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Abstract: Accurate quantification of uncertainty in solar photovoltaic (PV) generation forecasts is 10 

imperative for the efficient and reliable operation of the power grid. In this paper, a data-driven 11 

non-parametric probabilistic method based on the Naïve Bayes (NB) classification algorithm and 12 

Dempster-Shafer theory (DST) of evidence is proposed for day-ahead probabilistic PV power fore- 13 

casting. This NB-DST method extends traditional deterministic solar PV forecasting methods by 14 

quantifying the uncertainty of their forecasts by estimating the cumulative distribution functions 15 

(CDFs) of their forecast errors and forecast variables. The statistical performance of this method is 16 

compared with the analog ensemble method and the persistence ensemble method under three dif- 17 

ferent weather conditions using real-world data. The study results reveal that the proposed NB-DST 18 

method coupled with an artificial neural network model outperforms the other methods in that its 19 

estimated CDFs have lower spread, higher reliability, and sharper probabilistic forecasts with better 20 

accuracy. 21 

Keywords: Continuous rank probability score; Dempster-Shafer theory; naïve Bayes classification; 22 

probabilistic solar power forecasting; uncertainty quantification. 23 

 24 

1. Introduction 25 

Solar photovoltaic (PV) generation has been penetrating the power grid at an accel- 26 

erating speed over the past decade as the world moves toward a more sustainable energy 27 

grid. Integrating a large number of solar PV power plants into the existing conventional 28 

grid presents significant challenges because solar PV generation is not dispatchable and 29 

is often treated as a form of negative load in power grid operations. To efficiently maintain 30 

the balance between generation and load in the power grid, both load and solar PV gen- 31 

eration needs to be forecasted. These forecasts enable the proactive scheduling of dis- 32 

patchable generation resources, allowing for the management of power ramping and the 33 

timely allocation of generation reserves to address power uncertainty [1] [2]. Moreover, 34 

solar PV power forecasting plays a significant role in predicting energy market imbal- 35 

ances and optimizing bid scheduling [3].  36 

To support the bidding strategy and operation of a day-ahead electric power market, 37 

many data-driven forecasting methods have been developed to forecast solar PV genera- 38 

tion. Typically, these day-ahead forecasting methods have forecast horizons between 24 39 

and 48 hours, with a lead time of 24 hours. In other words, the first instance of the forecast 40 

is 24 hours ahead in the future relative to the current time [4]. Because of the large lead 41 

time, all forecasting methods inherently exhibit some levels of forecast errors that cannot 42 

be overlooked. Based on how they handle the uncertainty associated with the forecast 43 

errors, the forecasting methods can be broadly categorized into deterministic and 44 
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probabilistic approaches. While deterministic methods provide a single-value forecast 45 

without quantifying forecast uncertainty, probabilistic methods quantify forecast uncer- 46 

tainty by estimating statistical properties of forecast variables, such as probability distri- 47 

butions and prediction intervals (PIs) [5]. 48 

Many deterministic methods have been developed to accurately forecast solar PV 49 

generation, gaining widespread acceptance in real-world applications [6, 7, 8, 9, 10]. Well- 50 

recognized forecasting methods include artificial neural networks (ANN) [11], recurrent 51 

neural networks (RNN) [12], long-short term memory (LSTM) [13], convolutional neural 52 

network (CNN) [14], and support vector regression (SVR) [15, 16]. Deterministic forecast- 53 

ing methods excel at estimating the expected solar PV generation and are valuable for 54 

managing power ramping. Yet, they cannot be directly used to address the uncertainty 55 

associated with solar PV generation. 56 

Many probabilistic methods have been developed to quantify the uncertainty inher- 57 

ent in solar PV forecasts. For instance, the persistence ensemble (PerEn) method assumes 58 

that the forecasted solar PV generation follows a Gaussian distribution [17] and subse- 59 

quently estimates its mean and variance. Meanwhile, the ensemble learning method 60 

(ELM) [18] integrates various deterministic forecasting methods, including k-nearest 61 

neighbors (kNN), decision trees, gradient boosting, random forest, lasso, and ridge re- 62 

gression, to estimate forecast distributions. For deep learning, an improved deep ensem- 63 

ble method, CNN-BiLSTM, is proposed in [19] for probabilistic wind speed forecasting, 64 

where the outputs of the final CNN-BiLSTM layer are fitted to a Gaussian distribution to 65 

estimate the mean and variance of the wind speed. Quantile regression (QR), on the other 66 

hand, estimates the conditional quantiles of solar irradiance based on numerical weather 67 

prediction (NWP) data [20]. In addition, an analog ensemble (AnEn) method is developed 68 

by [21] and compared to QR and PerEn methods. The AnEn method requires a frozen 69 

meteorological model to identify forecast points in the training dataset most similar to the 70 

current forecast. Furthermore, Doubleday et al. propose to combine several deterministic 71 

NWP model outputs using the Bayesian model averaging (BMA) technique to estimate 72 

forecast distributions [22]. In [23], Gaussian process regression (GPR) with specific kernel 73 

functions is applied to obtain prediction intervals of solar power forecast. This method 74 

tries to quantify the forecast uncertainty by fitting the forecast errors to a standard normal 75 

distribution. A sparse GPR method is proposed in [24] for probabilistic wind-gust fore- 76 

casting by combining NWP data and on-site measurements. A variant of this method has 77 

shown promise for solar power forecasting of geographically sparse distributed solar 78 

plants [25]. The uncertainty quantified by probabilistic forecasting methods serves as a 79 

valuable guide for operators in booking appropriate generation reserves.  80 

However, these probabilistic forecasting methods have certain limitations and chal- 81 

lenges. For example, the AnEn, ELM, CNN-BiLSTM, and BMA rely on the assumption 82 

that a predefined family of probabilistic distributions can adequately characterize their 83 

forecasts. The GPR-based approaches, however, non-parametrically forecasts the solar 84 

power generation but fits the forecast error to a standard normal distribution to quantify 85 

the uncertainty. As a result, discrepancies between actual and assumed distributions may 86 

lead to significant errors. In addition, both the ELM and BMA methods require forecast 87 

outputs from several NWP models, which is time-consuming and may introduce addi- 88 

tional uncertainty due to variation across models. As such, these methods have not gained 89 

widespread adoption in practical applications. 90 

To overcome the above-mentioned limitations inherent in existing probabilistic fore- 91 

casting methods and leverage the widespread acceptance of deterministic forecasting 92 

methods, this paper proposes a data-driven non-parametric statistical method for day- 93 

ahead probabilistic forecasting of PV power [26]. First, the method estimates the proba- 94 

bility of the forecast error falling into a certain interval using the Naïve Bayes (NB) classi- 95 

fication technique. Then, the estimated evidence is combined using a suitable statistical 96 

inference technique. Bayesian inference is a well-known method for combining independ- 97 

ent evidence and has been utilized for many probabilistic forecasting applications, such 98 
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as wind-gust speed forecasting [27]. However, it requires prior probabilities. To address 99 

this limitation, a frequentist approach known as the Dempster-Shafer theory (DST) is uti- 100 

lized in this paper to combine probabilities from various independent sources, specifically 101 

from NB’s outputs. Hence, the proposed method is named the NB-DST method. As a non- 102 

parametric approach, the proposed NB-DST method provides the flexibility needed for 103 

real-world applications. Distinguishing from other probabilistic methods such as BMA 104 

and ELM, the proposed NB-DST method only requires a single deterministic model out- 105 

put. A similar method is utilized for probabilistic wind-power forecast, which uses sparse 106 

Bayesian classification networks that require proper initialization of hyperparameters and 107 

a large training dataset [28]. In comparison, the NB classifiers used in this paper are easier 108 

to train with a small training dataset and outperform other methods like logistic regres- 109 

sion [29].  110 

The proposed NB-DST method is a novel approach in the landscape of probabilistic 111 

solar PV power forecasting. Unlike traditional methods that rely on predefined probabil- 112 

istic distributions or extensive model ensembles, the NB-DST method uniquely combines 113 

NB classification with DST to offer a non-parametric, scalable solution for quantifying 114 

forecast uncertainty. This method not only addresses the limitations of existing probabil- 115 

istic approaches by eliminating the need for prior probability distributions but also en- 116 

hances adaptability to real-world forecasting scenarios. The purpose of this research is to 117 

demonstrate the efficacy and practicality of the NB-DST method in improving the accu- 118 

racy and reliability of day-ahead solar power forecasts, thereby supporting more in- 119 

formed decision-making in grid management and energy market operations. 120 

The structure of the rest of this paper is as follows: Section 2 outlines the proposed 121 

NB-DST method. The performance evaluation metrics are introduced in Section 3. In Sec- 122 

tion 4, the performance of the proposed method is compared with other methods utilizing 123 

real-world data from a rooftop solar PV plant. Finally, conclusions are drawn, and future 124 

work is discussed in Section 5. 125 

2. NB-DST method for day-ahead solar PV forecast 126 

This section introduces the proposed NB-DST method to estimate the cumulative 127 

distribution function (CDF) of day-ahead solar PV forecasts. The application of the pro- 128 

posed NB-DST method consists of the following four steps: (1) collect historical solar PV 129 

generation and related weather data; (2) apply a deterministic forecasting method such as 130 

SVR, ANN, et al. to forecast solar PV generation and determine the forecast errors; (3) 131 

utilize the NB method to determine the probability of the forecast errors falling into prob- 132 

ability intervals; (4) employ the DST method to determine the CDF of forecast errors. The 133 

procedure of applying the NB-DST method to quantify the day-ahead solar PV forecast 134 

errors is detailed as follows. 135 

 136 

2.1  Data collection 137 

To perform day-ahead solar PV forecasting, day-ahead weather forecast, and solar 138 

power generation data are collected. For a particular geographic location, historical 139 

weather forecast data (𝒘ℎ
𝑑) and historical solar power generation data (𝑠ℎ

𝑑) for the targeted 140 

hour (h) and day (d) are collected. After identifying and removing bad data [30], the da- 141 

taset is divided into three subsets (see Figure 1): (1) training dataset for building deter- 142 

ministic forecasting models (about 75%), i.e., 𝑇𝑟1 = {𝒘ℎ
𝑑 , 𝑠ℎ

𝑑  | 𝑑 ∈ 𝐷1}. (2) training dataset 143 

for building the NB models (about 15%), i.e.,  𝑇𝑟2 = {𝒘ℎ
𝑑 , 𝑠ℎ

𝑑  | 𝑑 ∈ 𝐷2}. (3) testing dataset 144 

for evaluating the performance of the NB-DST method (about 10%), i.e., 𝑇𝑆 = 145 

{𝒘ℎ
𝑑 , 𝑠ℎ

𝑑  | 𝑑 ∈ 𝐷3}. 146 
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 147 

Figure 1. Segmentation of historical dataset for implementing the NB-DST method. 148 

2.2  Deterministic forecasting methods and forecast errors 149 

Using the training dataset Tr1 as input, deterministic forecasting methods aim to 150 

build models for forecasting solar PV generation 24 hours in advance: 𝑠̂ℎ
𝑑 = 151 

𝑓ℎ
𝑤𝑐(𝒘ℎ

𝑑 , 𝑠ℎ
𝑑−1).  Here, the output of the deterministic forecasting methods is a forecasting 152 

model, denoted as 𝑓ℎ
𝑤𝑐(∙),  which may include models used by SVR, ANN, and persis- 153 

tence methods. To catch hourly variations, separate models are trained for each hour (ℎ) 154 

of the day, using historical data for the corresponding hour.  155 

Furthermore, three distinct forecasting models are trained to accommodate different 156 

weather conditions (𝑤𝑐): clear, overcast, and partially cloudy. These trained forecasting 157 

models generate hourly day-ahead deterministic forecasts (𝑠̂ℎ
𝑑) using dataset Tr2. Then, 158 

forecast errors (𝜀ℎ) can be calculated using (1) as the difference between the observations 159 

(𝑠ℎ
𝑑) and forecasts. 160 

𝜀ℎ
𝑑 = 𝑠ℎ

𝑑 − 𝑠̂ℎ
𝑑 (1) 

To apply the NB method, 𝜀ℎ
𝑑 is cast into equally divided intervals. First, the lower 161 

and upper limits of historical forecast errors are determined as 𝜉ℎ
𝑚𝑖𝑛 = min

𝑑∈𝐷2

𝜀ℎ
𝑑  and 162 

𝜉ℎ
𝑚𝑎𝑥 = max

𝑑∈𝐷2

𝜀ℎ
𝑑, respectively. Then, the historical error range [𝜉ℎ

𝑚𝑖𝑛 , 𝜉ℎ
𝑚𝑎𝑥] is divided into 163 

𝐿  intervals of equal width. These intervals are defined as  𝐼ℎ
𝑙 = 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝐿𝑜𝑤ℎ

𝑙 ,  𝑈𝑝ℎ
𝑙 ), 164 

where 𝐿𝑜𝑤ℎ
𝑙 = 𝜉ℎ

𝑚𝑖𝑛 + (𝑙 − 1)∆ℎ and 𝑈𝑝ℎ
𝑙 = 𝜉ℎ

𝑚𝑖𝑛 + 𝑙∆ℎ for l=1, 2, ∙∙∙, L and ∆ℎ=
𝜉ℎ

𝑚𝑎𝑥−𝜉ℎ
𝑚𝑖𝑛

𝐿
. 165 

Finally, an NB binary classifier model is trained for each error interval at hour ℎ. This 166 

approach is chosen because the results of each NB model will serve as evidence for the 167 

DST. Training a single multi-class NB classifier would result in only one mass function, 168 

where estimated probabilities for each class sum to '1,' and individual class probabilities 169 

do not form meaningful evidence for the DST. To train the NB classifier for hour h, the 170 

day-ahead weather forecast data (𝒘ℎ
𝑑) and solar power forecast data (𝑠̂ℎ

𝑑) are used as pre- 171 

dictors (𝒙ℎ
𝑑 = [𝒘ℎ

𝑑, 𝑠̂ℎ
𝑑]

𝑇
). The target is represented as a binary class label, {0, 1}, where ‘0’ 172 

represents the event that the forecast error falls outside the corresponding interval, and 173 

‘1’ represents the event that the forecast error falls inside the corresponding interval. 174 

Mathematically, the labeling can be written as follows: 175 

𝑦ℎ
𝑙 = 𝕝(𝜀ℎ

𝑑 ∈ 𝐼ℎ
𝑙 ) = {1     𝑖𝑓 𝜀ℎ

𝑑 ∈ 𝐼ℎ
𝑙

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

where 𝑦ℎ
𝑙  is the class label of a training sample of the 𝑙𝑡ℎ NB classifier of hour ℎ, 176 

and 𝕝(∙) is an indicator function. 177 

NB classifiers are trained using dataset Tr2 and validated through the k-fold cross- 178 

validation technique [31]. For the 𝑙𝑡ℎ interval at hour ℎ, the NB classifier provides two 179 

probabilities: one for the forecast falling into the interval (𝑝ℎ
𝑙 ) and another for it falling out 180 

of the interval (1 − 𝑝ℎ
𝑙 ), where 𝑙 ∈ {1, 2, … , 𝐿}. This procedure is illustrated in Figure 2. 181 

      182 
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Figure 2. NB classifiers and corresponding probability outputs for forecast intervals at hour, ℎ. 184 

2.3 Probability estimation with the NB method 185 

The NB method, a straightforward probabilistic classification algorithm based on 186 

Bayes’ theorem of probabilistic inference [32], serves as a crucial tool in this study. Bayes’ 187 

theorem connects the conditional and marginal probabilities of two random variables, is 188 

often used to calculate posterior probabilities based on given data. In this study, the NB 189 

method is used to estimate 𝑃(𝜀ℎ
𝑑 ∈ 𝐼ℎ

𝑙  | 𝒙ℎ
𝑑), i.e., the probability of forecast errors 𝜀ℎ

𝑑 fall- 190 

ing into interval 𝐼ℎ
𝑙  given the predictor feature vector 𝒙ℎ

𝑑.  191 

To be concise, the following study will be focused on interval l at hour h of day d, so 192 

that the superscripts l and h can be dropped. Assume that the training data {𝒙𝒅, 𝑦𝑑} are 193 

given for 𝑑 = 1, 2, … , 𝑁2 . Here, 𝑁2  is the total number of days in Tr2. Symbol 𝒙𝒅 = 194 
[𝑥1

𝑑, 𝑥2
𝑑 ,∙∙∙, 𝑥𝑣

𝑑,∙∙∙, 𝑥𝑉
𝑑]𝑇  is a 𝑉 -dimensional feature vector, which consists of day-ahead 195 

weather forecast 𝒘𝑑  and solar power forecast 𝑠̂𝑑 . Symbol 𝑦𝑑 is the corresponding class 196 

label defined in (2).  An NB classifier computes the probabilities that an unclassified sam- 197 

ple belongs to certain class label(s) conditioned on the feature values using Bayes’ theorem, 198 

as depicted in (3). 199 

𝑃(𝑌 = 𝐶|𝑿 = 𝒙) =
𝑓𝑋|𝑌=𝐶(𝒙) ∙ 𝑃(𝑌 = 𝐶)

𝑓𝑋|𝑌=0(𝒙) ∙ 𝑃(𝑌 = 0) + 𝑓𝑋|𝑌=1(𝒙) ∙ 𝑃(𝑌 = 1)
 (3) 

Here, 𝐶 𝜖 {0,1} is the class label, 𝑓𝑋|𝑌=𝐶(𝑥) is the probability density function (PDF) 200 

of feature vector 𝒙 given that 𝑌 attains class label 𝐶, and 𝑃(𝑌 = 𝐶) is the prior proba- 201 

bility of class 𝐶. It is assumed that the prior probability follows a Bernoulli distribution. 202 

The NB classifier assumes conditional independence of the features, meaning that 203 

the value of a particular feature is considered independent of other features for a given 204 

class, as expressed in (4). 205 

𝑓𝑋|𝑌=𝐶(𝒙) = ∏ 𝑓𝑋𝑣|𝑌=𝐶(𝑥𝑣)

𝑉

𝑣=1

 (4) 

Although this assumption may not always hold in some practical applications, NB 206 

classifiers, when coupled with kernel density estimation (KDE), can still achieve accurate 207 

estimations in such cases [32]. KDE is a non-parametric estimation technique for estimat- 208 

ing PDF, which can be described by (5.a). 209 

𝑓𝑿(𝒙) =  
1

𝑁2𝜆
∑ 𝐾 (

𝒙 − 𝒙𝑑

𝜆
)

𝑁2

𝑑=1

 (5.a) 

Here, 𝑓𝑿(𝒙) represents the KDE of the PDF of a random variable 𝑿 given 𝑁2 reali- 210 

zations of 𝑥 , [𝑥1, 𝑥2, … , 𝑥𝑁2
]~𝑓𝑋(𝑥) . The smoothing parameter 𝜆  is also known as 211 
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bandwidth. Additionally, 𝐾(∙) denotes the kernel function. A commonly used choice for 212 

this function is the Gaussian kernel, which is defined in (5.b). 213 

𝐾 (
𝒙 − 𝒙𝑑

𝜆
) =

1

√2𝜋
𝑒

−
1
2

‖
𝒙−𝒙𝑑

𝜆
‖

2

 (5.b) 

The KDE of the conditional PDF of the feature vector 𝑿 given Y=C can be obtained 214 

through (6). Here, 𝑁𝐶  is the number of training samples belonging to class 𝐶, and 𝜆𝑣
𝐶  is 215 

the bandwidth for the 𝑣𝑡ℎ feature for class 𝐶 and selected to optimize the Gaussian ker- 216 

nel in (5.b). 217 

      218 

𝑓𝑋|𝑌=𝐶(𝒙) = ∏ {
1

𝑁𝐶𝜆𝑣
𝐶

∑ 𝐾 (
𝑥𝑣

𝑛𝑐 − 𝑥𝑣
𝑛𝑐

𝜆𝑣
𝐶

)

𝑁𝐶

𝑛𝐶=1

}

𝑉

𝑣=1

 (6) 

An NB classifier for a specific error interval is trained by simultaneously simulating 219 

(3) and (6) for each training sample of the corresponding interval of a particular hour in 220 

dataset Tr2. The output probabilities of an NB classifier for the 𝑙𝑡ℎ interval of hour ℎ can 221 

be written as (7). 222 

      223 

𝑝ℎ
𝑙 =  𝑃(𝑌 = 1|𝑿 = 𝒙) 

1 − 𝑝ℎ
𝑙 =  𝑃(𝑌 = 0|𝑿 = 𝒙) 

(7.a) 

(7.b) 

  224 

 225 

 226 

2.4 Review of the DST 227 

The DST is a mathematical framework employed to combine evidence from multiple 228 

independent sources in the presence of uncertainty [26, 33]. The DST operates by collect- 229 

ing information from individual sources represented by a mass function, also known as 230 

(a.k.a.)  the basic probability assignment (BPA). The BPAs are then merged using Dempster’s 231 

rule of combination to determine the degrees of belief in a set of events of interest. 232 

When formulating a problem for DST application, a set of all possible solutions, a.k.a. 233 

the frame of discernment, is considered. It is assumed that the events of interest are sub- 234 

sets of this frame. Let Ω represent frame of discernment and 𝐸 represent an event of in- 235 

terest, where 𝐸 ⊆ Ω. Then, 𝐸̅ ≅ Ω − 𝐸 represents the events in Ω that are distinct from 236 

event 𝐸. The BPA for Ω is a function 𝑚: 2Ω → [0,1] that has the following two properties: 237 

1) 𝑚(𝜙) = 0, where 𝜙 denotes the empty set. 238 

2) ∑ 𝑚(𝐸)𝐸𝜖2Ω = 1 where 𝑚(𝐸) is the degree of belief assigned to event 𝐸. 239 

 240 

Let 𝑚1, 𝑚2, … , 𝑚𝑧 represent the BPAs for independent evidence 𝐹1, 𝐹2, … , 𝐹𝑧 in sup- 241 

port of event 𝐸 from Ω. Dempster’s rule of combination can be exploited to construct a new 242 

mass function for combined evidence in support of 𝐸 using (8). 243 

𝑚(𝐸) = (𝑚1⨁𝑚2⨁ … ⨁𝑚𝑧)(𝐸) =
1

𝑈
∑ 𝑚1(𝐹1) ∙ 𝑚2(𝐹2) ∙ ∙∙∙ ∙ 𝑚𝑧(𝐹𝑧)

𝐹1∩𝐹2∩ … ∩𝐹𝑧=𝐸

 (8) 

 244 

Here, ⨁ denotes the operator for Dempster’s rule of combination, which performs or- 245 

thogonal sum of mass functions supporting event 𝐸. And 𝑈 is a normalization constant 246 

representing the degree of conflict between individual BPAs, as described by (9).  247 

      248 

𝑈 = ∑ 𝑚1(𝐹1) ∙ 𝑚2(𝐹2) ∙  ∙∙∙  ∙ 𝑚𝑧(𝐹𝑧)

𝐹1∩𝐹2∩ … ∩𝐹𝑧≠𝜙

 (9) 

 249 

2.5 Incorporating evidence from NB classifiers using the DST 250 
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The NB classifiers provide individual probabilities indicating the likelihood of fore- 251 

cast errors falling within a specific interval. To accurately determine the final probability 252 

of an error falling into a specified interval, DST is used to combine the evidence that the 253 

error falls into that interval with the evidence that error does not fall into any other inter- 254 

vals. Because there are 𝐿 possible intervals for the error at hour ℎ, there are 𝐿 possible 255 

events, which are denoted as 𝐸1
ℎ, 𝐸2

ℎ , … , 𝐸𝑙
ℎ , … , 𝐸𝐿

ℎ . Here, 𝐸𝑙
ℎ represents the event that the 256 

error falls into interval 𝐼ℎ
𝑙 , where {𝑙 ∈ ℤ+: 1 ≤ 𝑙 ≤ 𝐿}. The frame of discernment at hour ℎ, 257 

denoted by Ωℎ, can be written as (10). 258 

𝛺ℎ = 𝐸1
ℎ ∪ 𝐸2

ℎ ∪ … ∪ 𝐸𝑙
ℎ ∪ … ∪  𝐸𝐿

ℎ (10) 

The mass functions of these individual events, a.k.a. BPAs, are obtained from the NB 259 

classifiers. The mass function 𝑚𝑙(𝐸𝑙
ℎ) of the event 𝐸𝑙

ℎ is defined in (11) for all values of 260 

𝑙 . Here, 𝐸𝑙
ℎ̅̅̅̅  denotes the event that the error does not fall into the 𝑙𝑡ℎ interval. 261 

𝑚𝑙(𝐸𝑙
ℎ) = 𝑝ℎ

𝑙  

𝑚𝑙(𝐸𝑙
ℎ̅̅̅̅ ) = 1 − 𝑝ℎ

𝑙  

(11.a) 

(11.b) 

Because solar generation is inherently non-negative and cannot exceed the genera- 262 

tion capacity of the solar power plant, the constraint described by (12) is imposed on solar 263 

power generation. Here, 𝑠𝑐𝑎𝑝 represents the maximum generation capacity of the solar 264 

power plant. 265 

0 ≤ 𝑠ℎ ≤ 𝑠𝑐𝑎𝑝 (12) 

The range of the forecast error is then established using (13). The bounds on the index 266 

of error interval are set through (14). Here, ⌈∙⌉ represents the ceiling operation, 𝑙𝑙𝑜𝑤𝑒𝑟  and 267 

𝑙𝑢𝑝𝑝𝑒𝑟  are the indices of the lowermost and uppermost error intervals such that 1 ≤ 268 

𝑙𝑙𝑜𝑤𝑒𝑟 < ⋯ < 𝑙𝑢𝑝𝑝𝑒𝑟 ≤ 𝐿. 269 

0 ≤ 𝑠̂ℎ + 𝜀ℎ ≤ 𝑠𝑐𝑎𝑝 

−𝑠̂ℎ ≤ 𝜀ℎ ≤ 𝑠𝑐𝑎𝑝 − 𝑠̂ℎ 

𝑙𝑙𝑜𝑤𝑒𝑟 = ⌈
−𝑠̂ℎ − 𝜉ℎ

𝑚𝑖𝑛

∆ℎ

⌉ 

𝑙𝑢𝑝𝑝𝑒𝑟 = 𝐿 − ⌈
𝜉ℎ

𝑚𝑎𝑥 − (𝑠𝑐𝑎𝑝 − 𝑠̂ℎ)

∆ℎ

⌉ 

(13.a) 

(13.b) 

 

(14.a) 

 

(14.b) 

 270 

The frame of discernment is updated according to the lowermost and uppermost er- 271 

ror intervals, as shown in (15). 272 

𝛺ℎ = 𝐸𝑙𝑙𝑜𝑤𝑒𝑟

ℎ ∪ … ∪  𝐸𝑙𝑢𝑝𝑝𝑒𝑟

ℎ  (15) 

Here, instead of combining the evidence from the whole set of error intervals, the 273 

frame of discernment is shrunk to a subset of 𝑀 intervals, where 𝑀 = 𝑙𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑙𝑜𝑤𝑒𝑟 + 1 274 

and 𝑀 ≤ 𝐿. Next, integrate these pieces of evidence using (8) and (9) to determine the 275 

probabilities of the forecast errors that fall into each of these 𝑀 intervals, which constitute 276 

the mass function 𝑚(𝐸𝑖
ℎ) ∀𝑖: 𝑙𝑙𝑜𝑤𝑒𝑟 ≤ 𝑖 ≤  𝑙𝑢𝑝𝑝𝑒𝑟 , as illustrated in (16). 277 

𝑚(𝐸𝑖
ℎ)  = (𝑚𝑙𝑙𝑜𝑤𝑒𝑟

⨁𝑚𝑙𝑙𝑜𝑤𝑒𝑟+1⨁ … ⨁𝑚𝑙𝑢𝑝𝑝𝑒𝑟
)(𝐸𝑖

ℎ) (16) 

The CDF of the forecast error is derived by accumulating the probabilities. The set of 278 

error values {𝜀ℎ
1, 𝜀ℎ

2, … , 𝜀ℎ
𝑘, … , 𝜀ℎ

𝑀}  and their corresponding probabilities 279 

{𝑝̂ℎ
1 , 𝑝̂ℎ

2, … , 𝑝̂ℎ
𝑘 , … , 𝑝̂ℎ

𝑀} for the CDF are calculated using the interval bounds and the width, 280 

as outlined in (17). 281 

𝜀ℎ
1 = 𝜉ℎ

𝑚𝑖𝑛 + (𝑙𝑙𝑜𝑤𝑒𝑟 − 1) ∆ℎ 

𝜀ℎ
𝑘 = 𝜀ℎ

1 + (𝑘 − 1)∆ℎ for 𝑘 = 2, 3, ⋯ , 𝑀 

𝑝̂ℎ
1 =  𝑚(𝐸𝑙𝑙𝑜𝑤𝑒𝑟

ℎ ) 

𝑝̂ℎ
𝑘 = 𝑝̂ℎ

𝑘−1 +  𝑚(𝐸𝑙𝑙𝑜𝑤𝑒𝑟+𝑘−1
ℎ ) for 𝑘 = 2, 3, ⋯ , 𝑀 

(17.a) 

(17.b) 

(17.c) 

(17.d) 
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Finally, the CDF of the solar generation at hour ℎ is calculated by adding the day- 282 

ahead deterministic forecast to the error values for hour ℎ, as shown in (18). Here, 𝑆̂ℎ
𝑘 283 

represents the NB-DST forecast whose CDF value is 𝑝̂ℎ
𝑘. 284 

𝑆̂ℎ
𝑘 = 𝜀ℎ

𝑘 + 𝑠̂ℎ for 1 ≤ 𝑘 ≤ 𝑀 (18) 

The framework of the NB-DST method is summarized in Figure 3. In this study, the 285 

NB-DST method is coupled with three deterministic forecasting methods: SVR, ANN, and 286 

QR (median only), resulting in SVR-NB-DST, QR-NB-DST, and ANN-NB-DST models, 287 

respectively. To mitigate the risk of overfitting the NB-DST models to the training data, a 288 

separate dataset, TS, is reserved for generating performance metrics to evaluate the mod- 289 

els’ effectiveness. 290 

Figure 3. Framework of the proposed NB-DST method. 291 

3. Performance metrics for evaluating probabilistic forecasts 292 

Assessing probabilistic forecasts is more challenging than deterministic ones because 293 

probabilistic forecasts have various statistical properties. As can be found in the literature, 294 

many state-of-the-art probabilistic forecasting methods are only assessed using certain 295 

sets of evaluation metrics. But the evaluation process needs to balance several critical as- 296 

pects, such as forecast accuracy, reliability, sharpness, and uncertainty. This paper aims 297 

at addressing this challenge by evaluating the probabilistic forecasting methods using a 298 

handful of metrics that assess distinct aspects of the forecasts, providing the forecasters 299 

with a framework for critical evaluation. In this section, these evaluation metrics are de- 300 

fined to evaluate the performance of the probabilistic forecasts. 301 

3.1 Continuous rank probability score 302 

The continuous rank probability score (CRPS) is an evaluation metric widely used in 303 

various forecasting domains, such as weather, solar and wind power, and load forecasting 304 

[5, 34, 35]. It effectively measures forecast accuracy, reliability, and sharpness. CRPS is 305 

defined in (19). 306 

𝐶𝑅𝑃𝑆 =  
1

𝑁
∑ ∫ [𝑝̂𝑓𝑐𝑠𝑡

𝑘 (𝑥) − 𝑜𝑠ℎ
𝑘 (𝑥)]

2
𝑑𝑥

+∞

−∞

𝑁

𝑘=1

 (19) 

Here, 𝑝̂𝑓𝑐𝑠𝑡
𝑘 (𝑥) represents the CDF of the forecast at instant 𝑘. Symbol 𝑜𝑠ℎ

𝑘 (𝑥) de- 307 

notes the CDF of the observation at instance 𝑘, which is defined as 𝑜𝑠ℎ
𝑘 (𝑥) = 𝕝(𝑥 ≥ 𝑠ℎ). 308 

Here, 𝕝(∙) is an indicator function, 𝑠ℎ denotes the observed value of solar generation. 𝑁 309 

stands for the total number of forecast instances in dataset TS. 310 

A lower CRPS value is desirable, as it indicates that the estimated CDF has a lower 311 

spread around the observation. It is evident from (19) that the CRPS penalizes any 312 
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discrepancies between the forecasted CDF and the actual observations. Moreover, for a 313 

deterministic forecast, the CRPS transforms into the mean absolute error (MAE). This prop- 314 

erty makes the CRPS a preferred metric for comparing probabilistic and deterministic 315 

forecasts. CRPS can be further decomposed into three components as outlined in (20) [36]. 316 

The methods for calculating CRPS, along with its components - REL, UNC, and RES – are 317 

detailed in [36] and used in this paper. 318 

𝐶𝑅𝑃𝑆 =  𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑅𝐸𝐿) + 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(𝑈𝑁𝐶) − 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑅𝐸𝑆) (20) 

3.2 Brier score 319 

The Brier score (BS) is a scoring function widely used to measure the accuracy of 320 

probabilistic forecasts [37]. The BS for a probabilistic forecast at hour ℎ is defined in (21). 321 

𝐵𝑆ℎ =  
1

𝑀
∑[𝑝̂ℎ

𝑗
− 𝑦ℎ

𝑗
]2

𝑀

𝑗=1

 (21) 

Here, 𝑝̂ℎ
𝑗  represents the forecasted probability of event 𝑗 happening at hour h. Term 322 

𝑦ℎ
𝑗 is defined as 𝑦ℎ

𝑗
= 𝕝(𝑠ℎ ≥ 𝑆̂ℎ

𝑗
). 𝑀 denotes the total number of events considered in the 323 

probability forecast at hour ℎ. To compute the BS for an entire day’s forecast, one can 324 

average 𝐵𝑆ℎ across all hours, from ℎ = 1 𝑡𝑜  𝑁ℎ, where 𝑁ℎ represents the total number 325 

of hours of the day. 326 

3.3 Prediction interval coverage probability 327 

After the CDF of the forecast is obtained from a probabilistic forecasting method, a 328 

prediction interval (PI) of the forecast can be calculated. For a confidence level of 329 
(1 − 𝛼) × 100%, the PI is determined using (22). Here, 𝑆̂ℎ,𝜏 represents the 𝜏𝑡ℎ quantile of 330 

the forecasted CDF, meaning 𝑃(𝑆ℎ ≤ 𝑆̂ℎ,𝜏) = 𝜏.   331 

𝑃𝐼̂ℎ,(1−𝛼)×100% = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑆̂
ℎ,𝜏=

𝛼
2

, 𝑆̂
ℎ,𝜏=1−

𝛼
2

) (22) 

The prediction interval coverage probability (PICP) is a measure of the reliability of a 332 

probabilistic forecasting method. PICP can be calculated from the (1 − 𝛼) × 100% PI as 333 

outlined in (23) [38].  334 

𝑃𝐼𝐶𝑃(𝛼) =  
1

𝑁ℎ

∑ 𝕝(𝑠̂ℎ ∈ 𝑃𝐼̂ℎ,(1−𝛼)×100%)

𝑁ℎ

ℎ=1

 (23) 

Here,  𝑠̂ℎ denotes the forecast at hour ℎ, 𝑁ℎ denotes the total number of forecasting 335 

hours in a day, and 𝕝(∙) is an indicator function. A forecasting method is considered more 336 

reliable if its 𝑃𝐼𝐶𝑃(𝛼) is closer to the nominal coverage for the confidence intervals of the 337 

same size. 338 

3.4 Prediction interval normalized average width 339 

The prediction interval normalized average width (PINAW) is a metric for measur- 340 

ing the sharpness of a probabilistic forecast method [38]. Mathematically, PINAW is de- 341 

fined in (24), where 𝑠ℎ denotes the observed solar generation at hour ℎ on the forecast 342 

day. In this formula, the numerator computes the average width of the (1 − 𝛼) × 100% 343 

PI of the probabilistic forecast, while the denominator computes the average hourly solar 344 

power generation. A lower PINAW value is desirable, as it indicates a shaper forecast.  345 

𝑃𝐼𝑁𝐴𝑊(𝛼) =  

1
𝑁ℎ

∑ (𝑆̂
ℎ,𝜏=1−

𝛼
2

− 𝑆̂
ℎ,𝜏=

𝛼
2

)
𝑁ℎ
ℎ=1

1
𝑁ℎ

∑ 𝑠ℎ
𝑁ℎ
ℎ=1  

 (24) 

3.5 Coverage width criterion 346 

The coverage width criterion (CWC) is defined in (25) [39] and can effectively address 347 

the limitations of both the PICP and PINAW. While PICP values closer to the nominal 348 

coverage indicate a more reliable forecast, they do not assess the sharpness of the forecast. 349 

Conversely, a lower PINAW signifies a sharper forecast but does not measure its 350 
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reliability. The CWC integrates both PICP and PINAW, providing a comprehensive met- 351 

ric to evaluate the reliability and sharpness of a forecast simultaneously.  352 

𝐶𝑊𝐶 = {

𝛽 ∙ 𝑃𝐼𝑁𝐴𝑊 𝑓𝑜𝑟 𝑃𝐼𝐶𝑃 ≥ 𝑃𝐼𝑁𝐶

(𝜅 + 𝛽 ⋅ 𝑃𝐼𝑁𝐴𝑊) ⋅ (1 + 𝑒𝑥𝑝 (−𝜂 ⋅
𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶

100
)) 𝑓𝑜𝑟 𝑃𝐼𝐶𝑃 < 𝑃𝐼𝑁𝐶

   (25) 

 Here, PINC represents the prediction interval nominal coverage. Symbols κ, β, and 353 

η represent hyperparameters, which are chosen as suggested in [39]. A lower CWC value 354 

is desirable, as it indicates that a probabilistic forecasting method is more reliable and 355 

sharper. 356 

4. Case study 357 

In this section, day-ahead probabilistic forecasting of solar PV generation is per- 358 

formed using the proposed NB-DST method. In addition to the SVR-NB-DST, QR-NB- 359 

DST, and ANN-NB-DST methods, the study also implements the AnEn and PerEn meth- 360 

ods [40] as benchmarks. Although there are many probabilistic methods in the literature, 361 

they have not been widely adopted in practice. For example, the PerEn method is still 362 

preferred for benchmarking within both industry settings and research environments,  363 

such as those conducted by the US Department of Energy [41]. The effectiveness of these 364 

methods is evaluated and compared using the performance metrics outlined in Section 3 365 

using real-world data.  366 

4.1 Data collection and selection 367 

The solar generation data used in this study are collected from a 450-kW solar PV 368 

plant located on the rooftop of the Target® store in Vestal, NY, USA (latitude 42˚05ˊ37.0˝N, 369 

longitude 76˚00ˊ06.0˝W). This plant was established in 2016 with support from the New 370 

York State Energy Research and Development Authority (NYSERDA). Hourly solar gen- 371 

eration data of this plant between 2016 and 2022 are downloaded from NYSERDA’s web- 372 

site [42].  373 

 374 

Figure 4. PCC of weather variables with the hourly solar generation data. 375 

Additionally, this study incorporates various weather variables that significantly in- 376 

fluence solar irradiance [43]. Historical weather data for the study site from 2016 to 2021, 377 

along with historical forecast data for 2022, are collected on an hourly basis from the web- 378 

site of Visual Crossing weather data service [44]. The weather variables available in this 379 

dataset are listed in Table 1. To select the predictor variables for the forecasting algo- 380 

rithms, the correlation between solar generation and each numerical weather variable is 381 
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measured using Pearson’s correlation coefficient (PCC) [45]. After pre-processing and re- 382 

moving outliers from the data, the PCC for each numerical weather predictor variable 383 

with solar generation data is calculated. The results are presented in Figure 4. It is ob- 384 

served that temperature and visibility have a strong positive correlation with solar power 385 

generation, while relative humidity and cloud cover have a strong negative correlation. The 386 

correlations of other predictor variables are weak, as shown in Figure 4, and thus, these 387 

variables are excluded from the model. Solar generation data from the previous day’s cor- 388 

responding hours are also included in the model to account for the auto-correlation of the 389 

solar power generation data. 390 

The datasets used in this study are divided as follows: the data from 2016 to 2019 are 391 

designated as the Tr1 dataset, while data recorded from 2020 to 2021 are used as the Tr2 392 

dataset. The data recorded in 2022 are used as the TS dataset. Because weather conditions  393 

Table 1. Weather variables for the study site available from Visual Crossing weather data service 394 
(2016-2022) 395 

Weather variable Description Unit 

Temperature Actual temperature °C 

Dew point Dew point °C 

Wind chill Wind chill factor °C 

Heat index Heat index °C 

Feels like 
Combination of temperature, wind chill, and 

heat index 
°C 

Humidity Relative humidity % 

Precipitation Amount of liquid equivalent precipitation mm 

Snow depth Average amount of snow on the ground cm 

Wind speed Wind speed at 10m above ground kmph 

Wind direction 
Direction of wind in reference to the north di-

rection 
degrees 

Pressure Sea level pressure mbars 

Cloud cover Amount of sky covered with cloud % 

Visibility Distance visible in daylight km 

Conditions 
Weather condition reported by the weather sta-

tion 
none 

      396 

are complex and have varying impact on solar PV generation, separate forecasting models 397 

are built and evaluated under different cloud patterns. Accordingly, the datasets are fur- 398 

ther divided into three categories on a daily basis according to the weather conditions using 399 

the approach described in [46]: “clear,” “overcast”, and “partially cloudy”. The daily solar 400 

generation profile on a clear day typically exhibits a smooth bell curve, with the power 401 

generation peaking near the generation capacity during noon. On overcast days, the total 402 

daily solar generation is significantly lower. On partially cloudy days, the hourly solar gen- 403 

eration shows considerable fluctuation, characterized by multiple peaks and troughs 404 

throughout the day.  405 

Subsequently, the forecasting models are first trained using Tr1 and Tr2 datasets for 406 

each hour of the day under these distinct weather conditions. Then, the forecasting models 407 

are evaluated using the performance metrics computed through the TS dataset. Note that 408 

out of 365 days in the TS dataset, there are 124 days classified as “clear”, 129 days classified 409 

as “overcast”, and 112 days classified as “partially cloudy”. The effectiveness of the forecast- 410 

ing models is evaluated using a 5-fold cross-validation approach.  411 

Table 2. Performance metrics of all the forecasting methods evaluated over the 124 “Clear” days. 412 

Method CRPS (%) CRPS Decomposition BS (%) PICP (%) PINAW CWC 
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REL RES UNC 

PerEn 11.14 1.20 48.38 58.32 6.87 91.62 19.87 119.32 

AnEn 15.38 1.51 44.45 58.32 7.44 84.71 14.67 88.12 

QR-NB-DST 7.86 1.58 52.04 58.32 5.73 87.18 9.33 56.08 

SVR-NB-DST 7.97 1.41 51.76 58.32 5.41 86.35 9.81 58.96 

ANN-NB-DST 6.28 1.38 53.42 58.32 4.62 88.42 7.25 43.60 

 413 

Figure 5. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “clear” 414 
day (19 May 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, (e) PerEn. The 415 
red dotted lines denote the actual hourly observations of solar power; the shaded areas denote the 416 
95% PIs of the forecasted solar generation obtained from the corresponding methods. 417 

4.2 Performance evaluation under “clear” weather conditions 418 

This subsection focuses on assessing the probabilistic forecasting methods during 419 

“clear” weather conditions. The performance metrics for the 124 “clear” days in the TS 420 

dataset are calculated for all the methods and summarized in Table 2. It can be observed 421 

from Table 2 that the three NB-DST methods outperform the AnEn and PerEn methods in 422 

terms of the CRPS. Also, the BS values for the NB-DST methods are considerably lower 423 

than those for the other methods, which indicates NB-DST’s higher accuracy. These three 424 

NB-DST methods show satisfactory reliability and coverage with resolution metrics notably 425 

surpassing those of the AnEn and PerEn methods. Also, a slightly lower value of the 426 

PINAW for the ANN-NB-DST gives it an advantage over the other two NB-DST methods. 427 

While the PICP values for the three NB-DST methods are comparable to those for the 428 

AnEn and PerEn methods, the NB-DST methods, particularly ANN-NB-DST, exhibit su- 429 

perior overall performance as indicated by their lower CWC values. 430 
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To further illustrate the performance, Figure 5 shows the estimated 95% PIs from all 431 

the forecasting methods for a particular “clear” day (19 May 2022). The 95% PIs are ob- 432 

tained using (22) by setting α=0.05. It can be observed that the 95% PIs of the three NB- 433 

DST methods are narrower than those of the two benchmark methods. Figure 6(a) shows 434 

the CDF estimate for PV power at 10:00 AM on this “clear” day (19 May 2022). It can be 435 

observed that the CDFs estimated using the ANN-NB-DST and the QR-NB-DST methods 436 

exhibit the lowest deviation from the actual observation CDF. Although the CDF esti- 437 

mated by the SVR-NB-DST method shows a deviation slightly higher than other NB-DST 438 

methods, it still performs commendably when compared to the benchmark methods.  439 

4.3 Performance evaluation under “overcast” weather conditions 440 

In this subsection, the performance metrics are calculated over the 129 “overcast” days 441 

in the TS dataset for all the probabilistic forecasting methods and are summarized in Table 442 

3. Among these methods, the ANN-NB-DST stands out by achieving the lowest CRPS. It 443 

also exhibits superior reliability and resolution, as indicated by its REL and RES values, 444 

compared to the other methods. Notably, the resolution of all the NB-DST methods is su- 445 

perior to the two benchmark methods as their PINAW values are much lower. While the 446 

PICP values for the NB-DST methods are further from the ideal 95% nominal coverage 447 

than the benchmark methods, their lower CWC values reflect better overall performance 448 

considering both forecast reliability and sharpness.  Additionally, the lower BS values of 449 

the NB-DST methods suggest that the NB-DST methods are more accurate than the other 450 

methods. Among the three NB-DST methods, the ANN-NB-DST method exhibits the most 451 

impressive performance. 452 

Figure 6. Estimated CDFs of the PV power using all the probabilistic forecasting methods at 10:00 453 
AM on (a) a “clear” day (19 May 2022), (b) an “overcast” day (18 December 2022), (c) a “partially 454 
cloudy” day (09 July 2022). The solid black line represents the CDF of the actual observation. 455 

Table 3. Performance metrics of all the forecasting methods evaluated over the 129 “Overcast” days. 456 

Method CRPS (%) 
CRPS Decomposition 

BS (%) PICP (%) PINAW CWC 
REL RES UNC 

PerEn 5.89 0.51 7.33 12.71 4.73 91.68 1316.20 7897.3 

AnEn 6.21 0.54 7.04 12.71 5.61 89.54 1353.90 8123.5 

QR-NB-DST 5.74 0.48 7.45 12.71 3.68 86.61 632.80 3796.9 

SVR-NB-DST 6.78 0.39 6.32 12.71 3.87 85.47 670.94 4025.7 

ANN-NB-DST 5.37 0.41 7.75 12.71 3.13 88.25 581.42 3488.6 

 457 
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To further illustrate the performance, Figure 7 shows the 95% PIs obtained from the 458 

forecasting methods on a particular “overcast” day (28 December 2022). It can be observed 459 

that the 95% PIs for the AnEn and PerEn methods are notably broader than those for the 460 

NB-DST methods. Additionally, the SVR-NB-DST method meets the targeted coverage 461 

rate of 95% PIs, whereas the coverage rates of the ANN-NB-DST and QR-NB-DST meth- 462 

ods are lower than the targeted 95%. This variation highlights the challenges of forecasting 463 

under overcast conditions. The estimated CDFs of the hourly solar generation estimated 464 

by the forecasting methods at 10:00 AM on this “overcast” day (28 December 2022) are 465 

illustrated in Figure 6(b). It can be observed from Figure 6(b) that the CDFs estimated by 466 

the NB-DST methods align more closely to the actual observation CDF than those esti- 467 

mated by the two benchmark methods. 468 

4.4 Performance evaluation under “partially cloudy” weather conditions 469 

In this subsection, the performance metrics are calculated over the 112 “partially 470 

cloudy” days in the TS dataset for all the probabilistic forecasting methods and are sum- 471 

marized in Table 4. It can be observed that the ANN-NB-DST method achieves the lowest 472 

CRPS value, which indicates the best overall performance. Additionally, the reliability and 473 

resolution of the ANN-NB-DST method are also superior to those of other NB-DST and 474 

benchmark methods, as indicated by its lower value of REL and higher value of RES. 475 

Moreover, the lower PINAW values of the NB-DST methods suggest that they have better 476 

resolution than the AnEn and the PerEn methods. While the PICP values for the NB-DST 477 

methods are not as good as those for the benchmark methods, the CWC values, which 478 

consider both PICP and PINAW, suggest a better overall performance for the NB-DST 479 

methods. Notably, the ANN-NB-DST method stands out with the lowest BS, indicating 480 

the highest accuracy among the five methods. 481 

Table 4. Performance metrics of all the forecasting methods evaluated over the 112 “partially cloudy” 482 
days. 483 

Method CRPS (%) 
CRPS Decomposition 

BS (%) PICP (%) PINAW CWC 
REL RES UNC 

PerEn 9.30 0.55 33.93 42.68 5.24 90.86 27.67 166.12 

AnEn 9.98 0.64 33.34 42.68 6.77 86.33 28.60 171.70 

QR-NB-DST 8.15 0.65 35.18 42.68 5.72 88.28 16.92 101.62 

SVR-NB-DST 8.55 0.78 34.91 42.68 5.28 84.91 17.37 104.32 

ANN-NB-DST 6.21 0.49 36.96 42.68 3.94 87.89 13.24 79.54 

Table 5. Performance metrics of all the forecasting methods evaluated over the 1-year testing dataset 484 

Method CRPS (%) 
CRPS Decomposition 

BS (%) PICP (%) PINAW CWC 
REL RES UNC 

PerEn 8.72 0.76 29.44 37.40 5.61 91.41 480.42 2882.61 

AnEn 10.48 0.90 27.82 37.40 6.59 86.91 492.26 2953.67 

QR-NB-DST 7.20 0.91 31.11 37.40 5.00 87.32 232.01 1392.15 

SVR-NB-DST 7.73 0.86 30.53 37.40 4.83 85.60 245.79 1474.82 

ANN-NB-DST 5.94 0.76 32.23 37.40 3.88 88.20 212.01 1272.18 

 485 

To further illustrate the performance, Figure 8 shows the 95% PIs obtained from all 486 

the forecasting methods on a particular “partially cloudy” day (09 July 2022). It can be ob- 487 

served that the 95% PIs obtained from the benchmark methods are wider than those from 488 

the NB-DST methods. Also, in Figure 8, some measured points fall outside the 95% PIs 489 

obtained from the CDFs estimated by the NB-DST methods. In contrast, such occurrences 490 
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are not observed with the AnEn and PerEn methods. The observation highlights a strate- 491 

gic trade-off made by the NB-DST methods, prioritizing improved resolution over coverage 492 

probability. Figure 6(c) shows the CDFs estimated by all the methods at 10:00 AM on this 493 

“partially cloudy” day (09 July 2022). The CDFs estimated by the NB-DST methods show 494 

smaller deviations from the actual observed solar power CDF than those estimated by the 495 

AnEn and PerEn methods. 496 

 497 

Figure 7. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “over- 498 
cast” day (28 December 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, and 499 
(e) PerEn. 500 

4.5 Overall comparative analysis 501 

The results from Table 2 – Table 4 are synthesized to evaluate the overall performance 502 

of the proposed method over the 1-year testing dataset, TS. The findings are presented in 503 

Table 5. Notably, the NB-DST methods outperform the benchmark methods on nearly all 504 

performance metrics except for the PICP. This exception is understandable because the PI 505 

estimates of the PerEn and AnEn methods are considerably wider than those of the NB- 506 

DST methods. Even with the exception, the significantly better PINAW and CWC values 507 

suggest the overall superiority of the NB-DST methods. According to Table 5, the ANN- 508 

NB-DST emerges as the best-performing method among the NB-DST variants. 509 

Figure 9 further illustrates the percentage improvements in CRPS and CWC of the 510 

ANN-NB-DST method over the PerEn method across all weather conditions. As explained 511 

before, CRPS measures the overall deviation of the estimated CDF from the actual meas- 512 

urements, indicating the forecast accuracy, while CWC measures the reliability and sharp- 513 

ness of the forecasted CDF. Notably, the ANN-NB-DST method achieves over 33% im- 514 

provement in CRPS under clear and partially cloudy weather conditions. This result 515 



Energies 2024, 17, x FOR PEER REVIEW 16 of 19 
 

 

indicates that the CDF estimated by the ANN-NB-DST method deviates less from the ac- 516 

tual solar power measurements than the PerEn method. Also, the improvement in CRPS 517 

is less pronounced (< 10%) under overcast weather conditions, reflecting the challenges in 518 

predictive accuracy under such weather. Despite this, results from Figure 7 and Table 3 519 

suggest the overall superiority of the ANN-NB-DST method in accuracy and sharpness with 520 

a slight reduction in reliability. Moreover, the CWC improvement remains consistent 521 

(more than 52%) across all the weather conditions, indicating the higher reliability and 522 

better sharpness of the ANN-NB-DST method than the benchmark method. 523 

 524 

 525 

Figure 8. 95% PIs obtained from all the probabilistic solar forecasting methods on a particular “par- 526 
tially cloudy” day (09 July 2022) (a) SVR-NB-DST, (b) ANN-NB-DST, (c) QR-NB-DST, (d) AnEn, and 527 
(e) PerEn. 528 
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 529 

Figure 9. Comparative improvement of the ANN-NB-DST method over the widely used bench- 530 
mark, the PerEn method. 531 

5. Conclusions and future work 532 

This paper proposes the NB-DST method, a novel approach for quantifying forecast 533 

errors of a deterministic forecasting method by estimating the CDF using a non-paramet- 534 

ric technique. The NB-DST method has been integrated with deterministic forecasting 535 

methods such as SVR, ANN, and QR to generate probabilistic forecasts under different 536 

weather conditions. Comparisons with established benchmark methods (AnEn and 537 

PerEn) using real-world data reveal that the NB-DST methods consistently outperform 538 

the benchmarks in terms of lower CRPS, BS, and CWC values. Among the tested methods, 539 

the ANN-NB-DST method emerges as the top performer, consistently producing reliable 540 

and high-resolution CDF estimates across various weather conditions, establishing it as 541 

the superior option for probabilistic photovoltaic (PV) forecasting among the methods 542 

evaluated.  543 

Future studies will focus on exploring a wider range of deterministic forecasting 544 

methods in conjunction with the NB-DST method to enhance forecast robustness and con- 545 

sistency. Additionally, this study considered only a limited number of meteorological var- 546 

iables due to data availability limitations. Thus, an important direction for future investi- 547 

gation is to incorporate a more comprehensive set of meteorological variables into the 548 

forecasting models. This expansion will enable a deeper exploration of their impact on 549 

forecasting accuracy and provide more comprehensive insights into the dynamics of prob- 550 

abilistic PV forecasting.  551 

 552 
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