2024 |IEEE Computer Society Annual Symposium on VLSI (ISVLSI) | 979-8-3503-5411-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/I1SVLSI61997.2024.00079

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

PristiQ: A Co-Design Framework for Preserving
Data Security of Quantum Learning in the Cloud

Zhepeng Wang™ ¥, Yi Sheng’, Nirajan Koirala*, Kanad Basu”, Taeho Jung*, Cheng-Chang Lu', Weiwen Jiang™®
"Department of Electrical and Computer Engineering, George Mason University.
$Quantum Science and Engineering Center, George Mason University.
Department of Computer Science and Engineering, University of Notre Dame.
“Department of Electrical & Computer Engineering, University of Texas at Dallas
1Qradle Inc.
{zwang48, wjiang8} @gmu.edu

Abstract—Benefiting from cloud computing, today’s early-
stage quantum computers can be remotely accessed via the cloud
services, known as Quantum-as-a-Service (QaaS). However, it
poses a high risk of data leakage in quantum machine learning
(QML). To run a QML model with QaaS, users need to locally
compile their quantum circuits including the subcircuit of data
encoding first and then send the compiled circuit to the QaaS
provider for execution. If the QaaS provider is untrustworthy,
the subcircuit to encode the raw data can be easily stolen.
Therefore, we propose a co-design framework for Preserving the
data security of QML with the QaaS paradigm, namely PristiQ.
By introducing an encryption subcircuit with extra secure qubits
associated with a user-defined security key, the security of data
can be greatly enhanced. And an automatic search algorithm is
proposed to optimize the model to maintain its performance on
the encrypted quantum data. Experimental results on simulation
and the actual IBM quantum computer both prove the ability
of PristiQ to provide high security for the quantum data while
maintaining the model performance in QML.

Index Terms—Cloud Quantum Computing, Quantum Machine
Learning, Quantum Data Security

I. INTRODUCTION

Over decades of development in quantum science, we are
now witnessing the breakthrough of technologies in designing
quantum computers: the number of qubits in the actual quan-
tum computers has increased rapidly, from 5 qubits in 2016 to
433 qubits in 2022 [5]. With access to these actual quantum
computers via the cloud services, known as Quantum-as-a-
Service (QaaS), various studies have been done to explore
the quantum advantage in different problems [8], [11], where
quantum machine learning (QML), in particular, quantum
neural network (QNN) has attracted great research efforts
recently [6], [9].

Although QNN is promising in many real applications, the
current QaaS paradigm for the execution of QNN poses a high
risk of data leakage due to the raw data delivery to the cloud.
Fig. 1 shows a typical threat model in the QaaS paradigm for
QML applications. In this case, the local user and the attacker
may train their own QNN models on the same data but target
different tasks. For example, with the same medical images,

Pristiq is a prescription medicine to treat depression. We envision our
framework to treat the depression by data leakage in future quantum machine
learning research.

the user could build a QNN for classification while the attacker
could build a different QNN for segmentation. The training
process of a QNN is usually executed in a hybrid quantum-
classical way. For instance, the classical data Y; will first be
encoded as a quantum circuit D(Y7) with a data encoding
method (e.g., amplitude encoding). D(Y7) and the quantum
circuit QC(0) for the QNN will be provided to the local
quantum compiler, which will generate a compiled quantum
circuit QC(0) - D(Y1). The compiled circuit is then sent to
the quantum cloud provider to run the forward pass. And
the forward results will be sent back to the user to compute
the gradients of learnable parameters @ through parameter
shift [7]. For the quantum circuit QC(w) of the attacker, it
can be trained in the same way.

After the training process, the compiled circuit QC(80) -
D(X) will be sent to the quantum cloud provider for inference
to get an accurate classification of sensitive user data X.
However, if the quantum cloud provider is untrustworthy,
the attacker can directly get access to QC(6) - D(X). The
encoding quantum circuit D(X) can be decoupled from
QC(0) - D(X) since the data encoding algorithms have fixed
circuit patterns that are easy to be detected. Moreover, with
QC(w), an accurate segmentation of D(X can be made,
which means that the attacker can obtain more information
from D(X) with data analysis methods. Such kind of data
leakage can not only cause privacy breaches to the users but
also bring huge damage to the reputation of the institution that
leverages the power of QNN for their applications. Therefore,
the preservation of data security is of great importance in QML
applications.

There exist many works on blind quantum computing [1],
[3], which focus on the security of quantum circuits. However,
they assume that the user has a lightweight quantum terminal
to preprocess the data in quantum states, which does not
hold in the current QaaS paradigm for quantum applications.
Traditional secure computation methods like homomorphic en-
cryption [4] cannot be directly applied to quantum computing
since the involved complicated computing operations cannot
be implemented by quantum operations. Therefore, a quantum
computing-based methodology is necessary to protect the raw
input data to the QNN in the context of QaaS.

2159-3477/24/$31.00 ©2024 IEEE 403
DOI 10.1109/ISVLSI61997.2024.00079
Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

lo)
0C(8) [

User | Attacker -
(Local) } (Cloud) Prae

l9)
-« i QClw)|:

Compiled Circuit

Task: Classification QNN Model (User)

Y3 _ e
Y2 4
v,m»»

Training Samples Data Encoders

Qc(e) - p(va) |:
Forward Results for
Computing Gradient

2
S
51
=
E
5]
Q
o
=]

g=5
g

Training Phase

Inference Phase

0
||

Local User
X (User)

‘>4>

lo)
QC(O) |+

Compiled Circuit

Trained QNN Model
il ac(e) o) |

Inference Results

Joprdwo) wmuen()

Cloud
Provider

|
I,
,,,,,,,,,,,, +} :
Forward Results for
Computing Gradient }

Joprdwo) wmuen()

Y
o
- -

|
|
|
|
|
|
|
QNN Model (Attacker) Task: Segmentation |
|
|
|
|
|
|
|

|

| .

'] N

1 acte)-owa- M Steal |
1] N

1] r

Trained QNN Model

Inference Results

&

Accurate Prediction

Testing Sample Data Encoders

I
I
I
I
I
I
(Attacker) |
I
I
I
I
I
I

|
|
% H P
|
|
|
|

Accurate Segmentation

Fig. 1. Illustration of the typical threat model in QaaS paradigm for QML applications: The attacker in the untrustworthy cloud quantum provider can steal

the user data for its own QML task.

In this paper, we make the very first attempt to preserve
data security in QML applications by formulating a circuit-
compiler-model cross-layer design framework, namely PristiQ.
The proposed framework is composed of three components: i)
PriCircuit incorporates an encryption subcircuit into the sub-
circuit of data encoding to keep data security; ii) PriCompiler
obfuscates the encryption subcircuit; and iii) PriModel auto-
matically searches for the optimal design of the QNN model
in order to maintain the performance when directly conducting
computations on the encrypted data. These components will
work together to provide data security while maintaining high
performance for the QML tasks through QaaS.

The main contributions of this paper are as follows.

o The first and the main contribution of this paper is
the proposal of PristiQ, which is, to the best of our
knowledge, the first framework to secure input data to
QNNs under QaaS paradigm.

o PristiQ provides a fundamental understanding of the de-
sign of a secure quantum computing system: a cross-layer
co-design is required to preserve data security in quantum
computing. This design philosophy is not limited to QML
applications but can also be applied to other types of
quantum applications.

o PristiQ brings the concept of model adaptation to the
design of QNN, which preserves high performance on
the encrypted data.

II. PRISTIQ FRAMEWORK

Fig. 2 shows an overview of PristiQ. Given the data
encoding subcircuit D(X) and QNN subcircuit QC(0) as
inputs, which is shown in Fig. 2 (a), PristiQ will sequentially
go through the three components: PriCircuit in Fig. 2(b),
PriCompiler in Fig. 2(c) and PriModel in Fig. 2(d).

Based on D(X) and QC(0), PriCircuit will reconstruct
the original circuit QC(0) - D(X) by inserting an encryption
subcircuit E(d) between D(X) and QC/(0), which intro-
duces extra qubits, as shown in Fig. 2(b). To avoid the
attacker detecting the boundary between D(X) and E(9)
easily, PriCompiler is designed to obfuscate D(X) and F(9).

404

More specifically, it utilizes the compiling optimization to
form a merged circuit £(d) - D(X), making their boundary
indistinguishable. In this way, the attacker could only extract
the encrypted data encoded by E(d) - D(X) instead of the
raw input data encoded by D(X). However, directly applying
the original QNN subcircuit QC/(0) to the encrypted data
may incur significant performance degradation. Therefore, to
maintain the performance on encrypted data, PriModel will
revise QC(0) by replacing it with subcircuit QC’(0”). The
neural architecture of the QNN for QC’(6) is designed by
using an automatic search engine based on reinforcement
learning, aiming at the best performance on the encrypted data.
In the following content of this section, we will introduce the
details of all three components in PristiQ.

A. PriCircuit

Design Principle: The main purpose of PriCircuit is to
provide data security, i.e., the raw input data should be
hidden; however, the encrypted data should also preserve the
critical information contained by the raw input data, such
that the encrypted data can still be learned effectively. Unlike
conventional neural networks in classical computing, most
quantum neural networks [2], [6] do not extract the spatial
features. Therefore, the most important information in the raw
input data is the relative relationship among its features. Based
on this observation, we propose a two-stage encryption process
for PriCircuit. And the details are as follows.

Design overview: Fig. 3 shows the detailed design of encryp-
tion subcircuit F(§) generated by PriCircuir with an example.
As shown in Fig. 3(a), there are N qubits used to encode raw
input data X with 2V features, named data qubits. And M
extra qubits are added to the N data qubits, called secure
qubits. The first stage applies the subcircuit S(d), which is
a part of E(d), to operate on the newly added M secure
qubits with random parameter set § to perform amortization
on the amplitudes from data qubits to secure qubits; then,
the second stage utilizes the remaining part of E(d) (i.e.,
subcircuit P) to perform permutation on the amplitudes of
the quantum state processed by S(J) since the permutation
matrix can be implemented by quantum circuits. Based on the

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

Data enc. subcircuit QNN subcircuit (a) (d) 10y - H L
[0) |- — — Inputs PriModel 1) 7 E®) - D(X) QC’(®)
\0>?D(X) - lq’)fQC(e)k s 0y | H |
0y 5 — — — e @ 10> 9" Obfuscated [Re\{&%?d [
10y | o] - - [0) - subeircuit 4 g Beireuit

P 0) H
l PristiQ t o
0] — 0 — —
0y | | o | - 0y — —
| DX) QC(®) ;| E®@- DX) QC(®)

o Q‘\ m—) 0) -
oy 4 E® L] = Y , o1 — —
0 £ Enayption | —— | PriCircuit PriCompiler | | Qbfuscated

0y : subcircuit F— (b) (c) 10y 4

Fig. 2.
encryption subcircuit £(§);
QC'(0") for maintaining the performance on encrypted data.

x5z E@) 183 S seting s

05 - [0) ' D11
£] 02 - i \0>jq‘ ey | D 1
H D(X) S@)
Sl p ot
“ ‘0> -t L _, |0) Ry,(82) .
R LI | RS [R, @)} il
{ :]S(S) ,,,, [,,, g B |- 8,8:=2n/5,2m/3 p

St 190919295 =[a 0 0 0 b 0 0 0 ¢ 0 0 0 4 0 0 o0]"
S2 140014205) =[4a 7a 3a S5a 4b 7b 3b 5b 4c 7c 3c 5c 4d 7d 3d 5d]"
[4a 7d 3c 54 4b S5c 3d S5a 4d .7d 4c 5b 3a 7c 3b Sal’

(©

83 190919203) =

Fig. 3. PriCircuit: (a) encryption subcircuit £(8) composed of S(&) and
P; (b) an example of PriCircuit with 2 data qubits and 2 secure qubits; (c)
transformations of quantum states: S1 — S2 and Sz — S3.

design of PriCircuit, we define the security key in PristiQ as
a tuple (4, P), where § is the random parameter set used in
the amortization with scaling while P is the design of random
permutation circuit.

Stage 1: amortization w/ scaling. As shown in Fig. 3(a),
stage 1 starts with initial quantum states S;, where S =
|X) ®[0)®M = |goq1...qn—1qN---qn+1—1). Here | X) is the
encoded quantum state for the raw input data X, using the data
encoding subcircuit D(X). Note that for Sy, only quantum
basis state |qoq1...qn—10...0) has non-zero amplitudes since
no quantum gates are applied to the M secure qubits. For
example, in Fig. 3(b), the number of data qubits N is 2
while the number of secure qubits M is 2 as well. In this
case, S1 = |goq1¢293) = | X) ® |00) and only quantum state
|gog100) has non-zero amplitudes, which is clearly shown in
the state vector of S7 in Fig. 3(c).

Stage 1 focuses on the transformation from state S to state
So, where each secure qubit is operated by Ry gate with a
parameter that is randomly generated. More specifically, the
kth secure qubit is denoted as Secy, and its initial state is |0).
After applying an Ry gate with a parameter d) to it, the state
of Secy, is converted to [cos %, sin %] which is denoted by
|QSk). Therefore, the quantum state \Q), which is the state
composed of all the secure qubits, can be computed as,

|Q> =[QS) ®|QS51) ® ... ® |QSk) ® ... ® |@Sn-1). (D)

y combining the quantum states of data qubits |X) and
secure qubits FQ we have Sy = |X) ® |Q), where |Q) is

served as the scaling vector with 2M scaling factors for the
amortization on the amplitudes from data qubits to secure
qubits. For example, in Fig. 3(b), the amplitude on |ggq;00)

405

Illustration of PristiQ framework: (a) the data encoding subcircuit D(X) and QNN subcircuit QC(0) as the inputs; (b) PriCircuit, adding the
(c) PriCompiler, obfuscating D(X) and E(8) by forming E(8) - D(X); (d) PriModel, revising QNN subcircuit QC(0) to

is amortized to the other three states (i.e., |goq101), |gog110),
lgoq111)) with scaling factors in |(Q)) determined by the pa-
rameter set §. For instance, in Fig. 3(b), | X) = [a,b,c,d]T
Since & = [0, 01] = [F, 5], we have |QSy) = [cos T, sinf] =

[0.81,0.59] and |Q51> [cos%, sin%] = [0.5,0.87]. Accord-
ing to Equation (1), we have |Q) = [0.4,0.7,0.3,0. 5] We
can then obtain Sy = [a - |Q),b - |Q),c-|Q),d |Q>] The

specific value of Sy is shown in Fig. 3(c). And there exist
four groups of values in S,, where the values in each group
are multiplied with a unique amplitude from |X). Since all
the groups share the same scaling vector |Q), the relative
magnitude between arbitrary pair of groups is equal to that
between the unique amplitudes they multiply with. In this way,
the relative relationship between features within raw input data
| X') is maintained.

Stage 2: permutation. Although the random parameter
set & is unknown to the attacker, stage 1 is not sufficient
for the encryption of data since the attacker could get &
and |X) by solving a system of trigonometric equations if
they know the processing of stage 1 is applied. Therefore,
PriCircuit further generates quantum state S3 by randomly
permuting the amplitudes in Sy with a permutation matrix
P. Since permutation matrix P is unknown to the attacker,
the system of trigonometric equations cannot be formulated
and thus not be solved. Note that because the permutation
matrix is a unitary matrix, it is always feasible to implement
it with a corresponding quantum circuit, as shown in Fig. 3(a).
Therefore, we have S3 = P-.S5.. For the example in Fig. 3(b),
it utilizes multiple CNOT gates to implement a permutation
matrix and the specific value of S5 after permutation is shown
in Fig. 3(c). And it is obvious that there is no explicit group
of values that shares the same multiplier after the permutation.
B. PriCompiler

Potential Threat and Design Principle: The main purpose of
PriCompiler is to obfuscate F/(d). This is motivated by the fact
that the boundary between the secure qubits and data qubits
might be detected based on the design of PriCircuit since
there are only Ry gates on the secure qubits in S(d) while
the data qubits on D(X) contains multiple two-qubit gates. If
the boundary is identified, then D(X) can be extracted.
Therefore, we propose to introduce two-qubit gates on the
secure qubits in S(d), making the boundary between secure

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

" Qi T 1510 SN 0 Q Three-Qubit Unitary Gate Decomposition
0) qu) qu pl 2

0L RAIORTIO— o0 Elb) —
[0y-L RO} 0)-L—[Ry(0) Ry (-}

(a) A typical subcircuit in D(X) (b) PriCompiler randomly inserts dummy gates

) qo] DDDPDD._ o DD

7y s ZAN AN L
j0y-L PPP P—
0y 92 DD D N D T \tl mmcf/
KO N I TITY

(c) PriCompiler decomposes the blocks with three qubits based on their unitary matrices
(Note: Rz gates are removed for simplicity)

Fig. 4. PriCompiler: (a) a typical subcircuit in D(X); (b) the subcircuit with
dummy CNOT gates; (c) the compiled subcircuit of (b) using PriCompiler.
qubits and data qubits indistinguishable. However, naively
adding more two-qubit gates may introduce extra undesired
operations on the input data and thus disrupt the features
for inference. Therefore, PriCompiler should try to avoid
actual interaction with D (X), which brings new challenges for
obfuscation. Fortunately, by reviewing the QaaS paradigm in
Fig. 1, we observe that the quantum compiler can be leveraged
to make the obfuscation.

Design Details: PriCompiler follows a two-stage design flow:
(1) a dummy gate insertion and (2) unitary gate decomposition.
Based on the fact that two consecutive CNOT gates can be
canceled out with each other (i.e., I = CNOT - CNOT),
we propose a method to create dummy gates and introduce
two-qubit gates on the secure qubits. Fig. 4 shows an example
of the whole design flow. The circuit in Fig. 4(a) is a typical
subcircuit in D(X). In this subcircuit, the three data qubits
are operated with two-qubit gates while the single secure qubit
only has an Ry gate with a random parameter J. In Fig. 4(b),
an Ry gate with two dummy CNOT gates is added to the
secure qubit for obfuscation. More specifically, we first add
an Ry gate with a randomly generated parameter ov. We then
adjust the parameter of the original Ry gate to § —« to ensure
the functional correctness of the circuit. Between these two Ry
gates, we add two consecutive CNOT gates. After this, the first
stage is completed.

In the second stage, given the circuit with dummy CNOT
gates from the first stage, the default quantum compiler will
remove them. But in PriCompiler, it adds a barrier between
the pair of dummy CNOT gates to split the circuit into
two parts, i,e., p; and py, as shown in Fig. 4(b). In p;
and po, each subcircuit will be assembled into a block if
it includes exactly three qubits. In this example, p; and po
can be regarded as two blocks. Since all the gates in each
block correspond to a unitary gate, the unitary matrix of each
unitary gate can be calculated and further decomposed to a
new circuit with different designs consisting of chosen basis
gates. Following this rule, the resultant circuit compiled from
the one in Fig. 4(b) is presented in Fig. 4(c). In Fig. 4(c), it is
clearly shown that multiple two-qubit gates are introduced on
the secure qubit g3. Due to the limited space, we only keep
the CNOT gate in the circuit in Fig. 4(c). And the consecutive
CNOT gates can thus not be canceled out due to the existence
of Rz gates between them.

406

Training Set 7S

Meta Controller (RNN) T

Sampled Child QNN
Data Encryption

[_

'
<
= i

QNN Trainer|

Circuit
Measurement
Circuit Length "L"

Encrypted
Training Set

Layer -1 Layer [Layer [+1

[Search Space

oC'(©)

D(X)°E(8)
Inference
Accuracy "A"

Update

Neuron Design Pool

Fig. 5. The workflow of PriModel
C. PriModel

After the process of PriCircuit and PriCompiler, the total
number of input qubits is increased from N to N + M.
Therefore, the dimensions of features to the QNN model for
processing is expanded from 2V to 2V+M as well. However,
the original QNN subcircuit QC(0) only contains operations
on the N data qubits without consideration of M secure qubits,
as shown in Fig. 2(c). Moreover, the original QNN subcircuit
QC(0) is designed and optimized for the raw input data
instead of the encrypted data. As a result, directly applying this
QNN model to the encrypted data can degrade the performance
of QNN model, which is shown in Section III. Therefore, a
reinforcement learning-based algorithm, namely PriModel, is
proposed to automatically search for the best QNN architecture
for the encrypted data.

Fig. 5 shows the overview of PriModel. It is composed of
three components: (1) a meta controller to guide the whole
process which is implemented with a recurrent neural network
(RNN), (2) a neuron design pool to serve as the search
space for the architecture of QNN, which consists of multiple
quantum neuron designs. (3) a security-aware QNN evaluator
(i.e., the right part of Fig. 5) to measure each sampled solution
from the meta controller.

More specifically, for the meta controller, the RNN cell in
time step I corresponds to the design of the quantum neuron in
layer I of the QNN, which generates a probability distribution
for the sampling from the neuron design pool. The sampled
neuron design for each layer will be connected to form a
child QNN QC’(8g), which is initialized with 6o and sent
to the evaluator. During the evaluation, QC’(6y) will first be
trained on the encrypted training set E7'S, which is obtained
by encrypting the data in the original training set 7'S. For
each original data D(X) in T'S, it will go through PriCircuit
and PriCompiler to get the encrypted data D(X)- E(d). And
the outcome will be saved in ET'S. The trained QNN model
QC'(0") is then evaluated to calculate two metrics, i.e., circuit
length L and accuracy A. These two metrics are used for
calculating the reward R to update the meta controller. The
reward function is defined as,

R:A—b—,\i, 2)

. . . base)
where b is the exponential moving average of the accuracies

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
EVALUATION OF PRICIRCUIT

Secure Model

Dataset Qubits Source Accuracy (%) PSNR(dB)
User 99.06
VNISTa Attacker 99.06 34.28
1 Attacker 54.10 £ 16.06 19.35 + 2.21
2 Attacker 52.23 £ 6.23 18.21 + 8.37
User 92.56
MNIST-3 0 Attacker 92.29 34.82
- 1 Attacker 39.05 £ 6.12 20.00 + 2.18
2 Attacker 36.29 £ 890 18.69 + 8.31
User 87.19
Fashion-2 0 Attacker 86.54 26.06
’ 1 Attacker 58.97 £ 17.33 18.15 + 2.06
2 Attacker 54.45 + 13.64 16.7 £ 0.50
User 77.41
Fahions | Atacker 7738 2532
1 Attacker 44.26 £ 10.86 17.81 £ 1.97
2 Attacker 35.82 £ 10.48 17.02 + 1.47

of previous sampled QNNS. L, is a preset baseline circuit
length for normalization. According to the available quantum
computing resources, the user can use A to control the trade-off
between the accuracy and the complexity of circuit implemen-
tation for the sampled QNN.

III. EXPERIMENTAL RESULTS

A. Experimental Setting

Dataset. We evaluate PristiQ on MNIST-2 (class), -3 (class);
Fashion-2 (class), -3 (class). When evaluated on the noiseless
simulator, the data are downsampled to a resolution of 4 x
4 from 28 x 28, which needs 4 data qubits with amplitude
encoding. When evaluated in noisy environments (i.e., noisy
simulator of IBMQ Manila and IBMQ Manila), the data is
downsampled to a resolution of 4 x 2 with 3 data qubits. In
this case, due to the limited quantum resources, we use 100
samples and 150 samples from MNIST-2 and MNIST-3 for
evaluation, respectively.

Security Keys. To generate the security keys, the range
of random sampling of rotation angles is [T, ZF) and the
permutation matrix P is implemented with random generation
of CNOT gates.

Metrics. We use the peak signal-to-noise ratio (PSNR) to serve
as a quantitative metric to evaluate the difference between two
images. Since amplitude encoding requires normalization of
the features within the original data, it introduces differences
between the quantum data and the original data. Therefore,
we computed the PSNR between the original data and the
quantum data (i.e., the PSNR when the number of secure
qubits is 0) to be the baseline for the comparison of PSNR.
QNNs. All the evaluated child QNNs are implemented with
TorchQuantum [10]. They are then compiled and executed
by Qiskit. Besides, for PriModel, there are 6 options [9] for
quantum neural designs at each layer.

B. PriCircuit Effectively Protects Data

As Fig. 1 shows, we have two types of models for evaluation
in this part, i.e., the model for user and the model for attacker.

407

TABLE 11
EVALUATION OF PRISTIQ

Dataset #que];:iltlge I\”/ll“;gzl # Param E;f;tll: Accuracy (%)

0 User (Vanilia) 56 82 99.06
| User (Vanilia) 56 82 53.65 + 14.98
MNIST-2 User (PristiQ) 59.5 96.88 99.15 + 0.05
5 User (Vanilia) 56 82 4981 +4.79
User (PristiQ) 65 135 99.10 + 0.04

0 User (Vanilia) 44 52 92.56
1 User (Vanilia) 44 52 40.07 £9.52
MNIST-3 User (PristiQ) 48.5 72.25 95.08 + 0.27
User (Vanilia) 44 52 4022 £9.96
User (PristiQ) 58.5 115.25 95.03 + 0.24

0 User (Vanilia) 80 103 87.19
User (Vanilia) 80 103 5897 £ 17.35
Fashion-2 User (PristiQ) 41.5 59.38 88.30 + 0.19
2 User (Vanilia) 80 103 54.39 + 13.54
User (PristiQ) 45.5 79.5 88.23 + 0.16

0 User (Vanilia) 48 46 77.41
I User (Vanilia) 48 46 3697 £9.26
Fashion-3 User (PristiQ) 57.5 90.38 79.13 + 0.09
) User (Vanilia) 48 46 36.80 £ 13.42
User (PristiQ) 67 135.88 79.07 + 0.10

In general cases, the two models should target different types
of tasks with the same dataset. But in this experiment, we
trained two different models which both target the classifica-
tion task for simplicity.

Table I reports the results for the evaluation of PriCircuit.
It clearly shows that without encryption, the data stolen from
the user can be utilized by the attacker with its own model
effectively. More specifically, the performance of the model
for attacker is close to that of the model for user and thus
verifies the threat model in Fig. 1. For example, on MNIST-3,
the accuracy of the model for attacker is 92.29 % while that
of the model for user is 92.56 %.

When the data is encrypted by PriCircuit, the security of
data can be preserved. It means that the model for the attacker
performs badly on the encrypted data while the difference
between the encrypted data and the original data is increased
significantly. For example, with only 1 secure qubit, PriCircuit
can reduce the accuracy and PSNR to 39.05 % and 20.0 dB
on average on MNIST-3, respectively.

Moreover, increasing the number of secure qubits can
further enhance the data security. For instance, on MNIST-
3, the accuracy drops from 39.05 % to 36.29 % and the
PSNR reduces from 20.0 dB to 18.69 dB respectively when
increasing the secure qubits from 1 to 2.

C. PristiQ Can Enable Accurate Inference While Protecting
Data

Table II shows the results for the evaluation of PristiQ on the
noiseless simulator, where the model “User (Vanilla)” refers
to the model for user optimized on the original data. Without
encryption (i.e., the number of secure qubits is 0), it is clearly
shown that only using PriCircuit to protect data will lead to
the performance collapse of the model for user. For example,
on MNIST-2, the accuracy drops from 99.06 % to 49.81 % on
average with 2 secure qubits.

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

I PristiQ = Vanilla

—
o

80

Accuracy (%)

A O

0 1

2
Number of Secure Qubits
(a). MNIST-2, Simulator of IBMQ Manila (b). PristiQ on MNIST-2, IBMQ Manila (c). MNIST-3, Simulator of IBMQ Manila

0 1 2
Number of Secure Qubits

0 1 2
Number of Secure Qubits

0 1
Number of Secure Qubits
(d). PristiQ on MNIST-3, IBMQ Manila

2

Fig. 6. Results of PristiQ for MNIST-2 on (a) simulator of IBMQ Manila and on (b) IBMQ Manila, and for MNIST-3 on (c) simulator of IBMQ Manila and

on (d) IBMQ Manila.

By applying PristiQ to building the model, where PriCir-
cuit is included, the performance of the model (i.e., “User
(PristiQ)” in Table II) can be recovered on all the evaluated
datasets. For example, on MNIST-2, the accuracy is recovered
to 99.10% on average when encrypted with 2 secure qubits,
which is even improved by 0.04 % compared with the model
optimized on the original data.

D. Evaluation of PristiQ in Noisy Environments

Fig. 6 shows the effect of quantum noise on the performance
of PristiQ on MNIST-2 and MNIST-3. In Fig. 6, the orange bar
(Vanilla) denotes the model for user optimized on the original
data while the blue bar (PristiQ) denotes the model optimized
on the encrypted data with PristiQ. Fig. 6 (a) and (c) show the
results on the noisy simulator of IBMQ Manila, while Fig. 6
(b) and (d) show the results on the actual quantum computer
(i.e., IBMQ Manila).

For the vanilla model, we can conclude that its performance
degrades significantly on the encrypted data generated by
PriCircuit in noisy environments. For example, with 2 secure
qubits, the accuracy decreases from 98 % to 49 % on the noisy
simulator and drops from 95 % to 64 % on the actual quantum
computer on MNIST-2.

By applying PristiQ to optimizing the model, the perfor-
mance can still be recovered even with the quantum noise. For
instance, with 2 secure qubits, the accuracy can be recovered
from 49 % to 97 % on the noisy simulator and increased from
64 % to 95 % on the actual quantum computer on MNIST-2.

IV. CONCLUSION

In this paper, we made the very first exploration of the
problem of data security for QML in the cloud. We proposed
PristiQ, a framework to preserve data security in QML. By
creating an encryption subcircuit with a user-defined security
key, the important information in the original data is protected.
Besides, PristiQ utilizes an automatic model optimizer to
achieve high performance on the encrypted data. Extensive
experiments in the noiseless quantum simulator and noisy
quantum environments are conducted to show the effectiveness
of PristiQ. Moreover, the design philosophy of PristiQ, a cross-
layer co-design from the circuit level and compiler level to
the application level, could be applied to guide the design of
a secure quantum computing system in applications beyond
QML.

408

ACKNOWLEDGMENT

This work is partly supported by the National Science Foun-
dation (NSF) OAC-2311949 and OAC-2320957. The research
used IBM Quantum resources via the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Lab, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-000R22725. This
project was also supported by resources provided by the Office
of Research Computing at George Mason University (URL:
https://orc.gmu.edu) and funded in part by grants from the
National Science Foundation (Award Number 2018631). And
we also thank Mason’s QSEC and C-TASC centers for their
support.

REFERENCES

A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum
computation,” in 2009 50th Annual IEEE Symposium on Foundations of
Computer Science. 1EEE, 2009, pp. 517-526.

Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik, “Quantum neuron: an
elementary building block for machine learning on quantum computers,”
arXiv preprint arXiv:1711.11240, 2017.

J. F. Fitzsimons, “Private quantum computation: an introduction to blind
quantum computing and related protocols,” npj Quantum Information,
vol. 3, no. 1, pp. 1-11, 2017.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201-210.

IBM, “Ibm unveils world’s largest quantum computer at 433 qubits,”
https://www.newscientist.com/article/2346074-ibm-unveils-worlds-
largest-quantum-computer-at-433-qubits, 2022, accessed: November,
2022.

W. Jiang, J. Xiong, and Y. Shi, “A co-design framework of neural
networks and quantum circuits towards quantum advantage,” Nature
communications, vol. 12, no. 1, pp. 1-13, 2021.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit
learning,” Physical Review A, vol. 98, no. 3, p. 032309, 2018.

P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303-332, 1999.

S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility and entan-
gling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms,” Advanced Quantum Technologies, vol. 2, no. 12,
p. 1900070, 2019.

H. Wang, Y. Ding, J. Gu, Z. Li, Y. Lin, D. Z. Pan, FE. T. Chong, and
S. Han, “Quantumnas: Noise-adaptive search for robust quantum cir-
cuits,” in The 28th IEEE International Symposium on High-Performance
Computer Architecture (HPCA-28), 2022.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo,
J. Qin, D. Wu, X. Ding, Y. Hu ef al., “Quantum computational advantage
using photons,” Science, 2020.

[1]

[10]

[11]

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:31:35 UTC from IEEE Xplore. Restrictions apply.

