate the performance, Figure 8 shows the 95% Pls obtained from all 486

the forecasting methods on a particular “partially cloudy” day (09 July 2022). It can be ob- 487
served that the 95% PIs obtained from the benchmark methods are wider than those from 488
the NB-DST methods. Also, in Figure 8, some measured points fall outside the 95% PIs 489
obtained from the CDFs estimated by the NB-DST methods. In contrast, such occurrences 490
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are not observed with the AnEn and PerEn methods. The observation highlights a strate-
gic trade-off made by the NB-DST methods, prioritizing improved resolution over coverage
probability. Figure 6(c) shows the CDFs estimated by all the methods at 10:00 AM on this
“partially cloudy” day (09 July 2022). The CDFs estimated by the NB-DST methods show
smaller deviations from the actual observed solar power CDF than those estimated by the
AnEn and PerEn methods.
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Figure 7. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “over-
cast” day (28 December 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, and
(e) PerEn.

4.5 Owerall comparative analysis

The results from Table 2 — Table 4 are synthesized to evaluate the overall performance
of the proposed method over the 1-year testing dataset, T'S. The findings are presented in
Table 5. Notably, the NB-DST methods outperform the benchmark methods on nearly all
performance metrics except for the PICP. This exception is understandable because the PI
estimates of the PerEn and AnEn methods are considerably wider than those of the NB-
DST methods. Even with the exception, the significantly better PINAW and CWC values
suggest the overall superiority of the NB-DST methods. According to Table 5, the ANN-
NB-DST emerges as the best-performing method among the NB-DST variants.

Figure 9 further illustrates the percentage improvements in CRPS and CWC of the
ANN-NB-DST method over the PerEn method across all weather conditions. As explained
before, CRPS measures the overall deviation of the estimated CDF from the actual meas-
urements, indicating the forecast accuracy, while CWC measures the reliability and sharp-
ness of the forecasted CDF. Notably, the ANN-NB-DST method achieves over 33% im-
provement in CRPS under clear and partially cloudy weather conditions. This result
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indicates that the CDF estimated by the ANN-NB-DST method deviates less from the ac-
tual solar power measurements than the PerEn method. Also, the improvement in CRPS
is less pronounced (< 10%) under overcast weather conditions, reflecting the challenges in
predictive accuracy under such weather. Despite this, results from Figure 7 and Table 3
suggest the overall superiority of the ANN-NB-DST method in accuracy and sharpness with
a slight reduction in reliability. Moreover, the CWC improvement remains consistent
(more than 52%) across all the weather conditions, indicating the higher reliability and
better sharpness of the ANN-NB-DST method than the benchmark method.
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Figure 8. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “par-
tially cloudy” day (09 July 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, and
(e) PerEn.
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Figure 9. Comparative improvement of the ANN-NB-DST method over the widely used bench-
mark, the PerEn method.

5. Conclusions and future work

This paper proposes the NB-DST method, a novel approach for quantifying forecast
errors of a deterministic forecasting method by estimating the CDF using a non-paramet-
ric technique. The NB-DST method has been integrated with deterministic forecasting
methods such as SVR, ANN, and OR to generate probabilistic forecasts under different
weather conditions. Comparisons with established benchmark methods (AnEn and
PerEn) using real-world data reveal that the NB-DST methods consistently outperform
the benchmarks in terms of lower CRPS, BS, and CWC values. Among the tested methods,
the ANN-NB-DST method emerges as the top performer, consistently producing reliable
and high-resolution CDF estimates across various weather conditions, establishing it as
the superior option for probabilistic photovoltaic (PV) forecasting among the methods
evaluated.

Future studies will focus on exploring a wider range of deterministic forecasting
methods in conjunction with the NB-DST method to enhance forecast robustness and con-
sistency. Additionally, this study considered only a limited number of meteorological var-
iables due to data availability limitations. Thus, an important direction for future investi-
gation is to incorporate a more comprehensive set of meteorological variables into the
forecasting models. This expansion will enable a deeper exploration of their impact on
forecasting accuracy and provide more comprehensive insights into the dynamics of prob-
abilistic PV forecasting.
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The historical solar power generation data used in this study can be found at
(https://der.nyserda.ny.gcov/reports/view/performance/?project=318) and the related weather data
can be downloaded from  (https://www.visualcrossing.com/weather/weather-data-ser-
vicest/editDataDefinition) [42] [44].
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