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Abstract— Probabilistic solar power forecasting (SPF) plays an 
essential role in optimizing power-grid operations by quantifying 
the forecast uncertainty. To improve the accuracy and robustness 
of PSPF, this paper introduces the regularized constrained 
quantile regression averaging (rCQRA) method to combine 
outputs from multiple PSPF models. In addition, a bootstrapping 
method was used to quantify model uncertainty, providing 
insights into the reliability and significance of each ensemble 
component. To evaluate its efficacy, the proposed rCQRA method 
is used to integrate four PSPF methods. The resulting SPF models 
are trained and validated using a real-world six-year dataset from 
a rooftop solar plant in the USA. The performance of the proposed 
rCQRA method is evaluated and compared with two benchmark 
methods under three categories of weather conditions. It is shown 
that the rCQRA method has superior performance in its forecast 
reliability, sharpness, and accuracy.     

Keywords—Probabilistic solar power forecasting, quantile 
regression averaging, uncertainty quantification. 

I. INTRODUCTION

Integrating large amounts of PV generation brings new 
challenges in maintaining efficient and reliable operations of 
the power grid. The challenges primarily stem from the 
intermittent nature of PV generation caused by ever-changing 
and unpredictable weather conditions [1], [2]. To address this 
issue, solar power forecasting (SPF) has emerged as an essential 
tool in power grid operations, which has been widely used by 
utility companies and plant owners in the day-ahead energy 
markets [3]. Therefore, developing accurate and reliable SPF 
methods has captured a tremendous amount of attention from 
power system researchers and engineers. 

 Data-driven SPF methods such as statistical, machine 
learning, and deep learning algorithms have been widely 
adopted because they offer enhanced adaptability and 
scalability, bypassing the complexities and limitations inherent 
in modeling the actual physical processes of PV panels. 
Historically, tremendous research efforts have been made to 
develop deterministic SPF methods that produce a point value 
forecast on a forecast horizon [4]–[7]. However, these methods 
fall short of quantifying the uncertainty inherent in the 
forecasts, which is vital for scheduling generation reserves. To 
address this gap, probabilistic SPF (PSPF) methods have 

emerged to provide forecast distributions. In the realm of PSPF 
methods, the persistence ensemble (PerEn) method stands out 
as a fundamental approach. It produces empirical distributions 
based on the most recent solar power data and often serves as a 
benchmark to evaluate the effectiveness of new methods [8]. 
The analog ensemble (AnEn) method, on the other hand, ranks 
historical solar generation data based on the similarity between 
the historical weather conditions and the predicted weather 
conditions on the forecast day and estimates the distribution by 
fitting the forecast errors to a pre-defined distribution [9]. 
Quantile regression (QR) and its derivatives are implemented 
in the PSPF domain, exploiting the non-parametric estimation 
capabilities of QR to bypass the distribution assumptions 
inherent in other methods [10], [11]. These methods, while 
producing probability distributions, operate on a single model, 
which potentially limit their applicability due to their confining 
assumptions in the model. 

To overcome the limitation, ensemble PSPF methods 
combine multiple models to enhance forecast accuracy and 
reliability [12]. The ensemble learning method (ELM), one of 
the pioneering multi-model ensemble methods, uses multiple 
deterministic SPF outputs to fit a pre-defined distribution, such 
as the Gaussian distribution[13]. The lower-upper bound 
estimate (LUBE) ensemble method [14] constructs robust 
prediction intervals (PIs) by training a neural network that 
features a two-neuron output layer. Specifically, the neurons of 
the output layer represent the upper and lower quantile levels of 
the forecast. Importantly, these methods combine the forecast 
of deterministic SPF methods without estimating the 
distribution of the individual forecast outputs. 

While there has been considerable research in combining 
deterministic SPF outputs, the realm of combining multiple 
PSPF outputs remains largely uncharted. A notable exception 
is the method proposed in [15], which combines estimated 
distributions from multiple deterministic SPF methods by 
weighted averaging using the Bayesian model averaging 
(BMA) technique. These individual deterministic methods 
utilize predefined distributions (like the beta and truncated 
normal distributions) to quantify forecasting uncertainty. 
However, the actual forecasts may not always follow the 
presumed distributions in real-world applications. 
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 To address this challenge, this paper introduces a new 
approach to combine multiple PSPF outputs using quantile 
regression averaging (QRA). The QRA method combines 
quantile outputs from multiple probabilistic methods using QR, 
eliminating the need for pre-defined distributions of the 
individual methods. Whereas QRA has shown notable success 
in other applications such as electricity price, load, and 
irradiance forecasting [16]–[19], past implementations have not 
delved into the statistical performance of the estimated QRA 
coefficients. To overcome this limitation, this paper adopts a 
bootstrapping approach to calculate confidence intervals (CIs) 
of the estimated QR coefficients [20] along with the regularized 
constrained QRA (rCQRA) method.  

The rest of the paper is organized as follows: Section II 
introduces the rCQRA methodology and some variants of QRA 
for model combination. Section III presents a case study, 
evaluating the efficacy of the proposed rCQRA method using 
real-world data and comparing its performance with other 
combination techniques. Conclusions are drawn in section IV. 

II. QUANTILE REGRESSION AVERAGING FOR MODEL 
COMBINATION 

In this section, the mathematical foundation of the rCQRA 
method is presented and formulated to combine multiple 
individual PSPF models. 

A. Quantile Regression as an Individual SPF Model 
The first step of model combination is to generate multiple 

individual PSPF models. The QR method is used in this 
subsection as an example to illustrate the procedure of building 
an individual model.  

A linear QR model is formulated as (1). Here,  is the 
response variable, which is solar power generation.  is the 
matrix of predictors, which often includes some meteorological 
variables for SPF.  is the vector of QR coefficients to be 
estimated.  is the noise accounting for the impact of other 
variables not included in the model.  denotes 
the forecast hour. for  is the  
quantile level from N+1 divisions. Thus, the model in (1) 
represents the linear QR model for the  quantile level of the 
solar generation forecast at hour .  

 (1) 

The QR coefficient estimate  can be determined by 
solving the optimization problem defined by (2.a) and (2.b). 
Here,  is the solar power measurement at hour  for the  
instance of the training data.  is the pinball loss function. 
The optimization problem in (2) can be solved using linear 
programming to find . Then, the distribution of the forecast 
from the QR method at current time t can be described by (3), 
where . Note that symbols h and t in the 
above formulation will be the same for all forecasting methods. 
Thus, notations  and t will be omitted from here forth for 
simplicity. 

 

 

(2.a) 

  (2.b) 

  (3) 

B. Problem Statement for Model Combination 
This paper focuses on combination methods instead of 

individual SPF methods. As such, it is assumed that K 
individual forecasting models have been established using 
some state-of-the-art PSPF methods, such as the QR models 
discussed in II.A. Each of the individual models produces a 
forecast distribution, which can be described by 

. Here,  is the index of an 
individual model.  is the forecast from the  
individual model at the  quantile level. The objective of a 
model combination method is to combine all the s to form 
an improved probability forecast at each quantile level . 

C. Constrained Quantile Regression Averaging 
In the QRA method, forecasts from individual models are 

combined using the linear model represented in (4) [17], [21]. 
In (4),  is the combined probability forecast for the  
quantile, while  is the estimated QRA coefficient for the 

 quantile of the model. More details on this formulation 
can be found in [21].  

. (4) 

The coefficients  in (4) can be determined by 
reformulating the optimization problem in (2) into (5.a). Here, 

 is the solar power measurement at the  instance of the 
training data. The constraints in (5.b) ensure that  
adheres to the properties of a cumulative distribution function 
(CDF). Because of the constraints, this model is named the 
constrained QRA (CQRA) [17]. 

 

 
(5.a) 

subject to:   and  (5.b) 

D. Regularized CQRA 
A regularization factor can be imposed on the coefficient 

 to increase the influence of the most informative PSPF 

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on May 15,2025 at 13:58:50 UTC from IEEE Xplore.  Restrictions apply. 



method and reduce the coefficients of less impactful methods 
towards zero. The regularization factor is added to the objective 
function in (5.a) as follows: 

 (6) 

Here,  is the penalty factor, selected to minimize the objective 
function in (6). The regularization term in (6) is also known as 
the least absolute shrinkage and selection operator (LASSO) 
[22]. Hence, the proposed rCQRA includes the objective 
function presented in (6) and the constraints defined in (5.b). 

E. Bootsrapping for Model Uncertainty 
To assess the reliability and uncertainty of the estimated 

coefficients, a bootstrap-based CI estimation procedure is 
adopted in this paper. A residual bootstrap procedure is selected 
because of its notable efficacy for non-independent and 
identically distributed (non-i.i.d.) data. Conversely, for i.i.d. 
data, the -pairs bootstrap is more suitable. The residual 
bootstrap works by resampling from the residual vector with 
replacement and then re-estimating the QRA coefficients. This 
process is repeated multiple times (say,  times), generating 

 estimates of rCQRA coefficients . This procedure 
allows users to estimate the sample covariance matrix of 

. Subsequently, a 95% CI can be estimated from the 
sample covariance matrix using the percentile method [20]. The 
implementation of the bootstrap procedure is inspired by [23]. 

F. Performance Evaluation 
In this paper, the continuous rank probability score (CRPS) 

is used to evaluate the performance of the proposed method. 
CRPS is a widely used metric in probabilistic forecasting 
evaluation and is a good measure of forecast reliability, 
sharpness, and accuracy [24]. To assess the reliability 
performance of the proposed method, the reliability diagram is 
used in this paper [24]. To obtain the reliability diagram, the 
prediction interval coverage probability (PICP) is calculated 
and plotted against the nominal coverage of the forecast. 
However, a reliable forecast does not always mean a better 
forecast. To assess the sharpness of the forecast, the prediction 
interval normalized average width (PINAW) is calculated. 
Taking both PICP and PINAW into account, the coverage 
width-based criterion (CWC) is considered, which can be used 
to evaluate both the reliability and sharpness of the forecast. 
More details on CRPS, PICP, PINAW, and CWC can be found 
in [24], [25]. It is important to note that lower values of CRPS 
and CWC signify superior method performance. 

G. Competing Methods 
Two other combining methods are used as benchmarks in 

this paper [17]. The first one, known as mean QRA (mQRA), 
averages the quantile forecasts from each individual SPF 
method as in (7). 

 (7) 

The second combining technique, known as weighted QRA 
(wQRA), assigns weights to the individual SPF outputs 
according to their CRPS values. The weights of the wQRA 
method can be defined in (8), where  is the CRPS value 
of the  SPF method.  Note that methods with lower CRPS 
values are assigned higher weights. 

 (8) 

III. CASE STUDY 
The proposed rCQRA method is applied to a real-world 

dataset and is compared with the traditional mQRA and wQRA 
methods for day-ahead forecasting. Specifically, the forecast 
horizon ranges from 1 hour to 24 hours ahead. 

A. Dataset Information 
The 450 kW rooftop solar PV plant located at Vestal, 

NY, USA (lat. 42˚05ˊ37.0˝N, long. 76˚00ˊ06.0˝W) is chosen for 
this study. Funded by the New York State Energy Research and 
Development Authority (NYSERDA), the hourly solar power 
observations from this plant during the years 2016-2022 were 
made available on NYSERDA’s website [26]. The weather data 
for this location are collected from Visual Crossing [27]. 
Standard data pre-processing techniques are used to identify 
and remove outliers [28]. Weather variables with the highest 
correlation to solar generation are used as predictors of the 
individual SPF methods. Readers are referred to [29] for a more 
comprehensive discussion of these methods. 

B. Construction of Individual Models  
This study uses the QR, AnEn, ELM, and PerEn methods to 

construct individual PSPF models. In practice, any available 
models producing quantile forecasts can be integrated using the 
proposed method. As the primary focus of this study is not the 
performance of the individual PSPF methods, the selection and 
evaluation of the individual methods are not discussed in detail. 
The data from 2016 to 2020 are used to train and validate these 
models. 10-fold cross-validation is utilized in this study to 
reduce overfitting. The data for 2021 are used to train and 
validate the QRA models, i.e., the rCQRA, mQRA, and wQRA 
models. The data for 2022 are used for testing these models. 

 
Fig. 1. Box-whisker plots showing the bootstrap estimates of model 
coefficients at three quantile levels (5%, 50%, and 95%) for hour 12 
on the forecast day. 
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The performances of these models are evaluated under three 
weather conditions, i.e., clear, overcast, and partially cloudy.  

C. Model Uncertainty 
The bootstrap procedure is used to quantify model 

uncertainty. The bootstrap estimates of the rCQRA coefficients 
for three quantiles for a certain hour of the day are shown in the 
box-whisker plots in Fig. 1. It is evident that the QR and ELM 
models’ coefficients for the rCQRA model are positive across 
all quantiles. The boxplots do not include ‘0’, which means that 
these models’ outputs have significant interpretability for the 
rCQRA performance. The AnEn method has a mixed 
contribution to the rCQRA model. For the 5% quantile level, 
the AnEn coefficient’s boxplot contains ‘0’ well within its 
boundary, showing that the AnEn forecast might not have a 
significant impact on the rCQRA estimates. PerEn coefficients 
estimates do not participate in the rCQRA estimates for all three 
quantiles, as evident from the boxplot in Fig. 1. The coefficients 
are close to ‘0’. This is because the regularization penalty 
introduced in the rCQRA objective function shrinks the PerEn 
coefficients to ‘0’. The bootstrap procedure can be helpful for 
users in selecting individual models to combine when they have 
a large number of models at their disposal. 

D. rCQRA Performance under Different Weather Conditions 
The proposed rCQRA method is evaluated under the three 

weather conditions. The CRPS and CWC metrics, along with 
the reliability diagram, are used to quantify the performance of 
the proposed method. The CRPS and CWC values for the 
mQRA, wQRA, and rCQRA methods under the three weather 
conditions are shown in Fig. 2 and Fig. 3, respectively. The 
reliability diagrams for the three methods are shown in Fig. 4. 
(a)-(c) for the three weather conditions. Under all the weather 
conditions, the rCQRA method consistently records lower 
CRPS values than the mQRA and wQRA methods, indicating 

lower deviations from the actual solar power measurements, 
i.e., improved accuracy and reliability. This reliability 
performance is further illustrated by the reliability diagrams in 
Fig. 4. During clear conditions (as depicted in Fig. 4.(a)), the 
rCQRA exhibits near-perfect PICP. In contrast, the other two 
methods deviate significantly from the nominal curve. 
However, a near-perfect reliability diagram does not 
necessarily equate to a superior forecast. A forecast with a 
wider PI can exhibit perfect reliability but with a compromise 
in the sharpness of the forecast. The CWC metric takes both the 
reliability (PICP) and sharpness (PINAW) into account, which 
makes it suitable for further assessment on top of the reliability 
diagram. The CWC values for the clear weather in Fig. 3 
indicate that the improved reliability of the rCQRA method 
comes with an improvement in the sharpness of the forecast. 

Under the overcast condition, rCQRA has larger deviations 
from the nominal curve for lower nominal coverages compared 
to the mQRA and wQRA methods (Fig. 4.(b)). However, for 
higher nominal coverages, the rCQRA shows better reliability. 
This statement can also be verified by the significantly lower 
CWC value for the rCQRA method under overcast conditions, 
as shown in Fig. 3. Finally, Fig. 4.(c) demonstrates the 
reliability diagrams for the three methods under partially 
cloudy weather conditions. The PICP for the rCQRA method 
exhibits lower deviations from the nominal curve, indicating 
better reliability. However, the CWC values in Fig. 3. for 
partially cloudy conditions show that the rCQRA improvement 
over other methods is not that significant. Overall, the rCQRA 
method shows notable advantages over the benchmark 
combination methods across all weather conditions. 

Fig. 5 compares the estimated 95% PIs for a single day 
from the test set with the actual measurements. The rCQRA 
method produces narrower PIs than the other methods and 

 
Fig. 2. CRPS values under three different weather conditions. 

 
Fig. 3. CWC values under three different weather conditions. 

 
Fig. 4. Reliability diagrams for the three methods under three weather conditions: (a) clear, (b) overcast, and (c) partially cloudy. 
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maintains good reliability. This observation is consistent with 
the results shown in Fig. 3 and Fig. 4. 

IV. CONCLUSIONS 
In this paper, the rCQRA method is proposed to combine 

multiple PSPF methods. Through the integration of a 
regularization penalty, the rCQRA method allows users to 
identify redundant models and models that have insignificant 
contributions to the combined forecast. Thus, the rCQRA is 
particularly useful when the number of models to be combined 
is large. In addition, a bootstrap procedure is adopted to assess 
the uncertainty in the participating models. When 
simultaneously implemented, the rCQRA with the 
bootstrapping can produce robust, reliable, and sharp forecasts 
across diverse weather conditions. Future studies will involve 
working with datasets from different geographic locations and 
climate conditions so that the results in this study can be 
generalized. 
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Fig. 5. Estimated 95% PIs compared with actual measurements for (a) mQRA, (b) wQRA, and (c) rCQRA. 
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