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Abstract
The rapid advancement of quantum computing has generated con-
siderable anticipation for its transformative potential. However, har-
nessing its full potential relies on identifying “killer applications”.
In this regard, QuGeo emerges as a groundbreaking quantum learn-
ing framework, poised to become a key application in geoscience,
particularly for Full-Waveform Inversion (FWI). This framework
integrates variational quantum circuits with geoscience, represent-
ing a novel fusion of quantum computing and geophysical analy-
sis. This synergy unlocks quantum computing’s potential within
geoscience. It addresses the critical need for physics-guided data
scaling, ensuring high-performance geoscientific analyses aligned
with core physical principles. Furthermore, QuGeo’s introduction
of a quantum circuit custom-designed for FWI highlights the criti-
cal importance of application-specific circuit design for quantum
computing. In the OpenFWI’s FlatVelA dataset experiments, the
variational quantum circuit from QuGeo, with only 576 parame-
ters, achieved significant improvement in performance. It reached
a Structural Similarity Image Metric (SSIM) score of 0.905 between
the ground truth and the output velocity map. This is a notable
enhancement from the baseline design’s SSIM score of 0.800, which
was achieved without the incorporation of physics knowledge.

1 Introduction

Quantum computing’s integrationwithmachine learning is a rapidly
expanding field, though it is still in search of groundbreaking appli-
cations to fully showcase its capabilities. In geophysical inversion,
critical for areas like civil infrastructure and energy exploration,
recent advancements have applied quantum annealing to seismic
inversion problems. These efforts, however, primarily tackle lin-
earized versions of the problem. For instance, Souza’s approach
reformulates seismic inversion into linear equations and QUBO for-
mulations [1], and Greer develops a QUBO-compatible linearized
inversion for dual velocity values, both based on traditional seismic
techniques [2]. In contrast, our work introduces the first learning-
based seismic inversion technique on general-purpose quantum
computing platforms, marking a novel direction in this domain.

Characterizing subsurface geology is essential for a range of ap-
plications, from earthquake research and civil infrastructure to new
energy exploration and environmental studies. Seismic inversion,
which reconstructs subsurface images from seismic waves, uses
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full-waveform inversion (FWI) to consider complete waveform data,
including amplitude and phase. FWI, addressing non-linear chal-
lenges, offers enhanced accuracy and resolution compared to linear
methods. Currently, FWI is approached through physics-based and
machine learning-based methods. While physics-based methods
are precise, they face computational challenges and issues like ill-
posedness and cycle skipping. Conversely, machine learning-based
methods, designed to address these issues, are promising but heav-
ily dependent on extensive training data, which can result in high
computational demands. What’s more, seismic waves continuously
received by sensors from different locations have a high correla-
tion on both spatial and temporal. Our study introduces quantum
computing as a novel solution to reduce the computational burden
in data-driven FWI and leverage fundamental quantum mechanics,
particularly the entanglement, to extract highly correlated features,
showcasing its potential to enhance both the efficiency and effec-
tiveness of machine learning in seismic inversion.

Unique characteristics and structures of geophysical problems,
however, set challenges in designing quantum learning for FWI.
Firstly, there is a scarcity of standard datasets tailored to current
quantum capabilities; careless design could result in data misaligned
with physical realities, affecting performance. Secondly, a dedicated
quantum design framework is lacking; straightforwardly using the
quantum learning algorithm (a.k.a., Variational Quantum Circuit
or VQC) can easily be suboptimal or inefficient because it cannot
exploit the specific properties inherent in geophysics to optimize the
design. Finally, the most effective ways to harness the full potential
of quantum computing in this context remain unclear, requiring
further exploration and innovation in the field.

In our work, we introduce QuGeo, an innovative quantum learn-
ing framework tailored to address seismic FWI challenges. To tackle
the mentioned hurdles, we have first created a physics-informed
dataset via a governing wave equation. Secondly, we developed
an application-specific VQC to incorporate domain-specific knowl-
edge in optimizing the design. Furthermore, we present a novel
data batching technique adapted for quantum computing, which
enables quantum computers to process 𝑁 batches of data in paral-
lel with only 𝑙𝑜𝑔𝑁 additional qubits, further catering to the high
computational demands from learning-based FWI and advancing
the potential of QuGeo in seismic inversion.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the very first pilot
work in exploring the capacity of general-purpose quantum
computing for seismic inversion problems, showcasing the
potential of quantum computing for geoscientific analyses.

• We unveil the essential need for a physics-informed dataset
to ensure data is aligned with physical realities while si-
multaneously satisfying the resource constraint in current
quantum computing platforms.
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(a) Flat rock layers w/ seismic receivers (c) Subsurface velocity map

(b) Received seismic data

Figure 1: Illustration of the target geophysics application: (a)
the photo of a flat rock layer; (b) the seismic waveform data
obtained from the receivers placed on the surface; and (c) the
velocity map used to characterize the subsurface structure.

• We develop an application-specific variational quantum cir-
cuit to leverage domain-specific knowledge in optimizing
the design, which is equipped with a novel data batch en-
gine to underpin the high computational demand to process
extensive data for learning-based seismic inversion.

To evaluate the effectiveness of our proposed QuGeo framework,
we implemented the proposed quantum learning innovations on
TorchQuantum platform [3] and conducted tests using the widely
recognized OpenFWI dataset from the geophysics community [4].
These tests aimed to validate the integration of physics knowledge
and assess the performance of our custom-designed QuGeoVQC
module. Our findings demonstrate that the incorporation of physics
knowledge in QuGeo not only leads to high prediction accuracy,
as reflected in the SSIM values, but also results in a remarkably
efficient learning model utilizing just 576 parameters.

This paper is structured as follows: Section 2 presents the back-
ground. In Section 3, we detail the QuGeo Framework. Evaluation
results and concluding remarks are presented in Sections 4-5.

2 Background and Related Work
Data-driven Quantum Learning. The core component of a typi-
cal quantum learning framework is a parameterized quantum circuit
(a.k.a., variational quantum circuit or ansatz circuit). Like classical
machine learning, there are two steps in quantum learning: forward
propagation and backward propagation. The forward propagation
only involves quantum computing, where data will be encoded,
processed, and measured in the quantum circuit. The backward
propagation further involves classical computing to calculate the
loss according to the measurement results and label, which will
then be used to update the parameters in VQC. The optimization
framework is to find the optimal parameters in quantum circuits
so that the cost function of a certain task can be minimized.

Quantum learning has a wide of applications, such as Quantum
Approximate Optimization Algorithm (QAOA) for combinatorial
optimization problems [5], Variational Quantum Eigensolver (VQE)
for quantum chemistry and quantum simulations [6], and Quantum
Neural Networks (QNN) for machine learning tasks [3, 7–12]. Com-
pared with classical computing, quantum learning gets benefits
from entanglement, which has been proven to be scalable to learn
from the exponentially increasing size of data [13].

Geoscience application — Full-Waveform Inversion (FWI).
Subsurface structures are typically layer-structured; an example
is the flat rock layers, as illustrated in Figure 1(a). Seismic data
and velocity maps are two key elements to describe subsurface
structures, discussed below.

Seismic data, or seismic waveforms, are composed of waves that
travel through the Earth’s subsurface. These waves are often gen-
erated by controlled explosions or by striking the ground with
heavy weights. Captured by geophones or receivers, these waves
reflect varying subsurface layers. The collected data is then pro-
cessed to create detailed waveforms in a shot gather, as illustrated
in Figure 1b. From this shot-gather waveform data, a velocity map
can be derived, indicating the speed at which seismic waves travel
through different subsurface media, as shown in Figure 1c. Since
rock properties affect wave speed, the velocity map is essential
in identifying and characterizing subsurface geological structures,
such as rock layers, faults, and reservoirs. For instance, the example
in Figure 1c displays a subsurface structure with five distinct layers,
each representing different rock properties and depths.

Building on those concepts, we introduce Full-Waveform Inver-
sion (FWI), a sophisticated seismic imaging technique widely used
in geophysics for creating detailed and accurate subsurface models.
FWI aims to minimize the discrepancy between observed and sim-
ulated seismic waveforms. Applied extensively in both academic
and engineering [14], FWI essentially predicts the subsurface ve-
locity map from seismic waveforms recorded at surface receivers.
Traditionally, FWI relies on physics-based simulations that are com-
putationally intensive. The concept of data-driven FWI, introduced
in recent years [15], has led to its growing success. In this work,
we pilot a data-driven quantum learning for Geoscience FWI, har-
nessing the power of quantum computing to enhance the FWI.

3 QuGeo Framework
Figure 2 shows the proposed QuGeo framework, which is composed
of three components: ① QuGeoData will consider the quantum
device’s capacity and scale the seismic wave data appropriately;
② QuGeoVQC is a computation engine which is key to achieving
practical usage of near-term noisy quantum computers; and ③
QuBatch is a performance booster that provides the ability to
process data in parallel to unleash the power of quantum computing.

3.1 QuGeoData: Physics-Guided Data Scaling
3.1.1 Scaling data with velocity map. We have pairs of seismic
wave and velocity maps in the training dataset. Instead of directly
scaling seismic data, we propose to employ Forward Modeling to
generate the seismic wave data from downsampled velocity maps.
The governing equation of the acoustic wave propagation in a 2-
dimension isotropic medium with a constant density is as follows:

∇2𝑝 − 1
𝑐2

𝜕2𝑝

𝜕𝑡2
= 𝑠 (1)

where ∇2 = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 , 𝑐 is velocity map, 𝑝 is pressure field and
𝑠 is source term. Velocity map 𝑐 depends on the spatial location
(𝑥,𝑦) while the pressure field 𝑝 and the source term 𝑠 depend on the
spatial location and time (𝑥,𝑦) and 𝑡 . We will follow the Forward
Modeling algorithm [16]. The seismic data is simulated using finite
difference methods with the absorbing boundary condition.
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Figure 2: Illustration of the proposed QuGeo framework.

3.1.2 Scaling data without velocity map. When theQuGeo is applied
to real-world applications, we do not have the subsurface velocity
map, which requires the scaling of data without using the veloc-
ity map. In addition, it has the requirement of high efficiency in
performing data scaling. To address these issues, we propose an ML-
based data scaling approach to train a convolution neural network
(CNN) for data compression. Our hypnosis is that physics-related
features can be learned from the feature extraction by CNN.

The key step is to build the dataset. Here, we have the original
seismic wave data (𝐷), which has the dimension of 1000 × 700 as
in the example from Figure 2. We also have the physics-guided
scaled data (𝑝ℎ𝑦𝐷), which has the dimension of 32 in the example.
The pair of data ⟨𝐷, 𝑝ℎ𝑦𝐷⟩ will be built as the training dataset. On
top of the dataset, we designed a LeNet-like CNN to perform data
compression, which contains two convolutional layers (including
a ReLU function after the convolution operation) and a fully con-
nected (FC) layer. Although simple, it is quite effective to perform
the data compression, as will be shown in the experimental results.

3.2 QuGeoVQC: Quantum Circuit Design
3.2.1 Encoder of Multi-source Seismic Data. The encoding of seis-
mic wave data to qubits is based on a state-of-the-art quantum
encoder from [17], called spatial-temporal encoder “ST-Encoder”.
It was originally designed for natural images, encoding a group of
data (i.e., spatial-close 𝑁 data) to amplitudes of 𝑙𝑜𝑔2𝑁 qubits.

To use ST-Encoder in QuGeoVQC, we need to identify how to
map data to the amplitudes of a set of qubits. Seismic data has three
dimensions, including (1) sources, which generate waves from the
surface at different locations; (2) receivers, which receive waves on
the surface; and (3) elapsed time, which shows the wave pressure
received over time. As shown in Eq. 1, one source represents an
independent event (say vibration from vibroseis trucks), and each
of them can be calculated by the differential of pressure on time and
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Figure 3: Illustration of the proposed QuBatch with 2 qubits.

location. Therefore, to better extract features from different sources,
we group and encode data from the same source into qubits.
3.2.2 Variational Quantum Circuit. We will follow ST-VQC [17]
to create sub-VQCs to independently process data in each group,
and gradually commute between groups by using multi-qubit gates
across different sub-VQCs. There are a couple of design hyperpa-
rameters that need to be determined. In each sub-VQC, it is nec-
essary to determine how many layers of VQC are needed, which
reflects the number of trainable parameters. In addition, the order
of entanglement between different groups needs to be identified.
3.2.3 Decoder of Velocity Maps. In carrying out the waveform
inversion task, we observe the simplification of the decoding circuit
can significantly improve performance, which takes benefits of
the task’s property. The decoder design is related to the definition
of the loss function used in training VQC. Let 𝐺 be the ground-
truth velocity map, and 𝐺𝑖, 𝑗 the velocity at location ⟨𝑖, 𝑗⟩, where
𝑖, 𝑗 ∈ [0, 𝑁 ) represents the coordinate. A straightforward design is
to conduct a pixel-wise comparison between ground truth and the
forward results. In this case, the decoder needs 𝑁 2 velocities from
the quantum circuit, denoted as 𝐷 . For example, the mean squared
error between ground truth and VQC outputs can be defined as:

𝑙𝑜𝑠𝑠𝑝𝑖𝑥𝑒𝑙 =
∑︁

𝑖∈[0,𝑁 )

∑︁
𝑗∈[0,𝑁 )

{(𝐺𝑖, 𝑗 − 𝐷𝑖, 𝑗 )2} (2)

As most subsurface has a flat structure, we can simplify the re-
gression output data. Specifically, instead of pixel-wise comparison,
we can predict one velocity of each row. As a result, we only predict
𝑁 velocities, denoted as 𝐷′, leading to the following MSE:

𝑙𝑜𝑠𝑠𝑙𝑎𝑦𝑒𝑟 =
∑︁

𝑖∈[0,𝑁 )

∑︁
𝑗∈[0,𝑁 )

{(𝐺𝑖, 𝑗 − 𝐷′
𝑗 )
2} (3)

The above method can be generalized for the non-flat subsurface,
such as curve structures. Because the subsurface mediums between
curves have the same material, indicating a similar velocity. In this
case, we can still use one velocity for each row but need to predict
a multi-variable function to describe the curve. The row velocity
will be used for all locations between two curves.

3.3 QuBatch: Data Batch on Quantum Circuits
3.3.1 Fundamentals. Before introducing details, we use an exam-
ple to illustrate the ability of quantum computing to process data
batches in parallel in Figure 3. We have two vectors𝐷1 and𝐷2, each
of which contains two features. The weight matrix is 𝑈 (𝜃 ). There
are two computations to be performed: 𝑈 (𝜃 ) · 𝐷1 and𝑈 (𝜃 ) · 𝐷2.

We construct a quantum circuit with three steps (𝑆0 to 𝑆2) to
perform these computations. As shown in Figure 3(a), an encoder𝑈𝑒

entangle these qubits from 𝑆0 to 𝑆1: |𝜓 ⟩ = 𝑈𝑒 · |0⟩ = [𝐷1, 𝐷2]𝑇 . The
subcircuit from step 𝑆1 to 𝑆2 constructs the computation operator,
where “no gate” is placed on qubit 𝑞0, indicated by a virtual 𝐼 , and
the operator 𝑈 (𝜃 ) is placed on qubit 𝑞1. As qubits are entangled at
step 𝑆1, we need to combine these two operators for computation
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Figure 4: Illustration of integrating QuBatch to QuGeoVQC
with different batch sizes and group sizes.

by tensor product, shown in Figure 3(b). Now, we have two 𝑈 (𝜃 )
operators located on the diagonal of thematrix. Kindly note that this
indicates that we can duplicate the computation operator without
any cost, providing the fundamentals to efficiently support SIMD
operation. Then, as shown in Figure 3(c), we can obtain the results
of𝑈 (𝜃 ) · 𝐷1 and𝑈 (𝜃 ) · 𝐷2 on the output amplitudes.
3.3.2 𝑄𝑢𝐵𝑎𝑡𝑐ℎ integration. To integrate 𝑄𝑢𝑏𝑎𝑡𝑐ℎ to 𝑄𝑢𝐺𝑒𝑜𝑉𝑄𝐶 ,
we extend the approach in Figure 3 from two aspects: (1) a larger
number of batches and (2) the circuit with multiple groups. For the
first extension,𝑄𝑢𝑏𝑎𝑡𝑐ℎ can process batch size of 2𝑁 by adding only
𝑁 qubits (𝑁 ≥ 0), as shown in Figures 4(a)-(c). The second extension
is to support multiple groups. This can be achieved by introducing
a swap gate before communicating between two groups, as shown
in Figures 4(d)-(e). We omit detailed analysis here to save space.
3.3.3 Complexity analysis. Before detailed analysis, we first dis-
cuss the overhead introduced by 𝑄𝑢𝐵𝑎𝑡𝑐ℎ. As multiple operators
can be produced by using tensor products between one operator
with an identity matrix, we do not need to pay overhead for the
computation. Kindly note that we need to pay overhead on the data
encoding. First, the amplitude encoding will lead to a longer circuit.
Fortunately, as shown in [17], the circuit length grows linearly
with the increase of qubits. Second, because the sum of the squared
magnitudes of the amplitudes of all possible states of a qubit must
equal 1, if more data are encoded to a batch, we need to normalize
the data, indicating that the data precision will be decreased. Kindly
note although the data precision will be decreased, the relevant
relationship between data can be maintained. In addition, we can
control the group size and batch size to make a tradeoff among
circuit depth, number of qubits, and data precision.

Now, we discuss the complexity. Let 𝐵 be the number of batches
implemented in QuBatch, 𝐺 be the number of groups in the en-
coder, and 𝑂 (𝑋 ) be the original time-space complexity (i.e., qubits
times circuit depth). By introducing 𝐵 bathes to the system, we will
have overhead on both qubits number and depth: (1) the additional
number of qubits will be 𝑂 (𝐺 · log𝐵); (2) for each group, the cir-
cuit length increased along with the additional number of qubits;
therefore, it has an overhead of 𝑂 (log𝐵). As the encoding of differ-
ent groups is conducted in parallel, we finally have the time-space
complexity of 𝑂 (𝐺 · log2 𝐵 · 𝑋 ). Compared to the implementation
of 𝐵 batches independently, it will lead to a complexity of𝑂 (𝐵 ·𝑋 ).
If 𝐵 >> 𝐺 , QuBatch can exponentially decrease the complexity.
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4 Experiments
Dataset. Evaluations are performed on the FlatVelA dataset in

OpenFWI [4]. The original data in OpenFWI has the dimension
of 350, 000 = 5 × 1000 × 70 (#source × time steps × #receiver) for
seismic data and 70 × 70 (depth × width) for velocity maps. We
scale the dimension of seismic data to 256, and the velocity map
to 8 × 8. For comparison, we employ a standard nearest neighbor
resampling algorithm as the baseline, denoted as “D-Sample”. We
denote “Q-D-FW” to indicate the data (D) scaling using forward
modeling (FW), which is proposed in Section 3.1.1, and denote
“Q-D-CNN” to indicate the data (D) scaling using CNN-based data
compression proposed in Section 3.1.2.

VQCs.Wewill compare two QuGeoVQC designs with differences
in the decoder. The first one is designed to use the pixel-wise loss
in Eq. 2, where 8 × 8 velocities will be decoded as the magnitude
of 64 amplitudes from the quantum system. We denote the design
as “Q-M-PX”, indicating the VQC model (M) based on the pixel-
wise loss. The second one is application-specific design, which
leverages the knowledge that the subsurface has a flat layer-wise
(LY) structure, denoted as “Q-M-LY”. To compare quantum learning
and classical learning, we implemented two classical convolutional
neural networks (CNN) with pixel-wise and layer-wise decoding,
denoted as “CNN-PX” and “CNN-LY”.

Environment.We carry out the concept-proof evaluation on
quantum learning design based on the Torchquantum [3] frame-
work. To enable the proposed encoder and QuBatch, we added two
components in TorchQuantum. For all VQC model training, we em-
ploy the Adam optimizer with 500 epochs where the initial learning
rate is set to 0.1, followed by a cosine annealing schedule. To sup-
port training, we split the FlatVelA dataset with 500 samples into a
training set (size of 400) and a test set (size of 100).

4.1 QuGeoData: Physics Guidance is Needed
Figure 5 reports the comparison results of data scaling approaches
using Q-M-PX VQC. Each point in Figure 5(a) is a VQC model
obtained in training, where the x-axis and y-axis stand for Structural
Similarity Image Metric (SSIM) and Mean Squared Error (MSE),
respectively. Figures 5(b)-(c) give the convergence of model training.
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We have a couple of observations from these results. First, we can
clearly observe that the model trained based on the physics-guided
data scaling (i.e., Q-D-FW) significantly outperforms D-Sample (i.e.,
green diamond) in both SSIM and MSE. Second, Q-D-FW and Q-
D-CNN have similar performance in two metrics. Specifically, the
SSIM of Q-D-CNN is 0.8619, which is even slightly higher than
Q-D-FW with 0.8591, while the MSE of Q-FM is 0.000461, slightly
outperforming Q-D-CNN with 0.000460. The above results empha-
size the importance of physics knowledge in data scaling.

Figure 6 gives the visualization of seismic waveform data to
better show the causes of performance gain. First, in comparing
Q-D-FM and D-Sample, we can see a larger wavelength in Q-D-FM.
The adjustment of the sampling rate and source wavelet causes this.
By down-scaling the time dimension in seismic waves, the sam-
pling rate is decreased. Consequently, we lower the source wavelet
frequency from 15Hz to 8Hz to prevent the loss of information
from a physics standpoint, resulting in an increased wavelength.
Conversely, D-Sample’s approach of directly downsampling the
waveform data leads to the inevitable loss of vital physical informa-
tion, evident in the waveform measurements’ incoherence, which
will eventually degrade the resulting imaging accuracy. Secondly,
the waveform data from Q-D-FM and Q-D-CNN, with an initial
SSIM of 0.9255, see this value rise to 0.9989 following data normal-
izationwithin quantum state constraints. These findings underscore
the significance of physics-guided data scaling and the efficiency
of CNN-based data compression methods.

Finally, in Figure 7, we present the visualization of results. From
Figure 7(a), we can again see the improvements obtained byQ-D-FM
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Figure 8: Comparison results of Q-M-PX and Q-M-LY.

and Q-D-CNN over D-Sample. More interesting results are shown
in Figure 7(b), where we compare the vertical velocity profiles at
horizon distance 𝑥 = 400. The brown lines are the velocity changes
along depth for the ground truth, where the y-value stands the
velocity, and the layer boundary (say point B) indicates an interface
between two layers. From these figures, we can see that D-Sample
leads to a larger difference in velocity values, and it cannot predict
the interface. Specifically, for all seven inflection points, there are
five wrong predictions (points A, B, C, E, and G) and only two
correct predictions (points D and F). On the other hand, there are
three correct interface predictions for both Q-D-FW and Q-D-CNN.

4.2 QuGeoVQC Further Boost Performance
Figure 8 reports the comparison results on two different VQC de-
signs: Q-M-PX and Q-M-LY, using both SSIM and MSE metrics. As
shown in the figures, for all three data scaling methods, results
obtained by Q-M-LY significantly outperform those by Q-M-PX.
Specifically, for SSIM using data from Q-D-CNN data, the SSIM
improves from 0.862 to 0.905. These figures are from 0.859 to 0.892
for Q-D-FW, and 0.800 to 0.842 for D-Sample. Overall, Q-M-LY
achieves a 4.5% improvement over Q-M-PX. For MSE, the average
improvement reaches 33.23%. These results show the effectiveness
of layer-wise VQC design.

We have one more interesting observation from the results. Con-
sidering that the Q-M-PX using D-Sample is the straightforward im-
plementation of FWI on quantum computing, the proposed QuGeo
design can improve the SSIM from 0.800 to 0.905 and reduce MSE
from 0.000855 to 0.000328, achieving 11.6% and 61.69% improve-
ments on SSIM and MSE, respectively. This result shows the huge
optimization room for implementing FWI on quantum computing,
and the effectiveness of our proposed methods.

Figure 9 presents the visualization results for Q-M-PX and Q-
M-LY using Q-D-FW, as well as Q-M-LY using D-Sample. In the
vertical velocity analysis depicted in Figure 9(b), we observe that
Q-M-PX inaccurately predicts two interfaces at Points A and B.
Although Q-M-LY using D-Sample accurately predicts all interfaces,
it incorrectly interprets the relative positioning between two layers
at three interfaces, as highlighted at Points C, D, and E. In contrast,
Q-M-LY using Q-D-FW, successfully predicts all interfaces while
maintaining the correct relative relationships between the layers.
These findings further emphasize the effectiveness of layer-wise
VQC design and highlight the promising potential of quantum
learning in addressing the challenges of FWI.

4.3 QuBatch Achieves Competitive Results
Next, Table 1 shows the proposed QuBatch can be successfully
used in the model training, where we can perform 2𝑁 batches in
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Model Dataset Batch Extra Qubits SSIM vs. BL

Q-M-LY Q-D-FW
0 0 0.8926 BL
2 1 0.8864 0.69%
4 2 0.8678 2.77%

Table 1: Evaluation of QuBatch with different batch sizes on
Q-D-FW dataset using Q-M-LY VQC.

Table 2: Comparison between quantum and classical learning

Model Par.
Q-D-FW Q-D-CNN

SSIM vs. MSE vs. SSIM vs. MSE vs.
CNN-PX 634 0.870 BL 4.34E-04 BL 0.87 BL 4.38E-04 BL
CNN-LY 616 0.871 0.04% 4.36E-04 -0.43% 0.87 0.00% 4.36E-04 0.38%
Q-M-PX 576 0.859 -1.28% 4.61E-04 -6.10% 0.86 -0.98% 4.62E-04 -5.45%
Q-M-LY 576 0.893 2.50% 3.48E-04 19.84% 0.91 3.87% 3.28E-04 25.17%

parallel with only 𝑁 more qubits. In addition, we observe the SSIM
has slight degradation compared with the results obtained without
using data batch. The root cause might be the decrease in data
precision caused by the normalization, which is required by the
constraints of amplitudes. As discussed in Section 3.3.3, such effects
can be mitigated by making tradeoffs among data precision and
qubits, which will be the future work.

4.4 QuGeo Outperforms Classical ML
Table 2 reports the comparison of our proposed quantum learning
for FWI with classical learning. We constrain the number of param-
eters to the same level. As shown in Table 2, CNN-PX and CNN-LY
have 58 and 40 more parameters. Whereas, Q-M-LY outperforms
both classical results on a dataset obtained by both Q-D-FW and Q-
D-CNN. Specifically, using CNN-PX as a baseline, Q-M-LY achieves
19.84% and 25.17% MSE improvements on two datasets, respec-
tively. The potential reason that quantum learning can outperform
classical learning at the same scale is because of the complicated
entanglement in quantum computing, which has the potential to
extract high-correlation features among data. Achieving better per-
formance even at the small scale is meaningful since real-world
applications commonly have hard real-time requirements, in par-
ticular, for monitoring tasks in geoscience.

5 Conclusion
This pilot study introduces QuGeo, a framework designed to facil-
itate full-waveform inversion (FWI) tasks from geoscience using
near-term quantum computers. We employ machine learning to
tackle two fundamental challenges in applying quantum comput-
ing to FWI: (1) identifying the most suitable data for quantum
computing, and (2) understanding the unique advantages offered
by quantum computing in this context. With QuGeo, we have de-
veloped a physics-guide quantum data scaling tool. Additionally,
we propose a novel approach for data batch execution on varia-
tional quantum circuits, which could potentially enable efficient
training with large data batches. Notably, our quantum learning
model outperforms its classical counterpart in performance, even
with an equal number of parameters. Furthermore, QuGeo achieves
an impressive 61.69% improvement in MSE compared to conven-
tional quantum learning approaches. We believe that this research
paves the wave for practical applications of quantum computing in
geoscience, potentially revolutionizing the field.
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