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Abstract— The Bayesian framework is conventionally adopted 

in power system static state estimation (SSE) to quantify 

uncertainty via probability density functions (PDFs). However, the 

reliability of such PDFs is frequently undermined by the complex 

nature of noise in measurement systems, potentially leading to 

significant estimation inaccuracies. To address this issue, this 

paper proposes a modified Krawczyk-forward-backward 

synthesis (MoK-FoBS) method to quantify uncertainty in SSE 

through interval analysis. The proposed MoK-FoBS method 

combines the strengths of the modified forward-backward 

propagation (FBP) method with the modified Krawczyk method 

to mitigate the overestimation problem. Employing simulation 

data derived from IEEE testing systems, it is verified through the 

Monte Carlo method that the MoK-FoBS method can estimate 
hard boundaries that invariably contain the true state values. In 

contrast, the true state values may lie outside the uncertainty 

boundaries estimated by the weighted least squares approach. A 

comparative analysis reveals that the MoK-FoBS method can 

achieve narrower state boundaries than the FBP method, thereby 

improving estimation precision. 

 
Index Terms— Forward-backward propagation method, Interval 

analysis, Krawczyk method, Static state estimation. 

I. INTRODUCTION 

tatic state estimation (SSE) integrates measurements and 

power flow models to determine the operational conditions 

of a power system and has become an essential tool for guiding 

real-time operations in a control center [1]. Numerous SSE 

algorithms have been proposed to estimate bus voltage phasors 

based on different estimation criteria according to the nature of 

measurement noises. These include the weighted least squares 

(WLS) [2], the least median of squares [3], the least trimmed 

squares [4], the least absolute value [5], and the generalized 

maximum likelihood [6]. To mitigate the negative impacts of 

outliers at leverage points, the projection statistics-based 

algorithm [7], [8] has been designed. Moreover, innovative 

methods [9], [10] have surfaced to counteract false data 

injection attacks. 

To ensure reliability in power grid operations, it is crucial to 

effectively quantify the uncertainty of SSE incurred by 

measurement noises and modeling inaccuracies. Most SSE 

methods rely on the Bayesian approach to quantify the 

uncertainty, which assumes that the probability density 

functions (PDFs) of measurement noises are well-defined and 
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accurately known in advance. Yet, the assumption may not 

always hold in real-world applications. It is suggested in [11] 

and [12] that SCADA and PMU measurement noise can deviate 

from Gaussian distributions due to factors like nonlinear 

operations, instrument inaccuracy, external electromagnetic 

interference, communication channels, and cyberattacks. Due 

to the complex sources of measurement noise, it is often 

challenging to accurately quantify the noise using a well-

defined PDF. When the quality of noise’s PDFs is unclear and 

even questionable, the Bayesian-based SSE methods may 

become unreliable, potentially leading to significant estimation 

errors. 

The uncertain nature of measurement noise distribution has 

motivated the application of interval analysis (IA) to quantify 

uncertainty in SSE. The IA approach quantifies noise 

uncertainty through boundaries instead of PDFs and is 

particularly effective in managing the nonlinear and bounded 

nature of power system measurements, enhancing robustness 

and reliability in SSE under varied operational conditions. 

Initiated by Schweppe [13] and further developed by Bertsekas 

and Rhodes [14], the IA SSE quantifies the uncertainty of the 

estimated states using boundary ranges and guarantees that the 

true values reside within those boundary ranges. In particular, 

Brdys and Chen introduced the set bounded state estimation 

[15], assuming that measurement errors are unknown but fall 

within a bounded range [16]. Qi et al. [17] proposed a power 

system set membership state estimator in a bounded-error 

context applying the forward-backward propagation (FBP) 

method. An interval state estimation algorithm based on WLS 

is proposed in [18] to estimate the states of distribution systems. 

However, this algorithm risks divergence when the interval gain 

matrix, which requires inversion, contains singular matrices. 

The guaranteed boundary ranges of the IA SSE are frequently 

preferred over a single ‘optimal’ point estimate, particularly in 

analyzing worst-case scenarios. Although boundary noise can 

also be described by truncated PDFs, the computational effort 

required to accurately adjust and maintain these distributions in 

high-dimensional SSE makes them less appealing for real-time 

applications. In contrast, interval analysis (IA) methods are 

computationally simpler and offer guaranteed inclusion of true 

states, thus making them the preferred choice to quantify 

uncertainty in SSE.  
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One major challenge in employing IA in SSE is the 

overestimation problem [19], where the estimated uncertainty 

range becomes much wider than the true uncertainty range. In 

the IA-based SSE, dependence problems and wrapping effects 

can lead to excessive overestimation, which can result in 

resource misallocation, increased operation costs, and reduced 

trust in the IA estimates. To mitigate the negative impact of the 

overestimation, the set inversion via IA (SIVIA) method has 

been applied in SE [20]. However, the low computational 

efficiency of the SIVIA method makes it impractical for real-

time applications in power systems.  

To address the challenge, a modified Krawczyk-forward-

backward synthesis (MoK-FoBS) method is proposed for the 

power system SSE in this paper. The proposed MoK-FoBS 

method can accommodate the boundaries of SCADA and PMU 

measurement noise specified by the IEEE standard [21]. In 

addition, the outputs of the MoK-FoBS method are the upper 

and lower bounds of the estimated states, which are well-suited 

for various state monitoring and control strategies. The 

contributions of this paper can be summarized as follows: 

1) Instead of estimating PDFs under the Bayesian 

framework, the proposed MoK-FoBS method calculates 

the hard boundaries that guarantee the inclusion of the 

true state values under the IA framework. 

2) Compared to the conventional FBP method, the 

proposed MoK-FoBS method can substantially mitigate 

the overestimation problem in the SSE. 

3) Compared to the WLS method [2], the boundaries 

constructed by the MoK-FoBS method are narrower and 

are guaranteed to include the true state values. 

The rest of the paper is organized as follows: Section II 

formulates the SSE as an IA problem and discusses the 

overestimation problem. The modified forward-backward 

propagation (MFBP) method is proposed to deal with the 

overestimation problem in Section III. The Krawczyk method 

is modified for the SSE application in Section IV. The MoK-

FoBS method is proposed to combine the MFBP and modified 

Krawczyk methods in Section V. Case studies are carried out in 

Section VI. Finally, Section VII draws the conclusions of the 

study.  

II. PROBLEM FORMULATION 

This section begins with a review of the fundamental 

concepts of IA and conventional SSE problems. It then 

formulates the SSE as an IA problem and presents the FBP 

solution as an initial approach to resolving the IA-based SSE 

problem. 

A. Review of Interval Analysis 

In IA, an interval variable is defined by its upper and lower 

boundaries. A real-number interval variable, denoted as [𝑥], is 

a closed and continuous subset of ℝ that can be defined by (1) 

[22]. Here, 𝑥  and 𝑥  are the lower and upper bounds of [x], 

respectively. 

[𝑥] = [𝑥, 𝑥] = {𝑥 ∈ ℝ|𝑥 ≤ 𝑥 ≤ 𝑥}. (1) 

The width of [𝑥] is defined by (2). The intersection and union 

of two interval variables are defined by (3.a) and (3.b), 

respectively. Here, [∙] represents the interval hull, which is the 

smallest interval containing [𝑥]⋃[𝑦] [23]. 

width([𝑥]) = 𝑥 − 𝑥. (2) 

[𝑥]⋂[𝑦] = {𝑧 ∈ ℝ|𝑧 ∈ [𝑥] and 𝑧 ∈ [𝑦]}. (3.a) 

[𝑥]⋃[𝑦] = [{𝑧 ∈ ℝ|𝑧 ∈ [𝑥] or 𝑧 ∈ [𝑦]}]. (3.b) 

In IA, real functions are also extended to interval functions. 

Specifically, let 𝑓 be a real function mapping from ℝ𝑛 to ℝ𝑚, 

i.e., 𝑓:ℝ𝑛 → ℝ𝑚 . Its corresponding interval function, denoted 

as [𝑓], is defined in (4) [23]. Here, [𝐱] is the real interval vector 

of ℝ𝑛, which is an ordered n-tuple of intervals, and the notation 

[.] represents the interval hull—the smallest interval containing 

the set. 

[𝑓]([𝐱]) = [{𝑓(𝑥1, … , 𝑥𝑛)|𝑥 ∈ [𝐱]}]. (4) 

The median of an interval is defined by (5). 

median([𝑥]) =
1

2
(𝑥 + 𝑥). (5) 

Hausdorff's distance is defined in (6) to measure the distance 

between two interval variables [22]. 

𝐻𝑑([𝑥], [𝑦]) = 𝑚𝑎 𝑥 (|𝑥 − 𝑦| , |𝑥 − 𝑦|). (6) 

B. SSE Problem and the WLS Solution 

To perform conventional SSE on a power system with n 

buses, l independent branches, and m measurements, 

measurements (𝒛 ∈ ℝ𝑚) are written as the nonlinear algebraic 

function (𝒉: ℝ2𝑛−1 → ℝ𝑚) of state vector (𝒙 ∈ ℝ2𝑛−1) shown 

in (7). Here, vector 𝑟 ∈ ℝ𝑚  represents measurement noise. 

Vector x represents power system states, which typically 

include the bus voltage magnitudes (Vi) and angles (θi). 𝑃𝑖  and 

𝑄𝑖  in 𝒛 are the measured real and reactive power injection at bus 

𝑖 , respectively. 𝑃𝑖𝑗  and 𝑄𝑖𝑗  in 𝒛  are the measured real and 

reactive power flows on the branch from bus 𝑖  to bus j, 

respectively. Vi in 𝒛  represents the measured bus voltage 

magnitudes. 

𝒛 = ℎ(𝒙) + 𝒓. (7.a) 

𝒙 = [𝑉1, ⋯ , 𝑉𝑛 , θ2, ⋯ , θ𝑛]
𝑇 . (7.b) 

𝒛 = [𝑃𝑖 , 𝑄𝑖 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , 𝑉𝑖]
𝑇
. (7.c) 

Under a Bayesian framework, the noise r is commonly 

assumed to follow a Gaussian distribution with zero mean and 

covariance of R. The maximum likelihood estimate of x can be 

found through a WLS solution as in (8.a). To quantify the 

uncertainty associated with 𝒙𝑤𝑙𝑠 , its covariance is estimated 

through (8.b), where H is the Jacobian matrix of h(x) evaluated 

at 𝒙𝑤𝑙𝑠. 

𝒙𝑤𝑙𝑠 = argmin
𝑥
(𝒛 − ℎ(𝒙))

𝑇
𝑹−1(𝒛 − ℎ(𝒙)). (8.a) 
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𝝈2 = 𝑐𝑜𝑣(𝒙𝑤𝑙𝑠) = (𝑯𝑇𝑹−1𝑯)−1. (8.b) 

C. SSE Problem Formulated under IA framework 

Under the IA framework, the SSE can be formulated as 

constraint satisfaction problems (CSPs), which are defined by 

(9) [22]. 

ℋ: (𝑓(𝒙) = 0, 𝒙 ∈ [𝒙0]). (9) 

Here, {
𝑓(𝒙) = 𝒛 − ℎ(𝒙) − 𝒓

𝐳 ∈ [𝒛0] 𝒓 ∈ [𝒓0]
. (10) 

The symbol [𝑧0]  denotes the initial domain of the 

measurement vector, which can be set up based on 

measurement values and noise levels. The symbol [𝑟0] denotes 

modeling error, which accounts for the discrepancies between 

modeled responses and actual behaviors of the real-world 

power system. The initial domains for state vector [𝒙0]  and 

modeling errors [𝒓0] can be established based on engineering 

judgment.  

The solution set of ℋ is defined in (11). Note that S is not 

necessarily an interval vector. In IA, the interval hull of S is 

considered the optimal solution, as defined by (12). 

𝑺 = {𝒙 ∈ [𝒙0]|f(𝒙) = 0}. (11) 
[𝒙]′ = [𝑺]. (12) 

The primary objective of IA algorithms is to contract the 

domain of ℋ(i.e., [x]) to reduce its width. However, due to 

overestimation problems, these IA algorithms often find a 

suboptimal solution [x] which satisfies [𝒙0] ⊇ [𝒙] ⊇ [𝒙]′ ⊇ 𝑺.  

D. FBP Method for IA-based SSE 

The FBP [24] method is one of the widely used IA methods 

to solve the CSPs defined in (9). The FBP can be applied to 

estimate the state vector through two stages iteratively: forward 

propagation and backward propagation. The implementation 

details of FBP in solving the SSE problem can be found in [17] 

and are briefly reviewed as follows so that the paper remains 

self-contained.  

(i) Initialization: Set 𝒙0 = [𝒙0, 𝒙0]  and 𝑘 = 0 . Here, 𝒙0 

and 𝒙0  are the initial upper and lower bounds of the 

states, respectively. Here, the initial interval 𝒙0 should be 

large enough to cover its true values.  

(ii) Forward propagation stage: Contract the intervals on 

the left side of the constraints (7) through 

 𝒛 = 𝒛⋂(ℎ(𝒙𝑘) + 𝒓). 
(iii) Backward propagation stage: Contract all intervals on 

the right side of the constraints (7) through 

𝒙𝑘+1 = 𝒙𝑘⋂ℎ
+(𝒛, 𝒙𝑘). 

(iv) Repeat: Continue repeating (iii) and (iv) until the 

Hausdorff distance between 𝒙𝑘  and 𝒙𝑘+1  falls below a 

predetermined threshold. If so, 𝒙𝑘  is the suboptimal 

solution found by FBP. If not, assign 𝑘 = 𝑘 + 1 and go 

to step(ii). 

In step (i), x can be initialized with control and physical 

limitations. In step (ii), if an intersection on the right side of the 

equation is empty, the corresponding measurement is treated as 

bad data and excluded. In step (iii), function ℎ+ in backward 

propagation is the pseudo inverse of function ℎ . They are 

constructed to derive 𝒙𝑘+1 from z and 𝒙𝑘 .  

E. Challenges of Overestimation Problems. 

Although the FBP method provides rigorous uncertainty 

intervals for state estimation, its calculated interval bounds 

often turn out to be excessively wider than the actual bounds. 

This issue, known as the overestimation problem, poses a major 

challenge in applying IA in SSE. In SSE, the overestimation 

mainly stems from the dependency problem when the variables 

in the evaluation expression are interdependent. This is 

particularly evident when the system states such as 𝑉𝑖 and 𝜃𝑖in 

(27)-(30) appear multiple times within an evaluation 

expression. The repeated appearance of the interdependent 

variables can excessively widen the estimated interval widths. 

To make the IA-based SSE practical, the overestimation 

problems need to be addressed. 

III. MODIFIED FBP METHOD FOR SSE 

This section proposes an MFBP method specifically 

designed to tackle the overestimation issue prevalent in SSE 

while simultaneously ensuring the computational complexity 

remains manageable. The proposed MFBP method incorporates 

four key enhancements, each of which is detailed below.  

A. Subdivision Method 

The subdivision method [25] is used in the forward 

propagation stage of the FBP in this paper to reduce the 

overestimation due to the dependency problem. The reduction is 

achieved by dividing a broad interval of dependent variables into 

several small intervals. More specifically, the uniform subdivision 

illustrated in (13) is used in the paper. Note that the subdivision 

method cannot be directly applied to the backward propagation 

stage of the FBP in SSE because it cannot handle the pseudo 

inverse function ℎ+.  

𝑥[𝑖] = [𝑥 + (𝑖 − 1)(𝑥 − 𝑥)/𝑁, 𝑥 + 𝑖(𝑥 − 𝑥)/𝑁]. (13.a) 

ℎ(𝑁)(𝑥) =⋃ ℎ(𝑥[𝑖])
𝑁

𝑖=1
. (13.b) 

𝑧 = 𝑧⋂(ℎ(𝑁)(𝑥) + 𝑟). (13.c) 

B. Subdivision Test  

A subdivision test is proposed by the authors to suppress the 

overestimation in the backward propagation stage of the FBP. 

The pseudo-code of the subdivision test is summarized below. 
Algorithm 1 the subdivision test 

1: For 𝑖 = 1 to 𝑁 

2:  𝑥[𝑖] = [𝑥 + (𝑖 − 1)(𝑥 − 𝑥)/𝑁, 𝑥 + 𝑖(𝑥 − 𝑥)/𝑁]  

3:  If [ℎ(𝑥[𝑖]) + 𝑟] ∩ 𝑧 ≠ ∅ 

4:   𝑥′ = 𝑥 + (𝑖 − 1)(𝑥 − 𝑥)/𝑁  

5:   Break 

6:  End 

7: End 

8: For 𝑖 = 1 to 𝑁 

9:  𝑥[𝑖] = [𝑥 − 𝑖(𝑥 − 𝑥)/𝑁, 𝑥 − (𝑖 − 1)(𝑥 − 𝑥)/𝑁]  

10:  If [ℎ(𝑥[𝑖]) + 𝑟] ∩ 𝑧 ≠ ∅ 

11:   𝑥
′
= 𝑥 − (𝑖 − 1)(𝑥 − 𝑥)/𝑁  

12:   Break 

13:  End 

14: End 

15 𝑥 = [𝑥′, 𝑥
′
] 
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The width of the test interval is determined by the width of 

the interval state x and the subdivision test number N. The value 

of N can be adjusted to strike a balance between convergence 

speed and precision. A larger value of N leads to better precision 

but slower convergence speed. To achieve a balance between 

these two factors, N is initialized to a small value and gradually 

increased in subsequent iterations. 

C. State Expression and Pseudo Measurements 

A major limitation of the subdivision method and subdivision 

test is that their computational complexity increases 

exponentially with the number of states to which subdivision is 

applied. This issue becomes particularly pronounced when 

calculating the intervals of power injection using bus voltage 

angles in conventional SSE because both θᵢ and θⱼ appear 

multiple times in the expression and cannot be effectively 

separated. To address the issue, a new set of state expressions 

and pseudo-measurement equations are introduced for SSE, as 

detailed below. 

1) State expression 

To reduce the computational complexity, this paper proposes 

an alternative state expression, which uses branch voltage 

angles (δ𝑖𝑗 ≜ 𝜃𝑖 − 𝜃𝑗 ) as the states, instead of bus voltage 

angles as the states (𝜃𝑖). As a result, the proposed alternative 

state variables are denoted as an interval vector in (14). 

𝒙′ = [𝑉1 ⋯ 𝑉𝑛 𝛿1 … 𝛿𝑙]
T ∈ ℝ𝑛+𝑙 (14) 

Here, l is the number of independent branches and n is the 

number of buses. The related measurement functions and 

Jacobian matrix using the proposed alternative states are 

detailed in Appendix A. 

2) Pseudo-measurements 

To ensure equivalence between the SE problem with the 

alternative state expression and the original state expression, 

additional pseudo-measurements need to be incorporated. 

These pseudo-measurements are formulated by adding 

equations to ensure that the sum of voltage angle differences 

around a loop is equal to zero. To identify the independent loops 

that accurately align with the original state expression, a loop 

identification method is proposed in this subsection based on 

the singular value decomposition (SVD), as detailed below. 

Loops within a power grid can be found by identifying the 

linearly dependent rows in the branch-to-bus incidence matrix 

[26]. This matrix, denoted as 𝑨 ∈ ℝ𝑙×𝑛, is defined in (15). To 

locate the linearly dependent rows, SVD can be utilized, as 

described in the following pseudo code. 

𝑨(𝑖, 𝑗) =

{
 
 

 
 1

𝑖𝑓 𝑏𝑢𝑠 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑖

−1
𝑖𝑓 𝑏𝑢𝑠 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 
𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (15) 

 
Algorithm 2 the SVD based loop identification method 

1: [𝑼, 𝑺, 𝑽] = 𝑠𝑣𝑑(𝑨) 
2: 𝑟 = 𝑟𝑎𝑛𝑘(𝑨)  
3: 𝑼2 = 𝑼(: , 𝑟 + 1: 𝑒𝑛𝑑)  
4: 𝓛 = 𝑟𝑟𝑒𝑓(𝑼2

𝑇)  

Here, the SVD reveals that there are (l-r) linear dependent 

rows in the A matrix because 𝑼2
𝑇𝑨 = 0, which indicates that 

there are (l-r) independent loops in the systems. The resulting 

loop-to-branch incidence matrix 𝓛 ∈ ℝ(𝑙−𝑟)×𝑙  is the reduced 

row echelon form of 𝑼2
𝑇 , whose features can be summarized in 

(16.a). As such, the equation for pseudo-measurements can be 

summarized in (16.b). 

𝓛(𝑖, 𝑗) =

{
 
 

 
 1

𝑖𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑗 𝑖𝑠 𝑖𝑛 𝑙𝑜𝑜𝑝 𝑖 𝑎𝑛𝑑 
ℎ𝑎𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑏𝑟𝑎𝑛𝑐ℎ

−1
𝑖𝑓 𝑏𝑟𝑎𝑛𝑐ℎ 𝑗 𝑖𝑠 𝑖𝑛 𝑙𝑜𝑜𝑝 𝑖 𝑎𝑛𝑑 

ℎ𝑎𝑠 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑏𝑟𝑎𝑛𝑐ℎ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (16.a) 

 

𝓛𝜹 = 0. (16.b) 

With the additional pseudo-measurements, measurement 

equation (7) can be rewritten into (17). 

[
𝒛
𝟎
] = [

𝑰
𝟎
] ℎ(𝒙′) + [

𝟎 𝟎
𝟎 𝓛

] 𝒙′ + [
𝒓
𝟎
] . (17) 

Here, the symbol I represents an identity matrix, and 0 denotes 

a matrix of zeros, appropriately sized. 

D. Auxiliary Variables 

Subdividing multiple variables within the same expression 

can result in an exponential increase in computational 

complexity. To address this issue, auxiliary variables are 

introduced in SSE. For example, auxiliary variables 𝛼1 and 𝛼2 

defined in (18) can be introduced to calculate real power flow 

on transmission lines Pij in (19). 
𝛼1 = 𝑔𝑖𝑗cos 𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗 . (18.a) 

𝛼2 = 𝑉𝑗(𝑔𝑖𝑗cos𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗) = 𝑉𝑗𝛼1. (18.b) 

𝑃𝑖𝑗 = (𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2 − 𝑉𝑖𝛼2. (19) 

By introducing auxiliary variables 𝛼1 and 𝛼2, the variables 

that appear more than once during propagation can be 

subdivided to suppress overestimation. Additionally, only one 

subdivision is involved in a single node propagation, which 

reduces computational complexity.  

E. Summary of the proposed MFBP method 

The MFBP method for real power flow measurements is 

illustrated in Fig. 1, while its pseudo code is summarized in the 

table below. Here, the pseudo-code notation 𝑠𝑢𝑏(𝑔(. ), 𝑥) 
represents the calculation of function 𝑔(. ) while applying the 

subdivision method to variable x. Similarly, 𝑠𝑢𝑏_𝑡𝑠𝑡 (𝑔(. ) =
0, 𝑥) represents the application of the subdivision test to find a 

solution for state x through the constraint of 𝑔(. ) = 0 . The 

same process is applied to all other measurements. The related 

equations are detailed in Appendix B. 

 
Fig. 1. The MFBP method for the real power flow measurement with auxiliary 

variables. 
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Algorithm 3 the MFBP algorithm 

Initialization: initialize state with physical limit and engineering 

knowledge 𝒙0 = [𝒙0, 𝒙0], 𝑘 = 0, 𝑞𝑑𝑖𝑠 = ∞, 𝛿𝑖𝑗 = [−𝜋/4 , 𝜋/4],  

𝑉𝑖 = [0.9,1.1], 𝑉𝑗 = [0.9,1.1], 𝛼1 = [−∞,∞], 𝛼2 = [−∞,∞]. 

1: While     𝑞𝑑𝑖𝑠 > 𝑡ℎ𝑟𝑒ℎ𝑜𝑙𝑑 

2:  𝒙𝑘 = [𝛿𝑖𝑗 , 𝑉𝑖 , 𝑉𝑗]
𝑇
; 

3:  Forward propagation: 

4:  𝛼1 = 𝛼1 ∩ (sub(𝑔𝑖𝑗cos𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗 , 𝛿𝑖𝑗))  

5:  𝛼2 = 𝛼2 ∩ (𝑉𝑗𝛼1)   

6:  𝑃𝑖𝑗 = 𝑃𝑖𝑗 ∩ (sub((𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2 − 𝑉𝑖𝛼2, 𝑉𝑖))  

7:  Backward propagation: 

8:  𝑉𝑖 = sub_tst(𝑃𝑖𝑗 = (𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2 − 𝑉𝑖𝛼2, 𝑉𝑖)  

9:  𝛼2 = 𝛼2 ∩ sub(−(𝑃𝑖𝑗 − (𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2)/𝑉𝑖, 𝑉𝑖)  

10:  𝛼1 = 𝛼1 ∩ (𝛼2/𝑉𝑗)  

11:  𝑉𝑗 = 𝑉𝑗 ∩ (𝛼2/𝛼1)  

12:  𝛿𝑖𝑗 = sub_tst(𝛼1 = 𝑔𝑖𝑗cos𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗 , 𝛿𝑖𝑗)  

13:  𝑞𝑑𝑖𝑠 = 𝐻𝑑(𝒙𝑘 , [𝛿𝑖𝑗 , 𝑉𝑖 , 𝑉𝑗]
𝑇
)  

14:  𝑘 = 𝑘 + 1  

15: End 

IV. MODIFIED KRAWCZYK METHOD 

To further mitigate the overestimation problem, a grouping 

method is proposed in this section so that the Krawczyk method 

[27] can be applied to solve the SSE problems. 

A. Review of the Krawczyk Method and its Limitation 

Similar to the interval Newton method [27], the Krawczyk 

method is a nonlinear IA method for solving CSP problems. 

Compared to the interval Newton method, the Krawczyk 

method offers a distinct advantage by eliminating the need to 

calculate the inverse matrix of the interval Jacobian matrix. 

This is advantageous because the interval Jacobian matrix 

might contain singular matrices, potentially leading to failures 

during the matrix inversion. In addition, the Krawczyk method 

interactively refines the intervals and guarantees convergence 

to a tighter enclosure. The Krawczyk method is detailed in [27] 

and briefly summarized below.  

Consider a CSP shown in (20). Here, the function 𝑓: ℝ𝑛𝑓 →
ℝ𝑛𝑓 . The principle of the Krawczyk method involves using an 

interval extension of the function and its derivative to compute 

a new interval that encloses the zeros of the function. The 

Krawczyk operator, denoted as 𝐾(∙), is defined by (21) [27]. 

𝑓(𝒙) = 0. (20) 

𝐾(𝒙) = 𝒙𝑚 − 𝑪𝑓(𝒙𝑚) + (𝑰 − 𝑪𝑓
′(𝒙))(𝒙 − 𝒙𝑚). (21) 

Here, 𝒙𝑚 denotes a fixed number and 𝒙𝑚 ∈ 𝒙. 𝑓′ represents the 

Jacobian matrix of the function 𝑓. Matrix 𝑪 is a preconditioning 

matrix selected by users. The CSP in (20) can be solved by the 

Krawczyk method, which iteratively applies the Krawczyk 

operator as shown in (22). 

𝒙𝑘+1 = 𝐾(𝒙𝑘) ∩ 𝒙𝑘. (22) 

This iterative refinement ensures convergence towards a 

tighter enclosure of the true solution, provided that C is 

appropriately selected. The selection of C is crucial— improper 

selection of C can lead to issues such as non-convergence. 

Following the suggestion in [28], C in this study is chosen to be 

𝑓′
−1
(𝒙𝑚), the pseudo-inverse of the measurement Jacobian 

matrix at 𝒙𝑚.The method and its application are detailed further 

in [28]. Should non-convergence issues arise, users are 

encouraged to fine-tune their selection of C. 

It is important to note that the Krawczyk method is only 

suited to solve well-determined systems. However, the SSE of 

power systems is typically an over-determined system, wherein 

the number of measurements exceeds the states to be estimated. 

To bridge the gap, this paper introduces a measurement data 

grouping algorithm based on SVD. This algorithm decomposes 

the over-determined SSE problem into multiple well-

determined subproblems so that the Krawczyk method can be 

utilized to solve these well-determined subproblems of SSE. 

Then, the multiple SSE solutions are merged into a solution 

through intersection operations.  

B. SVD-based Grouping Method 

Assume that there are sufficient measurements in the SSE 

problem to render the system observable and make the SSE an 

overdetermined problem. The objective of the grouping method 

is to divide the measurements into several groups so that (a) the 

measurements in each group shall make the SSE a well-

determined subproblem conducive to the application of the 

Krawczyk Method; (b) each measurement must belong to at 

least one group, ensuring that the information it contains is 

utilized to reduce the interval width of the estimated states; (c) 

the number of measurement groups shall be kept small to 

reduce computational complexity. Note that this approach 

permits the inclusion of the same measurement in multiple 

groups, thus allowing measurements to be shared across 

different groups. To address the grouping problem, this paper 

proposes an SVD-based grouping method, which is outlined 

below.  

In Algorithm 4, objective (a) is achieved through steps 1-4 

and 7-12. Here, the input 𝑯′  is the Jacobian matrix of the 

measurement function, as described in (31)-(48) in Appendix A. 

The output Group contains indices of the measurements that 

make SSE a well-determined problem. In addition, the space 

spanned by 𝑼2  is orthogonal to the column space of H, i.e., 

𝑼2
∗𝑯 = 0. As such, any measurement corresponding to a non-

zero element in 𝑼𝐶  can be excluded while still maintaining 

system observability because the measurement is redundant and 

can be expressed as a linear combination of other measurements. 

To achieve objective (b), the Group is updated and stored for 

every iteration until each measurement is included in at least 

one group, as implemented in step 5. To achieve objective (c), 

the coefficient scalar 𝐶𝑆  in step 14 must be a real number 

greater than 1 (𝐶𝑆 > 1). Scaling up the rows in 𝑼2 by 𝐶𝑆 tends 

to make the following group omit measurements that have been 

used in previous groups. 
Algorithm 4 the SVD grouping method 

1: 𝑯 = 𝑯′([𝑉 = 1, 𝜃 = 0]) % measurement Jacobian 

2: [𝑼, 𝑺, 𝑽] = 𝑠𝑣𝑑(𝑯)  

3: [𝑚, 𝑛] = 𝑠𝑖𝑧𝑒(𝑯) % m: num of measurements; n: num of states 

4: 𝑼2 = 𝑼(: , 𝑛 + 1:𝑚) % note that 𝑼2
∗𝑯 = 0 

5: While (any measurement is not grouped) 

6:  Group = 1:m; 
7:  For i = 1:m-n 

8:   𝑼𝑐 = 𝑎𝑏𝑠(𝑼2(: , 𝑖))  
9:   [𝑚𝑎𝑥𝑈𝑐, 𝐷] = max (𝑼𝑐)  
10:   𝐺𝑟𝑜𝑢𝑝 = 𝐺𝑟𝑜𝑢𝑝(𝐺𝑟𝑜𝑢𝑝~ = 𝐷)  
11:   % Omit measurement D from this group 

12:  End 

13:  % Store the Group as the output 

14:  𝑼2(𝐺𝑟𝑜𝑢𝑝, : ) = 𝑼2(𝐺𝑟𝑜𝑢𝑝, : ) ∗ 𝐶𝑆  

15: End 
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C. Modified Krawczyk Method for the SSE 

To align with the framework presented in (20) and (21), 

measurement equation (7) is transformed into (23).  

𝑓(𝑥) = [
𝐈
𝟎
] ℎ′(𝒙′) + [

𝟎 𝟎
𝟎 𝓛

] 𝒙′ + [
𝒓
𝟎
] − [

𝒛
𝟎
] = 0. (23) 

The measurement functions and their first-order derivatives 

in the Jacobian matrix are defined in (27)-(30) and (32)-(48) in 

Appendix A, respectively. The 𝒙𝑚  and 𝑪 needed in (21) are 

selected through (24) and (25), respectively. 
𝒙𝑚 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝒙). (24) 

𝑪 = {
𝑯′−1(𝒙𝑚) 𝑖𝑓 𝑯′(𝒙𝑚) 𝑖𝑠 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟

𝑯′−1(𝒙𝑚 +
1

4
width([𝒙])) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (25) 

The modified Krawczyk algorithm can be outlined in 

Algorithm 5. Here, 𝒙0 and 𝒙0 are the upper and lower bounds 

of the initial states, respectively. Typically, the initial interval 

𝒙0 should be sufficiently large to cover the true values of the 

states. 

 
Algorithm 5 Modified Krawczyk method for SSE 

Initialization: initialize states with physical limit and engineering 

knowledge 𝒙0 = [𝒙0, 𝒙0], 𝑞𝑑𝑖𝑠 =∞, 𝑘 = 0. 

1: Apply the SVD grouping method 

2: While 𝑞𝑑𝑖𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

3:  𝒙𝑘+1 = 𝒙𝑘  

4:  For 𝑖 = 1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 

5:   𝒛𝑔𝑟𝑜𝑢𝑝 = 𝒛(𝐺𝑟𝑜𝑢𝑝𝑖)  

6: 

  𝐾(𝒙𝑘+1) = 𝒙𝑚,𝑘+1 − 𝑪𝑓(𝒙𝑚,𝑘+1)  

+(𝑰 − 𝑪𝑓′(𝒙𝑘+1)) (𝒙𝑘+1 − 𝒙𝑚,𝑘+1) 

7:   𝒙𝑘+1 = 𝐾(𝒙𝑘+1) ∩ 𝒙𝑘+1  

8:  End 

9:  𝑞𝑑𝑖𝑠 = 𝐻𝑑(𝒙𝑘 , 𝒙𝑘+1)  
10:  𝑘 = 𝑘 + 1  

11: End 

V. MOK-FOBS METHOD 

It is important to note that all algorithms within the Interval 

Analysis (IA) framework are rigorous, as highlighted in [22], 

ensuring that the resulting intervals invariably contain the true 

values. Capitalizing on this property, this section proposes the 

MoK-FoBS algorithm. This algorithm combines the estimated 

intervals from the MFBP and the modified Krawczyk method 

by executing them sequentially. Such a combination ensures 

that the MoK-FoBS algorithm achieves estimation intervals that 

are not only narrower or equal to those obtained from the 

individual algorithms but also come with guaranteed hard 

boundaries. 

 
Algorithm 6 MoK-FoBS method 

Initialization: initialize states with physical limit and engineering 

knowledge 𝒙0 = [𝒙0, 𝒙0], 𝑘 = 0. 

1: Apply SVD grouping method 
2: While 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

3:  𝒙𝑘+1 = 𝒙𝑘  

4:  Apply the modified forward propagation method 
5:  Apply the modified backward propagation method 

6:  Apply the Krawczyk operator to all grouped measurements 
7:  𝑞𝑑𝑖𝑠 = 𝐻𝑑(𝒙𝑘 , 𝒙𝑘+1)  
8:  If 𝑞𝑑𝑖𝑠 <  𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

9:   𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒/10  

10:  End 

11:  𝑘 = 𝑘 + 1  

12: End 

The procedure for the MoK-FoBS method is detailed above. 

Initially, the tolerance level is set to a high value to accelerate 

convergence. This tolerance is gradually reduced over 

subsequent iterations until it meets a predefined threshold, 

ensuring precise results. 

VI. CASE STUDIES 

In this section, the performance of the proposed MoK-FoBS 

method is evaluated and compared with the original FBP 

method [16], the MFBP method, the modified Krawczyk 

method, and the WLS method [2]. All case studies herein utilize 

the IEEE 14-bus system [29] and IEEE 33-bus system [30] for 

illustrative clarity. Moreover, the IEEE 39-bus [31] and IEEE 

118-bus [32] systems are employed to examine the 

computational efficiency of the proposed method. 

A. Comparison between the MoK-FoBS Method and Other 

IA-based Methods 

In this case, the performance of the MoK-FoBS and FBP is 

evaluated using the IEEE 14-bus system, which models a 

transmission system, and the IEEE 33-bus system, which 

models a distribution system.  

1) Comparison using the IEEE 14-bus system 

As shown in Fig. 2, the IEEE 14-bus system consists of 20 

branches and 14 buses. Assume that the system has 55 

measurements, including 14 injection power measurements, 40 

power flow measurements, and one bus voltage magnitude 

measurement on bus 1, which are marked in Fig. 2. 

The measurement noise of power flow, power injection, and 

voltage magnitude are uniformly distributed within the interval 

of [−1 × 10−2, 1 × 10−2]. The initial interval states are [0.9, 

1.1] for voltage magnitudes and [-π/4, π/4] for branch voltage 

angles. The modeling error [r0] is set to [0, 0] because both the 

simulation and state estimation utilize the same model. To 

quantify the capability of the proposed MoK-FoBS method in 

mitigating the overestimation problem, a width improvement 

(WI) metric is defined in (26). 

WI =
width(𝒙𝐹𝐵𝑃) − width(𝒙𝑀𝑜𝐾−𝐹𝑜𝐵𝑆)

width(𝒙𝐹𝐵𝑃)
. (26) 

G
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Bus 5

Bus 6
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Fig. 2. Topology and measurement setup of the IEEE 14-bus system [29].  
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Fig. 3. Interval states estimated by the MoK-FoBS method. 

The state estimation results obtained using the proposed 

MoK-FoBS method are plotted in Fig. 3. It can be observed 

from Fig. 3 that all true values of the states fall within the 

estimation intervals generated by the MoK-FoBS method, 

which verifies that the MoK-FoBS method is a rigorous IA 

method. 

 

 
Fig. 4. Comparison of state interval widths estimated by the FBP and MoK-
FoBS methods, along with their corresponding WIs. 

Furthermore, the interval widths of the estimated results are 

plotted in Fig. 4. Here, the dashed lines with ‘x’ marks represent 

the interval widths from the FBP method, while the dashed lines 

with ‘o’ marks represent the interval widths from the proposed 

MoK-FoBS method. The WIs defined by (26) are also plotted 

as red bars in Fig. 4. It can be observed from Fig. 4 that the 

interval widths estimated by the MoK-FoBS method are 

consistently narrower than those estimated by the FBP method. 

The improvements are particularly noticeable in voltage 

magnitude on buses 10-14 and voltage angle differences across 

almost all the branches (except for branch 2), where 

improvements exceed 60% in branch voltage angles and 20% 

in bus voltage magnitudes. These observations indicate that the 

proposed MoK-FoBS has significantly reduced the negative 

impacts of the overestimation problem associated with the FBP 

method. 

Moreover, Fig. 5 compares the interval widths of the 

estimation results obtained from three different methods: the 

MFBP method (magenta solid line), the modified Krawczyk 

method (blue dashed line), and the MoK-FoBS method (black 

dashed line with 'o' marks). It can be observed that the MoK-

FoBS method offers the narrowest interval among these 

algorithms, particularly in the estimated voltage magnitudes for 

buses 10, 11, and 14, where its intervals are smaller than those 

of the other two methods. The observation indicates that the 

MoK-FoBS method effectively reduces the overestimation 

problem by combining the two methods. 

Fig. 5. Comparison of state interval widths estimated by the MFBP method, 

modified Krawczyk method, and MoK-FoBS method. 

 

2) Comparison using the IEEE 33-bus system 

To assess the applicability and effectiveness of the proposed 

MoK-FoBS method in a distribution system characterized by a 

radial configuration and heightened uncertainty levels, the 

IEEE 33-bus system, depicted in Fig. 6, is used to generate 

simulation data for comparison.  

This system includes only six measurements, which measure 

the voltage magnitudes and power injections at corresponding 

buses. Additionally, pseudo-measurements of power injection 

are generated based on load predictions. Virtual measurements, 

indicating zero power injection, are introduced at nodes without 

load. The locations of all measurements, pseudo-

measurements, and virtual measurements are marked in Fig. 6. 

The noise associated with measurements, pseudo-

measurements, and virtual measurements is assumed to be 

uniformly distributed within the intervals of [-0.01,0.01], [-

0.03,0.03], and [−1 ∗ 10−6, 1 ∗ 10−6]  p.u., respectively.  

 

 
 
Fig. 6 Topology and measurement setup of the IEEE 33-bus system [30]. 

 

State estimation results obtained using the MFBP method, 

the modified Krawczyk method, and the proposed MoK-FoBS 

method are illustrated in Fig. 7. It can be observed from this 

figure that the true values of the states fall within the estimation 

intervals for all methods employed. Furthermore, the proposed 

MoK-FoBS method consistently provides the narrowest 
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interval among these algorithms, demonstrating its superior 

precision and reliability in handling the challenges of 

distribution systems. 

 

  

  

  

 
 
Fig. 7 Interval states estimated by the MFBP, modified Krawczyk, and MoK-
FoBS methods. 

B. Comparison between the MoK-FoBS method and the WLS 

method 

In this subsection, the robustness of the confidence intervals 

generated by the WLS and MoK-FoBS methods is evaluated 

and compared in the presence of bounded measurement noise.  

For the IEEE 39-bus system, it is assumed that there are 20 

power injection measurements, 46 power flow measurements, 

and one voltage magnitude measurement. For the IEEE 118-bus 

system, it is assumed that there are 118 power injection 

measurements, 179 power flow measurements, and 59 voltage 

magnitude measurements.  For the IEEE 300-bus system, it is 

assumed that there are 1318 measurements. These comprise 300 

voltage magnitude measurements, 100 pairs of power injection 

measurements, and 409 pairs of power flow measurements.  

The measurement noises are constrained within the range of 

−1 × 10−2 to 1 × 10−2. Three types of noise distributions are 

employed: uniform, truncated Gaussian, and bimodal. The 

truncated Gaussian distribution is obtained by setting the 

standard deviation of a normal Gaussian distribution to one-

third of the boundary radii, truncating its PDF’s long tails 

outside the boundaries, and normalizing the resulting PDF. The 

PDF of the bimodal distribution is uniformly distributed at the 

edges within the noise boundaries, i.e., [−1 × 10−2, −0.9 ×
10−2 ] ∪ [0.9 × 10−2, 1 × 10−2], as illustrated in Fig. 8.  

 

  
Fig. 8 PDF of the bimodal distribution used in the analysis. 

 

To account for the randomness of the measurement noise, 

performance metrics are evaluated using the Monte Carlo 

method across 1,000 instances of measurement noise. 

Violations are defined as instances where any estimated interval 

fails to cover the true value of the states. The study results are 

summarized in Table I. Note that the WLS method constructs 

confidence intervals as [𝒙𝑤𝑙𝑠 − 𝑐𝝈, 𝒙𝑤𝑙𝑠 + 𝑐𝝈], where 𝑥̂𝑤𝑙𝑠  and 

σ are determined using (8), and c is a user-selected constant. 

Table I shows that the MoK-FoBS method consistently 

yields interval states that encompass the true state values. This 

underscores the rigor of the IA, suggesting that the algorithms 

developed under its framework are highly reliable. In contrast, 

the WLS method exhibits violations up to the 6𝜎 confidence 

intervals for the truncated Gaussian distribution, up to the 10𝜎 

confidence interval for the uniform distribution, and up to the 

12𝜎  confidence interval for the bimodal distribution. These 

observations indicate that the accuracy of the confidence 

intervals generated by the WLS method is substantially 

influenced by the PDFs of the noise. Additionally, the 

confidence intervals generated by the WLS method cannot 

cover all the true values in the states with a similar interval 

width as the MoK-FoBS method. 

 

TABLE I 

NUMBER OF VIOLATION CASES IN THE 1,000 MONTE CARLO 

SIMULATIONS  

Methods 

Average 

interval 

width 

Noise 

distribution 

Number of 

violation 

cases 

Proposed 

MoK-FoBS 

Method 

0.0162 

Gaussian 0 

Uniform 0 

Bimodal 0 

WLS  

(𝑐 = 6) 
0.0102 

Gaussian 26 

Uniform 573 

Bimodal 998 
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C. Computational Efficiency 

To assess its computational efficiency, the proposed MoK-

FoBS method was implemented using MATLAB and tested on 

a PC equipped with an Intel Core i7 processor running at 3.20 

GHz and 16 GB of RAM. The computation times are 

summarized in Tables II and III. Initially, the MoK-FoBS 

method was implemented using INTLAB [33], a toolbox 

designed for accurately implementing IA algorithms by 

overloading MATLAB operators. However, the 

implementation using INTLAB was found to have low 

computational efficiency, as shown in Table II. 

 

TABLE II 

COMPUTATIONAL TIME USING INTLAB IMPLEMENTATION  

Method 
Simulation 

system 

Measurement 

number 

Computational 

time (s) 

MFBP 

IEEE 14-bus 56 127.14 

IEEE 39-bus 134 419.75 

IEEE 118-bus 654 3604.43 

IEEE 300-bus 1318 11463.98 

Modified 

Krawczyk 

method 

IEEE 14-bus 56 10.37 

IEEE 39-bus 134 44.65 

IEEE 118-bus 654 324.09 

IEEE 300-bus 1318 377.13 

MoK-

FoBS 

method 

IEEE 14-bus 56 103.21 

IEEE 39-bus 134 357.74 

IEEE 118-bus 654 3138.54 

IEEE 300-bus 1318 11986.10 

 

TABLE III 

COMPUTATIONAL TIME USING THE BOUND-FOCUSED CODE 

IMPLEMENTED BY THE AUTHORS 

Method 
Simulation 

system 

Measurement 

number 

Computational 

time (s) 

MFBP 

IEEE 14-bus 56 0.78 

IEEE 39-bus 134 2.05 

IEEE 118-bus 654 8.34 

IEEE 300-bus 1318 25.07 

Modified 

Krawczyk 

method 

IEEE 14-bus 56 0.64 

IEEE 39-bus 134 2.40 

IEEE 118-bus 654 40.78 

IEEE 300-bus 1318 56.07 

MoK-

FoBS 

method 

IEEE 14-bus 56 1.04 

IEEE 39-bus 134 3.64 

IEEE 118-bus 654 45.97 

IEEE 300-bus 1318 101.45 

 

To improve implementation efficiency, the authors modified 

the initial INTLAB implementation code by removing the 

calculation for rounding errors and focusing solely on bound 

calculation. Because the rounding errors are negligibly small 

compared to the measurement noises in the proposed 

application, this modified approach retains nearly the same 

accuracy level as the original INTLAB code while significantly 

boosting computational speed. As shown in Table III, the 

computational time has dramatically decreased, especially for 

the MFBP and MoK-FoBS methods. 

Table II shows that with the INTLAB implementation, the 

modified Krawczyk method had the shortest computational 

time, suggesting that matrix-based methods are more 

computationally efficient, especially in larger systems. 

Conversely, the MFBP method exhibited the longest 

computational time. Table III shows that with the bound-focused 

implementation, the MFBP method and the Krawczyk method 

have similar computational time. On the other hand, the MoK-

FoBS method has a longer computational time. The computation 

times for all three algorithms display a near-linear increase in 

correlation with the system size, suggesting their feasibility for 

deployment in larger systems. 

VII. CONCLUSIONS AND FUTURE WORK 

The MoK-FoBS method is proposed in this paper to quantify 

the uncertainty in power system SSE through IA. This proposed 

MoK-FoBS method mitigates the overestimation problem by 

synthesizing two modified IA methods and subsequently offers 

notably tighter interval estimates than the conventional FBP 

method. Furthermore, compared to the well-established WLS 

algorithm, the proposed MoK-FoBS method consistently 

generates hard boundaries that possess comparable interval 

widths while ensuring that all true values are encompassed 

within these intervals. Moreover, the paper highlighted a crucial 

enhancement in computational efficiency. By modifying the 

initial INTLAB implementation, the computational speed of the 

MoK-FoBS method was significantly improved without 

compromising the accuracy of the results. In summary, the 

MoK-FoBS method offers an accurate, reliable, and 

computationally efficient tool for quantifying uncertainty in 

power system SSE.  

Future work may explore further optimization of the method 

and its application to more diverse and dynamic power system 

scenarios. In addition, to further narrow the interval width of 

estimated states, dynamic models will be introduced into state 

estimation to capture the temporal correlation of power system 

states. Approaches like the one detailed in [34] will be 

integrated into the proposed method within the forecast-aided 

state estimation framework [35]. 

APPENDIX A. MEASUREMENT FUNCTIONS AND THE JACOBIAN 

MATRIX FOR THE PROPOSED ALTERNATIVE STATES  

To perform IA-based SSE on a power system with n buses, l 

independent branches, and m measurements, the measurements 

(𝑧 ∈ ℝ𝑚) in (7.a) are written as the nonlinear algebraic function 

( ℎ′: ℝ𝑛+𝑙 → ℝ𝑚 ) of the alternative states ( 𝑥′ ∈ ℝ𝑛+𝑙 ) 

defined in (14). The measurement equations in h’ are presented 

in (27)-(30). Here, 𝑔𝑖𝑗 and 𝑏𝑖𝑗  are the real and imaginary parts 

of the admittance of the series branch connecting buses i and j, 

respectively. 𝑔𝑠𝑖 and 𝑏𝑠𝑖 are the real and imaginary parts of the 

admittance of the shunt branch connected to bus i, respectively. 

𝐺𝑖𝑗 and 𝐵𝑖𝑗 are the real and image parts of the element at the ith 

row jth column of the bus admittance matrix, respectively. 𝑁𝑖 is 
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the set of buses that are directly connected to bus i. 

 

𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗)

𝑗∈𝑁𝑖

. (27) 

𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin δ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗)

𝑗∈𝑁𝑖

. (28) 

𝑃𝑖𝑗 = 𝑉𝑖
2(𝑔𝑠𝑖 + 𝑔𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗). (29) 

𝑄𝑖𝑗 = −𝑉𝑖
2(𝑏𝑠𝑖 + 𝑏𝑖𝑗) − 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗). (30) 

The structure of the measurement Jacobian, denoted as 𝐻′, 
is described by (31). 

𝐻′(𝒙′) =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑽

𝜕𝑽
𝟎

𝜕𝑷𝒊
𝜕𝑽

𝜕𝑷𝒊
𝜕𝛅 

𝜕𝑸𝒊
𝜕𝑽

𝜕𝑸𝒊
𝜕𝛅 

𝜕𝑷𝒊𝒋

𝜕𝑽

𝜕𝑷𝒊𝒋

𝜕𝛅 
𝜕𝑸𝒊𝒋

𝜕𝑽

𝜕𝑸𝒊𝒋

𝜕𝛅 ]
 
 
 
 
 
 
 
 
 
 

. (31) 

 

The elements corresponding to the real power injection 

measurements are summarized in (32)-(35). 
𝜕𝑃𝑖
𝜕𝑉𝑖

= ∑ 𝑉𝑗(𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗)

𝑗∈𝑁𝑖

+ 𝑉𝑖𝐺𝑖𝑖 . (32) 

𝜕𝑃𝑖
𝜕𝑉𝑗

= 𝑉𝑖(𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗). (33) 

𝜕𝑃𝑖
𝜕δ𝑖𝑗

= 𝑉𝑖𝑉𝑗(−𝐺𝑖𝑗 sin δ𝑖𝑗 + 𝐵𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗). (34) 

𝜕𝑃𝑖
𝜕δ𝑗𝑖

= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 sin(−δ𝑗𝑖) − 𝐵𝑖𝑗cos (−δ𝑗𝑖)). (35) 

The elements corresponding to reactive power injection 

measurements are summarized in (36)-(39). 
𝜕𝑄𝑖
𝜕𝑉𝑖

= ∑ 𝑉𝑗(𝐺𝑖𝑗 sin δ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗)

𝑗∈𝑁𝑖

− 𝑉𝑖𝐵𝑖𝑖 . (36) 

𝜕𝑄𝑖
𝜕𝑉𝑗

= 𝑉𝑖(𝐺𝑖𝑗 sin δ𝑖𝑗 − 𝐵𝑖𝑗 cos δ𝑖𝑗). (37) 

𝜕𝑄𝑖
𝜕δ𝑖𝑗

= 𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗). (38) 

𝜕𝑄𝑖
𝜕δ𝑗𝑖

= −𝑉𝑖𝑉𝑗(𝐺𝑖𝑗 cos(−δ𝑖𝑗) + 𝐵𝑖𝑗 sin(−δ𝑖𝑗)). (39) 

The elements corresponding to real power flow 

measurements are summarized in (40)-(43). 
𝜕𝑃𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗 cos δ𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗) + 2(𝑔𝑖𝑗 + 𝑔𝑠𝑖)𝑉𝑖 . (40) 

𝜕𝑃𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗 cos δ𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗). (41) 

𝜕𝑃𝑖𝑗

𝜕δ𝑖𝑗
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗). (42) 

𝜕𝑃𝑖𝑗

𝜕δ𝑗𝑖
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 sin(−δ𝑖𝑗) − 𝑏𝑖𝑗 cos(−δ𝑖𝑗)). (43) 

The elements corresponding to reactive power flow 

measurements are summarized in (44)-(47). 

𝜕𝑄𝑖𝑗

𝜕𝑉𝑖
= −𝑉𝑗(𝑔𝑖𝑗 sin δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗) − 2(𝑏𝑖𝑗 + 𝑏𝑠𝑖)𝑉𝑖 . (44) 

𝜕𝑄𝑖𝑗

𝜕𝑉𝑗
= −𝑉𝑖(𝑔𝑖𝑗 sin δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗). (45) 

𝜕𝑄𝑖𝑗

𝜕δ𝑖𝑗
= −𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos δ𝑖𝑗 + 𝑏𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗). (46) 

𝜕𝑄𝑖𝑗

𝜕δ𝑗𝑖
= 𝑉𝑖𝑉𝑗(𝑔𝑖𝑗 cos(−δ𝑖𝑗) + 𝑏𝑖𝑗𝑠𝑖𝑛(−δ𝑖𝑗)). (47) 

The elements corresponding to voltage magnitude 

measurements are summarized in (48). 
𝜕𝑉𝑖
𝜕𝑉𝑖

= 1. (48) 

APPENDIX B. EQUATIONS FOR IMPLEMENTING THE MFBP 

METHOD  

A. For Real Power Flow Measurements 

Forward propagation: 

𝛼1
𝑝𝑓
= 𝛼1

𝑝𝑓
∩ (sub(𝑔𝑖𝑗cos𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗 , 𝛿𝑖𝑗)) . (49) 

𝛼2
𝑝𝑓
= 𝛼2

𝑝𝑓
∩ (𝑉𝑗𝛼1

𝑝𝑓
). (50) 

𝑃𝑖𝑗 = 𝑃𝑖𝑗 ∩ (sub ((𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2 − 𝑉𝑖𝛼2

𝑝𝑓
, 𝑉𝑖)) . (51) 

Backward propagation: 

𝑉𝑖 = sub_tst(𝑃𝑖𝑗 = (𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖
2 − 𝑉𝑖𝛼2

𝑝𝑓
, 𝑉𝑖). (52) 

𝛼2
𝑝𝑓
= 𝛼2

𝑝𝑓
∩ sub(−(𝑃𝑖𝑗 − (𝑔𝑠𝑖 + 𝑔𝑖𝑖)𝑉𝑖

2)/𝑉𝑖 , 𝑉𝑖). (53) 

𝛼1
𝑝𝑓
= 𝛼1

𝑝𝑓
∩ (𝛼2

𝑝𝑓
/𝑉𝑗). (54) 

𝑉𝑗 = 𝑉𝑗 ∩ (𝛼2
𝑝𝑓
/𝛼1

𝑝𝑓
). (55) 

𝛿𝑖𝑗 = sub_tst(𝛼1
𝑝𝑓
= 𝑔𝑖𝑗cos𝛿𝑖𝑗 + 𝑏𝑖𝑗sin𝛿𝑖𝑗, 𝛿𝑖𝑗). (56) 

B. For Reactive Power Flow Measurements 

Forward propagation: 

𝛼1
𝑞𝑓
= 𝛼1

𝑞𝑓
∩ (sub(𝑔𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗)) . (57) 

𝛼2
𝑞𝑓
= 𝛼2

𝑞𝑓
∩ (𝑉𝑗𝛼1

𝑞𝑓
). (58) 

𝑄𝑖𝑗 = 𝑄𝑖𝑗 ∩ (sub(−(𝑏𝑠𝑖 + 𝑏𝑖𝑗)𝑉𝑖
2 − 𝑉𝑖𝛼2

𝑞𝑓
, 𝑉𝑖)) . (59) 

   Backward propagation: 

𝑉𝑖 = sub_tst(𝑄𝑖𝑗 = −(𝑏𝑠𝑖 + 𝑏𝑖𝑗)𝑉𝑖
2 − 𝑉𝑖𝛼2

𝑞𝑓
, 𝑉𝑖). (60) 

𝛼2
𝑞𝑓
= 𝛼2

𝑞𝑓
∩ sub(−(𝑄𝑖𝑗 + (𝑏𝑠𝑖 + 𝑏𝑖𝑗)𝑉𝑖

2)/𝑉𝑖, 𝑉𝑖). (61) 

𝛼1
𝑞𝑓
= 𝛼1

𝑞𝑓
∩ (𝛼2

𝑞𝑓
/𝑉𝑗). (62) 

𝑉𝑗 = 𝑉𝑗 ∩ (𝛼2
𝑞𝑓
/𝛼1

𝑞𝑓
). (63) 

𝛿𝑖𝑗 = sub_tst(𝛼1
𝑞𝑓
= 𝑔𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗 − 𝑏𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗 , 𝛿𝑖𝑗). (64) 

C. For Real Power Injection Measurements 

Forward propagation: 

𝛼1,𝑗
𝑝𝑖
= 𝛼1,𝑗

𝑝𝑖
∩ (sub(𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗)) . (65) 

𝛼2,𝑗
𝑝𝑖
= 𝛼2,𝑗

𝑝𝑖
∩ (𝑉𝑗𝛼1

𝑝𝑖
). (66) 

𝑃𝑖 = 𝑃𝑖 ∩ (sub(𝐺𝑖𝑖𝑉𝑖
2 + 𝑉𝑖 ∑ 𝛼2,𝑗

𝑝𝑖

𝑗∈𝑁𝑖

, 𝑉𝑖)). (67) 

Backward propagation: 

𝑉𝑖 = sub_tst(𝑃𝑖 = 𝐺𝑖𝑖𝑉𝑖
2 + 𝑉𝑖 ∑ 𝛼2,𝑗

𝑝𝑖

𝑗∈𝑁𝑖

, 𝑉𝑖). (68) 
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𝛼2,𝑗
𝑝𝑖
= 𝛼2,𝑗

𝑝𝑖
∩ sub((𝑃𝑖 − 𝐺𝑖𝑖𝑉𝑖

2 − 𝑉𝑖 ∑ 𝛼2,𝑙
𝑝𝑖

𝑙∈𝑁𝑖,𝑙≠𝑗

)/𝑉𝑖 , 𝑉𝑖). (69) 

𝛼1,𝑗
𝑝𝑖
= 𝛼1,𝑗

𝑝𝑖
∩ (𝛼2,𝑗

𝑝𝑖
/𝑉𝑗). (70) 

𝑉𝑗 = 𝑉𝑗 ∩ (𝛼2
𝑝𝑖
/𝛼1

𝑝𝑖
). (71) 

𝛿𝑖𝑗 = sub_tst(𝛼1,𝑗
𝑝𝑖
= 𝐺𝑖𝑗 cos δ𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗 , 𝛿𝑖𝑗). (72) 

D. Reactive Power Injection Measurements: 

Forward propagation: 

𝛼1,𝑗
𝑞𝑖
= 𝛼1,𝑗

𝑞𝑖
∩ (sub(𝐺𝑖𝑗 sin δ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗)) . (73) 

𝛼2,𝑗
𝑞𝑖
= 𝛼2,𝑗

𝑞𝑖
∩ (𝑉𝑗𝛼1

𝑞𝑖
). (74) 

𝑄𝑖 = 𝑄𝑖 ∩ (sub(−𝐵𝑖𝑖𝑉𝑖
2 + 𝑉𝑖 ∑ 𝛼2,𝑗

𝑞𝑖

𝑗∈𝑁𝑖

, 𝑉𝑖)). (75) 

Backward propagation: 

𝑉𝑖 = sub_tst(𝑄𝑖 = −𝐵𝑖𝑖𝑉𝑖
2 + 𝑉𝑖 ∑ 𝛼2,𝑗

𝑞𝑖

𝑗∈𝑁𝑖

, 𝑉𝑖). (76) 

𝛼2,𝑗
𝑞𝑖
= 𝛼2,𝑗

𝑞𝑖
∩ sub((𝑄𝑖 + 𝐵𝑖𝑖𝑉𝑖

2 − 𝑉𝑖 ∑ 𝛼2,𝑙
𝑞𝑖

𝑙∈𝑁𝑖,𝑙≠𝑗

)/𝑉𝑖 , 𝑉𝑖). (77) 

𝛼1,𝑗
𝑞𝑖
= 𝛼1,𝑗

𝑞𝑖
∩ (𝛼2,𝑗

𝑞𝑖
/𝑉𝑗). (78) 

𝑉𝑗 = 𝑉𝑗 ∩ (𝛼2
𝑞𝑖
/𝛼1

𝑝𝑖
). (79) 

𝛿𝑖𝑗 = sub_tst(𝛼1,𝑗
𝑞𝑖
= 𝐺𝑖𝑗 sin δ𝑖𝑗 − 𝐵𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗 , 𝛿𝑖𝑗). (80) 
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