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Quantifying Uncertainty in State Estimation: The
MoK-FoBS Method via Interval Analysis

Yuting Chen, Student Member, IEEE, Ning Zhou, Senior Member, IEEE, Ziang Zhang, Senior Member, IEEE

Abstract— The Bayesian framework is conventionally adopted
in power system static state estimation (SSE) to quantify
uncertainty via probability density functions (PDFs). However, the
reliability of such PDFs is frequently undermined by the complex
nature of noise in measurement systems, potentially leading to
significant estimation inaccuracies. To address this issue, this
paper proposes a modified Krawczyk-forward-backward
synthesis (MoK-FoBS) method to quantify uncertainty in SSE
through interval analysis. The proposed MoK-FoBS method
combines the strengths of the modified forward-backward
propagation (FBP) method with the modified Krawczyk method
to mitigate the overestimation problem. Employing simulation
data derived from IEEE testing systems, it is verified through the
Monte Carlo method that the MoK-FoBS method can estimate
hard boundaries that invariably contain the true state values. In
contrast, the true state values may lie outside the uncertainty
boundaries estimated by the weighted least squares approach. A
comparative analysis reveals that the MoK-FoBS method can
achieve narrower state boundaries than the FBP method, thereby
improving estimation precision.

Index Terms— Forward-backward propagation method, Interval
analysis, Krawczyk method, Static state estimation.

I. INTRODUCTION

tatic state estimation (SSE) integrates measurements and

power flow models to determine the operational conditions
of a power system and has become an essential tool for guiding
real-time operations in a control center [1]. Numerous SSE
algorithms have been proposed to estimate bus voltage phasors
based on different estimation criteria according to the nature of
measurement noises. These include the weighted least squares
(WLS) [2], the least median of squares [3], the least trimmed
squares [4], the least absolute value [5], and the generalized
maximum likelihood [6]. To mitigate the negative impacts of
outliers at leverage points, the projection statistics-based
algorithm [7], [8] has been designed. Moreover, innovative
methods [9], [10] have surfaced to counteract false data
injection attacks.

To ensure reliability in power grid operations, it is crucial to
effectively quantify the uncertainty of SSE incurred by
measurement noises and modeling inaccuracies. Most SSE
methods rely on the Bayesian approach to quantify the
uncertainty, which assumes that the probability density
functions (PDFs) of measurement noises are well-defined and
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accurately known in advance. Yet, the assumption may not
always hold in real-world applications. It is suggested in [11]
and [12] that SCADA and PMU measurement noise can deviate
from Gaussian distributions due to factors like nonlinear
operations, instrument inaccuracy, external electromagnetic
interference, communication channels, and cyberattacks. Due
to the complex sources of measurement noise, it is often
challenging to accurately quantify the noise using a well-
defined PDF. When the quality of noise’s PDFs is unclear and
even questionable, the Bayesian-based SSE methods may
become unreliable, potentially leading to significant estimation
errors.

The uncertain nature of measurement noise distribution has
motivated the application of interval analysis (IA) to quantify
uncertainty in SSE. The IA approach quantifies noise
uncertainty through boundaries instead of PDFs and is
particularly effective in managing the nonlinear and bounded
nature of power system measurements, enhancing robustness
and reliability in SSE under varied operational conditions.
Initiated by Schweppe [13] and further developed by Bertsekas
and Rhodes [14], the IA SSE quantifies the uncertainty of the
estimated states using boundary ranges and guarantees that the
true values reside within those boundary ranges. In particular,
Brdys and Chen introduced the set bounded state estimation
[15], assuming that measurement errors are unknown but fall
within a bounded range [16]. Qi et al. [17] proposed a power
system set membership state estimator in a bounded-error
context applying the forward-backward propagation (FBP)
method. An interval state estimation algorithm based on WLS
is proposed in [ 18] to estimate the states of distribution systems.
However, this algorithm risks divergence when the interval gain
matrix, which requires inversion, contains singular matrices.
The guaranteed boundary ranges of the IA SSE are frequently
preferred over a single ‘optimal’ point estimate, particularly in
analyzing worst-case scenarios. Although boundary noise can
also be described by truncated PDFs, the computational effort
required to accurately adjust and maintain these distributions in
high-dimensional SSE makes them less appealing for real-time
applications. In contrast, interval analysis (IA) methods are
computationally simpler and offer guaranteed inclusion of true
states, thus making them the preferred choice to quantify
uncertainty in SSE.
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One major challenge in employing IA in SSE is the
overestimation problem [19], where the estimated uncertainty
range becomes much wider than the true uncertainty range. In
the IA-based SSE, dependence problems and wrapping effects
can lead to excessive overestimation, which can result in
resource misallocation, increased operation costs, and reduced
trust in the [A estimates. To mitigate the negative impact of the
overestimation, the set inversion via IA (SIVIA) method has
been applied in SE [20]. However, the low computational
efficiency of the SIVIA method makes it impractical for real-
time applications in power systems.

To address the challenge, a modified Krawczyk-forward-
backward synthesis (MoK-FoBS) method is proposed for the
power system SSE in this paper. The proposed MoK-FoBS
method can accommodate the boundaries of SCADA and PMU
measurement noise specified by the IEEE standard [21]. In
addition, the outputs of the MoK-FoBS method are the upper
and lower bounds of the estimated states, which are well-suited
for various state monitoring and control strategies. The
contributions of this paper can be summarized as follows:

1) Instead of estimating PDFs under the Bayesian
framework, the proposed MoK-FoBS method calculates
the hard boundaries that guarantee the inclusion of the
true state values under the IA framework.

2) Compared to the conventional FBP method, the
proposed MoK-FoBS method can substantially mitigate
the overestimation problem in the SSE.

3) Compared to the WLS method [2], the boundaries
constructed by the MoK-FoBS method are narrower and
are guaranteed to include the true state values.

The rest of the paper is organized as follows: Section II
formulates the SSE as an IA problem and discusses the
overestimation problem. The modified forward-backward
propagation (MFBP) method is proposed to deal with the
overestimation problem in Section III. The Krawczyk method
is modified for the SSE application in Section IV. The MoK-
FoBS method is proposed to combine the MFBP and modified
Krawczyk methods in Section V. Case studies are carried out in
Section VI. Finally, Section VII draws the conclusions of the
study.

II. PROBLEM FORMULATION

This section begins with a review of the fundamental
concepts of IA and conventional SSE problems. It then
formulates the SSE as an [A problem and presents the FBP
solution as an initial approach to resolving the IA-based SSE
problem.

A. Review of Interval Analysis

In IA, an interval variable is defined by its upper and lower
boundaries. A real-number interval variable, denoted as [x], is
a closed and continuous subset of R that can be defined by (1)
[22]. Here, x and X are the lower and upper bounds of [x],
respectively.

[x] = [x,X] ={x e R]x <x <x}. )

The width of [x] is defined by (2). The intersection and union
of two interval variables are defined by (3.a) and (3.b),
respectively. Here, [-] represents the interval hull, which is the
smallest interval containing [x]U[y] [23].

width([x]) =X — x. (2)
[x]N[y] ={z € R|z € [x] and z € [y]}. (3.2)
[x]U[y] = [{z € R|z € [x] or z € [y]}]. (3.b)

In IA, real functions are also extended to interval functions.
Specifically, let f be a real function mapping from R™ to R™,
ie, f:R®™ - R™ . Its corresponding interval function, denoted
as [f], is defined in (4) [23]. Here, [X] is the real interval vector
of R™, which is an ordered n-tuple of intervals, and the notation
[.] represents the interval hull—the smallest interval containing
the set.

FIAxD = [{f G, o x) |x € [XT3]. 4)
The median of an interval is defined by (5).
median([x]) = %(E + g). (5)

Hausdorff's distance is defined in (6) to measure the distance
between two interval variables [22].

Ha(x), IyD) = max (|x - y|, 12 - 7). (6)

B. SSE Problem and the WLS Solution

To perform conventional SSE on a power system with n
buses, [/ independent branches, and m measurements,
measurements (z € R™) are written as the nonlinear algebraic
function (h: R?"~1 —» R™) of state vector (x € R?""1) shown
in (7). Here, vector r € R™ represents measurement noise.
Vector x represents power system states, which typically
include the bus voltage magnitudes (V;) and angles (8;). P; and
Q; in z are the measured real and reactive power injection at bus
i, respectively. P;; and Q;; in z are the measured real and
reactive power flows on the branch from bus i to bus j,
respectively. V; in z represents the measured bus voltage
magnitudes.

z=h(x)+r. (7.a)
X = [Vll"'anl ez;"'len]’r- (7b)
z= [Pi! QilPij! Qij! ]/I.]T (7C)

Under a Bayesian framework, the noise r is commonly
assumed to follow a Gaussian distribution with zero mean and
covariance of R. The maximum likelihood estimate of x can be
found through a WLS solution as in (8.a). To quantify the
uncertainty associated with X,,,;;, its covariance is estimated
through (8.b), where H is the Jacobian matrix of 4(x) evaluated
at X 5.

Ris = argmin(z - h(x)" R (z - h(x)). (8.2)
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0? = cov(®,,;s) = (HTR1H)™1, (8.b)
C. SSE Problem Formulated under 14 framework

Under the IA framework, the SSE can be formulated as
constraint satisfaction problems (CSPs), which are defined by
) [22].

H:(f (9]6()(=) 0,x € [:(0]3- )
x)=z—h(x)—r1
Here, { 2€lz,] reErd’ (10)

The symbol [z,] denotes the initial domain of the
measurement vector, which can be set up based on
measurement values and noise levels. The symbol [r,] denotes
modeling error, which accounts for the discrepancies between
modeled responses and actual behaviors of the real-world
power system. The initial domains for state vector [x,] and
modeling errors [ry] can be established based on engineering
judgment.

The solution set of H is defined in (11). Note that S is not
necessarily an interval vector. In IA, the interval hull of S is
considered the optimal solution, as defined by (12).

S = {x € [x,]|f(x) = 0}. (11
[x]" = [S]. (12)

The primary objective of IA algorithms is to contract the
domain of H (i.e., [x]) to reduce its width. However, due to
overestimation problems, these IA algorithms often find a
suboptimal solution [x] which satisfies [x,] 2 [x] 2 [x]' 2 S.

D. FBP Method for IA-based SSE

The FBP [24] method is one of the widely used A methods
to solve the CSPs defined in (9). The FBP can be applied to
estimate the state vector through two stages iteratively: forward
propagation and backward propagation. The implementation
details of FBP in solving the SSE problem can be found in [17]
and are briefly reviewed as follows so that the paper remains
self-contained.

(i) Initialization: Set x, = [50,30] and k = 0. Here, x,
and x, are the initial upper and lower bounds of the
states, respectively. Here, the initial interval x, should be
large enough to cover its true values.

(i) Forward propagation stage: Contract the intervals on
the left side of the constraints (7) through
z = zN(h(xy) +1).

(i) Backward propagation stage: Contract all intervals on
the right side of the constraints (7) through
Xip1 = X NRT (2, %),

(iv) Repeat: Continue repeating (iii) and (iv) until the

Hausdorff distance between x;, and x4 falls below a
predetermined threshold. If so, x; is the suboptimal
solution found by FBP. If not, assign k = k + 1 and go
to step(ii).

In step (i), x can be initialized with control and physical
limitations. In step (ii), if an intersection on the right side of the
equation is empty, the corresponding measurement is treated as
bad data and excluded. In step (iii), function h* in backward
propagation is the pseudo inverse of function h. They are

constructed to derive x;,, from z and xy.

E. Challenges of Overestimation Problems.

Although the FBP method provides rigorous uncertainty
intervals for state estimation, its calculated interval bounds
often turn out to be excessively wider than the actual bounds.
This issue, known as the overestimation problem, poses a major
challenge in applying IA in SSE. In SSE, the overestimation
mainly stems from the dependency problem when the variables
in the evaluation expression are interdependent. This is
particularly evident when the system states such as V; and 6;in
(27)-(30) appear multiple times within an evaluation
expression. The repeated appearance of the interdependent
variables can excessively widen the estimated interval widths.
To make the IA-based SSE practical, the overestimation
problems need to be addressed.

III. MODIFIED FBP METHOD FOR SSE

This section proposes an MFBP method specifically
designed to tackle the overestimation issue prevalent in SSE
while simultaneously ensuring the computational complexity
remains manageable. The proposed MFBP method incorporates
four key enhancements, each of which is detailed below.

A. Subdivision Method

The subdivision method [25] is used in the forward
propagation stage of the FBP in this paper to reduce the
overestimation due to the dependency problem. The reduction is
achieved by dividing a broad interval of dependent variables into
several small intervals. More specifically, the uniform subdivision
illustrated in (13) is used in the paper. Note that the subdivision
method cannot be directly applied to the backward propagation
stage of the FBP in SSE because it cannot handle the pseudo
inverse function h*.

Xy =[x+ (i~ DE-D/N,x+iE-0/N. (132)
N

how () = Ui=1h(x[i]). (13.b)

z = zN(hpy (x) + 7). (13.c)

B. Subdivision Test

A subdivision test is proposed by the authors to suppress the
overestimation in the backward propagation stage of the FBP.

The pseudo-code of the subdivision test is summarized below.
Algorithm 1 the subdivision test

1: Fori=1toN

2: X =[x+ (@ —1DE-2)/N,x +i(x — x)/N]
3: If [h(x[,v]) + r] nNz+0

4 ¥ =x+({-DE&E-x)/N

5: Break

6: End

7: End

8: Fori=1toN

9: X = B = i@ = 0)/N,% — (i - DE— 1)/N]
10: If [h(xp) +7r]nz# 0

11: ¥ =x—-({-1)E&-x)/N

12: Break

13: End

14: End

15 x=[x,%]
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The width of the test interval is determined by the width of
the interval state x and the subdivision test number N. The value
of N can be adjusted to strike a balance between convergence
speed and precision. A larger value of N leads to better precision
but slower convergence speed. To achieve a balance between
these two factors, N is initialized to a small value and gradually
increased in subsequent iterations.

C. State Expression and Pseudo Measurements

A major limitation of the subdivision method and subdivision
test is that their computational complexity increases
exponentially with the number of states to which subdivision is
applied. This issue becomes particularly pronounced when
calculating the intervals of power injection using bus voltage
angles in conventional SSE because both 6; and 6, appear
multiple times in the expression and cannot be effectively
separated. To address the issue, a new set of state expressions
and pseudo-measurement equations are introduced for SSE, as
detailed below.

1) State expression

To reduce the computational complexity, this paper proposes
an alternative state expression, which uses branch voltage
angles (6;; £ 6; — 6;) as the states, instead of bus voltage
angles as the states (6;). As a result, the proposed alternative
state variables are denoted as an interval vector in (14).

x' = V., 6&; 51" € R (14)

Here, [ is the number of independent branches and 7 is the
number of buses. The related measurement functions and
Jacobian matrix using the proposed alternative states are
detailed in Appendix A.

2) Pseudo-measurements

To ensure equivalence between the SE problem with the
alternative state expression and the original state expression,
additional pseudo-measurements need to be incorporated.
These pseudo-measurements are formulated by adding
equations to ensure that the sum of voltage angle differences
around a loop is equal to zero. To identify the independent loops
that accurately align with the original state expression, a loop
identification method is proposed in this subsection based on
the singular value decomposition (SVD), as detailed below.

Loops within a power grid can be found by identifying the
linearly dependent rows in the branch-to-bus incidence matrix
[26]. This matrix, denoted as A € R, is defined in (15). To
locate the linearly dependent rows, SVD can be utilized, as
described in the following pseudo code.

if busjis the sending
terminal of branch i
if busjis the receiving .
terminal of branch i
0 otherwise

A, j) = (15)

Algorithm 2 the SVD based loop identification method
1: [U,S,V] = svd(A)

2 r = rank(4)

3: U,=U(,r+ 1l:end)

4 L =rref(UY)

Here, the SVD reveals that there are (/-r) linear dependent
rows in the 4 matrix because ULA = 0, which indicates that
there are (/-r) independent loops in the systems. The resulting
loop-to-branch incidence matrix £ € R¢"%! is the reduced
row echelon form of U%, whose features can be summarized in
(16.a). As such, the equation for pseudo-measurements can be
summarized in (16.b).

! 1 if bran.chj i.s inloop i a.nd
has the same direction as the first branch
L) =1y_,;

_ if branch j is in loop i and .(16.a)
l has the opposite direction to the first branch
0 otherwise
L5=0. (16.b)

With the additional pseudo-measurements, measurement
equation (7) can be rewritten into (17).

z1_ 11 ' 0 0., ,[Tr

lo] = lol ")+ g g% +[o 7
Here, the symbol I represents an identity matrix, and 0 denotes
a matrix of zeros, appropriately sized.

D. Auxiliary Variables

Subdividing multiple variables within the same expression
can result in an exponential increase in computational
complexity. To address this issue, auxiliary variables are
introduced in SSE. For example, auxiliary variables a; and a,
defined in (18) can be introduced to calculate real power flow
on transmission lines Pj;in (19).

a, = gijCOS 611 + bijSin(Sij. (183)
a, = Vj(gijCOS(sij + bUSln6U) = Vjal. (18b)
P = (gsi + 9i)VE — Viay. (19)

By introducing auxiliary variables @, and a,, the variables
that appear more than once during propagation can be
subdivided to suppress overestimation. Additionally, only one
subdivision is involved in a single node propagation, which
reduces computational complexity.

E. Summary of the proposed MFBP method

The MFBP method for real power flow measurements is
illustrated in Fig. 1, while its pseudo code is summarized in the
table below. Here, the pseudo-code notation sub(g(.),x)
represents the calculation of function g(.) while applying the
subdivision method to variable x. Similarly, sub_tst (g(.) =
0, x) represents the application of the subdivision test to find a
solution for state x through the constraint of g(.) = 0. The
same process is applied to all other measurements. The related
equations are detailed in Appendix B.

[ Py ] Measurement

Backward

( @ J

Forward

Backward | | Forward Subdivision test | | Subdivision AUJ(II|IBTV
Variable
oq l Backward Forward
Subdivision test Subdivision
[ Bij ] [ Yi ] [ Vi ] State

Fig. 1. The MFBP method for the real power flow measurement with auxiliary
variables.
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Algorithm 3 the MFBP algorithm

Initialization: initialize state with physical limit and engineering
knowledge x, = [x,,%,], k = 0, qdis = o0, §;; = [-7/4,m/4],
V; =[0.9,1.1],V; = [0.9,1.1], @y = [~o0, ], a, = [~00, 00].

1: While gdis > threhold
. T
% X = [0,V V] s
3: Forward propagation:
4: a; = a; N (sub(g;;cosd;; + by;sindy;, 6;5))
S: a, = a; N (Viay)
6: Py = Py N (sub((gs; + gi)VZ — Viaz, V)
7: Backward propagation:
8: V; = sub_tst(P; = (gs; + gi)Vi — Viaz, V)
9: ay = a N sub(—=(Py; = (g + gu)VP/ Vi, Vi)
10: a; = a; N (ay/V;)
11: Vi =V n(ay/ay)
12: 6;; = sub_tst(a; = g;jc0s6;; + by;sindy;, 6;5)
. . T
13: qdis = Hy(xy, [5ij.Vi'Vj] )
14: k=k+1
15: End

IV. MODIFIED KRAWCZYK METHOD

To further mitigate the overestimation problem, a grouping
method is proposed in this section so that the Krawczyk method
[27] can be applied to solve the SSE problems.

A. Review of the Krawczyk Method and its Limitation

Similar to the interval Newton method [27], the Krawczyk
method is a nonlinear IA method for solving CSP problems.
Compared to the interval Newton method, the Krawczyk
method offers a distinct advantage by eliminating the need to
calculate the inverse matrix of the interval Jacobian matrix.
This is advantageous because the interval Jacobian matrix
might contain singular matrices, potentially leading to failures
during the matrix inversion. In addition, the Krawczyk method
interactively refines the intervals and guarantees convergence
to a tighter enclosure. The Krawczyk method is detailed in [27]
and briefly summarized below.

Consider a CSP shown in (20). Here, the function f: R" —
R™ . The principle of the Krawczyk method involves using an
interval extension of the function and its derivative to compute
a new interval that encloses the zeros of the function. The
Krawczyk operator, denoted as K (+), is defined by (21) [27].

f(x)=0. (20)

K(x) = % — Cf () + (I = Cf' () (x — x).  (21)
Here, x,,, denotes a fixed number and x,,, € x. f' represents the
Jacobian matrix of the function f. Matrix C is a preconditioning
matrix selected by users. The CSP in (20) can be solved by the
Krawczyk method, which iteratively applies the Krawczyk

operator as shown in (22).

X = K(x®) n x*. (22)

This iterative refinement ensures convergence towards a
tighter enclosure of the true solution, provided that C is
appropriately selected. The selection of C is crucial— improper
selection of C can lead to issues such as non-convergence.
Following the suggestion in [28], C in this study is chosen to be

-1
f' (xy), the pseudo-inverse of the measurement Jacobian
matrix at x,,.The method and its application are detailed further
in [28]. Should non-convergence issues arise, users are
encouraged to fine-tune their selection of C.

It is important to note that the Krawczyk method is only
suited to solve well-determined systems. However, the SSE of
power systems is typically an over-determined system, wherein
the number of measurements exceeds the states to be estimated.
To bridge the gap, this paper introduces a measurement data
grouping algorithm based on SVD. This algorithm decomposes
the over-determined SSE problem into multiple well-
determined subproblems so that the Krawczyk method can be
utilized to solve these well-determined subproblems of SSE.
Then, the multiple SSE solutions are merged into a solution
through intersection operations.

B. SVD-based Grouping Method

Assume that there are sufficient measurements in the SSE
problem to render the system observable and make the SSE an
overdetermined problem. The objective of the grouping method
is to divide the measurements into several groups so that (a) the
measurements in each group shall make the SSE a well-
determined subproblem conducive to the application of the
Krawczyk Method; (b) each measurement must belong to at
least one group, ensuring that the information it contains is
utilized to reduce the interval width of the estimated states; (c)
the number of measurement groups shall be kept small to
reduce computational complexity. Note that this approach
permits the inclusion of the same measurement in multiple
groups, thus allowing measurements to be shared across
different groups. To address the grouping problem, this paper
proposes an SVD-based grouping method, which is outlined
below.

In Algorithm 4, objective (a) is achieved through steps 1-4
and 7-12. Here, the input H' is the Jacobian matrix of the
measurement function, as described in (31)-(48) in Appendix A.
The output Group contains indices of the measurements that
make SSE a well-determined problem. In addition, the space
spanned by U, is orthogonal to the column space of H, i.c.,
U5H = 0. As such, any measurement corresponding to a non-
zero element in U, can be excluded while still maintaining
system observability because the measurement is redundant and
can be expressed as a linear combination of other measurements.
To achieve objective (b), the Group is updated and stored for
every iteration until each measurement is included in at least
one group, as implemented in step 5. To achieve objective (c),
the coefficient scalar CS in step 14 must be a real number
greater than 1 (CS > 1). Scaling up the rows in U, by CS tends
to make the following group omit measurements that have been

used in previous groups.
Algorithm 4 the SVD grouping method

1: H=H([V =1,6 = 0]) % measurement Jacobian
2: [U,S,V] = svd(H)

3: [m,n] = size(H) % m: num of measurements; n: num of states
4: U, =U(:,n+ 1:m) % note that U3 H = 0

5: While (any measurement is not grouped)

6: Group = 1:m;

7: Fori=1:m-n

8: U, = abs(U,(:,1))

9: [maxU,., D] = max (U,)

10: Group = Group(Group~ = D)

11: % Omit measurement D from this group
12: End

13: % Store the Group as the output

14: U,(Group,:) = U,(Group,:) = CS

—_
i

End
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C. Modified Krawczyk Method for the SSE

To align with the framework presented in (20) and (21),
measurement equation (7) is transformed into (23).
I 1t 0 07, r z
f@=[gner +[y Llx+[ol-lo)=0 @3
The measurement functions and their first-order derivatives
in the Jacobian matrix are defined in (27)-(30) and (32)-(48) in
Appendix A, respectively. The x,,, and € needed in (21) are
selected through (24) and (25), respectively.
X, = median(x).
H'™ (x)
c={ _, 1
H "(x, + Zw1dth([x]))

(24)
if H'(x,,) is nonsingular

(25)

otherwise

The modified Krawczyk algorithm can be outlined in
Algorithm 5. Here, x and x, are the upper and lower bounds
of the initial states, respectively. Typically, the initial interval
x, should be sufficiently large to cover the true values of the
states.

Algorithm 5 Modified Krawczyk method for SSE

Initialization: initialize states with physical limit and engineering
knowledge x, = [x, %], qdis = <, k = 0.

1: Apply the SVD grouping method

2 While qdis > threshold

3 X1 = Xi

4: For i = 1: number of group
5: zgruup = Z(Groupi)

K(Xp1) = Xmmjesr — Cf(xm,k+1)

6: ,
(1= 6" @) G = X
7: a1 = K(Xpey1) N Xy
8: End
9: qdis = Hy (X, Xjes1)
10: k=k+1
11: End

V. MoK-FoBS METHOD

It is important to note that all algorithms within the Interval
Analysis (IA) framework are rigorous, as highlighted in [22],
ensuring that the resulting intervals invariably contain the true
values. Capitalizing on this property, this section proposes the
MoK-FoBS algorithm. This algorithm combines the estimated
intervals from the MFBP and the modified Krawczyk method
by executing them sequentially. Such a combination ensures
that the MoK-FoBS algorithm achieves estimation intervals that
are not only narrower or equal to those obtained from the
individual algorithms but also come with guaranteed hard
boundaries.

Algorithm 6 MoK-FoBS method
Initialization: initialize states with physical limit and engineering
knowledge x, = [x, %], k = 0.
1: Apply SVD grouping method
While tolerance > threshold
Xiey1 = Xi
Apply the modified forward propagation method
Apply the modified backward propagation method
Apply the Krawczyk operator to all grouped measurements
qdis = Hy(%Xy, Xg41)
If qdis < tolerance
tolerance = tolerance/10

AR A T Y

0: End
1 k=k+1

12: End
The procedure for the MoK-FoBS method is detailed above.
Initially, the tolerance level is set to a high value to accelerate
convergence. This tolerance is gradually reduced over
subsequent iterations until it meets a predefined threshold,
ensuring precise results.

VI. CASE STUDIES

In this section, the performance of the proposed MoK-FoBS
method is evaluated and compared with the original FBP
method [16], the MFBP method, the modified Krawczyk
method, and the WLS method [2]. All case studies herein utilize
the IEEE 14-bus system [29] and IEEE 33-bus system [30] for
illustrative clarity. Moreover, the IEEE 39-bus [31] and IEEE
118-bus [32] systems are employed to examine the
computational efficiency of the proposed method.

A. Comparison between the MoK-FoBS Method and Other
14-based Methods

In this case, the performance of the MoK-FoBS and FBP is
evaluated using the IEEE 14-bus system, which models a
transmission system, and the IEEE 33-bus system, which
models a distribution system.

1) Comparison using the IEEE 14-bus system

As shown in Fig. 2, the IEEE 14-bus system consists of 20
branches and 14 buses. Assume that the system has 55
measurements, including 14 injection power measurements, 40
power flow measurements, and one bus voltage magnitude
measurement on bus 1, which are marked in Fig. 2.

The measurement noise of power flow, power injection, and
voltage magnitude are uniformly distributed within the interval
of [-1 X 1072,1 x 1072]. The initial interval states are [0.9,
1.1] for voltage magnitudes and [-n/4, n/4] for branch voltage
angles. The modeling error [ro] is set to [0, 0] because both the
simulation and state estimation utilize the same model. To
quantify the capability of the proposed MoK-FoBS method in
mitigating the overestimation problem, a width improvement
(WI) metric is defined in (26).

width(xpgp) — width(Xyok—rops)
[= -
width(xzgp)

(26)

Bus 13,

I I
Bus 12 Bus 14
[ i Bus 11

Bus 10

Bus 6 +E
% Bus7 Bus 8
Bus 1
Bus 4
Bus 5

Real and reactive power
flow measurement

Bus 9

® Real and reactive power
injection measurement
Bus 2

Bus 3

®

Fig. 2. Topology and measurement setup of the IEEE 14-bus system [29].
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The state estimation results obtained using the proposed
MoK-FoBS method are plotted in Fig. 3. It can be observed
from Fig. 3 that all true values of the states fall within the
estimation intervals generated by the MoK-FoBS method,
which verifies that the MoK-FoBS method is a rigorous 1A
method.
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Fig. 4. Comparison of state interval widths estimated by the FBP and MoK-
FoBS methods, along with their corresponding W1s.

Furthermore, the interval widths of the estimated results are
plotted in Fig. 4. Here, the dashed lines with ‘x’ marks represent
the interval widths from the FBP method, while the dashed lines
with ‘0’ marks represent the interval widths from the proposed
MoK-FoBS method. The WIs defined by (26) are also plotted
as red bars in Fig. 4. It can be observed from Fig. 4 that the
interval widths estimated by the MoK-FoBS method are
consistently narrower than those estimated by the FBP method.
The improvements are particularly noticeable in voltage
magnitude on buses 10-14 and voltage angle differences across
almost all the branches (except for branch 2), where
improvements exceed 60% in branch voltage angles and 20%
in bus voltage magnitudes. These observations indicate that the
proposed MoK-FoBS has significantly reduced the negative
impacts of the overestimation problem associated with the FBP
method.

Moreover, Fig. 5 compares the interval widths of the
estimation results obtained from three different methods: the
MFBP method (magenta solid line), the modified Krawczyk

method (blue dashed line), and the MoK-FoBS method (black
dashed line with 'o' marks). It can be observed that the MoK-
FoBS method offers the narrowest interval among these
algorithms, particularly in the estimated voltage magnitudes for
buses 10, 11, and 14, where its intervals are smaller than those
of the other two methods. The observation indicates that the
MoK-FoBS method effectively reduces the overestimation

problem by combining the two methods.
0.06
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Fig. 5. Comparison of state interval widths estimated by the MFBP method,
modified Krawczyk method, and MoK-FoBS method.

2) Comparison using the IEEE 33-bus system

To assess the applicability and effectiveness of the proposed
MoK-FoBS method in a distribution system characterized by a
radial configuration and heightened uncertainty levels, the
IEEE 33-bus system, depicted in Fig. 6, is used to generate
simulation data for comparison.

This system includes only six measurements, which measure
the voltage magnitudes and power injections at corresponding
buses. Additionally, pseudo-measurements of power injection
are generated based on load predictions. Virtual measurements,
indicating zero power injection, are introduced at nodes without
load. The locations of all measurements, pseudo-
measurements, and virtual measurements are marked in Fig. 6.
The noise associated with measurements, pseudo-
measurements, and virtual measurements is assumed to be
uniformly distributed within the intervals of [-0.01,0.01], [-
0.03,0.03], and [—1 * 107%,1 « 107°] p.u., respectively.
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ER 3.4 5 't's J K

‘\.\: .................. ; A Measurement
LHH E @®  :Virtual Measurement
H ©  :Pseudo Measurement
19 20 21 22
AREA 2

Fig. 6 Topology and measurement setup of the IEEE 33-bus system [30].

State estimation results obtained using the MFBP method,
the modified Krawczyk method, and the proposed MoK-FoBS
method are illustrated in Fig. 7. It can be observed from this
figure that the true values of the states fall within the estimation
intervals for all methods employed. Furthermore, the proposed
MoK-FoBS method consistently provides the narrowest
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interval among these algorithms, demonstrating its superior
precision and reliability in handling the challenges of
distribution systems.
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Fig. 7 Interval states estimated by the MFBP, modified Krawczyk, and MoK-
FoBS methods.

B.  Comparison between the MoK-FoBS method and the WLS
method

In this subsection, the robustness of the confidence intervals
generated by the WLS and MoK-FoBS methods is evaluated
and compared in the presence of bounded measurement noise.
For the IEEE 39-bus system, it is assumed that there are 20
power injection measurements, 46 power flow measurements,
and one voltage magnitude measurement. For the [EEE 118-bus
system, it is assumed that there are 118 power injection
measurements, 179 power flow measurements, and 59 voltage
magnitude measurements. For the IEEE 300-bus system, it is
assumed that there are 1318 measurements. These comprise 300
voltage magnitude measurements, 100 pairs of power injection
measurements, and 409 pairs of power flow measurements.

The measurement noises are constrained within the range of
—1x 1072 to 1 X 1072, Three types of noise distributions are
employed: uniform, truncated Gaussian, and bimodal. The
truncated Gaussian distribution is obtained by setting the
standard deviation of a normal Gaussian distribution to one-
third of the boundary radii, truncating its PDF’s long tails
outside the boundaries, and normalizing the resulting PDF. The
PDF of the bimodal distribution is uniformly distributed at the
edges within the noise boundaries, i.e., [-1 X 1072, —0.9 X
1072]U [0.9 X 107%,1 x 1072], as illustrated in Fig. 8.

1000

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
r

Fig. 8 PDF of the bimodal distribution used in the analysis.

To account for the randomness of the measurement noise,
performance metrics are evaluated using the Monte Carlo
method across 1,000 instances of measurement noise.
Violations are defined as instances where any estimated interval
fails to cover the true value of the states. The study results are
summarized in Table 1. Note that the WLS method constructs
confidence intervals as [X,,;; — c0, X,,;s + ca], where %,,;; and
o are determined using (8), and c is a user-selected constant.

Table I shows that the MoK-FoBS method consistently
yields interval states that encompass the true state values. This
underscores the rigor of the IA, suggesting that the algorithms
developed under its framework are highly reliable. In contrast,
the WLS method exhibits violations up to the 60 confidence
intervals for the truncated Gaussian distribution, up to the 10c
confidence interval for the uniform distribution, and up to the
120 confidence interval for the bimodal distribution. These
observations indicate that the accuracy of the confidence
intervals generated by the WLS method is substantially
influenced by the PDFs of the noise. Additionally, the
confidence intervals generated by the WLS method cannot
cover all the true values in the states with a similar interval
width as the MoK-FoBS method.

TABLE 1
NUMBER OF VIOLATION CASES IN THE 1,000 MONTE CARLO
SIMULATIONS
Average . Number of
Methods interval . N.O 15¢ violation
. distribution
width cases
Proposed Gaussian 0
MoK-FoBS 0.0162 Uniform 0
Method Bimodal 0
Gaussian 26
(SNZLS& 0.0102 Uniform 573
Bimodal 998
Gaussian 0
(CW:Lz) 0.0136 Uniform 120
Bimodal 938
Gaussian 0
(C\ZL1S 0) 0.0169 Uniform 7
Bimodal 593
Gaussian 0
(CViLls 2) 0.0204 Uniform 0
Bimodal 244




> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

C. Computational Efficiency

To assess its computational efficiency, the proposed MoK-
FoBS method was implemented using MATLAB and tested on
a PC equipped with an Intel Core 17 processor running at 3.20
GHz and 16 GB of RAM. The computation times are
summarized in Tables II and III. Initially, the MoK-FoBS
method was implemented using INTLAB [33], a toolbox
designed for accurately implementing IA algorithms by
overloading MATLAB operators. However,  the
implementation using INTLAB was found to have low
computational efficiency, as shown in Table II.

TABLE II
COMPUTATIONAL TIME USING INTLAB IMPLEMENTATION
Method Simulation Measurement Computaﬂonal
system number time (s)
IEEE 14-bus 56 127.14
IEEE 39-bus 134 419.75
MEBP 1 pEE 118 bus 654 3604.43
IEEE 300-bus 1318 11463.98
. IEEE 14-bus 56 10.37
g[r(’dlﬁei IEEE 39-bus 134 44.65
njwtv}fzg IEEE 118-bus 654 324.09
o {EEE 300-bus 1318 377.13
IEEE 14-bus 56 103.21
11\:4001;(8? IEEE 39-bus 134 357.74
‘g IEEE 118-bus 654 3138.54
method IEEE 300-bus 1318 11986.10
TABLE III

COMPUTATIONAL TIME USING THE BOUND-FOCUSED CODE
IMPLEMENTED BY THE AUTHORS

Simulation Measurement ~ Computational
Method .
system number time ()
IEEE 14-bus 56 0.78
IEEE 39-bus 134 2.05
MEBP \EEE 118-bus 654 8.34
IEEE 300-bus 1318 25.07
. IEEE 14-bus 56 0.64
x"d‘ﬁei IEEE 39-bus 134 2.40
a"t’l‘l’zz IEEE 118-bus 654 40.78
method IEEE 300-bus 1318 56.07
IEEE 14-bus 56 1.04
1;/[0;8: IEEE 39-bus 134 3.64
moth ' IEEE 118-bus 654 45.97
¢O¢ " IEEE 300-bus 1318 101.45

To improve implementation efficiency, the authors modified
the initial INTLAB implementation code by removing the
calculation for rounding errors and focusing solely on bound
calculation. Because the rounding errors are negligibly small
compared to the measurement noises in the proposed
application, this modified approach retains nearly the same
accuracy level as the original INTLAB code while significantly
boosting computational speed. As shown in Table III, the

computational time has dramatically decreased, especially for
the MFBP and MoK-FoBS methods.

Table II shows that with the INTLAB implementation, the
modified Krawczyk method had the shortest computational
time, suggesting that matrix-based methods are more
computationally efficient, especially in larger systems.
Conversely, the MFBP method exhibited the longest
computational time. Table III shows that with the bound-focused
implementation, the MFBP method and the Krawczyk method
have similar computational time. On the other hand, the MoK-
FoBS method has a longer computational time. The computation
times for all three algorithms display a near-linear increase in
correlation with the system size, suggesting their feasibility for
deployment in larger systems.

VII. CONCLUSIONS AND FUTURE WORK

The MoK-FoBS method is proposed in this paper to quantify
the uncertainty in power system SSE through IA. This proposed
MoK-FoBS method mitigates the overestimation problem by
synthesizing two modified IA methods and subsequently offers
notably tighter interval estimates than the conventional FBP
method. Furthermore, compared to the well-established WLS
algorithm, the proposed MoK-FoBS method consistently
generates hard boundaries that possess comparable interval
widths while ensuring that all true values are encompassed
within these intervals. Moreover, the paper highlighted a crucial
enhancement in computational efficiency. By modifying the
initial INTLAB implementation, the computational speed of the
MoK-FoBS method was significantly improved without
compromising the accuracy of the results. In summary, the
MoK-FoBS method offers an accurate, reliable, and
computationally efficient tool for quantifying uncertainty in
power system SSE.

Future work may explore further optimization of the method
and its application to more diverse and dynamic power system
scenarios. In addition, to further narrow the interval width of
estimated states, dynamic models will be introduced into state
estimation to capture the temporal correlation of power system
states. Approaches like the one detailed in [34] will be
integrated into the proposed method within the forecast-aided
state estimation framework [35].

APPENDIX A. MEASUREMENT FUNCTIONS AND THE JACOBIAN
MATRIX FOR THE PROPOSED ALTERNATIVE STATES

To perform [A-based SSE on a power system with n buses, /
independent branches, and m measurements, the measurements
(z € R™) in (7.a) are written as the nonlinear algebraic function
(h’ :R™ > R™) of the alternative states (x’ € R"*!)
defined in (14). The measurement equations in /4’ are presented
in (27)-(30). Here, g;; and b;; are the real and imaginary parts
of the admittance of the series branch connecting buses 7 and j,
respectively. gg; and b; are the real and imaginary parts of the
admittance of the shunt branch connected to bus i, respectively.
Gi; and B;; are the real and image parts of the element at the i
row j* column of the bus admittance matrix, respectively. N; is
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the set of buses that are directly connected to bus 7.

PL = VL Z VJ(G’-J CosS 51] + BUSlnSU) . (27)
JEN;

Qi =V Z Vi(Gyj sin&;; — B;jcos8;;) . (28)
JEN;

Pij = Viz(gsi + gU) - ViVj(gi}'COSSij + bijSinSU) (29)

Qij = —V#(bsi + bi;) — ViVi(gijsind;; — byjcoss;;). (30)

The structure of the measurement Jacobian, denoted as H',
is described by (31).

oy ]
FT% 0
v s
B R
vV 08
0Q;; 0Q;j
LoV 08

The elements corresponding to the real power injection
measurements are summarized in (32)-(35).

aP, .
W = z V](G” CoSs 6” + BijSlnSij) + ViGii' (32)
¢ JEN;
daP;
6V = V;(G;j cos 8;; + Byjsins;;). (33)
dP;
5 = = V;V;(—Gy; sin 8;; + Byjcoss;;). (34)
ij
JP; .
K = VlV](Gl] Sln(—(Sﬁ) - BijCOS (_6]l)) (35)
ji

The elements corresponding to reactive power injection
measurements are summarized in (36)-(39).

0Q;

av. = Z V](G” sin 61] - Bl‘]'COS(Sij) - ViBii' (36)
bojen;
90
a_g-l = V;(G;j sin8;; — Byj cos ;). (37)
J
0Q; .
ET = VLV](GU COSSU +Bl-]-Sln8i]-). (38)
ij
90, :
Y = _VlV](Gl] COS(_Sl‘j) + Bl] Sln(_8ij)). (39)
ji
The elements corresponding to real power flow

measurements are summarized in (40)-(43).

aP,. .
6Vll] = —V;(gij cos 8;j + byjsin;;) + 2(gij + gsi)Vi- (40)
dP;;
6V V(gl] Cos §;; +bUsm8U) (41)
aP
V= ViVi(gij sin8;; — byjcos8;;). (42)
35,
9P
agl.}. = —ViV;(g; sin(=8;) — byj cos(=8;)).  (43)
JU

The elements corresponding to reactive power flow
measurements are summarized in (44)-(47).

90Q;; .
a_l/fi] = —V-(gl-j sin§;; — b; COS(S”) 2(bi]- + bsi)Vi. (44)
90Q;
aVU .z (g” sin§;; — b; cosSU) (45)
90;
66: = —Vle(gU cos 8” + busznﬁu) (46)
90Q;
GSJLZ = Vle(gU cos(—6;;) + byjsin(— 511)) (47)
The elements corresponding to voltage magnitude
measurements are summarized in (48).
A 1 48
a7 =L (48)
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APPENDIX B. EQUATIONS FOR IMPLEMENTING THE MFBP

METHOD

A. For Real Power Flow Measurements
Forward propagation:
a’’ =a n (sub(gl]cosd + b; smé‘u,dl]))
;of = a2 n (Vaff)

Py =P;nN (SUb ((gsi +9)VE - Viagf' Vz))
Backward propagation:

V; =sub tSt(PU = (gﬂ + gii)Viz -

al’ = a?’ 0 sub(— (Pu

o) = a1 n (@' V),

VJ Vi N (g f/a )-

6;j = sub_tst(oc1 = gl]cosd + b;jsind;;, ;).

via3, vy).

B. For Reactive Power Flow Measurements
Forward propagation:
a¥ =a¥ n (sub(gijsinSij - bijcosﬁij)).
agf = 0{2 n (V aff)

Qy = @y 0 (sub(—(bg: + b))V = Viad', V7).

Backward propagation:

V; = sub tst(QU —(bg; + b )VZ = ViaZ V).

ad = a¥ nsub(- (QU + (b + by VAV, V).

af =al’ n @i’ /v.
V; =V, n (af /ai).

8 = sub_tst(al = g;;sin8;; — byjcosdy;, 8;;).

C. For Real Power Injection Measurements
Forward propagation:
aff; = af; (sub(GU cos§;; + BijsinSij)).
ab’ = ab’n (Val?).
P, = P, n (sub(Gy V2 + V; Z i V).

JEN;
Backward propagation:

V; = sub_tst(P; = GV +V; Z azj, V).

JEN;

(gsi + gidVH/Vi Vo).

(49)
(50)
(51)

(52)
(53)
(54)
(55)
(56)

(57)
(58)
(59)

(60)
(61)
(62)
(63)
(64)

(65)
(66)
(67)

(68)
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ab’ = ab’ 0 sub((P; — Gy V? —

ab)/Vi, V). (69)

lENl,l:#]

af; —aljn(a /V) (70)
Vi=V;n (a /a ). (71)
61']' = Sub_tst(afj. = GU CosS 611 + BijSinSij,(Sij). (72)
D. Reactive Power Injection Measurements:
Forward propagation:
aflj = aflj (sub(Gij sin8;; — B; COSSU)) (73)
af; = a0 (Viaf"). (74)
= Q; N (sub(—By V2 +V, Z afi V). (75)
JEN;
Backward propagation:
V; = sub_tst(Q; = —BVZ +V; Z a21' (76)
JEN;
a2] = 0‘2] N sub((Q; + B;VZ —V; aZl)/Vl,V) (77)
lENi,l¢j
a;“] =al N (a /V-). (78)
V} vin (a /a ). (79)
8; = sub_tst(au = GL-]- sind;; — B;jcosd;j,6;5). (80)
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