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Abstract—In this work, we present novel concepts for quantum
algorithms to solve transient, nonlinear partial differential equa-
tions (PDEs). The challenge lies in how to effectively represent,
encode, process, and evolve the nonlinear system of PDEs on
quantum computers. We will discuss the new techniques using the
incompressible Navier—Stokes equations as an example, because
it represents the fundamental nonlinear feature and yet removes
certain complexity in physics, allowing us to focus on the design of
quantum algorithms. Previous attempts solving nonlinear PDEs
in quantum computation have often involved storing multiple
copies of solutions or employing linearizations. Neither is practi-
cal due to exponential scaling with evolution time or insufficient
solution accuracy. We propose a new framework based on matrix
product states (MPSs) and matrix product operators (MPOs),
in addition to the Krylov subspace methods. For example, the
solution variables of the Navier-Stokes equations are represented
by MPSs, and the linear and nonlinear terms are processed
by MPOs. The time evolution of the operators is attained by
a fast-forwarding algorithm using Krylov subspace methods.
Furthermore, we discuss various techniques for efficient encoding
of MPSs, measurement reduction for MPOs, and use of tensor
operations to treat multi-variate, multi-physics characteristics of
Navier-Stokes.

Index Terms—Nonlinear partial differential equations, Incom-
pressible fluid dynamics, Tensor networks, Matrix product states,
Matrix product operators, Krylov subspace methods

I. INTRODUCTION

Partial differential equations (PDEs) are ubiquitous in sci-
ence, governing the time evolution of systems in broad range
of domains such as climate, transportation, biology, national
security, and astrophysics to name a few. The main complexity
of numerically solving these PDEs is when nonlinear terms
are present. Analytically, for the full 3D Navier—Stokes equa-
tions, the existence of smooth and globally defined solutions
is not known. Numerical methods can provide insight into
how solutions might behave and offer evidence regarding
the existence of singularities or the stability of solutions.
Although significant progress has been made in solving 3D
compressible Navier—Stokes equations with complex physics,
such as turbulence by classical high-performance computing

(HPC), accurate modeling and simulation of practical turbu-
lent flows are still challenging and can be computationally
prohibitive for high-Rynolds-number flows, even with exas-
cale supercomputers [1]. For example, the total amount of
computational resources used by turbulence-related projects
on the Oak Ridge Leadership Computing Facility’s Frontier
exascale supercomputer in 2023 amounts to around 35-45%
of the available resources.

With the advent of quantum computing, we are on the
cusp of redesigning computational capabilities. By harnessing
the power of quantum computers and algorithms, we aim
to improve solution techniques to turbulence that are hard
and intractable for conventional HPC. There have been many
attempts in the past to solve linear PDEs using quantum
computing, mainly using quantum linear solver algorithms
(QLSA) [2], [3]. Linear versions of the Navier—Stokes equa-
tions have profound applications for modeling efforts, and
quantum algorithms to solve many such problems have been
demonstrated in the past [4]-[7], including hybrid approaches
[8]. However, quantum algorithms that efficiently solve non-
linear PDEs are limited [9]. Most of the efforts for efficiently
solving nonlinear versions of Navier—Stokes equations (and
other nonlinear PDEs) have been focused on linearizing the
nonlinear equations and using QLSA to solve the resulting
set of ordinary differential equations (ODEs). For example,
Carleman linearization can be used to solve an N-dimensional
quadratic nonlinear ODE [10], [11]. Another approach is the
use of Koopman von Neumann representation for the time
evolution of nonlinear dynamical system [12]-[14].

Some efforts have demonstrated the capability to address
nonlinear PDEs [9], [15]. Some works involve the use of
quantum amplitude estimation algorithm (QAEA) to solve
specific nonlinear PDEs [16], [17]. Another promising method
uses variational quantum computing and tensor networks to
calculate nonlinear terms for single-variable PDEs [18]. While
the quantum nonlinear processing unit (QNPU) is a novel
formulation to treat nonlinearities in PDEs, the system of
PDEs (e.g., Navier-Stokes equations) adds new challenges.
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Alternate to the variational optimization procedure, Krylov
subspace methods are promising to generate tensor operation
circuits. Furthermore, the complex tensor operations can lead
to large terms resulting from the operators, causing challenges
in the measurement stages.

In this New Ideas and Emergent Results paper, we describe a
quantum algorithm framework using tensor networks to solve
the system of PDEs, specifically, the Navier—Stokes equations.
For clarity, we describe the framework using the incom-
pressible Navier—Stokes equations, providing a conceptual
description of how the nonlinear terms in the PDEs can be
effectively processed using tensor network-based algorithms.
We also describe techniques to efficiently encode the flow
states into tensor networks, address the multi-variate coupling
in PDEs, and reduce measurement for tensor operations.

II. INCOMPRESSIBLE NAVIER—STOKES EQUATIONS

The dimensionless incompressible Navier—Stokes equations
for continuity and momentum are given by

V.u=0, (1)
ou 1 o
o - = . 2
N u. Vu —Vp+ Rev u+s )
nonlinear term ——
linear terms
Here, u = (u,v,w) represents the velocity vector in the

Cartesian coordinate system, & = (z,y, z), evolving in time,
t. The pressure of the flow field is represented by p, Re
is the Reynolds number! of the flow, and s represents any
source terms or external forcing to the flow. For simplicity, s
is neglected in our demonstration.

The pressure is solved using the Poisson equation obtained
by taking the divergence of Eq. 2 and applying Eq. 1, giving

Vip=—-V-(u-Vu) 3)
nonlinear term

Classically, velocity and pressure are solved iteratively at each
time step of the solver — for example, starting with an initial
velocity field, pressure is solved using Eq. 3 and the solution
is used to solve for velocity using Eq. 2. In the quantum
algorithm, this coupling between velocity and pressure needs
to be addressed carefully. In Eq. 2, u - Vu, is the nonlinear
term and its accurate computation is critical, especially for
highly turbulent flows. This is because understanding tur-
bulence resides in comprehending the interscale correlations
that influence turbulence structure, instability dynamics, and
energy transfer across scales. Fig. 1 illustrates the interscale
dynamics in a Taylor-Green vortex problem. Computation of
the interscale correlations becomes more challenging for high-
Reynolds-number flows where disparate scales lead to stronger
nonlinearity. Next, we describe the quantum algorithms for
evaluating the linear and nonlinear terms, highlighted in the
momentum (Eq. 2) and pressure Poisson (Eq. 3) equations and
for evolving the system of PDEs.

' A non-dimensional number representing the intensity of the flow to help
identify the transition between laminar and turbulent flow behavior.

Coarse turbulent scales
are convected to end time

Fine scale influence
uon951100 8[eds 9SiB0D

Fine scales are iterated to
local space-time equilibrium

Fig. 1. Iso-surfaces of enstrophy in a Taylor-Green vortex problem showing
the scale correlation [19].

III. QUANTUM ALGORITHM

The main idea behind the algorithm is to represent the
classical solution variables (e.g., the velocity vector) in quan-
tum states by transferring Eq. 2 to a Hamiltonian evolution
problem. There are three steps in this algorithm:

1) Quantum embedding of the flow variables - use matrix
product state (MPS)

2) Quantum representation of the linear and nonlinear
differential operations - use matrix product operation
(MPO) and quantum Krylov subspace methods

3) Time evolution of the quantum operations - use varia-
tional fast-forwarding algorithms

Fig. 2 illustrates the steps from left to the right. That is prepare
the initial state and the initial Hamiltonian, encode the variable
states in MPSs, advance the states by MPOs, measure and
analyze. In the following sections, we discuss the technical
details.

A. Quantum embedding of flow variables using MPS

One of the most challenging aspects of translating quantum
algorithms to solve classical problems in various domain
applications is embedding the state information into quantum
states. Inspired by tensor networks, we embed the flow states
as matrix product states (MPSs) [20], [21].

The key idea is to decompose each component of the D-
dimensional velocity variable u = ZZ uq(x)e, into a series
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time-evolving MPO decompositions
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Fig. 2. Sample depiction of the tensor network-based quantum circuit representing the time evolution of the nonlinear equations. The circuit depths increase
linearly, O(T'), with time steps (T') in the conventional Trotterization procedure. In contrast, the fast-forwarding algorithm reduces the circuit depth to O(1)

by approximating the time-evolving operator with a diagonal factorization.

of low-rank tensors. Suppose the PDE is discretized on a grid
with NV = K9 grid points in each dimension (total number of
grid points is KP9), where N is the classical registers and ¢
the number of quantum registers. Thus, the velocity variable
is approximated by u () ~ uq(x1, -+ ,2pq) = ua({zi}).
Here, « = 1,2,...,Dq and z; denote the position of the
element in the mapped quantum state space, and its value
ranges from O to K — 1. Then we can decompose the function
o ({x;}) into matrix product state (MPS) via the Schmidt
decomposition,

... AP )

JDq—1"

d
1 2
Z Ajl Ajl 2J2

JirIN-1

ua(ac) =

where D is the number of dimensions, d is the bond
dimension (or rank) that controls the quality of the tensor
decomposition, and A* is a third-order tensor. The same
procedure can be used to embed the pressure, p(x) (or any
other variable). Herein, we use w,({z;}) to denote the MPS
embedding of pressure, considering it to be an additional
decomposition. This leads to a total of D = D + 1 variable
decomposition.

The bond dimension is the dimension of the tensor that is
used to perform tensor contraction with another tensor, and
its value can be different for different tensors. For a full-rank
decomposition, the value of d increases exponentially from
the left to the middle of the tensor chain (min(j, Dg — 7))
and then decreases exponentially to the right-most tensor.
Thus, the bond dimension is exponentially large for a full-rank
representation of the original function. However, the number
of non-zeros singular values in the decomposition is usually
small compared to the full rank. Thus, we can impose a low-
rank approximation of the original state by only retaining the
d largest singular values in the decomposition at each bond.
With the low-rank approximation, the original function of K79
data points is replaced by a series of tensors with ~ Dq(Kd?)
elements in total, leading to a significant reduction of data
points. Furthermore, our recent work on “PermVQE” [22]
algorithm demonstrated that quantum-information theory can
be utilized to analyze the ranks of the tensors and optimize
their ordering to reduce the bond dimension. We elaborate
on some additional discussion for this efficient encoding in
the Appendix section (A). Using the MPS framework, we can

adaptively manage the computational resources needed to ap-
proximate solutions to the Navier—Stokes equations effectively.

Insight 1: Quantum-information-inspired efficient encod-
ing of flow variables.

B. Quantum mapping of linear and nonlinear differential
operators

Once the flow variables are embedded in the quantum state,
we now map the classical differential operations (linear and
nonlinear) to quantum operators. Below, we first elaborate on
how the linear terms — the pressure gradient, Vp, and the
velocity diffusion, V?u, terms — are individually represented
by matrix product operators (MPOs). Then, we show how the
nonlinear convective term, w - Vu, can be mapped using the
quantum Krylov subspace method.

Mapping the linear differential operators into MPOs:
Once the MPS state is constructed, differential operators (first
and second orders) can be easily mapped into corresponding
matrix product operators (MPOs) [23]. Within the finite dif-
ference scheme, the differentiation (any order n) of a function
uq(x;) at position x; is turned into a linear combination
of itself and its displacement wu,(z; = ndx). Consequently,
within the MPS representation, the differentiation operator
is connected to the MPO that induces the state transition
U () = uq(z £ ndz).

Let us consider the first and second order spatial deviates
in central difference (with O(dz?) error)

Qua (i)  ua(®i +07) — up(z; — 07) 5)

Oz 20z
Pua(ri)  ua(wi +07) + ua(ri — 62) = 2ua(2)

Ox? 0x?

. (6)

The classical cost of applying these on the grid points is
O(K™P4). Using the MPS embedding of the variables, we can
use MPOs to implement the displacements in the grid as

Olualfes))) _ S*— 5~
L, Or T2 [ua({zi})) (7)
Ua(1T5 + -

Phalled) LS 25 22wy ®
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Here, S* are ladder operators that enable the operation of
state transitions in the quantum circuit

5 ualfed)) = {%me})% ual{z}) < KP

0, else
9)

s™= (s (10)
The MPO implementations can be efficiently performed using
a bond dimension of 3. Thus, the MPO implementation
gives a computational cost reduction to O(Dd?), leading to
exponentially faster operations for representations with small
bond dimension [23].

We note that for computing the finite difference operations
in other dimensions, the ladder operator can also be used to
perform displacements in the grid. The displacement step in
Eq. 9, instead of being unity, will now be dependent on ¢
and the particular dimension D where the finite difference
operation is performed. Furthermore, the operations can be
easily extended to incorporate higher order approximations.

Given the MPOs for the two linear terms and MPS being
represented as the tensor product of individual components
fua({2:}), up({z:})) = lua({2:})) ® uy({2:})), we can sum
the results of the two MPOs to give the full linear MPO for
the momentum equation as

« St — 8-
L ‘uouup> =—1y® W |ua({xz})a“p({xz})> +
1 S5F+5, -2
a2 =2 o L (e wp( ()

Y

Where S;,'[ and ST denote the ladder operators for pressure
and velocity, respectively. And the number of qubits required
to simulate the coupled multiphysics PDEs is doubled.

Insight 2: Treatment of multi-variate, multi-physics flow
characteristics using tensor products.

Mapping the nonlinear differential operator into MPOs.
The critical challenge in solving the Navier—Stokes equations
on quantum computers is the treatment of the nonlinear
term w - Vu due to the linear nature of quantum state
evolution. For a given circuit encoding the MPS u,, the
elementwise multiplication u,Vu, can be represented by
o (7:)[OVus](x;), where OV represents the MPO for the
gradient operator. Hence, following the quantum nonlinear
processing unit (QNPU) concept proposed in Ref. [18], we
can make a copy of the wu, circuit, apply the unitaries
for OV operators, and then add a set of CNOT gates to
obtain the element-wise multiplication between u, (z;) and
[OVu,](x;). However, unlike the variational algorithm pro-
posed in Ref. [18], our approach involves the use of a linear
combination of unitaries (LCU) to solve u,, efficiently.

The evolution of the momentum equation Eq. 2 with a time
step of 47 can be represented by a functional form w(t +
67) = e #97u(t), where e~“97 is a nonlinear and non-unitary
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evolution operator. Here, we map the scaled /(¢ 4+ 07) =
¢~ '2u(t + §7) into unitaries,

W (t+67) = V2 Ey(t) = e T Ay (1),

where A = > PZ- is Hermitian and expanded as sum of Pauli
strings. Hence, the change in w/(t) after one step is
t+07) — u(t) 1
oT Re
At the same time, u’(t + d7) can be approximated from w(t)
from a unitary operator =74 ~ (1 — i§7A), leading to
—isTA ~
A = %W = —iAu(t) difference. Consequently,
the coefficients ¢ = {¢;} can be obtained by minimizing the
cost function C = ||Ag — A||, which is given by

C= <A() |A0> + Z bic; + Z Cl'CjSij.
7 7

/
Aozu( =—u-Vu—Vp+ Viu.

(12)

Where b; = i (u| P! |Ag) + h.c. and Si; = (u| P} P; |u).
Hence, the minimum of C is determined by the solution (ST +
S)c = b. Thus, abstaining the solution to ¢, the evolution
driven by the nonlinear term is readily simulated by a unitary
evolution via

e*iAéT |ua> — efi(zi 611—:’1‘)57' ‘ua> , (13)

which avoids the Carleman linearization [10] of nonlinear
equations.

Insight 3: Linear combination of unitaries can be applied
to create the Quantum Nonlinear Processing Unit (QNPU)
circuits, which serve as the backbone for a wide range of
real-world problems, including complex computational fluid
dynamics (CFD) problems.

C. Fast-forwarding algorithms for time evolution

Let us consider the state representation of the flow variables
in terms MPS, the initial state, |uq({z;},%0)), and the Hamil-
tonian, H, for the time evolution operation determined by the
mapping of the differential operations into MPOs. Now we can
represent the time evolution of the states using spectral-step
method [24] as

fua({2:}, 1)) = e Jua ({2:}, o)) -

If the Hamiltonian is a combination of multiple MPOs, we
can rely on the Trotter—Suzuki expansion to split the operation
and obtain an approximate solution [23]. In discrete time, the
above formulation becomes

ol to + M) = (720 pua(fad 1)), (9

where At is the discrete time-step and M is the total number
of time steps to evolve the states. A sample depiction of this
is shown in Fig. 2.

The above Trotterization procedure involves multiple MPO
operations (of the linear and nonlinear operators), and thus,
the circuit depth increases linearly with respect to the time
steps, M. This can result in computationally expensive and

(14)
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error prone circuits. However, a strategy can be introduced
to ensure that the depth of the circuit remains constant
while accurately integrating the Hamiltonian. For example, by
combining Trotter-Suzuki decomposition, MPOs, variational
approaches, and parallelization, it is feasible to achieve a
scalable and efficient implementation of Hamiltonians in quan-
tum circuits. Specifically, to alleviate the linear growth of the
circuit depth, we propose to use quantum Krylov subspace
methods [25] to fast-forward the time-dependent simulation of
fluid flows. The variational fast-forwarding (VFF) algorithm is
a typical algorithm that could further reduce the circuit depth
by variationally searching for an approximate diagonalization
of the time evolution unitaries [26],

(eif[At)M ~ WD(At)MWT = WD(MAt)Wt (16)

where the unitary with a single time step U(At) = 4 is
approximated by a diagonal factorization W D(At)WT. The
diagonalization enables a constant circuit depth with respect
to the time steps M. While the fast-forwarding technique does
provide a great alternative to reduce the circuit depth, it is to
be noted that diagonalizing the nonlinear operators can pose
challenges and require in-depth research.

Though the VFF algorithm could reduce the circuit depth,
it results in an additional optimization procedure. Similar to
the widely used VQE algorithms, variational methods usually
suffer from optimization problems due to the high nonlinearity
of the cost function and stochastic errors (due to decoherence
of qubits, control error, readout errors, etc.) [27]. And the
situation becomes even worse when multiple channels are in-
cluded in the optimization. Alternatively, the Krylov subspace
method can be employed to bypass the optimization problem.

In linear algebra, an order—r Krylov subspace, generated
by a matrix H and a reference vector b, is the linear sub-
space spanned by the images of b under the first r pow-
ers of H [28]. Such subspace is denoted as K,(H,b) =
{b, Hb, H?b, - -- , H"~'b}, containing all rth-order polyno-
mials of H applied to b. As r gets large, any function of
H, f(H), is well approximated by an rth-order polynomial.
Choosing f(H) to be a spectral projection, we see that &,
contains approximates of all eigenvectors for which |b) has
nonzero overlap. Hence, the Krylov subspace has been widely
used in numerical algorithms to find the solutions to a high-
dimensional matrix, such as the generalized minimal resid-
ual method (GMRES), Davidson, and quasi-minimal residual
(QMR) algorithms [29]. In this context, we leverage the
recently developed Quantum Davidson algorithms to obtain
diagonalization in Eq. 16.

The last stage of the algorithm is to measure the resulting
states from the final MPO. The extreme complexity of the
multidimensional fluid flow system representation will lead to
a large number of terms in the MPO. This leads to a profound
impact on the algorithm’s efficiency at the measurement stage.
The MPO can result in multiple groups of commutable terms
— identifying and coupling these terms using graph theory can
help to significantly reduce the measurement cost [30].

Insight 4: Measurement reduction technique for MPOs is
possible due to multiple commutable terms, which is impor-
tant to deploying the proposed algorithm to current noisy
intermediate-scale quantum (NISQ) quantum computers and
near-term early fault-tolerant quantum computers (EFTQC).

IV. OUTLOOK AND CONCLUDING REMARKS

We present a conceptual description of a quantum algorithm
to treat the nonlinear aspects of PDEs. The incompressible
Navier—Stokes equations are used to formulate the algorithm.
Taking advantage of tensor networks, the algorithm uses
matrix product states (MPSs) to encode the flow variables.
We describe quantum-information-inspired efficient encoding
techniques for the MPSs. The linear differential terms, approx-
imated using finite difference, are mapped using matrix prod-
uct operation (MPO). The MPO induces state transitions using
ladder operations, and these can be generalized for multi-
dimensional and higher order finite difference approximations.
The multivariate characteristics of the incompressible Navier—
Stokes equations (velocity and pressure) are treated using
tensor product contractions. The nonlinear terms are mapped
using the quantum nonlinear processing units (QNPUs) [18].
We use LCU instead of variational optimization for creating
the QNPU circuits. Given the Hamiltonian expression of
the states as combinations of multiple MPOs for the linear
and nonlinear terms, fast-forwarding using Krylov subspace
methods can be used to simulate the time evolution. The
proposed algorithm provides a scalable way to handle complex
nonequilibrium phenomena. Nevertheless, for practical consid-
erations, the scalablility of the proposed algorithm needs to be
demonstrated for the problem size ranging from small to large,
including parameters, such as the depth and qubit counts of
MPS/MPO circuits for the nonlinear operators, the structure or
physics involved in the problem, the optimization techniques
(e.g., for gate optimization, parallelization, and variational
approaches for circuits), and the capabilities of the quantum
hardware. This will be an immediate follow-up study.

Toward the demonstration of quantum utility for the pro-
posed quantum algorithm on noisy intermediate-scale quantum
(NISQ) quantum computers or early fault-tolerant quantum
computers (EFTQC), we note that measurement reduction can
be an important technique for MPOs to boost the algorithm’s
efficiency. In addition to the optimization of measurement,
achieving the quantum utility also calls for a stable state
obtained by time-evolving MPO decompositions. In addition
to improving hardware qubit fidelity, one potential near-term
remedy at the software layer is to apply the circuit compression
techniques [31] to reduce the circuit length according to the
on-the-fly quantum noise presented on the quantum device
right before running the circuit.
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APPENDIX

Quantum information inspired efficient encoding of
MPS states: While the MPS representation using Schmidt
decomposition enables exponentially large expressibility ca-
pabilities to significantly reduce the data points, the operation
as such has exponential cost of O(K?3P/2) if consider-
ing the full-rank approximation. We can leverage quantum-
information-inspired techniques to analyze the ranks of the
tensors and optimize the ordering of tensors to reduce the
bond dimension and, consequently, circuit depths. Recently,
we proposed an approach named “PermVQE” [22] to reduce
circuit depth. The PermVQE method permutes qubits to solve
for the qubit Hamiltonian that maximally localizes correlations
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in the ground state. The choice of permutations is based
on mutual information, a measure of interaction between
electrons and/or holes in spin-orbitals [32]. Encoding strongly
entangled spin-orbitals into proximal qubits on a quantum
chip naturally reduces the circuit depth needed to prepare
the ground state. In particular, we demonstrated the beneficial
effect of qubit permutations in building a fermionic—adaptive
derivative assembled pseudo-Trotter ansatz on a linear qubit
connectivity architecture with nearly a twofold reduction in
the number of CNOT gates. Here, we propose to leverage the
same idea to efficiently reduce the CNOT gates for encoding
the MPS on quantum circuits.

After obtaining the initial MPO and MPS, the entanglement
map that reflects the correlations among different qubits will
be constructed. For this purpose, we calculate the quantum
mutual information for all pairs of qubits, which provides a
measure of the total correlation. Previous results obtained for
the orbital ordering problem in the Density Matrix Renormal-
ization Group (DMRG) method in classical quantum chemistry
calculations [32] showed that the quantum mutual information
is a reliable parameter to quantify the correlation between two
particles.

The quantum mutual information between qubits ¢ and j is
defined as follows:

1
Iij == 5(51+SJ *Sij)(lf(sij), (17)

S; and S;; are the single-qubit and two-qubit von Neumann
entropies, respectively. The Kronecker § sets all diagonal
elements I,; to zero. The single-qubit von Neumann entropy
S; is given by:

Si=—> Alog A, (18)
[

and S;; is defined analogously. Here, \; are the normalized
singular values associated with the bond. Based on the mutual
information values for each pair of qubits, we build an n X n
matrix. This matrix I = {I;;}, called the entanglement map,
is useful to illustrate the amount and the length scale of the
correlations in the approximate function.

To quantify the amount of long-range correlations, we
introduce a cost function as follows. For a NISQ device with a
given connectivity, let d;; denote the distance between qubits 4
and j, which can be precisely defined as the number of edges
in the shortest path through the connectivity graph between
these qubits. Alternatively, one can view d;; as the minimum
number of swap gates (plus one) needed to make qubits 7
and j nearest neighbors. Then, for any qubit connectivity,
a cost function can be defined as C(I) = >, f(di;) 1,
where f(-) is a monotonously increasing function of d;;.
Then, we can define a permutation P as a bijection from
the set of qubit indices to itself. The action of P will affect
the entanglement map I, and our strategy is to find the best
permutation P that minimizes the cost function, i.e., Py =
arg minp C(PIP~1). We will use Spectral Graph Algorithm
or Heuristic permutation search with random sampling to
optimize the permutations.

668

Authorized licensed use limited to: George Mason University. Downloaded on June 17,2025 at 14:36:41 UTC from |IEEE Xplore. Restrictions apply.



