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Abstract— The Bayesian approach has been used for the 

dynamic state estimation (DSE) of a power system. However, due 

to the complexity of noise resources, it is difficult to quantify 

measurement and process noise using probability density 

functions (PDFs). To overcome the difficulty, the authors of this 

paper propose a modified eigen decomposition based interval 

analysis (MEDIA) method, which employs bounds instead of PDFs 

to quantify the noise, and uses the eigen decomposition method to 

reduce the negative impact of the overestimation problem. Using 

the simulation data generated from IEEE 16-machine and IEEE 

10-machine systems, it is shown that the proposed MEDIA method 

can estimate the hard boundaries of dynamic states in real time. 

Comparison with the forward-backward propagation method and 

the extended set-membership filter also shows that the proposed 

MEDIA method performs better by providing narrower 

boundaries in the DSE.  

 
Index Terms—Dynamic state estimation, eigen decomposition, 

interval analysis, power system, state estimation. 

I.  INTRODUCTION 

ITH the widespread deployment of phasor measurement 

units (PMUs) and advanced communication 

infrastructure, the Bayesian approach has been proposed to 

estimate the dynamic states of a power system [1]. In [2]-[5], 

the extended Kalman filter (EKF) is introduced to estimate the 

state variables of synchronous generators. However, the EKF 

suffers a large estimation error or even divergence in a highly 

nonlinear system. To better deal with nonlinearity, the 

unscented Kalman filter (UKF) is proposed in [6], and the 

extended particle filter (PF) is proposed in [7] to estimate the 

dynamic states. The ensemble Kalman filter (EnKF) is 

proposed in [8] to estimate the dynamic states and parameters 

simultaneously. In [9], an EKF method with unknown inputs is 

introduced to address the scenario where some inputs cannot be 

directly measured in power systems. 

All the above dynamic state estimation (DSE) methods are 

Bayesian-based filters, which assume that the probability 

density functions (PDFs) of the measurement and process noise 
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are known at every time instant. However, for a practical power 

system, this assumption may not always hold. It is suggested in 

[10] that PMU measurement noise of the voltage and current 

phasors may not always follow the Gaussian distribution. The 

noise in measurements may include not only the noise from the 

instrument inaccuracy but also the noise from external 

electromagnetic interference, communication channels, and 

cyberattacks. Due to its complex sources, measurement noise 

may have significant bias and unknown covariance. The same 

thing happens with the process noise. When the noise’s PDFs 

are unknown, Bayesian-based filters may have significant 

estimation errors. 

The unknown distributions of measurement and process 

noises in the DSE motivate the application of interval analysis, 

which quantifies noise uncertainty through boundaries instead 

of PDFs. The initial work on interval analysis based DSE(IA-

DSE) is presented in [11] and [12], which estimates the 

ellipsoids that contain the true states when the perturbations and 

noise are given in boundaries, and later extended to real-life 

problems in [13]-[15]. However, these algorithms are originally 

designed for linear systems, which are not suitable for power 

systems. To overcome this limitation, the interval analysis was 

further extended for its application to nonlinear systems in [16] 

and [17]. Another challenge to employing interval analysis in 

the DSE is the overestimation problem, which often leads to 

rapidly growing and even divergent boundaries of the estimated 

states. The overestimation problem and its negative impact are 

studied and explained through examples in [18]. To mitigate the 

negative impact of the overestimation problem, the set 

inversion via interval analysis (SIVIA) method is applied in IA-

DSE [19]. However, the low computational efficiency of the 

SIVIA method makes it unsuitable for real-time applications in 

power systems. In [20], the IA-DSE is introduced to power 

system DSE and tested on 2nd and 3rd order systems assuming 

that some states can be directly measured. It is worth noting that 

higher-order and more complex systems are more prone to 

overestimation issues. Such systems tend to suffer from the 
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overestimation problem, which can result in extremely large 

width of the estimated interval.  

To address the challenges, a modified eigen decomposition 

based interval analysis (MEDIA) method is proposed for the 

DSE in this paper. The proposed MEDIA method can 

accommodate the boundaries of PMU measurement noise 

specified by the IEEE standard [21]. In addition, the outputs of 

the MEDIA method are the upper and lower bounds of the 

estimated states, which fit many needs of state monitoring and 

control strategies. The contributions of this paper can be 

summarized as follows: 

1) Compared to the conventional forward-backward 

propagation (FBP) method and the extended set-membership 

filter (ESMF) method, the proposed MEDIA method can 

significantly reduce the negative impact of the overestimation 

problem in the DSE. 

2) Instead of the estimated PDFs in the Bayesian-based 

filters, the proposed MEDIA method calculates the hard 

boundaries of the states, which guarantee to include the true 

states. 

3) Compared to the confidence interval built by the H-

infinity unscented Kalman filter (HUKF) method [27], the 

proposed MEDIA method offers narrower boundaries of the 

states, which guarantee to include the true states. 

The rest of the paper is organized as follows. In Section II, 

the DSE is formulated into an interval analysis problem and 

solved using the FBP method. The MEDIA method is proposed 

to deal with the overestimation problem in Section III. Case 

studies are carried out in Section IV to evaluate the performance 

of the MEDIA method. Finally, the conclusions and future work 

are presented in Section V. 

II.  PROBLEM FORMULATION 

In this section, the basic concepts of interval analysis are 

reviewed first. Then, the conventional FBP method for interval 

analysis is described. Finally, the DSE is formulated as an 

interval analysis problem and solved using the FBP method.  

A.  Review on Interval Analysis 

Interval analysis represents a variable by its upper and lower 

boundaries, and defines function operations among interval 

variables. A real-number interval variable [𝑥] is a closed and 

continuous subset of ℝ, which can be defined by (1) [22]. 

[𝑥] = [𝑥, 𝑥] = {𝑥 ∈ ℝ|𝑥 ≤ 𝑥 ≤ 𝑥}. (1) 

Here, 𝑥  and 𝑥  are the lower and upper bounds of [x], 

respectively. For example, if the reading of a voltmeter with 2% 

accuracy is 100 V, the measured voltage can be denoted as an 

interval variable of [V]=[98,102] V. Similarly, if the reading of 

an ammeter with 1% accuracy is 2 A, the measured current can 

be denoted as an interval variable of [I]=[1.98, 2.02] A. 

The intersection and union of two interval variables are 

defined by (2) and (3), respectively. 

[𝑥]⋂[𝑦] = {𝑧 ∈ ℝ|𝑧 ∈ [𝑥] and 𝑧 ∈ [𝑦]}. (2) 

[𝑥]⋃[𝑦] = [[𝑥]⋃[𝑦]] = [{𝑧 ∈ ℝ|𝑧 ∈ [𝑥] or 𝑧 ∈ [𝑦]}]. (3) 

Here, [∙] presents the interval hull, which is the smallest interval 

containing [𝑥]⋃[𝑦] [16]. 

Real functions can also be extended to interval functions. 

Let 𝑓  be a real function mapping from 𝑅𝑛  to 𝑅𝑚 . Its 

corresponding interval function [𝑓]  is defined by (4) [23], 

where the [x]  is the real interval vector of 𝑅𝑛 , which is an 

ordered n-tuple of intervals. 

[𝑓]([x]) = [{𝑓(𝑥1, … , 𝑥𝑛)|𝑥 ∈ [x]}] (4) 

The intersection can be applied to two interval vectors only 

if they have the same dimension. For example, power [P] can 

be calculated from the voltage [V] and current [I] by extending 

the conventional operation of multiplication as 

[P]=[V]*[I]=[98, 102]*[1.98, 2.02]=[194.04, 206.04] W. The 

intersection interval vector will be empty if any intersection of 

their corresponding components is empty. 

The pseudo volume of an interval vector is defined by (5), 

where diam{∙} calculates the diameter of an interval.  

vol{[x]} = ∑ 𝑑𝑖𝑎𝑚{[𝑥𝑖]}

𝑛𝑥

𝑖=1

(5) 

B.  Review on the FBP Method 

The FBP [24] method is a widely used interval analysis 

method to solve constraint satisfaction problems (CSPs), which 

can be defined by (6) [23]. 

ℋ: (f(x) = 0, 𝑥 ∈ [x]). (6) 

Here,  

{
𝑓𝑖(x) = 𝑓𝑖(𝑥1, … , 𝑥𝑛)

f = (𝑓1, … , 𝑓𝑚)𝑇 (7) 

The solution set of ℋ is defined as: 

𝑆 = {𝑥 ∈ [x]|f(x) = 0} (8) 

Note that S is not necessarily an interval vector. Utilizing 

interval analysis, the interval hull of S is the optimal solution, 

which can be defined by (9). 

[x]′ = [𝑆] ⊇ 𝑆 (9) 

The FBP method contracts ℋ so that a suboptimal solution 

[x] can be found via a recursive algorithm, in which [𝑥] ⊇
[𝑥]′ ⊇ 𝑆. The FBP method was chosen as a benchmark method 

in this paper because it is straightforward to implement and can 

handle nonlinear models [24].  

C.  DSE of Power Systems through the FBP 

The FBP method can be applied to estimate the upper and 

lower bounds of the dynamic states of a generator (e.g., rotor 

angles and speeds) as follows. Assume that a PMU measures 

the voltage and current phasors at the terminal bus of the target 

generator. Their measurement noises can be quantified through 

the upper and lower bounds of interval variables V, θ and Imag, 

Iang, respectively. Note that because all the variables thereafter 

will be interval variables, the brackets in their notations are 

dropped hereafter to be concise. The corresponding real and 

reactive powers are calculated as 𝑃′𝑒 + 𝑗𝑄′𝑒 =

𝑉𝐼𝑚𝑎𝑔𝑒𝑗(𝜃 −𝐼𝑎𝑛𝑔). 

The input vector (u), output vector (y) and state vector (x) 

are defined in (10.a)-(10.c) as interval vectors, and described in 

Appendix I. Here, 𝑃𝑒 ′is the real power calculated from voltage 

and current phasor measurements. 𝑃𝑒 and 𝑄𝑒  are the real power 

and reactive power calculated from the estimated states through 

(41)-(47) or (49)-(54). 
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𝑢 = [𝑃′𝑒 𝑉 𝜃]𝑇 . (10.a) 

𝑦 = [𝑃𝑒 𝑄𝑒]𝑇 . (10.b) 

𝑥 = [𝐸′
𝑞 𝐸𝑑

′ δ ω 𝐸𝑓𝑑 𝑉𝐹 𝑉𝑅 𝑇𝑀 𝑃𝑆𝑉]𝑇 . (10.c) 

The generator model can be defined as a continuous-time 

nonlinear state space model (16) in Appendix I. To apply the 

FBP method, (16) is discretized into the discrete-time model of  

(10.d) as follows. 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

𝑦𝑘+1 = 𝑔(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1
(10.d) 

The FBP can be applied to (10.d) through two stages 

iteratively: forward propagation and backward propagation. 

(i) First, assign k=0. Initialize 𝑥0 = [𝑥0, 𝑥0]. Here, 𝑥0  and 

𝑥0 are the upper and lower bounds of the states. Usually, 

the initial interval 𝑥0 shall be large enough to cover its 

true values.  

(ii) Initialize 𝑥𝑘+1 = [𝑥𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 , 𝑥𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡]. 

(iii) In the forward propagation stage, the intervals on the left 

side of the constraints (10.d) are contracted through 

• F1: 𝑥𝑘+1 = 𝑥𝑘+1⋂(𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘) 

• F2: 𝑦𝑘+1 = 𝑦𝑘+1⋂(𝑔(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1);  

if isempty (𝑦𝑘+1), go to (vi). 

(iv) In the backward propagation stage, all the intervals on the 

right side of the constraints (10.d) are contracted through. 

• B1:𝑥𝑘+1 = 𝑥𝑘+1⋂𝑔+(𝑦𝑘+1, 𝑥𝑘+1, , 𝑢𝑘+1, 𝑣𝑘+1) 

• B2:𝑥𝑘 = 𝑥𝑘⋂(𝑓+(𝑥𝑘+1, 𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)) 

(v) Repeat (iii) and (iv) until the contractions of 𝑥𝑘+1  and 

𝑥𝑘  are smaller than a predetermined threshold. 

(vi) Assign 𝑘 = 𝑘 + 1, and go to step (ii). 

 

In step (ii), 𝑥𝑘+1  can be initialized with the anti-windup 

limitation and physical limitation. In step (iii), if the resulting 

𝑦𝑘+1 in F2 is empty, the measurement is treated as bad data and 

dropped.  

In step (iv), functions 𝑔+  and 𝑓+  in B1 and B2 are the 

pseudo inverse of functions g and f, respectively. They are 

constructed to find the 𝑥𝑘+1  and 𝑥𝑘  from 𝑦𝑘+1  and 𝑥𝑘+1.  By 

reducing the dependence problem, the pseudo inverse function 

can leverage past states. For example, equations (55)-(68) and 

(70)-(83) in Appendix II show the standard pseudo inverse of 

function g, and equations (69) and (84) are further developed to 

reduce the overestimation caused by the dependence problem 

during the backward propagation. 

Following the procedure steps (i)-(vi) above, the FBP 

method can calculate the upper and lower bounds of the 

dynamic states of a generator. Yet, as it will be shown in the 

case studies in Section IV, the bounds of the states may grow 

rapidly with time and quickly out of reasonable ranges, which 

makes the estimation results not useful in guiding operations. 

III.  CHALLENGES OF OVERESTIMATION AND THE PROPOSED 

SOLUTIONS 

The FBP method is a rigorous interval analysis process, 

which implies all the possible values of the arguments are 

guaranteed to be enclosed in the resulting intervals. However, 

the resulting intervals may also include spots that are not part 

of the actual solution set, which is known as the overestimation 

problem [22]. In regular interval computing, overestimation is 

usually neglectable. But it presents a significant challenge to the 

DSE because, in the forward propagation step of each time 

instant, the state transition function rotates and scales the state 

intervals, which leads to growing intervals along the direction 

of each individual state. Without proper control, the resulting 

state intervals may keep growing with time to include more and 

more unnecessary spots, which can eventually compromise the 

application value of estimated intervals. To reduce the 

overestimation, the authors propose an eigen decomposition 

based approach in subsection B for a linear system, and then 

modify it for the nonlinear system of a generator model in 

subsection C. 

A.  Overestimation Problem 

Both the dependence problem and the wrapping effect 

contribute to the overestimation problem in the DSE. Readers 

are referred to [22] for their detailed descriptions and examples. 

A brief overview is provided as follows for this paper to be self-

contained. 

1) Dependence problem 

When an interval variable appears multiple times in the 

expression to be evaluated, the dependence problem develops 

because each appearance is treated as an independent variable 

during interval calculation. As such, to reduce the dependence 

problem, the authors of this paper have tried to simplify the 

formulas to be evaluated symbolically by factoring out common 

terms. For example, in addition to inputs, outputs, and states, 

equations (55)-(68) and (70)-(83) have involved serval 

intermedia variables, such as 𝑉𝑑, 𝑉𝑞 , 𝐼𝑑 and 𝐼𝑞 . They all depend 

on the inputs, outputs and states, and appear in the equations 

multiple times, which will lead to the dependence problem. To 

reduce the overestimation from the dependence problem, 

equations (69) and (84) are created without these redundant 

variables. 

2) Wrapping effect 

The wrapping effect can also cause overestimation in 

interval contractor. Because only axis-parallel boxes are used 

for interval computing, axis-parallel boxes are wrapped around 

non-axis-parallel areas in the solution space, which comprise 

not only the precise solution but also physically impossible 

points. As such, to reduce the negative impact of the wrapping 

effect, one should try to reduce rotating operations when 

possible. 

B.  Eigen decomposition based Interval Analysis (EDIA) 

Method  

To suppress the overestimation of the FBP from the 

wrapping effect and dependence problem during the DSE of a 

linear system, the authors propose an EDIA method as follows. 

Assume that a system can be described by the linear state space 

model (11). 

{
𝑥𝑘+1 = A𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘

𝑦𝑘+1 = 𝐶𝑥𝑘+1 + 𝐷𝑢𝑘+1 + 𝑣𝑘+1
(11) 

Here, 𝑥𝑘 , 𝑢𝑘 , 𝑦𝑘  are the states, inputs, and measurements at 

time k, respectively. 𝐴 ∈ 𝑅𝑛𝑥×𝑛𝑥 , 𝐵 ∈ 𝑅𝑛𝑥×𝑛𝑢  , 𝐶 ∈ 𝑅𝑛𝑦×𝑛𝑥  

and 𝐷 ∈ 𝑅𝑛𝑦×𝑛𝑢 are the constant matrices. 𝑤𝑘 and 𝑣𝑘+1 are the 

noises of the state transition function and the measurement 
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function, respectively, which include time discretization and 

model approximation errors, etc. 

To reduce the wrapping effect, an auxiliary vector 𝑥𝑘
′  is 

introduced through (12). 

𝑥′𝑘 = Q−1𝑥𝑘 (12) 

Here, 𝑄 ∈ 𝑅𝑛𝑥×𝑛𝑥  and ith column of 𝑄 is the right eigenvector 

𝑞𝑖  of matrix 𝐴 . Then, the original system (11) can be 

transformed into (13) by replacing 𝑥𝑘 with 𝑥𝑘
′ . 

{

𝑥′
𝑘+1 = 𝑄−1𝐴𝑄𝑥′

𝑘 + 𝑄−1𝐵𝑢𝑘 + 𝑄−1𝑤𝑘

= Λ𝑥′
𝑘 + 𝑄−1𝐵𝑢𝑘 + 𝑄−1𝑤𝑘

𝑦𝑘+1 = 𝐶𝑄𝑥′
𝑘+1 + 𝐷𝑢𝑘+1 + 𝑣𝑘+1

(13. 𝑎)
 

(13. 𝑏)
 

Here, 𝛬 is a diagonal matrix whose diagonal elements are the 

corresponding eigenvalues of matrix A, Λ𝑖𝑖 = 𝜆𝑖. Note that in 

(13.a), every element in the state 𝑥𝑘
′  is updated independently, 

i.e., 𝑥′𝑘+1
𝑖 = 𝜆𝑖𝑥′𝑘

𝑖  in the prediction step. As such, the 

overestimation problem associated with the dependence 

problem and the wrapping effect can be significantly reduced 

in the transformed dynamic system (13). 

C.  Modified EDIA (MEDIA) Algorithm 

The proposed EDIA is modified to estimate states of 

generators, which has a nonlinear model. The MEDIA method 

is proposed here to combine the advantage of lower 

overestimation in the EDIA and applicability to a nonlinear 

system in the FBP. Consider the discrete-time equations for a 

nonlinear dynamical system in (14). 

{
𝑥𝑘+1 = ℎ(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘

𝑦𝑘+1 = 𝑔(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1
(14) 

Here, ℎ is the state transition function from 𝑅𝑛𝑥 × 𝑅𝑛𝑢 to 𝑅𝑛𝑥 , 

and 𝑔 is the measurement function from 𝑅𝑛𝑥 × 𝑅𝑛𝑢 to 𝑅𝑛𝑦 . To 

apply the proposed EDIA, (14) is modified to separate its linear 

and nonlinear terms as (15).  

𝑥k+1 = 𝐴𝑥k + 𝐵𝑢k + Δℎ(𝑥k, 𝑢k) + 𝑤k

= 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘
′ (𝑥𝑘 , 𝑢𝑘),

(15.a) 

where 

𝑤′𝑘(𝑥𝑘 , 𝑢𝑘) = Δℎ(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 . (15.b) 

Here, A, B represent the linear components of the function 

ℎ, while Δℎ is the nonlinear component of the function ℎ. For 

example, 𝐼𝑑  in equation (18) and 𝐼𝑞  in equation (19) shall be 

considered as nonlinear component and included in Δℎ. 

Merging the nonlinear components into the process and 

measurement noise through the equation (15.b), the MEDIA 

can be applied to estimate the states of the modified model. 

In summary, the MEDIA method can be implemented as 

follows: 

MEDIA: 

Initialize 𝑥0 with physical limit and engineering knowledge. 

𝑥0
′ ← 𝑄−1𝑥0 

for 𝑘 = 1 to 𝑘𝑒𝑛𝑑 

 Initialize  

 𝑥𝑘+1 ← [𝑥𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 , 𝑥𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡] 

 𝑥𝑘+1
′ ← [−𝑖𝑛𝑓, 𝑖𝑛𝑓] 

 MEDIA updates: 

 1. 𝑥𝑘+1

′
← 𝑥𝑘+1

′
⋂ (Λ𝑥′𝑘 + 𝑄−1𝐵𝑢𝑘 + 𝑄−1𝑤′𝑘(𝑥𝑘 , 𝑢𝑘)) 

 2. 𝑥𝑘+1 ← 𝑥𝑘+1⋂(𝑄𝑥′𝑘+1) 

 Apply FBP: 

 3. 𝑥𝑘+1 ← 𝑥𝑘+1⋂(ℎ(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘) 

 4. 𝑦𝑘+1 ← 𝑦𝑘+1⋂(𝑔(𝑥𝑘+1, 𝑢𝑘+1) + 𝑣𝑘+1) 

 5. If isempty (𝑦𝑘+1), continue 

 6. 𝑥𝑘+1 ← 𝑥𝑘+1 ⋂ 𝑔+ (𝑦𝑘+1, 𝑥𝑘+1, 𝑢𝑘+1, 𝑣𝑘+1) 

 7. 𝑥𝑘 = 𝑥𝑘⋂(ℎ+(𝑥𝑘+1, 𝑥𝑘 , 𝑢𝑘, 𝑤𝑘)) 

 8. 𝑥′𝑘+1 = 𝑥′𝑘+1⋂(𝑄−1𝑥𝑘+1) 

end for 

Here, the states are predicted in steps 1-5 using (15). Step 5 

is to detect bad data and mitigate its negative impacts. The 

predicted states are then corrected in steps 6-8 to update their 

intervals based on the measurements using (55)-(102) in 

Appendix II. Note that the intersections of the estimated 

intervals from the proposed MEDIA method and the FBP 

method are used as the new estimate. The procedure guarantees 

that the new method can achieve estimation intervals that are 

narrower than or equal to each individual method with 

guaranteed hard boundaries. 

IV.  CASE STUDIES 

In this section, the performance of the proposed MEDIA 

method is evaluated and compared with the FBP [24],  extended 

set-membership filter (ESMF) [20] , and HUKF [27] methods 

using simulation data from the 10-machine 39-bus system as 

well as the 16-machine 68-bus system. In addition, the 

implementation efficiency of the MEDIA method is improved 

to ensure that it can perform the DSE in real time.  

A.  Simulations using the 10-Machine 39-Bus System 

To evaluate the efficacy and robustness of the interval 

analysis results, time-domain simulations are carried out using 

the IEEE 10-machine 39-bus system (shown in Fig. 1) to 

generate all the true values of the dynamic states and 

measurement variables. The parameters of the system are taken 

from [25]. Its synchronous generators with governor and exciter 

control systems are modeled by equations (18)-(26) in 

Appendix I through a 9th order differential equation and 

simulated using the 2nd order Runge-Kutta method. To estimate 

the dynamic states of generator G5, assume that a PMU is set 

up at its terminal bus (i.e., bus 34) to measure its voltage phasor 

(𝑉∠θ), current phasor (𝐼𝑚𝑎𝑔∠𝐼𝑎𝑛𝑔) at 60 samples/s. Bounded 

intervals of [−0.001, 0.001]  are used to mimic the 

measurement noises added to their true values as follows: 

• 𝐼𝑚𝑎𝑔
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑~𝐼𝑚𝑎𝑔

𝑡𝑟𝑢𝑒 + [−0.001, 0.001] in per-unit (pu), 

• 𝐼𝑎𝑛𝑔𝑙𝑒
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑~𝐼𝑎𝑛𝑔𝑙𝑒

𝑡𝑟𝑢𝑒 + [−0.001, 0.001] in radian, 

• 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑~𝑉𝑡𝑟𝑢𝑒 + [−0.001, 0.001] in pu, 

• θ𝑚𝑒𝑎𝑟𝑠𝑢𝑒𝑑~𝜃𝑡𝑟𝑢𝑒 + [−0.001, 0.001] in radian.  

The real and reactive powers are calculated through the interval 

multiplication of the simulated voltage and current phasors.  
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Fig. 1.  One-line diagram of the IEEE 10-machine 39-bus system [25]. 
 

1) Case I: Steady State Test 

In this case study, the proposed MEDIA method is compared 

with the FBP method [24] and the ESMF method [20] in its 

capabilities of handling the overestimation problem in the DSE 

during steady-state responses. To mimic the system’s steady-

state responses, no major outside disturbance is injected into the 

system so that all the dynamic states remain constant during the 

simulation of 50 s.  For better illustration, all the algorithms are 

initialized with the ideal initial condition, 𝑥0 = 𝑥0
𝑡𝑟𝑢𝑒 +

[−1 × 10−5, 1 × 10−5], and the DSE is performed during the 

steady state responses of the system. The measurement noises 

are simulated using white noises, which are uniformly 

distributed between -0.001 and 0.001. Due to the space 

limitation, only the states of generator G5 are estimated with its 

terminal voltage phasor and real power as model input. 

 
Fig. 2. Pseudo volume of the estimated states using the proposed MEDIA 
method, the FBP method and the ESMF during the steady-state responses. 

 

 
                               (a) 

 
                                (b) 

  

                                (c)                                 (d) 

 
                                (e) 

 
                                (f) 

Fig. 3. Estimated states using the proposed MEDIA method, the FBP method 
and the ESMF during the steady-state responses. 

 

The estimation results are summarized in Fig. 2 and Fig. 3. 

Note that the pseudo volume defined in (5) is used as a metric 

in Fig. 2 to evaluate the performance of a DSE method. A 

smaller pseudo volume indicates less overestimation problem. 

In Fig. 2, the pseudo volumes of the proposed MEDIA method 

are smaller than those of the FBP and EMSF methods, which 

suggests that the MEDIA method has significantly reduced the 

overestimation problems in its estimated intervals. Also, it can 

be observed in Fig. 3 that the true states stay inside the 

estimated intervals of all the three methods. In addition, the 

proposed MEDIA method has the smallest interval width. In 

comparison, the EMSF method has the largest interval width, 

and the volume from the FBP method is in the middle. More 

specifically, the interval widths of all the states estimated by the 

EMSF method grow exponentially in the DSE, which 

disqualifies the EMSF method in the power system DSE. In 

addition, the interval widths of ω, 𝑇𝑀 and 𝐸𝑓𝑑 estimated by the 

proposed MEDIA method are significantly smaller than those 

from the FBP method, which suggests that the proposed 

MEDIA method can more effectively reduce the negative 

impact of the overestimation problem than the FBP method in 

the DSE. 

  

2) Case II: Transient Response Test 

In this case study, the proposed MEDIA method is applied 

to estimate the intervals of the dynamic states during the 

transient responses using two estimation models. As it is shown 

in Fig. 1, to incur transient responses, a large disturbance is 

introduced to the system at 𝑡 = 30 𝑠  by opening the 

transmission line between buses 15 and 16. The initial state 

intervals are set with 5 percent of their normal value from their 

true state as boundaries, 𝑥0 = 𝑥0
𝑡𝑟𝑢𝑒 + [−0.05,0.05] ∗ 𝑥0

𝑡𝑟𝑢𝑒 . 

The bounded measurement noises are simulated using white 

noises, which are uniformly distributed between -0.001 and 

0.001. The proposed MEDIA method is implemented for the 

voltage-input estimation model and current-input estimation 

model, which are described in Appendix I [26]. 

 
                               (a) 

     
                          (b) 
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                               (c) 

 
                               (d) 

 
                               (e) 

 
                               (f) 

Fig. 4. States estimated by the proposed MEDIA method using the voltage-

input estimation model and the current-input estimation model during the 

transient responses.  
 

The estimation results are summarized in Fig. 4. The 

estimated states are plotted as the orange and red areas that are 

defined by upper and lower bounds. The true state values from 

the simulation are shown in dot lines. It can be observed that 

the states estimated by the proposed MEDIA method quickly 

converge to stable interval widths within 30 seconds. The 

interval widths of the estimated 𝛿, 𝐸𝑑
′  and 𝐸𝑞

′  are smaller with 

the voltage-input estimation model than the current-input 

estimation model. The MEDIA method has the capability to 

track all the states and gives the boundaries that always include 

the true states. Similar results are obtained for case studies with 

biased initial conditions and not detailed here to stay concise. 

3) Case III: Comparison with the HUKF 

In this study, the confidence intervals generated by the 

HUKF [27] and MEDIA methods are compared in the presence 

of bounded measurement noise. Assume that the measurement 

noise follows a bimodal distribution that is uniformly 

distributed around the upper and lower bounds, i.e., [−1 ×

10−3, −0.9 × 10−3 ] ∪ [0.9 × 10−3, 1 × 10−3] . Assume that 

the DSE method only has access to the measurement’s upper 

and lower boundaries instead of its PDF. To apply the HUKF 

method, the measurement standard deviation is set to one-sixth 

of the interval width of the measurement noise. The 

upper/lower boundaries of the estimation intervals are 

constructed by adding/subtracting three standard deviations 

to/from the estimated states. The boundaries and confidence 

intervals generated by the MEDIA and HUKF methods are 

summarized in Fig. 5. Here, the red dotted line represents the 

MEDIA boundaries, and the blue line represents the HUKF 

confidence intervals. The black line indicates the true value. 

 

 
           (a) 

 
           (b) 

 
           (c) 

 
           (d) 

 
           (e) 

 
           (f) 

 
           (g) 

 
          (h) 

 
           (i) 

 

Fig. 5. Estimated states using the proposed MEDIA method and the HUKF 

method under bimodal distribution noise. 

 It can be observed that the true states of 𝛿,  𝐸𝑑
′ , and 𝐸𝑞

′  fall 

out of the confidence intervals estimated by the HUKF method. 

Meanwhile, the HUKF and MEDIA methods produce similar 

intervals that cover the true value in 𝐸𝑓𝑑, 𝑉𝑅, and 𝑉𝑓. In addition, 

the MEDIA method generates narrower intervals than the 

HUKF method in 𝜔, 𝑇𝑀, and 𝑃𝑆𝑉. It is worth noting that the true 

states always fall into the intervals estimated by the MEDIA 

method. The study shows that the proposed MEDIA method is 

more robust than the HUKF method in that its estimated 

intervals always include true states. 

B.  Simulations using the 16-Machine 68-Bus System 

To verify the performance of the proposed MEDIA method 

in a more complex system using a higher-order model, time-

domain simulations are carried out using the IEEE 16-machine 

68-bus system (shown in Fig. 6) to generate all the true values 

of the dynamic states and measurement variables. The 

parameters of the system are taken from  [29]. Its synchronous 

generator is simulated by a sub-transient model [30] with an 

IEEE Type DC1 excitation system [31] and a turbine-governor 

system which are modeled by equations (27)-(39) in Appendix 

I through 11th-order differential equations. There are more 

nonlinear variables in this model, like the saturation function in 

equation (39), which challenges the MEDIA method. The 

simulation is carried out using the Power System Toolbox 

(PST) [28]. To incur dynamic responses, a three-phase fault is 

set off at t=30.10 s on the branch between buses 5 and 8. The 

fault is clear at t=30.15 s at its near end of bus 5, and at t=30.20 
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s at its far end of bus 8 by tripping off the faulty branch. A PMU 

is set up on the terminal bus of generator G1 and collects phasor 

measurements at 100 samples/s. The measurements’ noise 

follows the same distribution as the previous case. To reduce 

the negative impact of the non-linearity on the DSE, linear 

interpolation is employed here to increase the effective 

sampling rate to 200 samples/s [32]. 
B41
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Fig. 6. One-line diagram of the IEEE 16-machine 68-bus system with the faulty 

line marked out [33]. 

 

 
                                (a) 

     
                               (b) 

 
                                (c) 
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                                (e) 

 
                               (f) 

 
                                (g) 

 
                                (h) 

 
                                (i) 

 
                                (j) 

 
                                (k) 

 

Fig. 7. Estimated states using the voltage-input estimation model and the 

proposed MEDIA method during the transient responses. 

 

The estimation results are summarized in Fig. 7. It can be 

observed that the proposed MEDIA method gives the 

boundaries with reasonable interval width for all the estimated 

states. Taking advantage of the high sample rate, most of the 

states converge quickly from the initial intervals. States 𝜔, 𝑡𝑔1, 

𝑡𝑔2 and 𝑡𝑔3 take a longer time duration to converge. It can be 

observed in the figure that the initial intervals of these states are 

way wider than the setting initial intervals. This was due to the 

overestimation during the conversion from 𝑋0  to 𝑋0
′ . It takes 

about 30 seconds for these states to converge to stable interval 

widths. 

C.  Computational Efficiency 

To test the computational efficiency of the proposed MEDIA 

method, MATLAB was used to implement the algorithm and 

tested on a PC with an Intel Core i7, 3.20 GHz processor, and 

16 GB of RAM. The computation time for assimilating the 

measurements of one time instant was recorded to evaluate 

whether the algorithm can run in real time. The statistics on the 

computation time were obtained from 3,000 sampling instances 

and presented as ( 𝑚𝑒𝑎𝑛 ±  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ) for two 

different implementations, as follows: 

• 63.88 ± 0.05 ms (implementation using INTLAB), 

• 2.59 ± 0.01  ms (bound-focused code implemented by 

the authors). 

Initially, the proposed MEDIA method was implemented 

using INTLAB [34], a toolbox designed for accurately 

implementing interval analysis algorithms by overloading 

MATLAB operators. However, the implementation using 

INTLAB was found to have low computational efficiency. 

Considering the sampling interval of a PMU with a reporting 

rate of 100 samples/s is 10 ms, the implementation using 

INTLAB cannot keep up with the stream of the measurement 

data in real time. To improve the computation efficiency, the 

authors modified the initial INTLAB implementation code by 

removing the calculation for rounding errors and focusing only 

on bound calculation. Because the rounding errors are 

negligibly small compared to the measurement and process 

noises in the proposed application, the modified code can 

achieve virtually the same accuracy as the original INTLAB 

code. At the same time, it reduces the calculation time from 

63.88 ms to 2.59 ms, which makes it possible to run in real time. 

V.  CONCLUSIONS AND FUTURE WORK 

In this paper, the MEDIA method is proposed to perform the 

DSE of synchronous machines in power systems under the 

framework of interval analysis. Different from the Bayesian 

approach, the proposed MEDIA method uses interval bounds 
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(instead of PDFs) to quantify noise uncertainty, and offers 

guaranteed hard boundaries for each estimated state. 

Leveraging the eigen decomposition, the proposed method can 

reduce the negative impacts from the wrapping effects and 

dependence problem of overestimation. Compared with the 

FBP method and the ESMF method, the proposed MEDIA 

method can reduce the overestimation in the high-order control 

system of synchronous machines and give narrower intervals. 

Compared with the confidence intervals bulit by the HUKF, 

MEDIA method offer narrower interval and promise to cover 

the true value. The case studies show the feasibility of the 

proposed MEDIA algorithm for handling the different 

generator models and offering guaranteed state boundaries in 

estimating dynamic states in real time. 

In this paper, the interval width of the process noise has been 

set as a constant interval to stay concise. Follow-up studies will 

be carried out to adaptively adjust it based on the estimated 

process noise to improve estimation accuracy. In addition, 

future work will include studies on how the IA-DSE method 

can work with a point estimation method and provide valuable 

complementary information. 

APPENDIX I. STATE TRANSITION AND MEASUREMENT MODELS 

OF SYNCHRONOUS MACHINES 

In general, the dynamic behaviors of a synchronous machine 

can be described by the differential algebraic equation of (16), 

which includes a state transition function h(*) and a 

measurement function g(*). These functions are detailed in the 

following subsections.  

{

𝑑𝑥

𝑑𝑡
= ℎ(𝑥, 𝑢) + 𝑤

𝑦 = 𝑔(𝑥, 𝑢) + 𝑣

(16. 𝑎)
(16. 𝑏)

 

A.  State Transition Function 

The state transition function h(*) of a synchronous machine 

can be described using differential equations. The 9th-order 

model and 11th-order model that are used in the paper are 

described as follows. 

1) Model I: the 9th-Order Model 

Define the state vector as 

𝑥 = [𝐸′
𝑞 𝐸𝑑

′ δ ω 𝐸𝑓𝑑 𝑉𝐹 𝑉𝑅 𝑇𝑀 𝑃𝑆𝑉]𝑇 . (17) 

The following 9th-order differential equation can be used to 

model the dynamics of governors, exciters, and synchronous 

generators. 

• Synchronous generator: 

𝑇′𝑑0

𝑑𝐸′𝑞

𝑑𝑡
= −𝐸′

𝑞 − (𝑋𝑑 − 𝑋′
𝑑)𝐼𝑑 + 𝐸𝑓𝑑 (18) 

T′q0

𝑑𝐸𝑑
′

𝑑𝑡
= −𝐸𝑑

′ − (𝑋𝑞 − 𝑋𝑞
′ )𝐼𝑞 (19) 

𝑑δ

𝑑𝑡
= ω − ω𝑠 (20) 

2𝐻

ω𝑠

𝑑ω

𝑑𝑡
= 𝑇𝑀 − 𝑃′𝑒 − 𝐷(ω − ω𝑠) (21) 

• Exciter: 

𝑇𝐸

𝑑𝐸𝑓𝑑

𝑑𝑡
= −𝐾𝐸𝐸𝑓𝑑 + 𝑉𝑅 (22) 

𝑇𝐹

𝑑𝑉𝐹

𝑑𝑡
= −𝑉𝐹 +

𝐾𝐹

𝑇𝐸

(𝑉𝑅 − 𝐾𝐸𝐸𝑓𝑑) (23) 

𝑇𝐴

𝑑𝑉𝑅

𝑑𝑡
= −𝑉𝑅 + 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝐹 − 𝑉) (24) 

• Governor: 

𝑇𝐶𝐻

𝑑𝑇𝑀

𝑑𝑡
= −𝑇𝑀 + 𝑃𝑆𝑉 (25) 

𝑇𝑆𝑉

𝑑𝑃𝑆𝑉

𝑑𝑡
= −𝑃𝑆𝑉 + 𝑃𝐶 −

1

𝑅𝐷

(
ω

ω𝑠

− 1) (26) 

Here, 𝜔  and 𝛿  represent the rotor speed and rotor angle, 

respectively. 𝐸𝑞
′  and 𝐸𝑑

′  represent the q-axis and d-axis 

transient voltage, respectively. 𝐸𝑓𝑑 , 𝑉𝐹 , 𝑉𝑅  represent the field 

voltage, the scaled output of the stabilizing transformer, and the 

scaled output of the amplifier, respectively. 𝑇𝑀  and 𝑃𝑆𝑉 

represent the synchronous machine mechanical torque and 

steam valve position, respectively. 𝑇𝑑0
′ , 𝑇𝑞0

′ , 𝑇𝐸 , 𝑇𝐹 , 𝑇𝐴 , ,and 

𝑇𝑆𝑉 represent the corresponding time constants, in seconds. 𝐾𝐸 , 

, and 𝐾𝐴  represent the controller gains. 𝑉𝑟𝑒𝑓  and 𝑃𝑐  represent 

the known control inputs. 𝑋𝑑 , 𝑋𝑑
′ , 𝑋𝑞 , 𝑋𝑞

′  represent the d-axis 

synchronous reactance, transient reactance, q-axis synchronous 

reactance and transient reactance, respectively. Note that 𝑃′𝑒  

represents the real electrical power as an input. 𝐼𝑑  and 𝐼𝑞  

represent the d-axis and q-axis currents, respectively. They are 

the variables which need to be constructed from input u and 

state x. 

2) Model II: the 11th-Order Model 

Define the state vector as 

𝑥 = [δ ω 𝐸𝑞
′ 𝐸𝑑

′ 𝜓𝑘𝑑

𝐸𝑓𝑑 𝑉𝑅 𝑅𝑓 𝑡𝑔1 𝑡𝑔2 𝑡𝑔3].
(27) 

The following 11th-order differential equation can be used to 

model the dynamics of governors, exciters, and synchronous 

generators. 

• Synchronous generator: 

𝑇𝑑0
′

𝑑𝐸𝑞
′

𝑑𝑡
= (𝐸𝑓𝑑 − 𝑠𝑎𝑡1𝐸𝑞

′ 2
− 𝑠𝑎𝑡2𝐸𝑞

′ − 𝑠𝑎𝑡3

−
(𝑥𝑑 − 𝑥𝑑

′ )(𝑥𝑑
′ − 𝑥𝑑

′′)

(𝑥𝑑
′ − 𝑥𝑙)2

(𝐸𝑞
′ − 𝜓𝑘𝑑)

−
(𝑥𝑑 − 𝑥𝑑

′ )(𝑥𝑑
′′ − 𝑥𝑙)

𝑥𝑑
′ − 𝑥𝑙

𝐼𝑑)

(28) 

𝑇𝑞0
′

𝑑𝐸𝑑
′

𝑑𝑡
= (−𝐸𝑑

′ −
(𝑥𝑞 − 𝑥𝑞

′ )(𝑥𝑞
′′ − 𝑥𝑙)

𝑥𝑞
′ − 𝑥𝑙

𝐼𝑞) (29) 

𝑇𝑑0
′′

𝑑𝜓𝑘𝑑

𝑑𝑡
= (−𝜓𝑘𝑑 + 𝐸𝑞

′ − (𝑥𝑑
′ − 𝑥𝑙)𝐼𝑑) (30) 

𝑑𝛿

𝑑𝑡
= 2𝜋𝜔0(𝜔 − 1) (31) 

𝑑𝜔

𝑑𝑡
=

1

2𝐻
(𝑡𝑔3 +

𝑇4

𝑇5

(𝑡𝑔2 +
𝑇3

𝑇𝐶

𝑡𝑔1) − 𝑃′𝑒) (32) 

• Exciter: 

𝑇𝐴

𝑑𝑉𝑅

𝑑𝑡
= (−𝑉𝑅 + 𝐾𝐴 ∗ 𝑉𝐴) (33) 

𝑇𝐸

𝑑𝐸𝑓𝑑

𝑑𝑡
= (𝑉𝑅 − 𝐾𝐸𝐸𝑓𝑑 − 𝑆𝐸) (34) 

𝑇𝐹

𝑑𝑅𝑓

𝑑𝑡
= (−𝑅𝑓 + 𝐸𝑓𝑑) (35) 

• Governor: 
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𝑇𝑆

𝑑𝑡𝑔1

𝑑𝑡
= (𝑃𝑚0 + (1 − 𝜔)/𝑅 − 𝑡𝑔1) (36) 

𝑇𝐶

𝑑𝑡𝑔2

𝑑𝑡
= ((1 −

𝑇3

𝑇𝐶

) 𝑡𝑔1 − 𝑡𝑔2) (37) 

𝑇5

𝑑𝑡𝑔3

𝑑𝑡
= ((1 −

𝑇4

𝑇5

) (𝑡𝑔2 +
𝑇3

𝑇𝐶

𝑡𝑔1) − 𝑡𝑔3) (38) 

in which 

𝑆𝐸 = {
𝐴𝑒𝐵|𝐸𝑓𝑑| 𝑓𝑜𝑟 𝐸𝑓𝑑 > 0

−𝐴𝑒𝐵|𝐸𝑓𝑑| 𝑓𝑜𝑟 𝐸𝑓𝑑 < 0.
(39) 

Here, 𝜓𝑘𝑑  represents the flux on d-axis. 𝑥𝑑 , 𝑥𝑑
′  and 𝑥𝑑

′′ 

represent synchronous reactance, transient reactance, and sub-

transient reactance on d-axis, respectively. 𝑥𝑞 , 𝑥𝑞
′  and 𝑥𝑞

′′ 

represent synchronous reactance, transient reactance, and sub-

transient reactance on q-axis, respectively. 𝑥𝑙  represents the 

leakage reactance. 𝑠𝑎𝑡1 , 𝑠𝑎𝑡2  and 𝑠𝑎𝑡3  represent the field 

saturation factors. 𝑅𝑓  and 𝑆𝐸  represent the stabilizing 

transformer state variable and saturation function in the exciter, 

respectively. 𝑡𝑔1 , 𝑡𝑔2  and 𝑡𝑔3  represent the governor state 

variable, servo state variable and reheater state variable, 

respectively. 𝑇𝑆 , 𝑇𝐶 , 𝑇3 , 𝑇4  and 𝑇3  represent their 

corresponding time constants. 

B.  Measurement Function 

The measurement function g(*) of a synchronous machine 

can be described using algebraic equations. There are many 

approaches of setting measurements for the DSE. The two 

estimation models, i.e., the voltage-input estimation model and 

current-input estimation model, are used in this paper and 

detailed as follows.  

1) Estimation model that uses voltage phasors as inputs 

Define the input vector as 

𝑢𝑉 = [𝑃′𝑒 𝑉 𝜃 𝑉𝑟𝑒𝑓 𝑃𝐶]𝑇 (40) 

Here, 𝑉  and 𝜃  represent the terminal bus voltage magnitude 

and phase angle, respectively. 𝑉𝑟𝑒𝑓  and 𝑃𝑐  represent the 

controller inputs, which are modeled by interval variables 

whose bounds are set up according to the accuracy of 

measurements. To form the state transition function ℎ𝑣(∗),  Id 

and Iq in (18)-(19) and (28)-(30) can be calculated in term of 

input uv and states x as in (41)-(44). 

𝑉𝑑 = 𝑉sin (𝛿 − 𝜃) (41) 

𝑉𝑞 = 𝑉cos (𝛿 − 𝜃) (42) 

𝐼𝑑 =
𝐸𝑞

′ − 𝑉𝑞

𝑋𝑑
′ (43) 

𝐼𝑞 = −
𝐸𝑑

′ − 𝑉𝑑

𝑋𝑞
′

(44) 

Define the output vector as 

𝑦 = [𝑃𝑒 𝑄𝑒]𝑇 (45) 

Here 𝑃𝑒  and 𝑄𝑒  represent the real and reactive electrical 

power outputs of the generator. To form the measurement 

function 𝑔𝑉(∗), Pe and Qe can be calculated from input 𝑢𝑉 and 

states x as in (46)-(47). 
𝑃𝑒 = 𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞 (46) 
𝑄𝑒 = 𝑉𝑞𝐼𝑑 − 𝑉𝑑𝐼𝑞 (47) 

2) Estimation model that uses current phasors as inputs 

Define the input vector as 

𝑢𝐼 = [𝑃′𝑒 𝐼𝑚𝑎𝑔 𝐼𝑎𝑛𝑔 𝑉𝑟𝑒𝑓 𝑃𝐶]𝑇 , (48) 

where 𝐼𝑚𝑎𝑔  and 𝐼𝑎𝑛𝑔  are the current magnitude and current 

angle at the global reference. 

To form the state transition function ℎ𝐼(∗), 𝐼𝑑 and 𝐼𝑞  in (18)-

(19) and (28)-(30) can be calculated from input 𝑢𝐼 and states x 

as in (49)-(50). 
𝐼𝑑 = 𝐼𝑚𝑎𝑔sin (𝛿 − 𝐼𝑎𝑛𝑔) (49) 
𝐼𝑞 = 𝐼𝑚𝑎𝑔cos (𝛿 − 𝐼𝑎𝑛𝑔) (50) 

This model uses the same output vector as in (45). To form 

the measurement function 𝑔𝐼(∗), Pe and Qe can be calculated 

from input uI and states x as in (51)-(54). 

𝑉𝑑 = 𝐸𝑑
′ + 𝐼𝑞𝑋𝑞

′ (51) 

𝑉𝑞 = 𝐸𝑞
′ − 𝐼𝑑𝑋𝑑

′ (52) 
𝑃𝑒 = 𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞 (53) 
𝑄𝑒 = 𝑉𝑞𝐼𝑑 − 𝑉𝑑𝐼𝑞 (54) 

APPENDIX II. BACKWARD PROPAGATION MODELS FOR THE 

FBP METHOD 

Because the forward propagation model in the FBP method 

is straightforward, only the backward propagation model is 

given in this appendix.  

For the output function 𝑔𝑉(∗) , the backward propagation 

model can be summarized as in (55)-(68). 
𝑉𝑞 = 𝑉𝑞 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝐼𝑞] (55) 
𝐼𝑞 = 𝐼𝑞 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝑉𝑞] (56) 

𝑉𝑑 = 𝑉𝑑 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝐼𝑑] (57) 
𝐼𝑑 = 𝐼𝑑 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝑉𝑑] (58) 
𝑉𝑞 = 𝑉𝑞 ∩ [(𝑄𝑒 + 𝑉𝑑𝐼𝑞)/𝐼𝑑] (59) 
𝐼𝑑 = 𝐼𝑑 ∩ [(𝑄𝑒 + 𝑉𝑑𝐼𝑞)/𝑉𝑞] (60) 
𝑉𝑑 = 𝑉𝑑 ∩ [(𝑉𝑞𝐼𝑑 − 𝑄𝑒)/𝐼𝑞] (61) 
𝐼𝑞 = 𝐼𝑞 ∩ [(𝑉𝑞𝐼𝑑 − 𝑄𝑒)/𝑉𝑑] (62) 

𝑉𝑑 = 𝑉𝑑 ∩ [𝐸𝑑
′ + 𝐼𝑞𝑋𝑞

′ ] (63) 

𝐸𝑑
′ = 𝐸𝑑

′ ∩ [𝑉𝑑 − 𝐼𝑞𝑋𝑞
′ ] (64) 

𝑉𝑞 = 𝑉𝑞 ∩ [𝐸𝑞
′ − 𝐼𝑑𝑋𝑑

′ ] (65) 

𝐸𝑞
′ = 𝐸𝑞

′ ∩ [𝑉𝑞 + 𝐼𝑑𝑋𝑑
′ ] (66) 

𝛿 = 𝛿 ∩ [asin (
𝑉𝑑

𝑉
) + 𝜃] (67)  

𝛿 = 𝛿 ∩ [acos (
𝑉𝑞

𝑉
) + 𝜃] (68) 

To further suppress the overestimation in the measurement 

equations, a simplified equation for 𝛿 is employed as (69). 

𝛿 = atan (
𝐸′𝑑

𝐸′𝑞

) + atan (
𝑃𝑒

𝑄𝑒 + 𝑉𝑚𝑎𝑔
2 /𝑋𝑑

′ ) + 𝑉𝑎𝑛𝑔 (69) 

For the output function 𝑔𝐼(∗) , the backward propagation 

model can be summarized as in (70)-(83). 
𝑉𝑞 = 𝑉𝑞 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝐼𝑞] (70) 
𝐼𝑞 = 𝐼𝑞 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝑉𝑞] (71) 

𝑉𝑑 = 𝑉𝑑 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝐼𝑑] (72) 
𝐼𝑑 = 𝐼𝑑 ∩ [(𝑃𝑒 − 𝑉𝑑𝐼𝑑)/𝑉𝑑] (73) 
𝑉𝑞 = 𝑉𝑞 ∩ [(𝑄𝑒 + 𝑉𝑑𝐼𝑞)/𝐼𝑑] (74) 
𝐼𝑑 = 𝐼𝑑 ∩ [(𝑄𝑒 + 𝑉𝑑𝐼𝑞)/𝑉𝑞] (75) 
𝑉𝑑 = 𝑉𝑑 ∩ [(𝑉𝑞𝐼𝑑 − 𝑄𝑒)/𝐼𝑞] (76) 
𝐼𝑞 = 𝐼𝑞 ∩ [(𝑉𝑞𝐼𝑑 − 𝑄𝑒)/𝑉𝑑  ] (77) 

𝐼𝑑 = 𝐼𝑑 ∩ [(𝐸𝑞
′ − 𝑉𝑞)/𝑋𝑑

′ ] (78) 

𝐸𝑑
′ = 𝐸𝑑

′ ∩ [𝑉𝑑 − 𝐼𝑞𝑋𝑞
′ ] (79) 

𝐼𝑞 = 𝐼𝑞 ∩ [−(𝐸𝑑
′ − 𝑉𝑑)/𝑋𝑞

′ ] (80) 

𝐸𝑞
′ = 𝐸𝑞

′ ∩ [𝑉𝑞 + 𝐼𝑑𝑋𝑑
′ ] (81) 
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𝛿 = 𝛿 ∩ [asin (
𝐼𝑑

𝐼𝑚𝑎𝑔
) + 𝐼𝑎𝑛𝑔] (82)  

𝛿 = 𝛿 ∩ [acos (
𝐼𝑞

𝐼𝑚𝑎𝑔

) + 𝐼𝑎𝑛𝑔] (83) 

To further suppress the overestimation in the measurement 

equations, a simplified equation for 𝛿 is employed as (84). 

𝛿 = atan (
𝐸′𝑑

𝐸′𝑞

) + atan (
𝑄𝑒 + 𝑋𝑑

′ 𝐼𝑚𝑎𝑔
2

𝑃𝑒

) + 𝐼𝑎𝑛𝑔 (84) 

For the state transition function ℎ(∗)  in (18)-(26), the 

backward propagation model can be summarized as in (85)-

(102). 

• Synchronous generators. 

 𝑇𝑀
𝑘 = 𝑇𝑀

𝑘 ∩ [𝑃′𝑒 +  𝐷(𝜔𝑘 − 𝜔𝑠) +
2𝐻

𝑡𝑠𝑡𝑒𝑝∗𝜔𝑠
(𝜔𝑘+1 − 𝜔𝑘)]  (85) 

 𝜔𝑘 = 𝜔𝑘 ∩ [
𝜔𝑘+1−

𝑡𝑠𝑡𝑒𝑝𝜔𝑠

2𝐻
(𝑇𝑀−𝑃𝑒

′+𝐷𝜔𝑠) 

1−
𝑡𝑠𝑡𝑒𝑝𝜔𝑠𝐷

2𝐻

]  (86) 

 𝛿𝑘 = 𝛿𝑘 ∩ [𝛿𝑘+1 + (𝜔𝑘 − 𝜔𝑠)𝑡𝑠𝑡𝑒𝑝] (87) 

 𝜔𝑘 = 𝜔𝑘 ∩ [(𝛿𝑘+1 − 𝛿𝑘)/𝑡𝑠𝑡𝑒𝑝 + 𝜔𝑠] (88) 

 𝐸𝑞
′ 𝑘

= 𝐸𝑞
′ 𝑘

∩ [
𝐸𝑞

′ 𝑘+1
−

𝑡𝑠𝑡𝑒𝑝

𝑇𝑑0
′ (−(𝑋𝑑−𝑋𝑑

′ )𝐼𝑑+𝐸𝑓𝑑
𝑘 )

1−
𝑡𝑠𝑡𝑒𝑝

𝑇𝑑0
′

]   (89) 

 𝐸𝑓𝑑
𝑘 = 𝐸𝑓𝑑

𝑘 ∩ [
𝑇𝑑

′

𝑡𝑠𝑡𝑒𝑝
(𝐸𝑞

′ 𝑘+1
− 𝐸𝑞

′ 𝑘
) + 𝐸𝑞

′ 𝑘
+ (𝑋𝑑 − 𝑋𝑑

′ )𝐼𝑑] (90) 

 𝐸𝑑
′ 𝑘

= 𝐸𝑑
′ 𝑘

∩ [
𝐸𝑑

′ 𝑘+1
−

𝑡𝑠𝑡𝑒𝑝

𝑇𝑞0
′ (−(𝑋𝑞−𝑋𝑞

′)𝐼𝑞)

1−
𝑡𝑠𝑡𝑒𝑝

𝑇𝑞0
′

 ] (91) 

• Exciter: 

 𝐸𝑓𝑑
𝑘 = 𝐸𝑓𝑑

𝑘 ∩ [(𝐸𝑓𝑑
𝑘+1 −

𝑡𝑠𝑡𝑒𝑝

𝑇𝐸
𝑉𝑅

𝑘) /(1 −
𝑡𝑠𝑡𝑒𝑝𝐾𝐸

𝑇𝐸
) ] (92) 

 𝑉𝑅
𝑘 = 𝑉𝑅

𝑘 ∩ [
𝑇𝐸

𝑡𝑠𝑡𝑒𝑝
(𝐸𝑓𝑑

𝑘+1 − 𝐸𝑓𝑑
𝑘 +

𝑡𝑠𝑡𝑒𝑝𝐾𝐸

𝑇𝐸
𝐸𝑓𝑑

𝑘 )] (93)

 𝑉𝐹
𝑘 = 𝑉𝐹

𝑘 ∩ [
𝑉𝐹

𝑘+1−
𝐾𝐹𝑡𝑠𝑡𝑒𝑝

𝑇𝐹𝑇𝐸
(𝑉𝑅

𝑘−𝐾𝐸𝐸𝑓𝑑
𝑘 )

1−
𝑡𝑠𝑡𝑒𝑝

𝑇𝐹

] (94) 

 𝑉𝑅
𝑘 = 𝑉𝑅

𝑘 ∩ [
𝑇𝐸

𝐾𝐹
(

𝑇𝐹

𝑡𝑠𝑡𝑒𝑝
(𝑉𝐹

𝑘+1 − 𝑉𝐹
𝑘) + 𝑉𝐹) + 𝐾𝐸𝐸𝑓𝑑

𝑘 ] (95) 

 𝐸𝑓𝑑
𝑘 = 𝐸𝑓𝑑

𝑘 ∩ [
1

𝐾𝐸
𝑉𝑅

𝑘 −
𝑇𝐸

𝐾𝐹𝐾𝐸
(

𝑇𝐹

𝑡𝑠𝑡𝑒𝑝
(𝑉𝐹

𝑘+1 − 𝑉𝐹
𝑘) + 𝑉𝐹)] (96) 

 𝑉𝑅
𝑘 = 𝑉𝑅

𝑘 ∩ [(𝑉𝑅
𝑘+1 −

𝑡𝑠𝑡𝑒𝑝𝐾𝐴

𝑇𝐴
(𝑉𝑟𝑒𝑓 − 𝑉𝐹

𝑘 − 𝑉)) /(1 −
𝑡𝑠𝑡𝑒𝑝

𝑇𝐴
)]  (97) 

 𝑉𝐹
𝑘 = 𝑉𝐹

𝑘 ∩ [𝑉𝑟𝑒𝑓 − 𝑉 −
1

𝐾𝐴
(

𝑇𝐴

𝑡𝑠𝑡𝑒𝑝
(𝑉𝑅

𝑘+1 − 𝑉𝑅
𝑘) + 𝑉𝑅

𝑘)] (98) 

• Governor: 

 𝑇𝑀
𝑘 = 𝑇𝑀

𝑘 ∩ [(𝑇𝑀
𝑘+1 −

𝑡𝑠𝑡𝑒𝑝

𝑇𝐶𝐻
𝑃𝑆𝑉

𝑘 ) /(1 −
𝑡𝑠𝑡𝑒𝑝

𝑇𝐶𝐻
)] (99) 

 𝑃𝑆𝑉
𝑘 = 𝑃𝑆𝑉

𝑘 ∩ [
𝑇𝐶𝐻

𝑡𝑠𝑡𝑒𝑝
(𝑇𝑀

𝑘+1 − 𝑇𝑀
𝑘 ) + 𝑇𝑀

𝑘 ] (100) 

 𝑃𝑆𝑉
𝑘 = 𝑃𝑆𝑉

𝑘 ∩ [
𝑃𝑆𝑉

𝑘+1−
𝑡𝑠𝑡𝑒𝑝

𝑇𝑆𝑉
(𝑃𝐶−

1

𝑅𝐷
(

𝜔𝑘

𝜔𝑠
−1))

1−
𝑡𝑠𝑡𝑒𝑝

𝑇𝑆𝑉

] (101) 

 𝜔𝑘 = 𝜔𝑘 ∩ [(−𝑅𝐷 (
𝑇𝑆𝑉

𝑡𝑠𝑡𝑒𝑝
(𝑃𝑆𝑉

𝑘+1 − 𝑃𝑆𝑉
𝑘 ) + 𝑃𝑠𝑣

𝑘 − 𝑃𝐶) + 1) 𝜔𝑠] (102) 
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