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Abstract— Probabilistic solar power forecasting (SPF) plays an
essential role in optimizing power-grid operations by quantifying
the forecast uncertainty. To improve the accuracy and robustness
of PSPF, this paper introduces the regularized constrained
quantile regression averaging (rCQRA) method to combine
outputs from multiple PSPF models. In addition, a bootstrapping
method was used to quantify model uncertainty, providing
insights into the reliability and significance of each ensemble
component. To evaluate its efficacy, the proposed rCQRA method
is used to integrate four PSPF methods. The resulting SPF models
are trained and validated using a real-world six-year dataset from
a rooftop solar plant in the USA. The performance of the proposed
rCQRA method is evaluated and compared with two benchmark
methods under three categories of weather conditions. It is shown
that the rCQRA method has superior performance in its forecast
reliability, sharpness, and accuracy.

Keywords—Probabilistic solar power forecasting, quantile
regression averaging, uncertainty quantification.

[. INTRODUCTION

Integrating large amounts of PV generation brings new
challenges in maintaining efficient and reliable operations of
the power grid. The challenges primarily stem from the
intermittent nature of PV generation caused by ever-changing
and unpredictable weather conditions [1], [2]. To address this
issue, solar power forecasting (SPF) has emerged as an essential
tool in power grid operations, which has been widely used by
utility companies and plant owners in the day-ahead energy
markets [3]. Therefore, developing accurate and reliable SPF
methods has captured a tremendous amount of attention from
power system researchers and engineers.

Data-driven SPF methods such as statistical, machine
learning, and deep learning algorithms have been widely
adopted because they offer enhanced adaptability and
scalability, bypassing the complexities and limitations inherent
in modeling the actual physical processes of PV panels.
Historically, tremendous research efforts have been made to
develop deterministic SPF methods that produce a point value
forecast on a forecast horizon [4]-[7]. However, these methods
fall short of quantifying the uncertainty inherent in the
forecasts, which is vital for scheduling generation reserves. To
address this gap, probabilistic SPF (PSPF) methods have
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emerged to provide forecast distributions. In the realm of PSPF
methods, the persistence ensemble (PerEn) method stands out
as a fundamental approach. It produces empirical distributions
based on the most recent solar power data and often serves as a
benchmark to evaluate the effectiveness of new methods [8].
The analog ensemble (AnEn) method, on the other hand, ranks
historical solar generation data based on the similarity between
the historical weather conditions and the predicted weather
conditions on the forecast day and estimates the distribution by
fitting the forecast errors to a pre-defined distribution [9].
Quantile regression (QR) and its derivatives are implemented
in the PSPF domain, exploiting the non-parametric estimation
capabilities of QR to bypass the distribution assumptions
inherent in other methods [10], [11]. These methods, while
producing probability distributions, operate on a single model,
which potentially limit their applicability due to their confining
assumptions in the model.

To overcome the limitation, ensemble PSPF methods
combine multiple models to enhance forecast accuracy and
reliability [12]. The ensemble learning method (ELM), one of
the pioneering multi-model ensemble methods, uses multiple
deterministic SPF outputs to fit a pre-defined distribution, such
as the Gaussian distribution[13]. The lower-upper bound
estimate (LUBE) ensemble method [14] constructs robust
prediction intervals (PIs) by training a neural network that
features a two-neuron output layer. Specifically, the neurons of
the output layer represent the upper and lower quantile levels of
the forecast. Importantly, these methods combine the forecast
of deterministic SPF methods without estimating the
distribution of the individual forecast outputs.

While there has been considerable research in combining
deterministic SPF outputs, the realm of combining multiple
PSPF outputs remains largely uncharted. A notable exception
is the method proposed in [15], which combines estimated
distributions from multiple deterministic SPF methods by
weighted averaging using the Bayesian model averaging
(BMA) technique. These individual deterministic methods
utilize predefined distributions (like the beta and truncated
normal distributions) to quantify forecasting uncertainty.
However, the actual forecasts may not always follow the
presumed distributions in real-world applications.
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To address this challenge, this paper introduces a new
approach to combine multiple PSPF outputs using quantile
regression averaging (QRA). The QRA method combines
quantile outputs from multiple probabilistic methods using QR,
eliminating the need for pre-defined distributions of the
individual methods. Whereas QRA has shown notable success
in other applications such as electricity price, load, and
irradiance forecasting [ 16]-[19], past implementations have not
delved into the statistical performance of the estimated QRA
coefficients. To overcome this limitation, this paper adopts a
bootstrapping approach to calculate confidence intervals (Cls)
of the estimated QR coefficients [20] along with the regularized
constrained QRA (rCQRA) method.

The rest of the paper is organized as follows: Section II
introduces the rTCQRA methodology and some variants of QRA
for model combination. Section III presents a case study,
evaluating the efficacy of the proposed rCQRA method using
real-world data and comparing its performance with other
combination techniques. Conclusions are drawn in section I'V.

II. QUANTILE REGRESSION AVERAGING FOR MODEL
COMBINATION

In this section, the mathematical foundation of the rCQRA
method is presented and formulated to combine multiple
individual PSPF models.

A. Quantile Regression as an Individual SPF Model

The first step of model combination is to generate multiple
individual PSPF models. The QR method is used in this
subsection as an example to illustrate the procedure of building
an individual model.

A linear QR model is formulated as (1). Here, y is the
response variable, which is solar power generation. X is the
matrix of predictors, which often includes some meteorological
variables for SPF. f is the vector of QR coefficients to be
estimated. e is the noise accounting for the impact of other
variables not included in the model. h € [1, 2, ...,24] denotes
the forecast hour. g, € (0,1)for n € {1, 2,..., N} is the n'"
quantile level from N+/ divisions. Thus, the model in (1)
represents the linear QR model for the n** quantile level of the
solar generation forecast at hour h.

" =Xy By + en. M

The QR coefficient estimate [’?Z can be determined by
solving the optimization problem defined by (2.a) and (2.b).
Here, y,il is the solar power measurement at hour h for the i*"
instance of the training data. L(B Z) is the pinball loss function.
The optimization problem in (2) can be solved using linear
programming to find 1. Then, the distribution of the forecast
from the QR method at current time ¢ can be described by (3),
where Qf or(qn) = X[ Bi™. Note that symbols / and ¢ in the
above formulation will be the same for all forecasting methods.
Thus, notations h and ¢ will be omitted from here forth for
simplicity.
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(2.2)

B = arg min L(BY) (2.b)

QE,QR = [Oftl,QR(ql)' Oftl,QR @), s O}tl,QR(qN)] (3)

B. Problem Statement for Model Combination

This paper focuses on combination methods instead of
individual SPF methods. As such, it is assumed that K
individual forecasting models have been established using
some state-of-the-art PSPF methods, such as the QR models
discussed in II.A. Each of the individual models produces a
forecast distribution, which can be described by Q;, = [0, (q1),
01(q2), ..., Qr(qn)]. Here, k € {1,2, ..., K} is the index of an
individual model. Q,(g,) is the forecast from the k%"
individual model at the nt* quantile level. The objective of a
model combination method is to combine all the Qs to form
an improved probability forecast at each quantile level g,,.

C. Constrained Quantile Regression Averaging

In the QRA method, forecasts from individual models are
combined using the linear model represented in (4) [17], [21].
In (4), ¥, is the combined probability forecast for the nth
quantile, while S, (g,,) is the estimated QRA coefficient for the

nt" quantile of the k*"model. More details on this formulation
can be found in [21].

y\qn = leg:1 :ék(qn) Ok (qn) (4)

The coefficients f,(q,) in (4) can be determined by
reformulating the optimization problem in (2) into (5.a). Here,
y' is the solar power measurement at the it instance of the
training data. The constraints in (5.b) ensure that B, (qy)
adheres to the properties of a cumulative distribution function
(CDF). Because of the constraints, this model is named the
constrained QRA (CQRA) [17].

3 = arg min L(J} ,y*
Pie(qn) = arg min L (5, y")
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iyl
subject to: Y.K_, Bx(gn) = 1 and B(q,) =0 (5.b)

D. Regularized CORA

A regularization factor can be imposed on the coefficient
B (qy) to increase the influence of the most informative PSPF
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method and reduce the coefficients of less impactful methods
towards zero. The regularization factor is added to the objective
function in (5.a) as follows:

K
Bi(q) = arg min L34,y +2 ) 1B(adl  (©
k=1

Here, A is the penalty factor, selected to minimize the objective
function in (6). The regularization term in (6) is also known as
the least absolute shrinkage and selection operator (LASSO)
[22]. Hence, the proposed rCQRA includes the objective
function presented in (6) and the constraints defined in (5.b).

E. Bootsrapping for Model Uncertainty

To assess the reliability and uncertainty of the estimated
coefficients, a bootstrap-based CI estimation procedure is
adopted in this paper. A residual bootstrap procedure is selected
because of its notable efficacy for non-independent and
identically distributed (non-i.i.d.) data. Conversely, for i.i.d.
data, the xy -pairs bootstrap is more suitable. The residual
bootstrap works by resampling from the residual vector with
replacement and then re-estimating the QRA coefficients. This
process is repeated multiple times (say, ng times), generating
ny estimates of tCQRA coefficients £, (g,). This procedure
allows users to estimate the sample covariance matrix of
Br(q,). Subsequently, a 95% CI can be estimated from the
sample covariance matrix using the percentile method [20]. The
implementation of the bootstrap procedure is inspired by [23].

F. Performance Evaluation

In this paper, the continuous rank probability score (CRPS)
is used to evaluate the performance of the proposed method.
CRPS is a widely used metric in probabilistic forecasting
evaluation and is a good measure of forecast reliability,
sharpness, and accuracy [24]. To assess the reliability
performance of the proposed method, the reliability diagram is
used in this paper [24]. To obtain the reliability diagram, the
prediction interval coverage probability (PICP) is calculated
and plotted against the nominal coverage of the forecast.
However, a reliable forecast does not always mean a better
forecast. To assess the sharpness of the forecast, the prediction
interval normalized average width (PINAW) is calculated.
Taking both PICP and PINAW into account, the coverage
width-based criterion (CWC) is considered, which can be used
to evaluate both the reliability and sharpness of the forecast.
More details on CRPS, PICP, PINAW, and CWC can be found
in [24], [25]. It is important to note that lower values of CRPS
and CWC signify superior method performance.

G. Competing Methods

Two other combining methods are used as benchmarks in
this paper [17]. The first one, known as mean QRA (mQRA),
averages the quantile forecasts from each individual SPF
method as in (7).

K
1 ~
%fE;%m> ™

The second combining technique, known as weighted QRA
(WQRA), assigns weights to the individual SPF outputs
according to their CRPS values. The weights of the wQRA
method can be defined in (8), where CRPS), is the CRPS value
of the k" SPF method. Note that methods with lower CRPS
values are assigned higher weights.

1
/cRps,

ﬁAk (Qn) = (8)
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III. CASE STUDY

The proposed rCQRA method is applied to a real-world
dataset and is compared with the traditional mQRA and wQRA
methods for day-ahead forecasting. Specifically, the forecast
horizon ranges from 1 hour to 24 hours ahead.

A. Dataset Information

The 450 kW rooftop solar PV plant located at Vestal,
NY, USA (lat. 42°05°37.0"N, long. 76 “00°06.0"W) is chosen for
this study. Funded by the New York State Energy Research and
Development Authority (NYSERDA), the hourly solar power
observations from this plant during the years 2016-2022 were
made available on NYSERDA’s website [26]. The weather data
for this location are collected from Visual Crossing [27].
Standard data pre-processing techniques are used to identify
and remove outliers [28]. Weather variables with the highest
correlation to solar generation are used as predictors of the
individual SPF methods. Readers are referred to [29] for a more
comprehensive discussion of these methods.

B. Construction of Individual Models

This study uses the QR, AnEn, ELM, and PerEn methods to
construct individual PSPF models. In practice, any available
models producing quantile forecasts can be integrated using the
proposed method. As the primary focus of this study is not the
performance of the individual PSPF methods, the selection and
evaluation of the individual methods are not discussed in detail.
The data from 2016 to 2020 are used to train and validate these
models. 10-fold cross-validation is utilized in this study to
reduce overfitting. The data for 2021 are used to train and
validate the QRA models, i.c., the rCQRA, mQRA, and wQRA
models. The data for 2022 are used for testing these models.
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Fig. 1. Box-whisker plots showing the bootstrap estimates of model
coefficients at three quantile levels (5%, 50%, and 95%) for hour 12

on the forecast day.
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Fig. 2. CRPS values under three different weather conditions.

The performances of these models are evaluated under three
weather conditions, i.e., clear, overcast, and partially cloudy.

C. Model Uncertainty

The bootstrap procedure is used to quantify model
uncertainty. The bootstrap estimates of the rTCQRA coefficients
for three quantiles for a certain hour of the day are shown in the
box-whisker plots in Fig. 1. It is evident that the QR and ELM
models’ coefficients for the rCQRA model are positive across
all quantiles. The boxplots do not include ‘0’, which means that
these models’ outputs have significant interpretability for the
rCQRA performance. The AnEn method has a mixed
contribution to the rCQRA model. For the 5% quantile level,
the AnEn coefficient’s boxplot contains ‘0’ well within its
boundary, showing that the AnEn forecast might not have a
significant impact on the rCQRA estimates. PerEn coefficients
estimates do not participate in the rCQRA estimates for all three
quantiles, as evident from the boxplot in Fig. 1. The coefficients
are close to ‘0’. This is because the regularization penalty
introduced in the rCQRA objective function shrinks the PerEn
coefficients to ‘0. The bootstrap procedure can be helpful for
users in selecting individual models to combine when they have
a large number of models at their disposal.

D. rCQRA Performance under Different Weather Conditions

The proposed rCQRA method is evaluated under the three
weather conditions. The CRPS and CWC metrics, along with
the reliability diagram, are used to quantify the performance of
the proposed method. The CRPS and CWC values for the
mQRA, wQRA, and rCQRA methods under the three weather
conditions are shown in Fig. 2 and Fig. 3, respectively. The
reliability diagrams for the three methods are shown in Fig. 4.
(a)-(c) for the three weather conditions. Under all the weather
conditions, the rCQRA method consistently records lower
CRPS values than the mQRA and wQRA methods, indicating
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Fig. 3. CWC values under three different weather conditions.

lower deviations from the actual solar power measurements,
i.e., improved accuracy and reliability. This reliability
performance is further illustrated by the reliability diagrams in
Fig. 4. During clear conditions (as depicted in Fig. 4.(a)), the
rCQRA exhibits near-perfect PICP. In contrast, the other two
methods deviate significantly from the nominal curve.
However, a near-perfect reliability diagram does not
necessarily equate to a superior forecast. A forecast with a
wider PI can exhibit perfect reliability but with a compromise
in the sharpness of the forecast. The CWC metric takes both the
reliability (PICP) and sharpness (PINAW) into account, which
makes it suitable for further assessment on top of the reliability
diagram. The CWC values for the clear weather in Fig. 3
indicate that the improved reliability of the rCQRA method
comes with an improvement in the sharpness of the forecast.

Under the overcast condition, TCQRA has larger deviations
from the nominal curve for lower nominal coverages compared
to the mQRA and wQRA methods (Fig. 4.(b)). However, for
higher nominal coverages, the rTCQRA shows better reliability.
This statement can also be verified by the significantly lower
CWC value for the rCQRA method under overcast conditions,
as shown in Fig. 3. Finally, Fig. 4.(c) demonstrates the
reliability diagrams for the three methods under partially
cloudy weather conditions. The PICP for the rCQRA method
exhibits lower deviations from the nominal curve, indicating
better reliability. However, the CWC values in Fig. 3. for
partially cloudy conditions show that the TCQRA improvement
over other methods is not that significant. Overall, the rTCQRA
method shows notable advantages over the benchmark
combination methods across all weather conditions.

Fig. 5 compares the estimated 95% Pls for a single day
from the test set with the actual measurements. The rCQRA
method produces narrower Pls than the other methods and
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Fig. 4. Reliability diagrams for the three methods under three weather conditions: (a) clear, (b) overcast, and (c) partially cloudy.
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Fig. 5. Estimated 95% PIs compared with actual measurements for (a) mQRA, (b) wQRA, and (c) rCQRA.

maintains good reliability. This observation is consistent with
the results shown in Fig. 3 and Fig. 4.

IV. CONCLUSIONS

In this paper, the rTCQRA method is proposed to combine
multiple PSPF methods. Through the integration of a
regularization penalty, the TCQRA method allows users to
identify redundant models and models that have insignificant
contributions to the combined forecast. Thus, the rCQRA is
particularly useful when the number of models to be combined
is large. In addition, a bootstrap procedure is adopted to assess
the wuncertainty in the participating models. When
simultaneously implemented, the rCQRA with the
bootstrapping can produce robust, reliable, and sharp forecasts
across diverse weather conditions. Future studies will involve
working with datasets from different geographic locations and
climate conditions so that the results in this study can be
generalized.
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