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Abstract—Benefiting from cloud computing, today’s early-
stage quantum computers can be remotely accessed via the cloud
services, known as Quantum-as-a-Service (QaaS). However, it
poses a high risk of data leakage in quantum machine learning
(QML). To run a QML model with QaaS, users need to locally
compile their quantum circuits including the subcircuit of data
encoding first and then send the compiled circuit to the QaaS
provider for execution. If the QaaS provider is untrustworthy,
the subcircuit to encode the raw data can be easily stolen.
Therefore, we propose a co-design framework for Preserving the
data security of QML with the QaaS paradigm, namely PristiQ.
By introducing an encryption subcircuit with extra secure qubits
associated with a user-defined security key, the security of data
can be greatly enhanced. And an automatic search algorithm is
proposed to optimize the model to maintain its performance on
the encrypted quantum data. Experimental results on simulation
and the actual IBM quantum computer both prove the ability
of PristiQ to provide high security for the quantum data while
maintaining the model performance in QML.

Index Terms—Cloud Quantum Computing, Quantum Machine
Learning, Quantum Data Security

I. INTRODUCTION

Over decades of development in quantum science, we are

now witnessing the breakthrough of technologies in designing

quantum computers: the number of qubits in the actual quan-

tum computers has increased rapidly, from 5 qubits in 2016 to

433 qubits in 2022 [5]. With access to these actual quantum

computers via the cloud services, known as Quantum-as-a-

Service (QaaS), various studies have been done to explore

the quantum advantage in different problems [8], [11], where

quantum machine learning (QML), in particular, quantum

neural network (QNN) has attracted great research efforts

recently [6], [9].

Although QNN is promising in many real applications, the

current QaaS paradigm for the execution of QNN poses a high

risk of data leakage due to the raw data delivery to the cloud.

Fig. 1 shows a typical threat model in the QaaS paradigm for

QML applications. In this case, the local user and the attacker

may train their own QNN models on the same data but target

different tasks. For example, with the same medical images,

Pristiq is a prescription medicine to treat depression. We envision our
framework to treat the depression by data leakage in future quantum machine
learning research.

the user could build a QNN for classification while the attacker

could build a different QNN for segmentation. The training

process of a QNN is usually executed in a hybrid quantum-

classical way. For instance, the classical data Y1 will first be

encoded as a quantum circuit D(Y1) with a data encoding

method (e.g., amplitude encoding). D(Y1) and the quantum

circuit QC(θ) for the QNN will be provided to the local

quantum compiler, which will generate a compiled quantum

circuit QC(θ) · D(Y1). The compiled circuit is then sent to

the quantum cloud provider to run the forward pass. And

the forward results will be sent back to the user to compute

the gradients of learnable parameters θ through parameter

shift [7]. For the quantum circuit QC(ω) of the attacker, it

can be trained in the same way.

After the training process, the compiled circuit QC(θ) ·
D(X) will be sent to the quantum cloud provider for inference

to get an accurate classification of sensitive user data X .

However, if the quantum cloud provider is untrustworthy,

the attacker can directly get access to QC(θ) · D(X). The

encoding quantum circuit D(X) can be decoupled from

QC(θ) ·D(X) since the data encoding algorithms have fixed

circuit patterns that are easy to be detected. Moreover, with

QC(ω), an accurate segmentation of D(X can be made,

which means that the attacker can obtain more information

from D(X) with data analysis methods. Such kind of data

leakage can not only cause privacy breaches to the users but

also bring huge damage to the reputation of the institution that

leverages the power of QNNs for their applications. Therefore,

the preservation of data security is of great importance in QML

applications.

There exist many works on blind quantum computing [1],

[3], which focus on the security of quantum circuits. However,

they assume that the user has a lightweight quantum terminal

to preprocess the data in quantum states, which does not

hold in the current QaaS paradigm for quantum applications.

Traditional secure computation methods like homomorphic en-

cryption [4] cannot be directly applied to quantum computing

since the involved complicated computing operations cannot

be implemented by quantum operations. Therefore, a quantum

computing-based methodology is necessary to protect the raw

input data to the QNNs in the context of QaaS.
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Fig. 1. Illustration of the typical threat model in QaaS paradigm for QML applications: The attacker in the untrustworthy cloud quantum provider can steal
the user data for its own QML task.

In this paper, we make the very first attempt to preserve

data security in QML applications by formulating a circuit-

compiler-model cross-layer design framework, namely PristiQ.

The proposed framework is composed of three components: i)
PriCircuit incorporates an encryption subcircuit into the sub-

circuit of data encoding to keep data security; ii) PriCompiler
obfuscates the encryption subcircuit; and iii) PriModel auto-

matically searches for the optimal design of the QNN model

in order to maintain the performance when directly conducting

computations on the encrypted data. These components will

work together to provide data security while maintaining high

performance for the QML tasks through QaaS.

The main contributions of this paper are as follows.

• The first and the main contribution of this paper is

the proposal of PristiQ, which is, to the best of our

knowledge, the first framework to secure input data to

QNNs under QaaS paradigm.

• PristiQ provides a fundamental understanding of the de-

sign of a secure quantum computing system: a cross-layer

co-design is required to preserve data security in quantum

computing. This design philosophy is not limited to QML

applications but can also be applied to other types of

quantum applications.

• PristiQ brings the concept of model adaptation to the

design of QNN, which preserves high performance on

the encrypted data.

II. PRISTIQ FRAMEWORK

Fig. 2 shows an overview of PristiQ. Given the data

encoding subcircuit D(X) and QNN subcircuit QC(θ) as

inputs, which is shown in Fig. 2 (a), PristiQ will sequentially

go through the three components: PriCircuit in Fig. 2(b),

PriCompiler in Fig. 2(c) and PriModel in Fig. 2(d).

Based on D(X) and QC(θ), PriCircuit will reconstruct

the original circuit QC(θ) ·D(X) by inserting an encryption

subcircuit E(δ) between D(X) and QC(θ), which intro-

duces extra qubits, as shown in Fig. 2(b). To avoid the

attacker detecting the boundary between D(X) and E(δ)
easily, PriCompiler is designed to obfuscate D(X) and E(δ).

More specifically, it utilizes the compiling optimization to

form a merged circuit E(δ) · D(X), making their boundary

indistinguishable. In this way, the attacker could only extract

the encrypted data encoded by E(δ) · D(X) instead of the

raw input data encoded by D(X). However, directly applying

the original QNN subcircuit QC(θ) to the encrypted data

may incur significant performance degradation. Therefore, to

maintain the performance on encrypted data, PriModel will

revise QC(θ) by replacing it with subcircuit QC ′(θ′). The

neural architecture of the QNN for QC ′(θ′) is designed by

using an automatic search engine based on reinforcement

learning, aiming at the best performance on the encrypted data.

In the following content of this section, we will introduce the

details of all three components in PristiQ.
A. PriCircuit

Design Principle: The main purpose of PriCircuit is to

provide data security, i.e., the raw input data should be

hidden; however, the encrypted data should also preserve the

critical information contained by the raw input data, such

that the encrypted data can still be learned effectively. Unlike

conventional neural networks in classical computing, most

quantum neural networks [2], [6] do not extract the spatial

features. Therefore, the most important information in the raw

input data is the relative relationship among its features. Based

on this observation, we propose a two-stage encryption process

for PriCircuit. And the details are as follows.

Design overview: Fig. 3 shows the detailed design of encryp-

tion subcircuit E(δ) generated by PriCircuit with an example.

As shown in Fig. 3(a), there are N qubits used to encode raw

input data X with 2N features, named data qubits. And M
extra qubits are added to the N data qubits, called secure

qubits. The first stage applies the subcircuit S(δ), which is

a part of E(δ), to operate on the newly added M secure

qubits with random parameter set δ to perform amortization

on the amplitudes from data qubits to secure qubits; then,

the second stage utilizes the remaining part of E(δ) (i.e.,

subcircuit P ) to perform permutation on the amplitudes of

the quantum state processed by S(δ) since the permutation

matrix can be implemented by quantum circuits. Based on the
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Fig. 3. PriCircuit: (a) encryption subcircuit E(δ) composed of S(δ) and
P ; (b) an example of PriCircuit with 2 data qubits and 2 secure qubits; (c)
transformations of quantum states: S1 → S2 and S2 → S3.

design of PriCircuit, we define the security key in PristiQ as

a tuple 〈δ, P 〉, where δ is the random parameter set used in

the amortization with scaling while P is the design of random

permutation circuit.

Stage 1: amortization w/ scaling. As shown in Fig. 3(a),

stage 1 starts with initial quantum states S1, where S1 =
|X〉 ⊗ |0〉⊗M = |q0q1...qN−1qN ...qN+M−1〉. Here |X〉 is the

encoded quantum state for the raw input data X , using the data

encoding subcircuit D(X). Note that for S1, only quantum

basis state |q0q1...qN−10...0〉 has non-zero amplitudes since

no quantum gates are applied to the M secure qubits. For

example, in Fig. 3(b), the number of data qubits N is 2

while the number of secure qubits M is 2 as well. In this

case, S1 = |q0q1q2q3〉 = |X〉 ⊗ |00〉 and only quantum state

|q0q100〉 has non-zero amplitudes, which is clearly shown in

the state vector of S1 in Fig. 3(c).

Stage 1 focuses on the transformation from state S1 to state

S2, where each secure qubit is operated by Ry gate with a

parameter that is randomly generated. More specifically, the

kth secure qubit is denoted as Seck and its initial state is |0〉.
After applying an Ry gate with a parameter δk to it, the state

of Seck is converted to [cos δk
2 , sin δk

2 ]
T

, which is denoted by

|QSk〉. Therefore, the quantum state |Q〉, which is the state

composed of all the secure qubits, can be computed as,
|Q〉 = |QS0〉 ⊗ |QS1〉 ⊗ ...⊗ |QSk〉 ⊗ ...⊗ |QSM−1〉. (1)

By combining the quantum states of data qubits |X〉 and
secure qubits |Q〉, we have S2 = |X〉 ⊗ |Q〉, where |Q〉 is

served as the scaling vector with 2M scaling factors for the

amortization on the amplitudes from data qubits to secure

qubits. For example, in Fig. 3(b), the amplitude on |q0q100〉

is amortized to the other three states (i.e., |q0q101〉, |q0q110〉,
|q0q111〉) with scaling factors in |Q〉 determined by the pa-

rameter set δ. For instance, in Fig. 3(b), |X〉 = [a, b, c, d]T .

Since δ = [δ0, δ1] = [π5 ,
π
3 ], we have |QS0〉 = [cosπ

5 , sin
π
5 ] =

[0.81, 0.59] and |QS1〉 = [cosπ
3 , sin

π
3 ] = [0.5, 0.87]. Accord-

ing to Equation (1), we have |Q〉 = [0.4, 0.7, 0.3, 0.5]. We

can then obtain S2 = [a · |Q〉, b · |Q〉, c · |Q〉, d · |Q〉]T . The

specific value of S2 is shown in Fig. 3(c). And there exist

four groups of values in S2, where the values in each group

are multiplied with a unique amplitude from |X〉. Since all

the groups share the same scaling vector |Q〉, the relative

magnitude between arbitrary pair of groups is equal to that

between the unique amplitudes they multiply with. In this way,

the relative relationship between features within raw input data

|X〉 is maintained.

Stage 2: permutation. Although the random parameter

set δ is unknown to the attacker, stage 1 is not sufficient

for the encryption of data since the attacker could get δ
and |X〉 by solving a system of trigonometric equations if

they know the processing of stage 1 is applied. Therefore,

PriCircuit further generates quantum state S3 by randomly

permuting the amplitudes in S2 with a permutation matrix

P . Since permutation matrix P is unknown to the attacker,

the system of trigonometric equations cannot be formulated

and thus not be solved. Note that because the permutation

matrix is a unitary matrix, it is always feasible to implement

it with a corresponding quantum circuit, as shown in Fig. 3(a).

Therefore, we have S3 = P ·S2.. For the example in Fig. 3(b),

it utilizes multiple CNOT gates to implement a permutation

matrix and the specific value of S3 after permutation is shown

in Fig. 3(c). And it is obvious that there is no explicit group

of values that shares the same multiplier after the permutation.

B. PriCompiler

Potential Threat and Design Principle: The main purpose of

PriCompiler is to obfuscate E(δ). This is motivated by the fact

that the boundary between the secure qubits and data qubits

might be detected based on the design of PriCircuit since

there are only Ry gates on the secure qubits in S(δ) while

the data qubits on D(X) contains multiple two-qubit gates. If

the boundary is identified, then D(X) can be extracted.

Therefore, we propose to introduce two-qubit gates on the

secure qubits in S(δ), making the boundary between secure
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qubits and data qubits indistinguishable. However, naively

adding more two-qubit gates may introduce extra undesired

operations on the input data and thus disrupt the features

for inference. Therefore, PriCompiler should try to avoid

actual interaction with D(X), which brings new challenges for

obfuscation. Fortunately, by reviewing the QaaS paradigm in

Fig. 1, we observe that the quantum compiler can be leveraged

to make the obfuscation.

Design Details: PriCompiler follows a two-stage design flow:

(1) a dummy gate insertion and (2) unitary gate decomposition.

Based on the fact that two consecutive CNOT gates can be

canceled out with each other (i.e., I = CNOT · CNOT ),

we propose a method to create dummy gates and introduce

two-qubit gates on the secure qubits. Fig. 4 shows an example

of the whole design flow. The circuit in Fig. 4(a) is a typical

subcircuit in D(X). In this subcircuit, the three data qubits

are operated with two-qubit gates while the single secure qubit

only has an Ry gate with a random parameter δ. In Fig. 4(b),

an Ry gate with two dummy CNOT gates is added to the

secure qubit for obfuscation. More specifically, we first add

an Ry gate with a randomly generated parameter α. We then

adjust the parameter of the original Ry gate to δ−α to ensure

the functional correctness of the circuit. Between these two Ry
gates, we add two consecutive CNOT gates. After this, the first

stage is completed.

In the second stage, given the circuit with dummy CNOT

gates from the first stage, the default quantum compiler will

remove them. But in PriCompiler, it adds a barrier between

the pair of dummy CNOT gates to split the circuit into

two parts, i,e., p1 and p2, as shown in Fig. 4(b). In p1
and p2, each subcircuit will be assembled into a block if

it includes exactly three qubits. In this example, p1 and p2
can be regarded as two blocks. Since all the gates in each

block correspond to a unitary gate, the unitary matrix of each

unitary gate can be calculated and further decomposed to a

new circuit with different designs consisting of chosen basis

gates. Following this rule, the resultant circuit compiled from

the one in Fig. 4(b) is presented in Fig. 4(c). In Fig. 4(c), it is

clearly shown that multiple two-qubit gates are introduced on

the secure qubit q3. Due to the limited space, we only keep

the CNOT gate in the circuit in Fig. 4(c). And the consecutive

CNOT gates can thus not be canceled out due to the existence

of Rz gates between them.
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C. PriModel

After the process of PriCircuit and PriCompiler, the total

number of input qubits is increased from N to N + M .

Therefore, the dimensions of features to the QNN model for

processing is expanded from 2N to 2N+M as well. However,

the original QNN subcircuit QC(θ) only contains operations

on the N data qubits without consideration of M secure qubits,

as shown in Fig. 2(c). Moreover, the original QNN subcircuit

QC(θ) is designed and optimized for the raw input data

instead of the encrypted data. As a result, directly applying this

QNN model to the encrypted data can degrade the performance

of QNN model, which is shown in Section III. Therefore, a

reinforcement learning-based algorithm, namely PriModel, is

proposed to automatically search for the best QNN architecture

for the encrypted data.

Fig. 5 shows the overview of PriModel. It is composed of

three components: (1) a meta controller to guide the whole

process which is implemented with a recurrent neural network

(RNN), (2) a neuron design pool to serve as the search

space for the architecture of QNN, which consists of multiple

quantum neuron designs. (3) a security-aware QNN evaluator

(i.e., the right part of Fig. 5) to measure each sampled solution

from the meta controller.

More specifically, for the meta controller, the RNN cell in

time step I corresponds to the design of the quantum neuron in

layer I of the QNN, which generates a probability distribution

for the sampling from the neuron design pool. The sampled

neuron design for each layer will be connected to form a

child QNN QC ′(θ0), which is initialized with θ0 and sent

to the evaluator. During the evaluation, QC ′(θ0) will first be

trained on the encrypted training set ETS, which is obtained

by encrypting the data in the original training set TS. For

each original data D(X) in TS, it will go through PriCircuit
and PriCompiler to get the encrypted data D(X) ·E(δ). And

the outcome will be saved in ETS. The trained QNN model

QC ′(θ′) is then evaluated to calculate two metrics, i.e., circuit

length L and accuracy A. These two metrics are used for

calculating the reward R to update the meta controller. The

reward function is defined as,

R = A− b− λ
L

Lbase
, (2)

where b is the exponential moving average of the accuracies
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TABLE I
EVALUATION OF PRICIRCUIT

Dataset
# Secure
Qubits

Model
Source

Accuracy (%) PSNR(dB)

MNIST-2
0

User 99.06
34.28

Attacker 99.06
1 Attacker 54.10 ± 16.06 19.35 ± 2.21
2 Attacker 52.23 ± 6.23 18.21 ± 8.37

MNIST-3
0

User 92.56
34.82

Attacker 92.29
1 Attacker 39.05 ± 6.12 20.00 ± 2.18
2 Attacker 36.29 ± 8.90 18.69 ± 8.31

Fashion-2
0

User 87.19
26.06

Attacker 86.54
1 Attacker 58.97 ± 17.33 18.15 ± 2.06
2 Attacker 54.45 ± 13.64 16.7 ± 0.50

Fashion-3
0

User 77.41
25.32

Attacker 77.38
1 Attacker 44.26 ± 10.86 17.81 ± 1.97
2 Attacker 35.82 ± 10.48 17.02 ± 1.47

of previous sampled QNNs. Lbase is a preset baseline circuit

length for normalization. According to the available quantum

computing resources, the user can use λ to control the trade-off

between the accuracy and the complexity of circuit implemen-

tation for the sampled QNN.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

Dataset. We evaluate PristiQ on MNIST-2 (class), -3 (class);

Fashion-2 (class), -3 (class). When evaluated on the noiseless

simulator, the data are downsampled to a resolution of 4 ×
4 from 28 × 28, which needs 4 data qubits with amplitude

encoding. When evaluated in noisy environments (i.e., noisy

simulator of IBMQ Manila and IBMQ Manila), the data is

downsampled to a resolution of 4 × 2 with 3 data qubits. In

this case, due to the limited quantum resources, we use 100

samples and 150 samples from MNIST-2 and MNIST-3 for

evaluation, respectively.

Security Keys. To generate the security keys, the range

of random sampling of rotation angles is [ 1π8 , 7π
8 ) and the

permutation matrix P is implemented with random generation

of CNOT gates.

Metrics. We use the peak signal-to-noise ratio (PSNR) to serve

as a quantitative metric to evaluate the difference between two

images. Since amplitude encoding requires normalization of

the features within the original data, it introduces differences

between the quantum data and the original data. Therefore,

we computed the PSNR between the original data and the

quantum data (i.e., the PSNR when the number of secure

qubits is 0) to be the baseline for the comparison of PSNR.

QNNs. All the evaluated child QNNs are implemented with

TorchQuantum [10]. They are then compiled and executed

by Qiskit. Besides, for PriModel, there are 6 options [9] for

quantum neural designs at each layer.

B. PriCircuit Effectively Protects Data

As Fig. 1 shows, we have two types of models for evaluation

in this part, i.e., the model for user and the model for attacker.

TABLE II
EVALUATION OF PRISTIQ

Dataset
# Secure
Qubits

Model
Type

# Param
Circuit
Length

Accuracy (%)

MNIST-2

0 User (Vanilia) 56 82 99.06

1
User (Vanilia) 56 82 53.65 ± 14.98
User (PristiQ) 59.5 96.88 99.15 ± 0.05

2
User (Vanilia) 56 82 49.81 ± 4.79
User (PristiQ) 65 135 99.10 ± 0.04

MNIST-3

0 User (Vanilia) 44 52 92.56

1
User (Vanilia) 44 52 40.07 ± 9.52
User (PristiQ) 48.5 72.25 95.08 ± 0.27

2
User (Vanilia) 44 52 40.22 ± 9.96
User (PristiQ) 58.5 115.25 95.03 ± 0.24

Fashion-2

0 User (Vanilia) 80 103 87.19

1
User (Vanilia) 80 103 58.97 ± 17.35
User (PristiQ) 41.5 59.38 88.30 ± 0.19

2
User (Vanilia) 80 103 54.39 ± 13.54
User (PristiQ) 45.5 79.5 88.23 ± 0.16

Fashion-3

0 User (Vanilia) 48 46 77.41

1
User (Vanilia) 48 46 36.97 ± 9.26
User (PristiQ) 57.5 90.38 79.13 ± 0.09

2
User (Vanilia) 48 46 36.80 ± 13.42
User (PristiQ) 67 135.88 79.07 ± 0.10

In general cases, the two models should target different types

of tasks with the same dataset. But in this experiment, we

trained two different models which both target the classifica-

tion task for simplicity.

Table I reports the results for the evaluation of PriCircuit.
It clearly shows that without encryption, the data stolen from

the user can be utilized by the attacker with its own model

effectively. More specifically, the performance of the model

for attacker is close to that of the model for user and thus

verifies the threat model in Fig. 1. For example, on MNIST-3,

the accuracy of the model for attacker is 92.29 % while that

of the model for user is 92.56 %.

When the data is encrypted by PriCircuit, the security of

data can be preserved. It means that the model for the attacker

performs badly on the encrypted data while the difference

between the encrypted data and the original data is increased

significantly. For example, with only 1 secure qubit, PriCircuit
can reduce the accuracy and PSNR to 39.05 % and 20.0 dB

on average on MNIST-3, respectively.

Moreover, increasing the number of secure qubits can

further enhance the data security. For instance, on MNIST-

3, the accuracy drops from 39.05 % to 36.29 % and the

PSNR reduces from 20.0 dB to 18.69 dB respectively when

increasing the secure qubits from 1 to 2.

C. PristiQ Can Enable Accurate Inference While Protecting
Data

Table II shows the results for the evaluation of PristiQ on the

noiseless simulator, where the model “User (Vanilla)” refers

to the model for user optimized on the original data. Without

encryption (i.e., the number of secure qubits is 0), it is clearly

shown that only using PriCircuit to protect data will lead to

the performance collapse of the model for user. For example,

on MNIST-2, the accuracy drops from 99.06 % to 49.81 % on

average with 2 secure qubits.
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Fig. 6. Results of PristiQ for MNIST-2 on (a) simulator of IBMQ Manila and on (b) IBMQ Manila, and for MNIST-3 on (c) simulator of IBMQ Manila and
on (d) IBMQ Manila.

By applying PristiQ to building the model, where PriCir-
cuit is included, the performance of the model (i.e., “User

(PristiQ)” in Table II) can be recovered on all the evaluated

datasets. For example, on MNIST-2, the accuracy is recovered

to 99.10% on average when encrypted with 2 secure qubits,

which is even improved by 0.04 % compared with the model

optimized on the original data.

D. Evaluation of PristiQ in Noisy Environments
Fig. 6 shows the effect of quantum noise on the performance

of PristiQ on MNIST-2 and MNIST-3. In Fig. 6, the orange bar

(Vanilla) denotes the model for user optimized on the original

data while the blue bar (PristiQ) denotes the model optimized

on the encrypted data with PristiQ. Fig. 6 (a) and (c) show the

results on the noisy simulator of IBMQ Manila, while Fig. 6

(b) and (d) show the results on the actual quantum computer

(i.e., IBMQ Manila).
For the vanilla model, we can conclude that its performance

degrades significantly on the encrypted data generated by

PriCircuit in noisy environments. For example, with 2 secure

qubits, the accuracy decreases from 98 % to 49 % on the noisy

simulator and drops from 95 % to 64 % on the actual quantum

computer on MNIST-2.
By applying PristiQ to optimizing the model, the perfor-

mance can still be recovered even with the quantum noise. For

instance, with 2 secure qubits, the accuracy can be recovered

from 49 % to 97 % on the noisy simulator and increased from

64 % to 95 % on the actual quantum computer on MNIST-2.

IV. CONCLUSION

In this paper, we made the very first exploration of the

problem of data security for QML in the cloud. We proposed

PristiQ, a framework to preserve data security in QML. By

creating an encryption subcircuit with a user-defined security

key, the important information in the original data is protected.

Besides, PristiQ utilizes an automatic model optimizer to

achieve high performance on the encrypted data. Extensive

experiments in the noiseless quantum simulator and noisy

quantum environments are conducted to show the effectiveness

of PristiQ. Moreover, the design philosophy of PristiQ, a cross-

layer co-design from the circuit level and compiler level to

the application level, could be applied to guide the design of

a secure quantum computing system in applications beyond

QML.
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