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Characterizing the relationship between disease testing behaviors and infectious disease
dynamics is of great importance for public health. Tests for both current and
past infection can influence disease-related behaviors at the individual level, while
population-level knowledge of an epidemic’s course may feed back to affect one’s
likelihood of taking a test. The COVID-19 pandemic has generated testing data on an
unprecedented scale for tests detecting both current infection (PCR, antigen) and past
infection (serology); this opens the way to characterizing the complex relationship
between testing behavior and infection dynamics. Leveraging a rich database of
individualized COVID-19 testing histories in New Jersey, we analyze the behavioral
relationships between PCR and serology tests, infection, and vaccination. We quantify
interactions between individuals’ test-taking tendencies and their past testing and
infection histories, finding that PCR tests were disproportionately taken by people
currently infected, and serology tests were disproportionately taken by people with
past infection or vaccination. The effects of previous positive test results on testing
behavior are less consistent, as individuals with past PCR positives were more likely to
take subsequent PCR and serology tests at some periods of the epidemic time course
and less likely at others. Lastly, we fit a model to the titer values collected from serology
tests to infer vaccination trends, finding a marked decrease in vaccination rates among
individuals who had previously received a positive PCR test. These results exemplify
the utility of individualized testing histories in uncovering hidden behavioral variables
affecting testing and vaccination.

COVID-19 | disease testing behavior | serology

Human behavior plays an integral yet arguably understudied role in the dynamics
of infectious diseases. The COVID-19 pandemic made clear how behaviors such as
heterogeneity in contact (1, 2), mask-wearing (3, 4), lockdown fatigue (5, 6), vaccine
hesitancy (7, 8), and testing for current and past infection (9, 10) can affect epidemics
at multiple scales. Thus, clarifying relationships between behaviors and infection has
both applied and theoretical importance in understanding the complexities of infection
dynamics.

It is especially crucial to understand the behaviors that govern infectious disease testing,
as testing is one of the primary fronts by which the public and scientists alike gather
information about an epidemic’s course (11, 12). In order to properly account for the
biases that exist in reported testing data and uncover an epidemic’s true trajectory, it is
necessary to be cognizant of the various ways disease surveillance is carried out at different
scales (13, 14).

With COVID-19, many individuals reacted to the pandemic through weekly or even
daily testing for current infection status, using PCR and antigen tests to help identify
asymptomatic infections. As a result, COVID-19 was met with an unprecedented volume
of tests and subsequent quarantines, significantly reducing the number of asymptomatic
transmissions and overall cases (10, 15, 16). This pattern of mass testing also kept
people continually informed of the pandemic’s magnitude through PCR-reported case
counts, prompting governments to institute nonpharmaceutical interventions such as
social distancing and mask-wearing guidelines. Additionally, serology (antibody) tests,
which test for an immune response indicative of past infection, have also been used
throughout the COVID-19 pandemic and affected its course. Many serology tests have
been provided in hospitals, in randomized serosurveys, or by individuals curious about
their immune status, especially after initial surges of infection when diagnostic tests were
not yet available (17, 18). This amount of information on past infection has aided greatly
in determining the breadth of immunity across populations worldwide (19).
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Fig. 1. (A) Total number of positive tests over the study period for each New Jersey region and in three main categories of tests: PCR tests (red), serology tests
(green), and serology tests associated with a past PCR positive (blue). Seropositives with no past PCR positive are also shown (lavender). Dashed light gray bars
show the population of each New Jersey region. (B) Positive tests from the three main categories, but over time. The Top panel shows the total positive tests
for each category across all regions, and each heatmap shows the positive tests of one type broken up by New Jersey regions and normalized to the maximum
in that region over this time period (so heatmap values range from 0 to 1). (C) Proportion of positive serology tests per week whose test-takers had a past PCR
positive, for all of New Jersey (“total”) and broken up by region. Gray cells indicate no serology tests were taken in that region that week. (D) The map shows
how the New Jersey counties are grouped into different regions for this analysis.

Despite the obvious and overwhelming benefits of infectious
disease testing in general, the distribution of these tests has
been found to be biased in many ways: toward certain de-
mographic factors (gender, race, ethnicity, geographic location,
and socioeconomic status) (20–22); toward symptomatic or
asymptomatic infections (23, 24); and toward mass testing
settings like schools, workplaces, and hospitals (25–27). And
testing can unintentionally foster a false sense of security. Low
PCR-reported case counts can promote riskier behaviors at the
population-wide scale, a phenomenon which has led to many
instances of populations relaxing their COVID-19 restrictions
prematurely (28, 29). At the individual scale, negative PCR
results can be perceived as permission slips for partaking in large
gatherings and other risky situations (9). On the other hand,
positive test results of any kind can cause the test-taker to be
overly confident in the natural immunity they may have acquired,
to the point of encouraging riskier behaviors or even eschewing
vaccination (7)—despite the potential for reinfection, especially
among the unvaccinated (30). In these ways, COVID-19 PCR,

antigen, and serology tests have the ability to significantly
influence transmission dynamics; however, the relative impacts
of these different testing behaviors are not immediately clear.

In this paper, we examine how testing behavior may have
influenced the dynamics of COVID-19 through a database
from the New Jersey Department of Health (NJDOH), which
recorded individualized testing histories for everyone who has
taken a COVID-19 PCR or serology test in the state. The
large-scale, continuous use of PCR and serology tests through
the first 2 y of the pandemic allows us to investigate how test-
taking behaviors for the two kinds of tests have interacted with
each other, and how such interactions vary by geographical
area (Fig. 1). One immediate benefit of such a database is
the ability to crudely estimate the magnitude of true COVID-
19 incidence: since only PCR tests are reported in official
COVID-19 case counts, all serology positives from test-takers
without an associated PCR positive (the lavender bars in Fig. 1A)
are unreported cases (indicating an even larger mass of cases
unreported by either kind of test).
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Fig. 2. Log odds ratios over time, with the red lines at 0 indicating independence between exposure and outcome, positive values indicating a positive
association between exposure and outcome, and the negative values indicating a negative association. Black curves show the mean log odds ratio, while the
dashed blue curves on either side show the 95% CI. In (A and B), the exposure is whether the test-taker has a current COVID-19 infection or has had a past
infection/vaccination, respectively, and the outcome is taking a PCR or serology test, respectively, in the present. In (C and D), the exposure is whether the
test-taker has ever had a PCR positive in the past, and again the outcome is taking a PCR or serology test, respectively, in the present.

With the added feature of individualized testing histories, we
can also calculate odds ratios characterizing how these testing
behaviors have interacted with each other and the test-taker’s past
infection history to shape the dynamics of COVID-19 testing in
New Jersey. For example, having a COVID-19 infection could
make one either more or less likely to take a test, depending on
testing availability and uncertainty in one’s infection status. We
discuss how knowledge of odds ratios relating infection to testing
behaviors can be used to estimate incidence more effectively.
We also focus on whether people had a past PCR positive result
as an important behavioral exposure, since a PCR positive may
also encourage or discourage future testing depending on one’s
confidence in their PCR diagnosis and curiosity about their
resulting immunity (31). The odds ratios we derive clarify these
interactions and shed light on the biases behind reported testing
data.

Finally, building off observations that vaccination can increase
one’s serology titer values [which roughly quantify the strength
of immunity from a serology test (32)], we develop a model
leveraging serology titer values to infer behavioral parameters
characterizing how COVID-19 testing history has affected
people’s likelihood and timing of getting vaccinated. We observe

that titer values from positive serology tests after the onset
of vaccination were lower on average for test-takers who had
previously received a positive PCR result (Fig. 3B) and show
that this trend is a result of people with past PCR-confirmed
infections having lower vaccination rates during the first 8 mo
of vaccination in New Jersey. We thus highlight the need in
future epidemics for more data-recording practices that link tests
(and ideally vaccination records) at the individual level, along
with randomized surveys to uncover attitudes toward testing and
vaccination after infection.

Results
Fig. 1 summarizes the frequencies of positive PCR and serology
tests from the New Jersey COVID-19 testing database, also
capturing some of the interaction between the two kinds of
tests by separating seropositive tests into those with an associated
past PCR positive and those without. The total counts of these
positive tests over the first 20 mo of the pandemic are shown
in Fig. 1A. Separating New Jersey into four regions (given by
the map in Fig. 1D), the total counts of PCR positives were
roughly proportional to the population size of each region,
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Fig. 3. (A) The mean log titer value by week, restricted to only positive serology tests used for the serology model. The blue curve shows the uptake of COVID-19
vaccinations in New Jersey. (B) Mean log titer value by month restricted to positive serology tests and broken up by whether their test-taker had a past PCR
positive. Points show the mean and error bars show 95% CI. The red dashed line in both plots indicates the onset of vaccination in New Jersey.

with about 10% of individuals in each region receiving a PCR
positive over this time period. Serology positive counts were more
uneven, with about 7% of inhabitants in the northern counties
receiving a seropositive as compared to only 1% of inhabitants
in the southern counties. Peaks of seropositives, including for
those with past PCR positive, reliably followed the two major
peaks of PCR positives (Fig. 1B). The timing of these peaks
was fairly consistent across the four geographical regions, though
the southern and shore counties had more pronounced second
peaks of PCR positives and of seropositives with past PCR
positives.

The southern counties have a much greater proportion of
seropositives previously reported by PCR, as compared to the
other regions throughout 2020 (Fig. 1C ). The other three regions
were consistent in having the proportion of seropositives with past
PCR positive peak at the beginning of the pandemic and then
taper off until a minor second peak around the same time as the
second PCR positive peak. Aside from the two peaks, these three
regions stay relatively constant with about 20 to 30% of their
seropositives at any time previously reported by PCR. In contrast,
the proportion of all serology tests (including seronegatives) that
were taken by people with a past PCR positive steadily increases
over time in all regions, to a maximum of around 10 to 15%
depending on the region (SI Appendix, Fig. S14).

While not the focus of this work, we estimated weekly
COVID-19 incidence to aid in our other analyses. The incidence
curves we estimate and the resulting underreporting multipliers
are shown in SI Appendix, Figs. S7 and S8, respectively. We
estimate underreporting multipliers steadily declining from 6.8 to
18.3 (95% CI) in mid-March 2020 to 1.5 to 3.9 in August 2020,
after which the underreporting multiplier fluctuates roughly
in tandem with the fluctuations in PCR-reported cases, with
peaks at 3.8 to 10.1 in mid-December and at 4.8 to 12.7 in
June 2021.

Odds Ratios. The odds ratios we derive reveal the time-varying
interactions between different testing behaviors and COVID-19
infections. PCR tests were always taken disproportionately by
currently infected individuals, as the log odds ratio of taking a
PCR test conditional on current infection (�I,P(w)) is always
significantly greater than zero (Fig. 2A). Fluctuations in this log

odds ratios appear to be negatively correlated with the fluctuations
in estimated COVID-19 incidence, with troughs in the odds
ratio occurring approximately at or soon after peaks in the
case counts (SI Appendix, Figs. S10–S12). Near the beginning
of the pandemic, we also see that serology tests were taken
disproportionately by people who had been infected in the past,
as shown by the highly positive initial values of the log odds ratio
of taking a serology test conditional on past infection (�I,S(w);
Fig. 2B). However, serology tests taken later in the study period
were much less likely to be associated with a past infection or
vaccination as this log odds ratio declines closer to 0. Even so,
both PCR and serology tests were almost always taken more
often by individuals who were currently infected (for PCR tests)
or previously infected (for serology tests).

The odds ratios also imply that past testing history, specifically
previous PCR positive results, can impact one’s decisions to
take a PCR or serology test. At the beginning of the pandemic,
PCR tests were proportionally more likely to be taken by those
who had already received a PCR positive (�Pp,P(w) > 0), but
over time the corresponding odds ratio steadily declines to the
opposite extreme where those without a past PCR were more
likely to take a PCR test (�Pp,P(w) < 0; Fig. 2C ). The effect of
having a past PCR positive on taking a serology test, however,
fluctuated between a positive association (�Pp,S(w) > 0) and
a negative association (�Pp,S(w) < 0; Fig. 2D). The negative
associations, when those with past PCR positive were less likely
to take a serology test, happened largely when weekly COVID-19
incidence was peaking, while the odds ratio tended to be positive
during periods of lower case counts (SI Appendix, Figs. S10–S12).

The effect of having a past PCR positive on taking a serology
test which gives a positive result, however, behaves more regularly.
The additional odds ratio in supplement (SI Appendix, Fig. S13)
shows that positive serology results are always positively associated
with past PCR positives, though the strength of this association
steadily declines over time toward independence between positive
serology tests and past PCR positives.

Serology Model. More can be gleaned about testing behavior by
considering the serology tests’ titer values through the serology
model. The ability to use titers to infer behavioral trends
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regarding testing and vaccination is justified by three observations
on the power of passively collected testing data. First, average
titers over time increase greatly following the onset of vaccination
in New Jersey, even when restricting to positive serology tests to
control for changes in test positivity (Fig. 3A). This increase
mimics the rise of vaccine intake in New Jersey, demonstrating
that the IgG spike-protein serology tests we analyze can indeed
detect vaccine-caused immune boosting.

Second, this vaccine-induced increase in titers among positive
serology tests is much greater initially for those without past
PCR positive (Fig. 3B), suggesting that having a past PCR
positive result is associated with a decreased likelihood of getting
a vaccine during the early stages of vaccination. Even when
considering all serology tests—including negative serology tests
which disproportionately reduce the average titers for people
without past PCR positive—the titers for those without past
PCR positive overtake the titers of those with past PCR positive
once vaccination starts (solid lines in Fig. 5).

Third, when restricting to serology tests associated with past
PCR positives, we can plot titer values against the delay from the
PCR positive test date to the serology test date to recover known
within-host serological trajectories from the literature (Fig. 4).
This suggests that the PCR positive date can approximate the
infection onset date, allowing us to infer the time of infection
for the tests in the New Jersey database. We make use of
this assumption and the serology tests’ titer values to fit a
model, which first determines parameters related to within-host
serological trajectories using a submodel restricted to just tests
which have associated past PCR positives, and then uses these
serological trajectory parameters to glean additional behavioral
parameters from the whole serology dataset.

The serology submodel restricted to tests with past PCR
positive predicts titer values reasonably well for smaller delays
from PCR positive to serology test, qualitatively matching fits
from controlled clinical studies but with a slightly later peak
time (33) (Fig. 4). For longer delays from past PCR positive,
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Fig. 5. An example fit from the full serology model. Solid curves and error
bars show the mean log titer value and 95% CI from the database’s serology
titers, broken up by whether the test-taker had a past PCR positive. Dashed
curves show the predictions from the serology model, also broken up by past
PCR positive. The red dashed vertical line shows the onset of vaccination in
New Jersey.

mean log titer values skew higher than the predictions, as this
submodel does not properly account for vaccinations, which are
more common for serology tests with longer delays.

The full serology model fit to all tests better accounts for
vaccinations, predicting mean log titers well throughout the time
period studied and for serology tests both with and without
past PCR positive (Fig. 5). Importantly, the model fits the
time-varying parameter rVP(w)—which describes the relative
vaccination rate for people with past PCR positive compared
to those without past PCR positive—to be substantially less than
1, from around 0.15 at first and increasing to 0.6 to 0.7 (Fig. 6).
This signifies that people with past PCR positive were about 15%
as likely to get vaccinated at the onset of vaccination as people
without past PCR positive, though this difference eventually
becomes less pronounced as vaccine uptake for those with past
PCR positive later catches up (Fig. 6). Thus, the observed trend
that vaccination has a lesser impact on average titers for those
with past PCR positive (Fig. 3B) can be explained by a reduced
vaccination rate for this group, dispelling the null hypothesis
that this trend could be explained solely by differences in vaccine
uptake between different age classes. The rejection of this null
hypothesis makes sense with the fact that older individuals in
New Jersey got vaccinated earlier but were also more likely to
have past PCR positives (SI Appendix, Fig. S17).

Model fits for other parameters and sensitivity analyses can be
found in SI Appendix.

Discussion
The intersection between testing behavior and disease is likely to
be a critical driver of feedbacks that shape infection dynamics.
Our analysis of a database with uniquely detailed individualized
COVID-19 testing histories provides a lens onto factors that
underlie the decision to test for an infection; namely, past testing
and infection history shape the decisions to get tested (by PCR
or serology) or vaccinated for COVID-19. These dependencies
change over time, and differ between geographic regions within
the state of New Jersey. Our results can be interpreted as
describing the testing-related behavior of an average New Jersey
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Fig. 6. Curves show the predicted vaccination rates from the serology
model fit shown in Fig. 5, broken up by past PCR positive. The dashed
curve shows the actual increase in vaccination coverage over time across
everyone in New Jersey. The vaccine uptake curves are nonmonotonic due to
the model averaging over several age classes. The heatmap below shows the
fitted value of the parameter rVP(w), which varies with week w and controls
the ratio of vaccination rates between those with past PCR positive to those
without past PCR positive. The model fits rVP to have a value less than 1 over
this time period, indicating reduced vaccination among those with past PCR
positive.

resident during the COVID-19 pandemic, although it should be
noted that such behaviors may differ vastly between individuals
as well and in often polarizing ways (9, 34, 35). Though this
study is not able to fully tackle heterogeneities in testing behavior
(except between people with past PCR positives and those
without) due to limitations with data and anonymity, future
work can hopefully expand these analyses to see how results
differ over demographic groups, testing settings, symptomatic
statuses, and a wider range of past testing histories. Doing so can
help expose the various biases that exist in testing availability by
gender, race, ethnicity, geographic location, and socioeconomic
status.

Odds Ratios. The average New Jersey resident was found to be
much more likely to take a PCR test for current infection when
they were actually infected (Fig. 2A), and only slightly more
likely to take a serology test for past infection when they had
a past infection (Fig. 2B). These behavioral trends make sense
in light of the monetary and time costs of taking a COVID-
19 test (9), which can deter people from taking tests unless they
strongly suspect they may be infected. However, these costs could
also elicit the opposite reaction from people who deem testing
unnecessary when they are already fairly certain they are infected.
While the average New Jersey resident generally acted according
to the first of these two lines of reasoning, fluctuations in the
odds ratio relating current infection status to taking a PCR test
(Fig. 2A) reveal that both of these behavioral factors were likely
at play at different times.

These fluctuations may be better understood by their inverse
correlation with the peaks and valleys of COVID-19 incidence
(SI Appendix, Figs. S10–S12). Specifically, the average individual
was generally less inclined to get a suspected COVID-19
infection tested by PCR during times of higher population-
level incidence. Such a phenomenon could have several potential
explanations: during outbreak peaks, there is a relative scarcity of

COVID-19 tests (36); a higher prior probability of a suspected
infection actually being COVID-19 and thus less uncertainty
to be resolved by taking a test; and a heightened caution which
could result in self-quarantining even without a formal COVID-
19 diagnosis. A notable exception to this pattern is the very
high initial values of this odds ratio and the odds ratio relating
serology testing to past infection during the pandemic’s first peak,
signifying that PCR and serology tests were originally reserved
mostly for those with suspected infections.

The odds ratios in Fig. 2 C and D show that test-taking
is additionally affected by past test-taking behaviors, namely
having a past PCR positive. Unlike the consistently positive
effects of current or past infections on test-taking tendencies
we observe in Fig. 2 A and B, the effects of past PCR positives
are more ambiguous. The odds ratio relating PCR test-taking
to having a past PCR positive (Fig. 2C ) steadily declines over
time, from a positive association at first to a negative association,
perhaps indicative of a shift in the testing demographic away
from people predisposed to repeat testing (e.g., people in higher
risk scenarios or enrolled in regular testing programs). And
the odds ratio relating serology test-taking to having a past
PCR positive (Fig. 2D) fluctuates between positive and negative
associations several times (these fluctuations also have negative
correlations with the COVID-19 incidence curve; SI Appendix,
Figs. S10–S12), with a highly positive initial value indicating
that the restricted serology test availability at the beginning of
the pandemic was prioritized for people with confirmed past
infections [perhaps as part of longitudinal serological studies
(33, 37)]. Thus, having a past PCR positive—which can be
thought of as a proxy for knowing with certainty that one has
been already infected with COVID-19—increased the likelihood
of taking subsequent tests at some points in the pandemic and
decreased the likelihood at other points, with PCR test-taking
and serology test-taking behaviors switching between these two
regimes at different times.

Interestingly, the effect of past PCR positives on future
serology test-taking is vastly different if we consider only
positive serology results. The supplemental log odds ratio which
relates positive serology tests to having a past PCR positive (SI
Appendix, Fig. S13) shows a consistently positive but steadily
declining association between positive serology tests and past
PCR positives. Thus, positive serology tests later in the pandemic
are more likely to represent unreported infections (also supported
by Fig. 1C ), implying that serology tests may become more useful
in revealing unreported infections as epidemics progress. The
increasing use of at-home antigen tests throughout 2021 (38, 39)
likely contributed to this trend, though this cannot be determined
with the present data.

The results from these odds ratios highlight the complex
relationships between test-taking behaviors in the past and
present, which are highly dependent even on the types of tests in
question. Differences in these results between PCR and serology
tests occur because they are testing for fundamentally different
phenomena, but may also be a result of differences in how biased
the availability of each test type is: indeed, PCR testing volume
was roughly proportional to population size across different
regions of New Jersey, while serology testing volume was much
more skewed (SI Appendix, Fig. S14A). Furthermore, the two
behavioral exposures we examine—having a past infection and
having a past PCR positive—may seem like similar phenomena,
but the odds ratios show that they influenced future test-taking
habits in completely different ways. Understanding the intricacies
of these behavioral relationships can be useful in making sense
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of reported case counts and how they might be biased in ever-
changing ways throughout an epidemic.

Insights into Underreporting. While not the primary concern of
this work, our simple method of estimating incidence in order
to calculate odds ratios does provide underreporting multipliers
that are in line with established estimates from the literature.
The CDC estimates that the national underreporting multiplier
from February 2020 to September 2021 is 4.0 (40), compared
to our mean estimate of 4.2 for New Jersey’s underreporting
multiplier over a similar time period. Seroprevalence surveys have
also given similar results: national underreporting multipliers
derived by Angulo et al. (41) fall well within our confidence
intervals for each of the time intervals they study. Our odds ratio
calculations could be improved in future work by incorporating
any of the numerous, more sophisticated incidence estimation
procedures that exist in the literature, which use other data sources
like seroprevalence surveys or wastewater surveillance to correct
incidence estimates (41–45).

In the scope of this paper, our estimates of weekly incidence
are only a means of calculating odds ratios relating infection
to testing behavior. However, it is our hope that the results
from our odds ratios could shed light on patterns common to
similar types of odds ratios across broader socioepidemiological
contexts. For example, if it is found in other infectious disease
systems that the log odds ratio between being infected and testing
for current infection is similar in magnitude to our �I,P(w)
(which satisfies that description in our system), then we can
potentially reverse these methods and use prior knowledge of
odds ratios between infection and testing to better estimate
incidence in the first place. Alternatively, a general pattern in
odds ratios across systems might take the form of a relationship
between odds ratio and incidence, as with the inverse correlation
we observe between �I,P(w) and COVID-19 incidence (SI
Appendix, Figs. S10–S12), thus describing common ways that
underreporting varies between different stages of an epidemic.
Using odds ratios as a marker to correct incidence in this way
could be more valuable than using raw case counts, for example,
as odds ratios are normalized to remove the influence of testing
volume.

Serology Model. With the additional consideration of the serol-
ogy tests’ titer values, we have shown that passively collected
data from PCR and serology tests at the individual level can
be very powerful. Titers from the New Jersey testing database
can recover the general shape of vaccine uptake and identify
behavioral factors by which past testing history can influence
vaccination (Fig. 3). The titers can even recreate serological
trajectories from rigorously controlled longitudinal clinical trials
(33) (Fig. 4), which can aid in the estimation of crucial parameters
characterizing antibody dynamics.

Our serology model builds on these observations to estimate
behavioral parameters relating past testing history to one’s
likelihood and timing of vaccination. Most importantly, the
serology model robustly demonstrates that people with past
PCR positive were less likely at the onset of vaccination to get
vaccinated and took longer to do so. This confirms that the trend
observed in Fig. 3B does have a behavioral origin related to past
testing history.

But why might the average New Jersey resident be deterred
by a past positive PCR result in future vaccination decisions?

A likely significant driver of this common reaction was the CDC
guideline to “consider delaying your vaccine by 3 months from …
when you received a positive test” (46). It does appear that vaccine
uptake from those with past PCR positive begins to catch up to
uptake from those without past PCR positive toward the end
of the study period (Fig. 6); however, the model predicts that it
takes significantly longer than 3 mo for this gap in vaccine uptake
to be bridged. Similarly, several studies promoted the idea that
previously infected individuals should have the lowest COVID-
19 vaccination priority (47–49), though no such policies were
implemented in the United States.

Another potential factor discouraging vaccination for those
with a past PCR-confirmed infection is the idea that naturally
acquired immunity renders vaccination obsolete. This notion
has been fueled by misinformation surrounding the superiority
of natural immunity (30, 50) and the outdated concept of
“immunity passports,” which would have allowed full resumption
of normal activities following recovery from a COVID-19
infection (17, 51, 52). Surveys have found that a belief in
preexisting immunity is a major contributor to COVID-19
vaccine hesitancy (7), while CDC guidelines against eschewing
vaccination post-infection signify that this line of thinking has
been a real issue (46). If misinformation discouraging people
with past positive test results from getting vaccinated is in fact a
significant driver of reduced vaccination rates, then campaigns to
target such misinformation could prevent many infections and
deaths in future epidemics.

The statistical link we find between past PCR positives and
reduced vaccination could also be confounded by underlying
variables, such as general risk-taking attitudes which could
simultaneously make one more likely to get infected and less
likely to get vaccinated; or the very act of taking a serology
test, as our serology model cannot make predictions about the
behaviors of those who have never taken a serology test. In
order to tease apart these different possibilities, state-led efforts
to collect personalized testing history data for future epidemics
should also seek to incorporate vaccination status into these
personalized histories so that vaccination history need not be
inferred from serological titers. Randomized surveys explicitly
asking about the impetuses behind certain testing and vaccination
behaviors could also be useful in uncovering people’s attitudes
toward natural immunity and the subsequent necessity of
vaccination.

Materials and Methods
New Jersey COVID-19 Testing Database. Throughout the COVID-19 pan-
demic, the NJDOH has kept track of all PCR and serology test results from
hospitals and labs in New Jersey (as well as some antigen tests, though we did
not analyze those, as far fewer are recorded by the state). Uniquely, all tests
in this database identify their test-taker, allowing for all tests taken by a single
individual to be grouped together while retaining the test-taker’s anonymity. In
this study, we focus on the first 20 mo of the pandemic, from March 2020 to
September 2021, over which time the NJDOH recorded 16.1 million PCR tests
and 1.8 million serology tests. There were 1.3 million distinct individuals who
had taken at least one serology test (some taking multiple); 8.5% of serology
tests were taken by someone who had a previous PCR positive result; and 6.9%
have an associated numeric titer value quantifying the strength of the COVID-19
immune response measured by the serology test. Each test in the database has
the testing date recorded, allowing us to examine the delays between taking
different tests by the same individual, as well as demographic and geographic
information on the test-taker.
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Odds Ratios. Odds ratios calculate the strength of association between an
exposure and an outcome [formally defined as the odds of experiencing the
outcome given the exposure divided by the odds of experiencing the outcome
given no exposure (53)]. For our analysis, the exposure is either having a current
COVID-19 infection, having a past infection or vaccination, or having received a
PCR positive result in the past; and the outcome is taking either a PCR or serology
test in the “present” week (here the present week is a relative term that can mean
any week w). From these three possible exposures and two possible outcomes,
we calculate four distinct odds ratios, each across a time span ranging from
w = 1 for the week of March 1, 2020, to w = 82 for the week of September
19, 2021.

Specifically, we define the following log odds ratios (the logarithms of the
odds ratios):

• �I,P(w) measures how taking a PCR test in weekw is associated with whether
one has a current COVID-19 infection detectable by PCR.

• �I,S(w) measures how taking a serology test in week w is associated with
whether one has had a past COVID-19 infection or vaccination detectable by
serology.

• �Pp ,P(w) measures how taking a PCR test is associated with whether one has
received a positive PCR result in the past.

• �Pp ,S(w) measures how taking a serology test is associated with whether one
has received a positive PCR result in the past.

�I,P(w) = log
(

odds(taking PCR test in week w | current infection)
odds(taking PCR test in week w | no current infection)

)
, [1]

�I,S(w) = log
(

odds(taking serology test in week w | past infection or vaccination)
odds(taking serology test in week w | no past infection or vaccination)

)
, [2]

�Pp ,P(w) = log
(

odds(taking PCR test in week w | past PCR positive)
odds(taking PCR test in week w | no past PCR positive)

)
, [3]

�Pp ,S(w) = log
(

odds(taking serology test in week w | past PCR positive)
odds(taking serology test in week w | no past PCR positive)

)
. [4]

The exposure of whether one has received a positive PCR result in the past
essentially indicates whether one knows with certainty that one has been infected
before. Formally, the odds ratios can be expressed by Eqs. 1–4, with the odds
function defined as odds(X | Y) = P(X | Y) / P(not X | Y) for any events X
and Y .

Log odds ratios are calculated using the Fisher exact test on 2×2 contingency
tables (54, 55), which record the number of people either matching the exposure
or not (on the rows) while also either matching the outcome or not (on the
columns). A log odds of 0 indicates that the outcome is completely independent
of the exposure on average, while a positive log odds indicates a positive
association between exposure and outcome such that the outcome is seen
disproportionately more in people who have had the exposure (and the opposite
for a negative log odds). For example, a value of �I,P(w) > 0 indicates that,
in week w, having a current COVID-19 infection tended to make people more
likely to get a PCR test in that week; conversely, �I,P(w) < 0 means a COVID-19
infection in week w made people less likely to get PCR tested that week; and
�I,P(w) ≈ 0 shows that being infected on average had little effect on people’s
decisions to get PCR tested in week w.

The odds ratios require knowledge of COVID-19 incidence in New Jersey over
time, in order to measure the number of people matching the exposures of past
and present infection. We estimate the true incidence in a week from COVID-
19 deaths in the following weeks, extrapolating backward from the deaths to
infer the number of infections that occurred to produce that many deaths. Our
approach roughly follows those of Jombart et al. (56) and McCulloh et al. (57),
though instead of using a fixed infection fatality ratio, we utilize a time-varying
fatality ratio proportional to published case fatality ratios in order to better
capture changing trends in COVID-19-based mortality. We calculate our time-
varying fatality ratio as IFR · CFR(w)/CFR (SI Appendix, Fig. S9), where IFR is
a constant infection fatality ratio drawn from a distribution from the literature
(58), CFR(w) is the time-varying case fatality ratio (59), and CFR is the mean of
CFR(w) over the study period.

Full descriptions of the contingency tables, other assumptions for the odds
ratios, and incidence estimation can be found in SI Appendix, along with
an analysis of a fifth odds ratio describing how having a past PCR positive
can influence one’s likelihood of taking a positive serology test (SI Appendix,
Fig. S13).

Serology Model. We also built a model to take into account each serology
test’s titer value, which is a numeric indicator of the relative strength of one’s
immune response (60, 61). We use this value and information on the test-taker’s
past testing history to infer the probabilities that they have ever been infected
and vaccinated prior to taking the serology test. For consistent comparison
between titer values, we restrict our analysis to a specific group of IgG serology
tests with reported numeric titer values all from the same provider (DiaSorin
2020), resulting in a total of 12,341 tests from May 2, 2020 to September
20, 2021. These tests all bind to the spike protein of SARS-CoV-2, allowing the
tests to pick up natural infection as well as vaccination (62). To facilitate the
modeling, we convert the tests’ numeric titer values to a natural-log scale (33),
on which they range from about 1.3 to 6.0 with the threshold for positivity at
about 2.7.

This subsetted and transformed data reveals an interesting trend: average
titer values predictably increase as vaccines are introduced to the state and the

serology tests respond to vaccinations (Fig. 3A), but this increase is significantly
slower and reduced for people with past PCR positives as compared to those
without any past PCR positive (Fig. 3B). We therefore develop a more detailed
serology model to rigorously evaluate whether this observed trend is a direct
result of different vaccination rates between these two groups. The opposing null
hypothesis would be that this trend is only a product of the different vaccination
rates between age classes: since older age classes had earlier access to the
vaccine, the patterns we see could be potentially caused by older individuals
being less likely to have any past PCR positives. The New Jersey COVID-19 testing
database records the age of each test-taker, allowing us to tease apart these two
hypotheses.

The serology model first focuses on serology tests taken by people with a
past PCR positive, which approximates when they were initially infected. With i
indexing over the serology tests, we fit known within-host serological trajectories
(33) (Fig. 4) to the titer values yi based on the test-taker’s age class ai and delay
�i from infection to serology test:

E[yi] = sai + haiF(�i; �ai , �ai)e
−�ai �i , [5]

where F(�; �, �) represents the gamma cumulative distribution function with
shape� and rate�, and age classahas baseline titer value sa, maximum increase
due to infection ha, and exponential decline at rate �a.

With the serological parameters fit from the submodel of tests with past PCR
positive, we then fit additional behavioral parameters for the full model taking in
all of the serology tests. Most important of the behavioral parameters is rVP(w),
which measures in week w how likely someone with past PCR positive is to get
vaccinated as compared to someone without past PCR positive:

rVP(w) =
P(getting vaccinated in week w | past PCR positive)

P(getting vaccinated in week w | no past PCR positive)
. [6]

8 of 10 https://doi.org/10.1073/pnas.2314357121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

PR
IN

C
ET

O
N

 U
N

IV
 L

IB
R

A
R

Y
; A

C
Q

U
IS

IT
IO

N
 S

ER
V

IC
E 

PE
R

IO
D

IC
A

LS
 o

n 
Ju

ne
 1

7,
 2

02
5 

fr
om

 IP
 a

dd
re

ss
 1

40
.1

80
.2

40
.1

23
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2314357121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314357121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314357121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2314357121#supplementary-materials


If rVP is fit to be close to 1 the entire time, then the null hypothesis is true that the
different vaccination rates between age classes are responsible for the observed
trend shown in Fig. 3B. Conversely, a fitted value of rVP < 1 would confirm the
hypothesis that having a past PCR positive was a significant driver of the lower
initial vaccination rates.

E[yi | Xi] = sai + P(i’s test-taker has been infected | Xi)
[
haiF(�i; �ai , �ai)e

−�ai �i
]

+ P(i’s test-taker has been vaccinated | Xi) .
[7]

For each set of behavioral parameters and each serology test i, we calculate
the probabilities of past infection and past vaccination—P(i’s test-taker has been
infected | Xi) and P(i’s test-taker has been vaccinated | Xi)—where Xi refers
to one of three possible testing histories: serology test i has an associated past
PCR positive; serology test i has no past PCR positive and has a positive result;
or serology test i has no past PCR positive and has a negative result. Then the
expectation of the titer value yi for serology test i is modeled by Eq. 7, where
Xi is one of the same three testing history options, and  is an additional
fitted parameter describing the average increase in titers due to vaccination. The
expected titer value given by the right side of Eq.7 is not completely independent
of the actual titer value yi, as yi determines the positive/negative result of the test
(by comparing yi to the serology test’s threshold value); and yi helps simulate
the delay �i from infection to testing date for tests without a past PCR positive
from which to infer time of infection.

Both these steps utilize an MCMC fitting procedure implemented in RStan
(63). Calculating the probabilities in Eq. 7 requires weekly age-dependent
incidence estimates, which we derive using the same overall weekly incidence
estimated for the odds ratios, divided into age groups in proportions derived

from CDC seroprevalence data (64). See SI Appendix for a full description of the
model and how the probabilities are calculated.

This study was deemed exempt by the Princeton University IRB office.

Data, Materials, and Software Availability. All code to reproduce the
analyses and figures in this paper can be found at https://github.com/
freedmanari/NJ-sero (65).
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