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Abstract— The Bayesian approach has been used for the
dynamic state estimation (DSE) of a power system. However, due
to the complexity of noise resources, it is difficult to quantify
measurement and process noise using probability density
functions (PDFs). To overcome the difficulty, the authors of this
paper propose a modified eigen decomposition based interval
analysis (MEDIA) method, which employs bounds instead of PDFs
to quantify the noise, and uses the eigen decomposition method to
reduce the negative impact of the overestimation problem. Using
the simulation data generated from IEEE 16-machine and IEEE
10-machine systems, it is shown that the proposed MEDIA method
can estimate the hard boundaries of dynamic states in real time.
Comparison with the forward-backward propagation method and
the extended set-membership filter also shows that the proposed
MEDIA method performs better by providing narrower
boundaries in the DSE.

Index Terms—Dynamic state estimation, eigen decomposition,
interval analysis, power system, state estimation.

1. INTRODUCTION

ITH the widespread deployment of phasor measurement
units (PMUs) and advanced communication
infrastructure, the Bayesian approach has been proposed to
estimate the dynamic states of a power system [1]. In [2]-[5],
the extended Kalman filter (EKF) is introduced to estimate the
state variables of synchronous generators. However, the EKF
suffers a large estimation error or even divergence in a highly
nonlinear system. To better deal with nonlinearity, the
unscented Kalman filter (UKF) is proposed in [6], and the
extended particle filter (PF) is proposed in [7] to estimate the
dynamic states. The ensemble Kalman filter (EnKF) is
proposed in [8] to estimate the dynamic states and parameters
simultaneously. In [9], an EKF method with unknown inputs is
introduced to address the scenario where some inputs cannot be
directly measured in power systems.
All the above dynamic state estimation (DSE) methods are
Bayesian-based filters, which assume that the probability
density functions (PDFs) of the measurement and process noise
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are known at every time instant. However, for a practical power
system, this assumption may not always hold. It is suggested in
[10] that PMU measurement noise of the voltage and current
phasors may not always follow the Gaussian distribution. The
noise in measurements may include not only the noise from the
instrument inaccuracy but also the noise from external
electromagnetic interference, communication channels, and
cyberattacks. Due to its complex sources, measurement noise
may have significant bias and unknown covariance. The same
thing happens with the process noise. When the noise’s PDFs
are unknown, Bayesian-based filters may have significant
estimation errors.

The unknown distributions of measurement and process
noises in the DSE motivate the application of interval analysis,
which quantifies noise uncertainty through boundaries instead
of PDFs. The initial work on interval analysis based DSE(IA-
DSE) is presented in [11] and [12], which estimates the
ellipsoids that contain the true states when the perturbations and
noise are given in boundaries, and later extended to real-life
problems in [13]-[15]. However, these algorithms are originally
designed for linear systems, which are not suitable for power
systems. To overcome this limitation, the interval analysis was
further extended for its application to nonlinear systems in [16]
and [17]. Another challenge to employing interval analysis in
the DSE is the overestimation problem, which often leads to
rapidly growing and even divergent boundaries of the estimated
states. The overestimation problem and its negative impact are
studied and explained through examples in [18]. To mitigate the
negative impact of the overestimation problem, the set
inversion via interval analysis (SIVIA) method is applied in 1A-
DSE [19]. However, the low computational efficiency of the
SIVIA method makes it unsuitable for real-time applications in
power systems. In [20], the IA-DSE is introduced to power
system DSE and tested on 2™ and 3™ order systems assuming
that some states can be directly measured. It is worth noting that
higher-order and more complex systems are more prone to
overestimation issues. Such systems tend to suffer from the



overestimation problem, which can result in extremely large
width of the estimated interval.

To address the challenges, a modified eigen decomposition
based interval analysis (MEDIA) method is proposed for the
DSE in this paper. The proposed MEDIA method can
accommodate the boundaries of PMU measurement noise
specified by the IEEE standard [21]. In addition, the outputs of
the MEDIA method are the upper and lower bounds of the
estimated states, which fit many needs of state monitoring and
control strategies. The contributions of this paper can be
summarized as follows:

1) Compared to the conventional forward-backward
propagation (FBP) method and the extended set-membership
filter (ESMF) method, the proposed MEDIA method can
significantly reduce the negative impact of the overestimation
problem in the DSE.

2) Instead of the estimated PDFs in the Bayesian-based
filters, the proposed MEDIA method calculates the hard
boundaries of the states, which guarantee to include the true
states.

3) Compared to the confidence interval built by the H-
infinity unscented Kalman filter (HUKF) method [27], the
proposed MEDIA method offers narrower boundaries of the
states, which guarantee to include the true states.

The rest of the paper is organized as follows. In Section II,
the DSE is formulated into an interval analysis problem and
solved using the FBP method. The MEDIA method is proposed
to deal with the overestimation problem in Section III. Case
studies are carried out in Section I'V to evaluate the performance
of the MEDIA method. Finally, the conclusions and future work
are presented in Section V.

II. PROBLEM FORMULATION

In this section, the basic concepts of interval analysis are
reviewed first. Then, the conventional FBP method for interval
analysis is described. Finally, the DSE is formulated as an
interval analysis problem and solved using the FBP method.

A. Review on Interval Analysis

Interval analysis represents a variable by its upper and lower
boundaries, and defines function operations among interval
variables. A real-number interval variable [x] is a closed and
continuous subset of R, which can be defined by (1) [22].

[x] = [x,X] ={x e Rlx <x < x}. (D)
Here, x and x are the lower and upper bounds of [x],
respectively. For example, if the reading of a voltmeter with 2%
accuracy is 100 V, the measured voltage can be denoted as an
interval variable of [V]=[98,102] V. Similarly, if the reading of
an ammeter with 1% accuracy is 2 A, the measured current can
be denoted as an interval variable of [1]=[1.98, 2.02] A.

The intersection and union of two interval variables are
defined by (2) and (3), respectively.

[x]N[y] = {z € R|z € [x] and z € [y]}. ?2)

[x]Uly] = [[x]U[y]] = [z € RIz € [x]orz € [y]}]. (3)
Here, [-] presents the interval hull, which is the smallest interval
containing [x]U[y] [16].
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Real functions can also be extended to interval functions.
Let f be a real function mapping from R™ to R™ . Its
corresponding interval function [f] is defined by (4) [23],
where the [x] is the real interval vector of R™, which is an
ordered n-tuple of intervals.

FIAxD = [{f (1, oo, x) |x € [X]3] 4)

The intersection can be applied to two interval vectors only
if they have the same dimension. For example, power [P] can
be calculated from the voltage [V] and current [I] by extending
the conventional operation of multiplication as
[PI=[VI*[I]=[98, 102]*[1.98, 2.02]=[194.04, 206.04] W. The
intersection interval vector will be empty if any intersection of
their corresponding components is empty.

The pseudo volume of an interval vector is defined by (5),
where diam{-} calculates the diameter of an interval.

vol{[x} = ) diamf{[x]} (5)

B. Review on the FBP Method

The FBP [24] method is a widely used interval analysis
method to solve constraint satisfaction problems (CSPs), which
can be defined by (6) [23].

I (f(x) = 0,x € [x]). (6)
Here,
fi() = fi(xy, s x0)
Ut it @)
The solution set of H is defined as:
S = {x € [x]|f(x) = 0} (3)

Note that S is not necessarily an interval vector. Utilizing
interval analysis, the interval hull of S is the optimal solution,
which can be defined by (9).

[x]'=[S] 25 ©)

The FBP method contracts H so that a suboptimal solution
[x] can be found via a recursive algorithm, in which [x] 2
[x]’ 2 S. The FBP method was chosen as a benchmark method
in this paper because it is straightforward to implement and can
handle nonlinear models [24].

C. DSE of Power Systems through the FBP

The FBP method can be applied to estimate the upper and
lower bounds of the dynamic states of a generator (e.g., rotor
angles and speeds) as follows. Assume that a PMU measures
the voltage and current phasors at the terminal bus of the target
generator. Their measurement noises can be quantified through
the upper and lower bounds of interval variables V, 8 and /g,
ILung, respectively. Note that because all the variables thereafter
will be interval variables, the brackets in their notations are
dropped hereafter to be concise. The corresponding real and
reactive  powers are calculated as P, +jQ', =
Vipgge' (¢ ~Tana).

The input vector (u), output vector (y) and state vector (x)
are defined in (10.a2)-(10.c) as interval vectors, and described in
Appendix 1. Here, P,'is the real power calculated from voltage
and current phasor measurements. P, and @, are the real power

and reactive power calculated from the estimated states through
(41)-(47) or (49)-(54).



u=[P, V 0]. (10.a)
y=1[F Q" (10.b)
X = [Elq El’i 6 w Efd VF VR TM Psv]T. (IOC)

The generator model can be defined as a continuous-time
nonlinear state space model (16) in Appendix 1. To apply the
FBP method, (16) is discretized into the discrete-time model of
(10.d) as follows.

{ Xia1 = f(x ug) + wy (10.d)
Vierr = 9 X1, Upr1) + Viys

The FBP can be applied to (10.d) through two stages
iteratively: forward propagation and backward propagation.

(1) First, assign £=0. Initialize x, = [xo,fo]. Here, x, and
X, are the upper and lower bounds of the states. Usually,

the initial interval x, shall be large enough to cover its
true values.

(i1)
(iii)

Initialize Xk+1 = [xlower limit, xupper limit]'
In the forward propagation stage, the intervals on the left
side of the constraints (10.d) are contracted through
* Flixgyr = %00 N0 G, wge) + wye)
* F2yis1 = Vit NG Oy Ui 1) + V1)

if isempty (Yx41), g0 to (vi).
In the backward propagation stage, all the intervals on the
right side of the constraints (10.d) are contracted through.
© Blixgsr = X1 NG Oerts Xt Ui 1 Vi)
* Bl =x n(f+(xk+1v Xi» Uks Wk))
Repeat (iii) and (iv) until the contractions of x;,, and
X, are smaller than a predetermined threshold.
Assign k = k + 1, and go to step (ii).

(iv)

)
(vi)

In step (ii), x4 can be initialized with the anti-windup
limitation and physical limitation. In step (iii), if the resulting
Vi+1 in F2 is empty, the measurement is treated as bad data and
dropped.

In step (iv), functions g* and f* in B1 and B2 are the
pseudo inverse of functions g and f, respectively. They are
constructed to find the x;,, and x; from y,,, and x;,4. By
reducing the dependence problem, the pseudo inverse function
can leverage past states. For example, equations (55)-(68) and
(70)-(83) in Appendix II show the standard pseudo inverse of
function g, and equations (69) and (84) are further developed to
reduce the overestimation caused by the dependence problem
during the backward propagation.

Following the procedure steps (i)-(vi) above, the FBP
method can calculate the upper and lower bounds of the
dynamic states of a generator. Yet, as it will be shown in the
case studies in Section IV, the bounds of the states may grow
rapidly with time and quickly out of reasonable ranges, which
makes the estimation results not useful in guiding operations.

III. CHALLENGES OF OVERESTIMATION AND THE PROPOSED
SOLUTIONS

The FBP method is a rigorous interval analysis process,
which implies all the possible values of the arguments are
guaranteed to be enclosed in the resulting intervals. However,
the resulting intervals may also include spots that are not part
of the actual solution set, which is known as the overestimation
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problem [22]. In regular interval computing, overestimation is
usually neglectable. But it presents a significant challenge to the
DSE because, in the forward propagation step of each time
instant, the state transition function rotates and scales the state
intervals, which leads to growing intervals along the direction
of each individual state. Without proper control, the resulting
state intervals may keep growing with time to include more and
more unnecessary spots, which can eventually compromise the
application value of estimated intervals. To reduce the
overestimation, the authors propose an eigen decomposition
based approach in subsection B for a linear system, and then
modify it for the nonlinear system of a generator model in
subsection C.

A. Overestimation Problem

Both the dependence problem and the wrapping effect
contribute to the overestimation problem in the DSE. Readers
are referred to [22] for their detailed descriptions and examples.
A brief overview is provided as follows for this paper to be self-
contained.

1) Dependence problem

When an interval variable appears multiple times in the
expression to be evaluated, the dependence problem develops
because each appearance is treated as an independent variable
during interval calculation. As such, to reduce the dependence
problem, the authors of this paper have tried to simplify the
formulas to be evaluated symbolically by factoring out common
terms. For example, in addition to inputs, outputs, and states,
equations (55)-(68) and (70)-(83) have involved serval
intermedia variables, such as V, V;, I; and I;. They all depend
on the inputs, outputs and states, and appear in the equations
multiple times, which will lead to the dependence problem. To
reduce the overestimation from the dependence problem,
equations (69) and (84) are created without these redundant
variables.

2) Wrapping effect

The wrapping effect can also cause overestimation in
interval contractor. Because only axis-parallel boxes are used
for interval computing, axis-parallel boxes are wrapped around
non-axis-parallel areas in the solution space, which comprise
not only the precise solution but also physically impossible
points. As such, to reduce the negative impact of the wrapping
effect, one should try to reduce rotating operations when
possible.

B. Eigen decomposition based Interval Analysis (EDIA)
Method

To suppress the overestimation of the FBP from the
wrapping effect and dependence problem during the DSE of a
linear system, the authors propose an EDIA method as follows.
Assume that a system can be described by the linear state space
model (11).

{ Xp41 = Axy + Buy, +wy, (11)
Vierr = CXppr + Dljeyq + Vpeyq
Here, x, uy, Yy are the states, inputs, and measurements at
time k, respectively. A € R™*™x B € R™*"™u ( € R™*"x
and D € R™*™ are the constant matrices. wy, and v, are the
noises of the state transition function and the measurement



function, respectively, which include time discretization and
model approximation errors, etc.

To reduce the wrapping effect, an auxiliary vector xj, is
introduced through (12).

X' = Q7 xy (12)

Here, Q € R™*™x and i column of Q is the right eigenvector
q; of matrix A. Then, the original system (11) can be
transformed into (13) by replacing x;, with xy.

X 41 = Q7TAQX", + Q7' Buy + Q7w (13.a)
= Ax’k + Q_lBuk + Q_lwk
Vi1 = CQX' i1 + DlUpyq + Vpeyq (13.h)

Here, A is a diagonal matrix whose diagonal elements are the
corresponding eigenvalues of matrix 4, A;; = A;. Note that in
(13.a), every element in the state x;, is updated independently,
ie, x'i,; = ;x'L in the prediction step. As such, the
overestimation problem associated with the dependence
problem and the wrapping effect can be significantly reduced
in the transformed dynamic system (13).

C. Modified EDIA (MEDIA) Algorithm

The proposed EDIA is modified to estimate states of
generators, which has a nonlinear model. The MEDIA method
is proposed here to combine the advantage of lower
overestimation in the EDIA and applicability to a nonlinear
system in the FBP. Consider the discrete-time equations for a
nonlinear dynamical system in (14).

{ X1 = h (e, ug) + wy (14)
Virr = 9 Xpep1, Uks1) + Vicrs
Here, h is the state transition function from R™ X R™« to R™x |
and g is the measurement function from R™ X R™« to R™. To
apply the proposed EDIA, (14) is modified to separate its linear
and nonlinear terms as (15).

Xk4+1 = Axk + Buk + Ah(xk, uk) + Wk (15 a)
= Ax; + Buy, + wyi (xp, ug), '
where

W'y (e, Ug) = Ah(xg, uy) + wy. (15.b)

Here, A, B represent the linear components of the function
h, while Ah is the nonlinear component of the function h. For
example, I, in equation (18) and I, in equation (19) shall be
considered as nonlinear component and included in Ah.

Merging the nonlinear components into the process and
measurement noise through the equation (15.b), the MEDIA
can be applied to estimate the states of the modified model.

In summary, the MEDIA method can be implemented as
follows:

MEDIA:
Initialize x, with physical limit and engineering knowledge.
xp — Q7'xg
fork =1tokonqg
Initialize

Xp+1 < [xlower limit» xupper limit]

X1 < [—inf,inf]

MEDIA updates:

LXyq & g N (Ax i+ Q7'Buy + Q7w k(xk'uk))

2. X1 < xk+1n(Qx/ k+1)
Apply FBP:

X1 < g N (R, wg) + wy)
Vier1 < Yierr NG O, Wiy 1) + V1)
. If isempty (Vy41), continue
i1 < Xiea1 N 9T Okrrs Xieat U1 Vierr)
X = xkﬂ(h+(xk+1'xk'uk' Wk))
8.4 ka1 =X 131 N(Q ™ Xk41)
end for

Here, the states are predicted in steps 1-5 using (15). Step 5
is to detect bad data and mitigate its negative impacts. The
predicted states are then corrected in steps 6-8 to update their
intervals based on the measurements using (55)-(102) in
Appendix II. Note that the intersections of the estimated
intervals from the proposed MEDIA method and the FBP
method are used as the new estimate. The procedure guarantees
that the new method can achieve estimation intervals that are
narrower than or equal to each individual method with
guaranteed hard boundaries.

N N bW

IV. CASE STUDIES

In this section, the performance of the proposed MEDIA
method is evaluated and compared with the FBP [24], extended
set-membership filter (ESMF) [20] , and HUKF [27] methods
using simulation data from the 10-machine 39-bus system as
well as the 16-machine 68-bus system. In addition, the
implementation efficiency of the MEDIA method is improved
to ensure that it can perform the DSE in real time.

A. Simulations using the 10-Machine 39-Bus System

To evaluate the efficacy and robustness of the interval
analysis results, time-domain simulations are carried out using
the IEEE 10-machine 39-bus system (shown in Fig. 1) to
generate all the true values of the dynamic states and
measurement variables. The parameters of the system are taken
from [25]. Its synchronous generators with governor and exciter
control systems are modeled by equations (18)-(26) in
Appendix T through a 9" order differential equation and
simulated using the 2" order Runge-Kutta method. To estimate
the dynamic states of generator G5, assume that a PMU is set
up at its terminal bus (i.e., bus 34) to measure its voltage phasor
(V £0), current phasor (Iyqg < Iang) at 60 samples/s. Bounded
intervals of [—0.001,0.001] are used to mimic the
measurement noises added to their true values as follows:

o [easured [frie 4+ [—0.001,0.001] in per-unit (pu),

neasured ~jbrue , + [—0.001,0.001] in radian,

o [measured ytrue 4 [—(,001,0.001] in pu,

o gQmearsued _gtrue 4 [_(,001,0.001] in radian.

The real and reactive powers are calculated through the interval
multiplication of the simulated voltage and current phasors.



Fig. 1. One-line diagram of the IEEE 10-machine 39-bus system [25].

1) Case I: Steady State Test

In this case study, the proposed MEDIA method is compared
with the FBP method [24] and the ESMF method [20] in its
capabilities of handling the overestimation problem in the DSE
during steady-state responses. To mimic the system’s steady-
state responses, no major outside disturbance is injected into the
system so that all the dynamic states remain constant during the
simulation of 50 s. For better illustration, all the algorithms are
initialized with the ideal initial condition, x, = x{™¢ +
[-1 X% 107°,1 X 107°], and the DSE is performed during the
steady state responses of the system. The measurement noises
are simulated using white noises, which are uniformly
distributed between -0.001 and 0.001. Due to the space
limitation, only the states of generator G5 are estimated with its
terminal voltage phasor and real power as model input.
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Fig. 2. Pseudo volume of the estimated states using the proposed MEDIA
method, the FBP method and the ESMF during the steady-state responses.
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Fig. 3. Estimated states using the proposed MEDIA method, the FBP method
and the ESMF during the steady-state responses.

The estimation results are summarized in Fig. 2 and Fig. 3.
Note that the pseudo volume defined in (5) is used as a metric
in Fig. 2 to evaluate the performance of a DSE method. A
smaller pseudo volume indicates less overestimation problem.
In Fig. 2, the pseudo volumes of the proposed MEDIA method
are smaller than those of the FBP and EMSF methods, which
suggests that the MEDIA method has significantly reduced the
overestimation problems in its estimated intervals. Also, it can
be observed in Fig. 3 that the true states stay inside the
estimated intervals of all the three methods. In addition, the
proposed MEDIA method has the smallest interval width. In
comparison, the EMSF method has the largest interval width,
and the volume from the FBP method is in the middle. More
specifically, the interval widths of all the states estimated by the
EMSF method grow exponentially in the DSE, which
disqualifies the EMSF method in the power system DSE. In
addition, the interval widths of w, T), and Ef, estimated by the
proposed MEDIA method are significantly smaller than those
from the FBP method, which suggests that the proposed
MEDIA method can more effectively reduce the negative
impact of the overestimation problem than the FBP method in
the DSE.

2) Case II: Transient Response Test
In this case study, the proposed MEDIA method is applied
to estimate the intervals of the dynamic states during the
transient responses using two estimation models. As it is shown
in Fig. 1, to incur transient responses, a large disturbance is
introduced to the system at t =30s by opening the
transmission line between buses 15 and 16. The initial state
intervals are set with 5 percent of their normal value from their
true state as boundaries, x, = x§™¢ + [—0.05,0.05] * x5"™¢.
The bounded measurement noises are simulated using white
noises, which are uniformly distributed between -0.001 and
0.001. The proposed MEDIA method is implemented for the
voltage-input estimation model and current-input estimation
model, which are described in Appendix I [26].
[ current as input

N voltage as input
= = true value
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Fig. 4. States estimated by the proposed MEDIA method using the voltage-
input estimation model and the current-input estimation model during the
transient responses.
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The estimation results are summarized in Fig. 4. The
estimated states are plotted as the orange and red areas that are
defined by upper and lower bounds. The true state values from
the simulation are shown in dot lines. It can be observed that
the states estimated by the proposed MEDIA method quickly
converge to stable interval widths within 30 seconds. The
interval widths of the estimated &, E; and E, are smaller with
the voltage-input estimation model than the current-input
estimation model. The MEDIA method has the capability to
track all the states and gives the boundaries that always include
the true states. Similar results are obtained for case studies with
biased initial conditions and not detailed here to stay concise.
3) Case Ill: Comparison with the HUKF

In this study, the confidence intervals generated by the
HUKF [27] and MEDIA methods are compared in the presence
of bounded measurement noise. Assume that the measurement
noise follows a bimodal distribution that is uniformly
distributed around the upper and lower bounds, i.e., [—1 X
1073,-09x1073]U[0.9x 1073,1 X 1073]. Assume that
the DSE method only has access to the measurement’s upper
and lower boundaries instead of its PDF. To apply the HUKF
method, the measurement standard deviation is set to one-sixth
of the interval width of the measurement noise. The
upper/lower boundaries of the estimation intervals are
constructed by adding/subtracting three standard deviations
to/from the estimated states. The boundaries and confidence
intervals generated by the MEDIA and HUKF methods are
summarized in Fig. 5. Here, the red dotted line represents the
MEDIA boundaries, and the blue line represents the HUKF
confidence intervals. The black line indicates the true value.
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Fig. 5. Estimated state(s )using the proposed MEDIA method and the HUKF
method under bimodal distribution noise.

It can be observed that the true states of §, Eg, and Ej fall
out of the confidence intervals estimated by the HUKF method.
Meanwhile, the HUKF and MEDIA methods produce similar
intervals that cover the true value in Efy4, Vg, and V. In addition,
the MEDIA method generates narrower intervals than the
HUKF method in w, Ty, and Py . It is worth noting that the true
states always fall into the intervals estimated by the MEDIA
method. The study shows that the proposed MEDIA method is
more robust than the HUKF method in that its estimated
intervals always include true states.

B. Simulations using the 16-Machine 68-Bus System

To verify the performance of the proposed MEDIA method
in a more complex system using a higher-order model, time-
domain simulations are carried out using the IEEE 16-machine
68-bus system (shown in Fig. 6) to generate all the true values
of the dynamic states and measurement variables. The
parameters of the system are taken from [29]. Its synchronous
generator is simulated by a sub-transient model [30] with an
IEEE Type DCI1 excitation system [31] and a turbine-governor
system which are modeled by equations (27)-(39) in Appendix
I through 11"-order differential equations. There are more
nonlinear variables in this model, like the saturation function in
equation (39), which challenges the MEDIA method. The
simulation is carried out using the Power System Toolbox
(PST) [28]. To incur dynamic responses, a three-phase fault is
set off at r=30.10 s on the branch between buses 5 and 8. The
fault is clear at t=30.15 s at its near end of bus 5, and at r=30.20



s at its far end of bus 8 by tripping off the faulty branch. A PMU
is set up on the terminal bus of generator G1 and collects phasor
measurements at 100 samples/s. The measurements’ noise
follows the same distribution as the previous case. To reduce
the negative impact of the non-linearity on the DSE, linear
interpolation is employed here to increase the effective
sampling rate to 200 samples/s [32].

B41 B40 B48 B47 B02 B25
—

Fig. 6. One-line diagram of the IEEE 16-machine 68-bus system with the faulty
line marked out [33].
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Fig. 7. Estimated states using the voltage-input estimation model and the
proposed MEDIA method during the transient responses.

The estimation results are summarized in Fig. 7. It can be
observed that the proposed MEDIA method gives the
boundaries with reasonable interval width for all the estimated
states. Taking advantage of the high sample rate, most of the
states converge quickly from the initial intervals. States w, tg;,
tg, and tg; take a longer time duration to converge. It can be
observed in the figure that the initial intervals of these states are
way wider than the setting initial intervals. This was due to the
overestimation during the conversion from X, to X;. It takes
about 30 seconds for these states to converge to stable interval
widths.

C. Computational Efficiency

To test the computational efficiency of the proposed MEDIA
method, MATLAB was used to implement the algorithm and
tested on a PC with an Intel Core 17, 3.20 GHz processor, and
16 GB of RAM. The computation time for assimilating the
measurements of one time instant was recorded to evaluate
whether the algorithm can run in real time. The statistics on the
computation time were obtained from 3,000 sampling instances
and presented as (mean t+ standard deviation) for two
different implementations, as follows:

* 63.88 %+ 0.05 ms (implementation using INTLAB),

e 2.59+0.01 ms (bound-focused code implemented by

the authors).

Initially, the proposed MEDIA method was implemented
using INTLAB [34], a toolbox designed for accurately
implementing interval analysis algorithms by overloading
MATLAB operators. However, the implementation using
INTLAB was found to have low computational efficiency.
Considering the sampling interval of a PMU with a reporting
rate of 100 samples/s is 10 ms, the implementation using
INTLAB cannot keep up with the stream of the measurement
data in real time. To improve the computation efficiency, the
authors modified the initial INTLAB implementation code by
removing the calculation for rounding errors and focusing only
on bound calculation. Because the rounding errors are
negligibly small compared to the measurement and process
noises in the proposed application, the modified code can
achieve virtually the same accuracy as the original INTLAB
code. At the same time, it reduces the calculation time from
63.88 ms to 2.59 ms, which makes it possible to run in real time.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the MEDIA method is proposed to perform the
DSE of synchronous machines in power systems under the
framework of interval analysis. Different from the Bayesian
approach, the proposed MEDIA method uses interval bounds



(instead of PDFs) to quantify noise uncertainty, and offers
guaranteed hard boundaries for each estimated state.
Leveraging the eigen decomposition, the proposed method can
reduce the negative impacts from the wrapping effects and
dependence problem of overestimation. Compared with the
FBP method and the ESMF method, the proposed MEDIA
method can reduce the overestimation in the high-order control
system of synchronous machines and give narrower intervals.
Compared with the confidence intervals bulit by the HUKF,
MEDIA method offer narrower interval and promise to cover
the true value. The case studies show the feasibility of the
proposed MEDIA algorithm for handling the different
generator models and offering guaranteed state boundaries in
estimating dynamic states in real time.

In this paper, the interval width of the process noise has been
set as a constant interval to stay concise. Follow-up studies will
be carried out to adaptively adjust it based on the estimated
process noise to improve estimation accuracy. In addition,
future work will include studies on how the IA-DSE method
can work with a point estimation method and provide valuable
complementary information.

APPENDIX I. STATE TRANSITION AND MEASUREMENT MODELS
OF SYNCHRONOUS MACHINES

In general, the dynamic behaviors of a synchronous machine
can be described by the differential algebraic equation of (16),
which includes a state transition function A(*) and a
measurement function g(*). These functions are detailed in the
following subsections.

& =h(x,u)+w (16.a)
dt (16.b)
y=gxuw+v

A. State Transition Function

The state transition function 4(*) of a synchronous machine
can be described using differential equations. The 9™-order
model and 11"-order model that are used in the paper are
described as follows.

1) Model I: the 9"-Order Model

Define the state vector as

x=[Eq Ei 8 w Eyq Vg Vg Ty Py]". (17)

The following 9"-order differential equation can be used to
model the dynamics of governors, exciters, and synchronous
generators.

» Synchronous generator:

T 40 djtq =—E'q— Xqg—X')lq + Ezq (18)
T'qodd% = _EL,i - (Xq - X('I)Iq (19)
=0T (20)
%%:TM—P’E—D(m—ms) @n

* Exciter:
TE% = —KgEq + Vi (22)

av, K
TFd—tF =V, + T—z (Vi — KeEra) (23)
Tagp =Vt Ks(Vyeg — Ve = V) (24)
¢« Governor:
CH Qgr = —Ty + Psy (25)
T Py _ Py, + P, 1(“) 1) 26
SV dt - N C RD (1)5 ( )

Here, w and & represent the rotor speed and rotor angle,
respectively. Eq and Ej represent the g-axis and d-axis
transient voltage, respectively. Erq, Vi, Vi represent the field
voltage, the scaled output of the stabilizing transformer, and the
scaled output of the amplifier, respectively. Ty and P,
represent the synchronous machine mechanical torque and
steam valve position, respectively. Tgo, Tgo, Tg» Tr» T4, ,and
Tsy represent the corresponding time constants, in seconds. Kg,
, and K, represent the controller gains. V,..r and P, represent
the known control inputs. X4, X3, X4, X, represent the d-axis
synchronous reactance, transient reactance, q-axis synchronous
reactance and transient reactance, respectively. Note that P',
represents the real electrical power as an input. I and I,
represent the d-axis and g-axis currents, respectively. They are
the variables which need to be constructed from input » and
state x.
2) Model II: the 11"-Order Model

Define the state vector as

x=[8 w Ej Eij Yia
Erg Vg Ry tg, tg, tg3].

The following 11%-order differential equation can be used to
model the dynamics of governors, exciters, and synchronous
generators.

* Synchronous generator:

’ dECII 12 ’
Tio e (Erq — sat Ey” — sat,Eq — sat,

27

(xq —x5)(xg — x4
— E' —
(x:i _xl)z ( q lpkd) (28)
(xg —xg)(xg — x)
- ’ Id)
xd — X
, 4By —(—p — (xq = x4)(xg —x1) I (29)
o gt d xg — X a
w AWka , ,
Tao - (—Yra + Eq — (xg — x)1g) (30)
dé
i 2nwy(w — 1) 3D
dw—1<t +T4<t + 5y ) P’) 32
dt _ 2H 93 T, 92 TC91 e (32)
« Exciter:
dVy
Ty - (Ve + Ky *Vy) (33)
dEfq
Tg I = (Vg — KgE¢q — SE) (34)
dRy¢
TFW = (_Rf + Efd) (35)

¢ Governor:



dtg,

Ts i (Pmo + (1 —w)/R —tg1) (36)

dtg, T;
T, == ((1 1)t - tgz> (7)
Ts ar (( T_5> (tgz + T, tg: ] —tgs (3%)

in which
[ AePlEral forE;y >0 39)
" |—aeflEral for Epy <0,

Here, ), represents the flux on d-axis. x4, x; and xj
represent synchronous reactance, transient reactance, and sub-
transient reactance on d-axis, respectively. x,, x4 and x;
represent synchronous reactance, transient reactance, and sub-
transient reactance on (-axis, respectively. x; represents the
leakage reactance. sat;, sat, and sat; represent the field
saturation factors. Ry and Sp represent the stabilizing
transformer state variable and saturation function in the exciter,
respectively. tg,, tg, and tgs represent the governor state
variable, servo state variable and reheater state variable,
respectively. Ts , T , T3 , T, and T; represent their
corresponding time constants.

B. Measurement Function

The measurement function g(*) of a synchronous machine
can be described using algebraic equations. There are many
approaches of setting measurements for the DSE. The two
estimation models, i.e., the voltage-input estimation model and
current-input estimation model, are used in this paper and
detailed as follows.

1) Estimation model that uses voltage phasors as inputs

Define the input vector as

Uy = [P,e V.6 Vref PC]T (40)
Here, V and 6 represent the terminal bus voltage magnitude
and phase angle, respectively. V. and P, represent the
controller inputs, which are modeled by interval variables
whose bounds are set up according to the accuracy of
measurements. To form the state transition function h,(*), s
and 7, in (18)-(19) and (28)-(30) can be calculated in term of
input u, and states x as in (41)-(44).

Vy; =Vsin (6 — 60) (41)
Vg =Vcos (6 —0) (42)

E, -V,

a" g
= 43

Eq —Va
I, =— - (44)
q Xq
Define the output vector as

y =[P Qe]T (45)

Here P, and Q. represent the real and reactive electrical
power outputs of the generator. To form the measurement
function gy (*), P. and Q. can be calculated from input u,, and
states x as in (46)-(47).

P, =Vyly + V4l
Q. = Vqld - leq
2) Estimation model that uses current phasors as inputs
Define the input vector as

(46)
(47)
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up = [P Imag  lang  Vrer Pc]™, (48)
where Iqq and Iy, are the current magnitude and current
angle at the global reference.

To form the state transition function h; (*), I; and I, in (18)-
(19) and (28)-(30) can be calculated from input u; and states x
as in (49)-(50).

Ig = I;magsin (6 — Igng) (49)
lqg = Iinagcos (6 — Iang) (50)

This model uses the same output vector as in (45). To form
the measurement function g;(*), P. and Q. can be calculated
from input u; and states x as in (51)-(54).

Vy = Ej + X, (51)
V, = Ej — 1,X} (52)
P, = Vyly + VI, (53)
Qe = Voly —Vul, (54)

APPENDIX II. BACKWARD PROPAGATION MODELS FOR THE
FBP METHOD

Because the forward propagation model in the FBP method
is straightforward, only the backward propagation model is
given in this appendix.

For the output function gy (*), the backward propagation
model can be summarized as in (55)-(68).

Vo = Ve N [P = Vala)/14] (55)
Iy = Ig N [(Pe — Vala) /Vy] (56)
Va =Va N [(P —Valg)/1a] (57)
Iy = Ig N [(Pe — Vala)/Val (58)
Vo = Vg 0 [(Qe + Valy) /1] (59)
Ig = I N [(Qe + Valg)/Vy] (60)
Va=Van[(Vlg — Qe)/1g] (61)
Iy = 1; N [(Vgla — Qe)/Val (62)
Vo = Va0 [Ey + [,X)] (63)
Ey = E) 0 [Vg — [,X,] (64)
V, =V, 0 [E, — [,X}] (65)
E} = E} 0 [V, + [,X}] (66)

§ = & N [asin (Vv—d) +6] (67)
6 = 6 N [acos (E) + 0] (68)

B v

To further suppress the overestimation in the measurement
equations, a simplified equation for § is employed as (69).

§=at (E’d>+ t ( fe )+V (69)
= atan|—- | + atan | ——————
E q Qe + Vrr%ag/Xd o

For the output function g;(*), the backward propagation
model can be summarized as in (70)-(83).

Vo =Vg N [(Pe — Vala)/14] (70)
Iq = Iq n [(Pe - led)/Vq] (71)
Va =Va N [(P — Vala)/I4] (72)
Iy = Ig N [(Pe — Vala)/Val (73)
Vo = Vg N [(Qe + Valy)/14] (74)
Ig = 1g N [(Qe + Valy)/Vy] (75)
Va =Va N [(Vgla — Qe)/14] (76)
Iq = Iq n [(V;qld —Q)/Val (77)
la = 1a 0 [(E} — V)/x3) (78)
Ej = Ej 0 [Vy— I,X!] (79)
Iy = Iy 0 [~(E3 — V) /X, (80)
E} = E} 0 [V, + I,X}] (81)



§ = 6 N [asin (1 ) + Iyng] (82)
I,

§ = 6 N [acos (1 ) + Iangl (83)
mag

To further suppress the overestimation in the measurement
equations, a simplified equation for § is employed as (84).

E'y + X, IZ
6= atan( ) + atan <M> + lang (84)
E', P,

For the state transition function h(*) in (18)-(26), the
backward propagation model can be summarized as in (85)-
(102).

* Synchronous generators.

Ty =T N [P’e + D(W* — wy) +—— (" - w")] (85)
step*Ws
k+1 t“e_z’“’s Ty —Po+Dws

wk = w¥n cst(e,,n:)so b )] (86)

—Steple
ok = [5k+1 + (0* — ws)tstep] (87)
wk =wkn [(5k+1 - é‘k)/tstep + ws] (88)

. k E,k+1 tstep( (Xd_Xd)1d+Efd)

Ef =B (89)

T,

k _ gk Ty (prk+1 'k ik '
Efy = Ef4n [ﬁ (E;" —EJ")+ Ef" + (Xq —Xd)ld] (90)
BT xag)
r 0
E)f =E)*n e 1)
T{IO
» Exciter:
tS e tS e K
By = Ef 0| (Bl - — vE) /- =) | 92)
tstepK
vk =vkn [ - (Ef ~ Efy + 2 B, )] 93)
VF]-(H Kptstep(VR KEEfd)
VE=Vkn e e (94)
T
Ty
vk=vkn [K’i (tm (Vi —vF) + VF) + KEE}‘d] (95)

Tr (yk+1 _ yk
KFKE (tstep (VF VF ) + VF)] (96)

tstepK Lste
<V,é‘“ — = (Veep — Vi = V)) /- T—)] ©7)

1
By = Bl 0 [ vk -

vk =vkn

VE=V¥n [Vref

e Governor:

_y_1( T k+1 k
|74 KA (tm (VA —vE) + vk )] (98)

k _ Tk k+1 _ Lstep pk _ Estep
T = T 0 |(Tit - 22 Pl ) y(1 - 2| (99)
Ply = Ply 0 [ 22 (1™t — 1) + 4] (100)
step
tste wk
_ el regi(4-1))
Psy = Psy T (101)
Tsv

wk =wkn [(—RD (fﬂ (PEft — PE) + PE — PC) e 1) ws] (102)
step
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